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1 Introduction

The calculation of tree-graph amplitudes for massless particles is radically simplified by
the exploitation of spinor methods [1–6]. However it is less widely appreciated that even in
the presence of masses, spinor techniques can lead to compact expressions for tree-graph
amplitudes.

This has recently been demonstrated for amplitudes containing a tt̄-pair and (n − 2)
gluons [7] where beautiful results have been obtained for all n ≥ 4 for two particular helicity
combinations. The two cases comprise the amplitude with all gluons with identical helicity,
and the amplitude with one opposite-helicity gluon color-adjacent to one of the quarks.
In a second paper results have been provided for amplitudes involving two massive quark-
antiquark pairs and an arbitrary number of identical helicity gluons [8]. These relations are
proved using Britto-Cachazo-Feng-Witten (BCFW) recursion [9, 10]. The other required
amplitudes for tt̄ggg and some additional amplitudes for tt̄gggg can be obtained using
Bern-Carrasco-Johansson (BCJ) relations [11, 12].

Automatic procedures to calculate tree (and one-loop) graphs are available [13–16].
Nevertheless it seemed opportune to apply the theoretical results described above for the
concrete case of tt̄+jets, supplementing the results given in ref. [7] with explicit expressions
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for tt̄qq̄ and the five- and six-parton amplitudes, tt̄qq̄g, tt̄qq̄gg and tt̄qq̄q′q̄′. This is partic-
ularly useful because amplitude expressions allow the inclusion of the tree-level decay of
the top quark [17].

The BCFW technique allows the iterative construction of higher point amplitudes
starting from three-point amplitudes evaluated at complex momenta for both massless and
massive [7, 8, 18–21] amplitudes. Since the amplitudes are constructed using on-shell re-
sults, they are free of the redundant gauge degrees of freedom which are present in a normal
quantum field theory calculation. Our results are presented using the formalism of Arkani-
Hamed, Huang and Huang (AHH) [22], who have extended the spinor-helicity formalism
for massless particles. In their formalism the covariance properties of the amplitudes under
little group rotations are made manifest by the addition of a SU(2) little group index. The
resulting Spin-spinors carry an SU(2) index (I) in addition to the Lorentz group SL(2,C)
indices, (α, α̇). From the point of view of the amplitude program, which asserts that am-
plitudes calculated recursively using on-shell ingredients are more fundamental than their
quantum field theory analogues, the extension to massive particles is an important and
necessary step.

Our aim in this paper is more prosaic; we want to investigate the benefits for top quark
physics of analytic tree-level amplitudes calculated using BCFW techniques. The work of
BCFW and BCJ has shown that full amplitudes can be calculated from a limited number
of ingredients. At low perturbative order analytic results can be computationally more ef-
ficient (see for example ref. [8]) than results based on off-shell Berends-Giele recursion [23],
which is often the automatic procedure of choice for the calculation of tree graphs. These
amplitudes will be incorporated in MCFM [24], exploiting the possibility of including the
tree-level decay of the top quark with decay correlations at essentially zero cost [17]. Fi-
nally, we note that compact low order tree-graph results can be useful ingredients for loop
calculations via unitarity, see for example refs. [25, 26].

1.1 Plan of the paper

Section 2 gives an introduction to the massless and massive spinor formalism, following the
method of AHH for the massive case. Section 3 addresses the definition of color-ordered
primitives and the BCJ relations between them. The basic 3-parton building blocks for
the BCFW recursion are also presented here. Section 4 illustrates the use of BCFW
recursion for the calculation of A4(1, 3+

g , 4+
g , 2Q̄) and A4(1, 3+

g , 4−g , 2Q̄), and presents a full
set of results for the 4-parton amplitudes. Section 5 uses the results of the previous two
sections to calculate the 5-parton amplitude A5(1, 2Q̄, 3−q , 4+

q̄ , 5+
g ) to further illustrate the

application of BCFW techniques. Sections 6 and 7 present the results for all the 5-parton
and 6-parton amplitudes. Both sections contain a description of the color decomposition
of the amplitude, the form of the squared amplitude after summing over colors, a complete
set of results for the subamplitudes in terms of massless and massive spinors for all helicity
combinations of the massless particles and a description of the BCJ relations between
the sub-amplitudes, if applicable. In section 8 we give an explicit representation of the
Spin-spinors that is closely connected to the Kleiss-Stirling method [27] and review the
implementation of tree-level top-quark decay. In section 9 we draw some conclusions.
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Appendix A derives the results needed for the calculation in the Spin-spinor formalism and
appendix B gives an alternative color decomposition for QQ̄qq̄gg amplitudes.

2 Spin-spinor formalism

In this section we will introduce the essence of the Spin-spinor formalism of Arkani-Hamed,
Huang and Huang (AHH) [22]. A more detailed exposition of this formalism is given in
refs. [7, 8, 28, 29]. Appendix A gives a detailed derivation of the results that we will need
for our calculation.

2.1 Massless partons

We consider a spinor state |p⟩β which is a solution to the massless Weyl equation pα̇β |p⟩β =
0 where pα̇β = pµσα̇β

µ is derived from the four-momentum pµ of the particle. The indices
α̇ and β are the SL(2,C) Lorentz group indices that are normally superfluous in the angle
and square bracket formalism, but we sometimes find it convenient to retain them here.
Since the particle is massless, pα̇β is a rank one matrix and is expressible as

pα̇β = |p]α̇⟨p|β , (2.1)

which is clearly invariant under the little group rescaling

⟨p|β → t ⟨p|β , |p]α̇ → 1
t
|p]α̇ . (2.2)

The spinors are in the fundamental representation of the group SL(2,C) and the particular
components are indicated by indices α̇, β. For a massless particle we can go to a frame in
which the momentum is directed along the z direction p = (E, 0, 0, E). The little group
is thus the group of rotations in the x, y plane, namely SO(2) ≡ U(1).The great utility of
the spinor formalism derives from the fact that amplitudes are directly functions of spinor
helicity variables.

2.2 Massive partons

The extension of this formalism to massive particles notes that the little group in this case
can be deduced in the rest frame of the particle. In the rest frame the little group is the set
of rotations in 3 dimensions, namely SO(3) ≡ SU(2). Amplitudes can now be expressed in
terms of Spin-spinors which transform as a direct product of the SU(2) spin group tensor
and the SL(2,C) Lorentz group. These Spin-spinors are denoted by |pI⟩β and |pI ]α̇. In the
angle and square bracket notation combination rules for the dotted and undotted SL(2,C)
indices are mandated by the angle and square brackets, so they can be dropped in spinor
products. Amplitudes involving massive particles, with momenta p1 and p2 are naturally
expressed in terms of spinor products such as ⟨1I2J⟩,

[
1I2J

]
since these spinor products

reflect the little group transformation properties of the amplitudes themselves.
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The Spin-spinors so defined satisfy a number of relations that are necessary to perform
the BCFW recursion. These identities are,

|pI⟩α [pI |β̇ = +pαβ̇

|pI ]α̇⟨pI |β = −pα̇β

|pI⟩α⟨pI |β = +mδβ
α

|pI ]α̇ [pI |β̇ = −mδα̇
β̇

|pI⟩α [pI |β̇ = −pαβ̇

|pI ]α̇⟨pI |β = +pα̇β

|pI⟩α⟨pI |β = −mδβ
α

|pI ]α̇ [pI |β̇ = +mδα̇
β̇

pα̇β |pI⟩β = −m|pI ]α̇

pαβ̇ |p
I ]β̇ = −m|pI⟩α

⟨pI |αpαβ̇ = +m[pI |β̇
[pI |α̇pα̇β = +m⟨pI |β

(2.3)

The derivation of these relations is presented in appendix A. The SU(2) indices are raised
and lowered using the two-dimensional totally antisymmetric tensor ϵIJ .

We adopt the convention that,1

| − p⟩ = −|p⟩ , | − p] = |p] . (2.4)

In this paper we calculate amplitudes will all momenta outgoing. With this convention we
have that

γµpµ + m =
(
| − pI ]α̇[pI |β̇ | − pI ]α̇⟨pI |β

| − pI⟩α[pI |β̇ | − pI⟩α⟨pI |β

)
, (2.5)

which shows that sewing together amplitudes in the BCFW method, where one line must
perforce have a negative momentum, reproduces the numerator of the massive fermion
propagator.

Armed with the basic results for the 3-point vertices involving massive and massless
particles we can construct higher point tree-level amplitudes using BCFW recursion. In
addition we can illustrate the BCJ relations between the analytical results that we calculate.

3 Color and counting of primitives

It is well known that for the case of pure gluon scattering, the color-trace decomposition
into color-ordered primitives is [5],

An(1g, 2g, . . . ng) =
∑

σ∈Sn−1({2,...,n})
Tr
(
tC1tCσ(2) . . . tCσ(n)

)
Ān(1, σ(2), . . . , σ(n)) , (3.1)

where the sum is over (n − 1)! primitives, since the cyclicity of the trace allows one to fix
the first argument. This decomposition has the disadvantage that the color coefficients are
not all linearly independent. Consequently the color-ordered sub-amplitudes are not the
minimal set. Indeed for the pure gluon case, the color sub-amplitudes defined in eq. (3.1)
are related by the Kleiss-Kuijf (KK) relations [30], which reduce the number of independent
primitives to (n − 2)!. It was subsequently observed by Del Duca, Dixon and Maltoni [31]
that the color decomposition

An(1g, 2g, . . . ng) =
∑

σ∈Sn−2({3,...,n})

(
T Cσ(3) . . . T Cσ(n)

)
C1C2

An(1, 2, σ(3), . . . , σ(n)) , (3.2)

1This has been discussed at length in refs. [7, 8] where explicit spinors obeying these relations can be
found.
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n k ng nP

# of partons # of quark pairs # of gluons # of primitives
4 1 2 2
5 1 3 6
6 1 4 24
4 2 0 1
5 2 1 3
6 2 2 12
6 3 0 4

Table 1. Number of independent primitive amplitudes nP = (n − 2)!/k!, after imposition of KK-
type constraints. n is the total number of partons, and k is the number of distinguishable quark
pairs.

where T are SU(3) matrices in the adjoint representation, contains only linearly inde-
pendent color structures and automatically reduces the number of independent color-
subamplitudes to (n − 2)!.

In this paper we will be dealing with amplitudes with one or more quark lines. For
the case of one quark line, the trace representation

An(1Q, 2Q̄, 3g . . . ng) ==
∑

σ∈Sn−2({3,...,n})

(
T Cσ(3) . . . T Cσ(n)

)
x1x2

An(1Q, 2Q̄, σ(3), . . . , σ(n)) ,

(3.3)
is free of further relations of the KK type. In addition to pure gluon processes, color de-
compositions for processes involving one quark line have been considered in ref. [31]. In the
case where we consider more than one quark line the equivalent color decompositions have
been given in refs. [32–36]. Table 1 presents the number of primitive color sub-amplitudes
after application of all KK-type relations, for the top pair production amplitudes that we
consider in this paper.

3.1 Relations between the kinematic part of tree amplitudes

Bern, Carrasco and Johansson (BCJ) have discovered additional relations obeyed by am-
plitudes involving external gluons. The quark-gluon BCJ relations, for one or more massive
quark lines, are given by the general formula [11, 12, 33],

n−1∑
i=2

( i∑
j=2

sjn − m2
j

)
An(1Q, 2Q̄, . . . i, ng, i + 1, . . . , n − 1) = 0 . (3.4)

where particle n is strictly a gluon, while the remaining (n−1) particles can be of any type:
quark/antiquark/gluon. Table 2 gives results for the number of primitives after imposition
of BCJ relations.
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n k ng nP

# of partons # of quark pairs # of gluons # of primitives
4 1 2 1
5 1 3 2
6 1 4 6
4 2 0 1
5 2 1 2
6 2 2 6
6 3 0 4

Table 2. Number of independent primitive amplitudes nP after imposition of KK and BCJ con-
straints. n is the total number of partons, and k is the number of distinguishable quark pairs. For
k = 1 this is nP = (n − 3)!, while for k ≥ 2 nP = (n − 3)! (2k − 2)/k!. Adapted from ref. [33].

3.2 Three parton amplitudes

In this section we provide the basic building blocks for 3-point amplitudes. These are
necessary in order to start the BCFW recursion. For the ggg process we have,

A3(1−g , 2−g , 3+
g ) = gf̃C1C2C3 ⟨12⟩3

⟨23⟩ ⟨31⟩ = −ig
(

Tr{tC1tC2tC3} − Tr{tC1tC3tC2}) ⟨12⟩3

⟨23⟩ ⟨31⟩ .

(3.5)
For the QgQ̄ process we have,

A3(1x1 , 3C , 2x2) = g (tC)x1x2 A3(1Q, 3, 2Q̄) (3.6)

where,

−iA3(1Q, 3+, 2Q̄) = −
(
[13]⟨q2⟩ + ⟨1q⟩[32]

)
⟨q3⟩

= −
(
⟨1|1|3] ⟨q2⟩ − ⟨1q⟩ [3|2|2⟩

)
m⟨q3⟩ = −⟨12⟩⟨q|1|3]

m⟨q3⟩ , (3.7)

−iA3(1Q, 3−, 2Q̄) = −
(
⟨13⟩[q2] + [1q]⟨32⟩

)
[3q]

= −
(
[1|1|3⟩[q2] − [1q] ⟨3|2|2]

)
m[3q] = − [12]⟨3|1|q]

m[3q] . (3.8)

These formula require complex on-shell kinematics and q is an arbitrary light-like mo-
mentum. The first form in eqs. (3.7) and (3.8) is valid for both massless and massive
quarks. The application to massless quarks however, requires picking out the term with
the right little group scaling, dependent on the desired helicities of the massless quarks.
The last form in eqs. (3.7) and (3.8), obtained using the equation of motion from eq. (2.3),
is the most compact expression for massive fermions [7]. The SU(3) color matrices in the
fundamental representation are normalized such that,

Tr{tCtD} = δCD, [tA, tB] = if̃ABCtC , where f̃ABC =
√

2fABC . (3.9)

– 6 –
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Much of the concision of the expressions which we present in the following is due to
the notation which we have chosen. We employ a notation in which slashed momenta can
denote either σ.p or σ̄.p depending on the spinor string in which it appears. Moreover we
can drop the slash inside the spinor sandwiches. Momenta pj are mostly represented by
the symbol j alone. Thus,

⟨i|̸pj |l] ≡ ⟨i|pj |l] ≡ ⟨i|σ̄ · pj |l] ≡ ⟨i|α (pj)αβ̇ |l]
β̇ ≡ ⟨i|j|l] ,

⟨i|̸pjk|l] ≡ ⟨i|pjk|l] ≡ ⟨i|σ̄ · pjk|l] ≡ ⟨i|(j + k)|l] where pjk = pj + pk . (3.10)

More complicated spinor strings are defined in a similar way. In these expressions pi, pl

are light-like momenta, whereas pj , pk are not necessarily light-like. In the angle and
square bracket notation, the SL(2,C) indices α, β̇ are superfluous; they are shown above
for completeness only. The momenta of massive quarks are always denoted in boldface. The
covariance properties of the amplitudes under little group transformations are manifested
by the SU(2) indices I and J of the external massive particles. These external indices are
never summed. In practice, these indices will not be displayed, and their presence in the
formula should be understood. In practice it is useful to consider the SU(2) indices of the
outgoing massive quarks to be in the raised position, (transforming as an SU(2) doublet),
whereas the index of the outgoing antiquark is in the lower position, (transforming as an
SU(2) anti-doublet).

⟨1| ≡ ⟨1I | [1| ≡ [1I |
|2⟩ ≡ |2I⟩ |2] ≡ |2I ] (3.11)

As such the indices are in the right positions to apply the identities given in eq. (2.3) which
involve sums over SU(2) indices with one index up and the other down. The SU(2) indices
I and J run over the values 1 and 2. We follow the Einstein notation that repeated indices
are summed.

4 Four parton amplitudes

4.1 One quark pair, two gluon amplitudes

4.1.1 Color algebra

The color decomposition for a tree-level amplitude with QQ̄ + (n − 2)-gluons is,

An(1x1 , 3C3 , . . . , nCn , 2x2) = gn−2 ∑
σ∈Sn−2

(tCσ(3) . . . tCσ(n))x1x2An(1Q, σ(3), . . . , σ(n), 2Q̄) ,

(4.1)
where Sn−2 is the permutation group on n − 2 elements, and An are the tree-level partial
amplitudes.

For the case at hand, n = 4, the square of the amplitude summed over colors of quarks
and gluons is,∑
C3,C4,x1,x2

|A4(1x1 , 3C3 , 4C4 , 2x2)|2 = g4 V
{

N
[∣∣A4(1Q, 3g, 4g, 2Q̄)

∣∣2 +
∣∣A4(1Q, 4g, 3g, 2Q̄)

∣∣2]
− 1

N

∣∣A4(1Q, 3g, 2Q̄, 4g)
∣∣2} , (4.2)
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Figure 1. Diagrams for BCFW recursion for A4(1, 3g, 4g, 2Q̄).

where V = N2 − 1 and the expression for the subleading color amplitude is given by a sum
of the two leading color amplitudes,

A4(1Q, 3g, 2Q̄, 4g) = A4(1Q, 3g, 4g, 2Q̄) + A4(1Q, 4g, 3g, , 2Q̄) (4.3)

4.1.2 Results for one quark pair + two gluon amplitudes

We can now calculate the one quark pair + two gluon amplitudes using the 3-parton
amplitudes given in eqs. (3.7), (3.8) by BCFW recursion. As usual for the choice of the
BCFW shift momentum,

|ĵ] = |j] − z|i], |̂i >= |i⟩ + z|j⟩, (4.4)

the helicities of the marked particles can take the values, (hi, hj) = (+,−), (+, +), (−,−)
but not (hi, hj) = (−, +), in order that the amplitude as a function of z vanishes as
z → ∞ [10]. The four-parton amplitudes are then obtained from,

A4(1Q, 3g, 4g, 2Q̄) = A3(1, 3̂g,−P ) i

⟨3|1|3] A3(P , 4̂g, 2Q̄) . (4.5)

The relevant diagram for the calculation of A4(1Q, 3+
g , 4+

g , 2Q̄) is shown in figure 1(a).
Taking i = 3 and j = 4 we have,

|3̂⟩ = |3⟩ + z|4⟩ , |4̂] = |4] − z|3] , P = p1 + p̂3 . (4.6)

The onshell condition on the intermediate quark line P 2 − m2 =
[
3|1|3̂

〉
= 0 determines

that,

z = − [3|1|3⟩
[3|1|4⟩ , ⟨x3̂⟩ = [3|1|x⟩

[3|1|4⟩ ⟨43⟩ ,
[
x4̂
]

= [x|(3 + 4)|1|3]
[3|1|4⟩ = − [x|(1 + 2)|1|3]

[3|1|4⟩ .

(4.7)
From eq. (3.7) using eq. (2.4) we have that,

A3(1, 3̂+
g ,−P ) = −i

⟨1| − P ⟩ ⟨q|1|3]
m⟨q3̂⟩

= −i
⟨1P ⟩ ⟨4|1|3]

m⟨34⟩ , (4.8)

A3(P , 4̂+
g , 2Q̄) = i

⟨P 2⟩
〈
q|2|4̂

]
m⟨q4⟩ = −i

⟨P 2⟩ ⟨3|2|(1 + 2)|1|3]
m⟨34⟩ [3|1|4⟩ = −i

⟨P 2⟩ [34] m

[3|1|4⟩ . (4.9)

– 8 –
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For clarity, when a momentum has a negative sign we introduce an additional vertical line
in the spinor products, e.g. ⟨ij⟩ = ⟨i|j⟩. Therefore the answer by BCFW is,

−iA4(1Q, 3+
g , 4+

g , 2Q̄) = − [34]
⟨34⟩

1
⟨3|1|3]⟨1P ⟩⟨P 2⟩ = m

[34]
⟨34⟩

1
⟨3|1|3]⟨12⟩ , (4.10)

where we have used the relation, cf. eq. (2.3),

⟨1P ⟩⟨P 2⟩ = ⟨1J |PI⟩⟨P I2K⟩ = −m⟨1J2K⟩ . (4.11)

For the calculation of A4(1Q, 3+
g , 4−g , 2Q̄), shown in figure 1(b), we use the same shift

and require the amplitude,

A3(P , 4̂−g , 2Q̄) = −i
(⟨P 4⟩ [q2] + [P q] ⟨42⟩)[

4̂q
] = −i

(⟨P 4⟩ [32] + [P 3] ⟨42⟩)
[43] . (4.12)

Therefore the answer by BCFW is

−iA4(1Q, 3+
g , 4−g , 2Q̄) = − ⟨4|1|3]

m ⟨3|1|3] s34
⟨1P ⟩(⟨P 4⟩ [32] + [P 3] ⟨42⟩)

= ⟨4|1|3]
⟨3|1|3] s34

(⟨14⟩ [32] + [13] ⟨42⟩) , (4.13)

where we have used eq. (4.11) with a suitable choice of arguments. Additionally we have
|pI⟩α[pI |β̇ = −pαβ̇ , (see appendix A) so that,

⟨1P ⟩ [P 3] = ⟨1JPI⟩ [P I3] = −
〈
1J |P |3

]
= −m

[
1J3

]
. (4.14)

Summarizing, the two primitive leading-color amplitudes are given by,

−iA4(1Q, 3+
g , 4+

g , 2Q̄) = m
[34]
⟨34⟩

⟨12⟩
(s13 − m2) , (4.15)

−iA4(1Q, 3+
g , 4−g , 2Q̄) =

⟨4|1|3]
(
[13]⟨42⟩ + ⟨14⟩[32]

)
(s13 − m2)s34

. (4.16)

From eqs. (4.15), (4.16) the remaining helicity combinations can be obtained by charge
conjugation and line reversal,

−iA4(1Q, 3−g , 4−g , 2Q̄) = iA4(2Q, 4+
g , 3+

g , 1Q̄)|⟨⟩↔[] = m
⟨34⟩
[34]

[12]
(s13 − m2) ,

−iA4(1Q, 3−g , 4+
g , 2Q̄) = iA4(2Q, 4+

g , 3−g , 1Q̄) =
⟨3|1|4]

(
⟨13⟩[42] + [14]⟨32⟩

)
(s13 − m2)s34

. (4.17)

The amplitudes in eqs. (4.15), (4.16) and (4.17) clearly satisfy the BCJ relation,

(s13 − m2)A4(1Q, 3g, 4g, 2Q̄) = (s14 − m2)A4(1Q, 4g, 3g, 2Q̄) . (4.18)

The subleading color amplitudes can be obtained from eq. (4.17) using the relation
eq. (4.3). Applying eq. (4.3) and simplifying we have,

−iA4(1Q, 3+
g , 2Q̄, 4+

g ) = m
[34]2 ⟨12⟩

(s13 − m2)(s14 − m2) ,

−iA4(1Q, 3−g , 2Q̄, 4+
g ) = −

⟨3|1|4]
(
⟨13⟩[42] + [14]⟨32⟩

)
(s13 − m2)(s14 − m2) . (4.19)
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Figure 2. Diagrams for BCFW recursion for A(1Q, 2Q̄, 3−
q , 4+

q̄ , 5+
g ).

4.2 Two quark pair amplitude

4.2.1 Color algebra

We now write down the amplitude for 4 quarks, where 1 and 2 have mass m, and 3 and 4
are massless,

A4(1x1 , 2x2 , 3h3
x3 , 4h4

x4) = g2(tC)x1,x2 (tC)x3,x4 A4(1Q, 2Q̄, 3h3
q , 4h4

q̄ ) . (4.20)

The result for the amplitude squared summed over colors is,∑
x1,x2,x3,x4

|A4(1x1 , 2x2 , 3h3
x3 , 4h4

x4)|2 = g4V
∣∣A4(1Q, 2Q̄, 3h3

q , 4h4
q̄ )
∣∣2 . (4.21)

4.2.2 Result for two quark pair amplitude

The result for two quark pair amplitude is simply given by,

−iA4(1Q, 2Q̄, 3−q , 4+
q̄ ) = ⟨13⟩ [42] + [14] ⟨32⟩

s34
. (4.22)

The primitive amplitude with opposite helicities of the massless quarks is obtained by
exchanging labels 3 and 4.

5 Example of BCFW recursion

In this section we illustrate the calculation of the 5-parton amplitude using BCFW recursion
exploiting the amplitudes presented in sections 3 and 4. As an example we calculate
one of the amplitudes for one massive quark pair, one massless quark pair and a gluon,
A5(1, 2Q̄, 3−q , 4+

q̄ , 5+
g ). For the BCFW shift we take i = 5, j = 4 so that,

|5̂⟩ ≡ |5⟩ + z |4⟩, |4̂] ≡ |4] − z |5] (5.1)

5.1 Residue at z15

For the diagram in figure 2(a) we have that,

A5(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g )
∣∣∣
z15

= −A3(1Q, 5̂+
g ,−PQ̄) i

⟨5|1|5]A4(PQ, 2Q̄, 3−q , 4̂+
q̄ ) , (5.2)
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where P = p1 + p̂5 and the overall sign is due to the definition of the color decomposition,
see eq. (6.17). For i = 5 and j = 4 the onshell condition for the massive intermediate quark
is ⟨5|1|5] + z15⟨4|1|5] = 0. The shifted spinors are,

z15 = −⟨5|1|5]
⟨4|1|5] , |5̂⟩ = −|1|5|4⟩

[5|1|4⟩ , |4̂]= |(4 + 5)|1|5]
⟨4|1|5] . (5.3)

For the amplitude on the left hand side of figure 2(a) we use the expression given in
eq. (3.7) with eq. (2.4) and we choose ⟨q| = ⟨4|. For the amplitude on the right hand side
of figure 2(a) we use eq. (4.22),

A3(1Q, 5̂+
g ,−PQ̄) = −i

⟨1| − P ⟩ ⟨q|1|5]
m⟨q5̂⟩

= i
⟨1P ⟩ ⟨4|1|5]

m⟨45⟩ (5.4)

A4(PQ, 2Q̄, 3−q , 4̂+
q̄ ) = i

(⟨P 3⟩
[
4̂2
]

+
[
P 4̂
]
⟨32⟩)

s34̂
= i

(
[
P 4̂
]
⟨32⟩ − ⟨P 3⟩

[
24̂
]
)

⟨43⟩
[
34̂
] (5.5)

= i
([P |(4 + 5)|1|5] ⟨32⟩ − ⟨P 3⟩ [2|(4 + 5)|1|5])

⟨43⟩ [3|(4 + 5)|1|5] (5.6)

Now using the relations for massive spinors in eq. (2.3),

⟨1P ⟩⟨P x⟩ = ⟨1JPI⟩⟨P Ix⟩ = −m⟨1Jx⟩ ,

⟨1P ⟩ [P x] = ⟨1JPI⟩
[
P Ix

]
= −

〈
1J |P |x

]
(5.7)

we thus have,

⟨1P ⟩ [P |(4 + 5)|1|5] = −
〈
1|(1 + 5̂)|(4 + 5)|1|5

]
= −m [1|(4 + 5)|1|5] − ⟨15̂⟩ [5|(4 + 5)|1|5]
= m [5|1|(4 + 5)|1] + m [1|5|4⟩ [54] (5.8)

Hence,

⟨1P ⟩
m

A4(PQ, 2Q̄, 3−q , 4̂+
q̄ ) = i

((
[5|1|(4 + 5)|1] + [1|5|4⟩ [54]

)
⟨32⟩ + ⟨13⟩ [2|(4 + 5)|1|5]

)
× 1
⟨43⟩ [3|(4 + 5)|1|5] . (5.9)

So the final result is,

A5(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g )
∣∣
z15

= i

⟨5|1|5]
⟨4|1|5]
⟨45⟩

1
⟨43⟩ [3|(4 + 5)|1|5]

×
((

[5|1|(4 + 5)|1] + [15] ⟨54⟩ [54]
)
⟨32⟩ + ⟨13⟩ [2|(4 + 5)|1|5]

)
= i

⟨5|1|5]
⟨4|1|5]
⟨45⟩

1
⟨34⟩ [3|(4 + 5)|1|5]

×
((

[1|(4 + 5)|1|5] + [15] ⟨45⟩ [54]
)
⟨32⟩ + ⟨13⟩ [5|1|(4 + 5)|2]

)
(5.10)
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5.2 Residue at z34

For the second diagram, figure 2(b),

A5(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g )
∣∣∣
z34

= −A4(1Q, 5̂+
g , P +

g , 2Q̄)−i

s34
A3(3−q ,−P−

g , 4̂+
q̄ ) , (5.11)

where P = p3 + p̂4 and overall sign is because of the definition of the color amplitude. For
i = 5 and j = 4 the onshell condition for the intermediate gluon line is ([34]−z34 [35])⟨43⟩ =
0. The shifted spinors in this case are,

z34 = [34]
[35] , |5̂⟩ = −|(4 + 5)|3]

[35] , |4̂] = |3] [45]
[35] , ⟨P | = − [5|(3 + 4)|

[35] , |P ] = |3] .

(5.12)
Inserting the amplitudes from eqs. (4.15) and (3.8) gives,

A4(1Q, 5̂+
g , P +

g , 2Q̄) = im
[P5]
⟨P 5̂⟩

⟨12⟩[
5|1|5̂

〉 = −im
[35]2

s345

⟨12⟩ [35]
[3|(4 + 5)|1|5] (5.13)

A3(3−q ,−P−
g , 4̂+

q̄ ) = (−i)
⟨3| −P ⟩

[
q4̂
]

[−Pq] = i
⟨3P ⟩ [54]

[P5] = −i
⟨34⟩ [45]2

[35]2
. (5.14)

since,

[P5] = [35] , ⟨P 5̂⟩ = [5|(3 + 4)|(4 + 5)|3]
[35]2

= −s345
[35] ,

[
5|1|5̂

〉
= [3|(4 + 5)|1|5]

[35]
(5.15)

Inserting the results from eqs. (5.13) and (5.14) gives,

A5(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g )
∣∣
z34

= (−1) × (−im) [35]2

s345

⟨12⟩ [35]
[3|(4 + 5)|1|5] ×

i

⟨34⟩ [34] × (−i)⟨34⟩ [45]2

[35]2

= i
m [35] [45]2

s345

⟨12⟩
[34] [3|(4 + 5)|1|5] (5.16)

The diagram in figure 2(b) with the opposite helicity of gluon exchanged vanishes,
because the amplitude on the right hand side is proportional to,

A3(3−q ,−P +
g , 4+

q̄ ) = i
⟨3q⟩[4̂|−P ]
⟨−P |q⟩

(5.17)

and from eq. (5.12) both [4̂| and | − P ] are proportional to |3]. Thus the sum of the two
contributions given in eqs. (5.10) and (5.16) gives the total result for A5(1Q, 2Q̄, 3−q , 4+

q̄ , 5+
g ),

−iA5(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g ) = 1
[3|(4 + 5)|1|5]

[
m⟨12⟩ [35] [45]2

s345 [34] (5.18)

+ 1
⟨5|1|5]

⟨4|1|5]
⟨45⟩⟨34⟩

(
⟨13⟩ [5|1|(4 + 5)|2] + [1|(4 + 5)|1|5] ⟨32⟩ + [15] ⟨32⟩s45

)]
.

We note that, at this stage, the amplitude appears to contain an unphysical pole
represented by the overall factor [3|(4 + 5)|1|5]. This is also the case for the result given
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in ref. [8], which is presented in a slightly different form but with which this agrees (after
taking the limit in which one quark pair is massless). By using the equations of motion and
applying Schouten identities one can demonstrate explicitly that this pole is not present.
The result for this amplitude presented below in section 6 has been simplified in this way.

6 Five parton amplitudes

6.1 One quark pair + 3 gluon amplitudes

6.1.1 Color algebra

The general color decomposition is given by eq. (4.1). For n = 5 we have,

A5(1x1 , 3C3 , 4C4 , 5C5 , 2x2) = g3 ∑
σ∈S3

(tCσ(3)tCσ(4)tCσ(5))x1x2A5(1Q, σ(3)g, σ(4)g, σ(5)g, 2Q̄) ,

(6.1)
Squaring the amplitude and summing over colors we obtain the following expression [37],

∑
colors

|A(1x1 , 3C3 , 4C5 , 5C5 , 2x2)|2 = g6 (N2 − 1)
N2

2∑
j=0

N2j
∑

σ∈S3

Hj(3, 4, 5) . (6.2)

Introducing the compact notation,

(3, 4, 5) = A5(1Q, 3g, 4g, 5g, 2Q̄) (6.3)

we get

H2(3, 4, 5) = |(3, 4, 5)|2 , (6.4)
H1(3, 4, 5) = −(3, 4, 5)∗ [2(3, 4, 5) + (3, 5, 4) + (4, 3, 5) − (5, 4, 3)] , (6.5)
H0(3, 4, 5) = (3, 4, 5)∗

∑
σ∈S3

(i, j, k) . (6.6)

Note that ref. [37] contains a typographical error in the sign of the final term in the
expression for H1(3, 4, 5) which we have corrected in eq. (6.5).

6.2 Results for one quark pair + 3 gluon amplitudes

The amplitude with gluons of all positive helicity is taken directly from ref. [7],

−iA5(1, 3+
g , 4+

g , 5+
g , 2) = −m

[45] ⟨4|1|3] + ⟨3|1|3] [35]
⟨34⟩⟨45⟩

⟨12⟩
⟨3|1|3] ⟨5|2|5] . (6.7)

The amplitude for gluon 3 of negative helicity is also given in ref. [7]. However it contains an
unphysical pole that can, with suitable application of Schouten identities and momentum
conservation, be removed. The final simplified result is,

−iA5(1, 3−g , 4+
g , 5+

g , 2) = 1
⟨34⟩⟨45⟩ ⟨3|1|3] ⟨5|2|5]

×
{[

m⟨34⟩ [45]
(
⟨3|1|4] s345 − ⟨3|1|3] [45] ⟨53⟩

)
s345 [34] − ⟨3|1|(4 + 5)|3⟩ ⟨3|2|5] ⟨3|1|3]

ms345

]
⟨12⟩

+
(
⟨3|2|5] ⟨3|1|3] − m2⟨34⟩ [45]

)
m

⟨13⟩⟨32⟩
}

. (6.8)
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The position of the negative helicity gluon can be moved to the other end of the string
through the line-reversal relation,

A5(1q, 3+
g , 4+

g , 5−g , 2q̄) = A5(2q, 5−g , 4+
g , 3+

g , 1Q̄) . (6.9)

The final amplitude we need, with the negative helicity gluon in the middle of the
string, is fixed by the previous two equations through the BCJ relation,

(s13 + s34 − m2) A5(1Q, 4+
g , 3−g , 5+

g , 2Q̄) =
(s23 − m2) A5(1Q, 4+

g , 5+
g , 3−g , 2Q̄) − (s13 − m2) A5(1Q, 3−g , 4+

g , 5+
g , 2Q̄). (6.10)

Forming the appropriate combination and manipulating to remove the spurious pole we
find,

−iA5(1q, 3+
g , 4−g , 5+

g , 2q̄) = ⟨14⟩⟨42⟩ ⟨4|1|3] ⟨4|2|5]
m⟨34⟩⟨45⟩ ⟨3|1|3] ⟨5|2|5]

+ ⟨12⟩
⟨35⟩ ⟨3|1|3] ⟨5|2|5] s345

(
m

[35]
[45]

[
⟨43⟩ [35] ⟨4|2|4] − s345 ⟨4|2|5]

]
− ⟨4|1|3] ⟨4|2|4] ⟨4|1|2|4⟩

m⟨45⟩
)

+ ⟨12⟩
⟨35⟩ ⟨5|2|5] s345

(m⟨35⟩ [35]3

[43] [45] + ⟨4|1|2|4⟩2

m⟨43⟩⟨45⟩
)

. (6.11)

The remaining amplitudes are obtained through a simple operation,

A5(1, 3−h3
g , 4−h4

g , 5−h5
g , 2) = −A5(1, 3h3

g , 4h4
g , 5h5

g , 2)|⟨⟩↔[] , (6.12)

in an obvious notation where ⟨⟩ ↔ [] denotes the interchange of angle and square brackets.

6.3 Two quark pairs and one gluon

6.3.1 Color algebra for two quark pairs and one gluon

In the case of two quark pairs and one gluon the possible color structures are the following,

A5(1x1 , 2x2 , 3x3 , 4x5 , 5C5) = g3
(
− (tC5)x1x4δx3x2A(1) − (tC5)x3x2δx1x4A(2)

− 1
N

(tC5)x1x2δx3x4A(3) − 1
N

(tC5)x3x4δx1x2A(4)
)

. (6.13)

Squaring and summing over colors we find (V = N2 − 1)∑
colors

|A5(1x1 , 2x2 , 3x3 , 4x5 , 5C5)|2 = V

N

[
(N2 − 1)

(
|A(1)|2 + |A(2)|2

)
−A(1)A(2)∗ − A(2)A(1)∗ − A(3)A(4)∗ − A(4)A(3)∗

+|A(1) + A(2) + A(3) + A(4)|2
]

. (6.14)

Note that the term on the final line will not contribute since this combination of subam-
plitudes is identically zero. Imposing this condition we obtain,∑

colors
|A5(1x1 , 2x2 , 3x3 , 4x5 , 5C5)|2 = V N

[
|A(1)|2 + |A(2)|2

+ 1
N2

(
|A(3)|2 + |A(4)|2 − 2

∣∣(A(1) + A(2))
∣∣2)] . (6.15)
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Using the Melia basis, as described in ref. [33], this should be written in terms of three
independent primitives as,

A5(1x1 , 2x2 , 3x3 , 4x5 , 5C5) = g3
(
A12345 C12345 + A12354 C12354 + A12534 C12534

)
, (6.16)

where the color coefficients are given by,

C12345 = −(tC5tD)x1x2(tD)x3x4

C12534 = −(tDtC5)x1x2(tD)x3x4

C12354 = −(tC5tD)x1x2(tD)x3x4 − (tD)x1x2(tDtC5)x3x4 . (6.17)

Performing the color algebra and comparing we can thus identify,

A(1) = A12345, A(2) = A12534, A(3) = −A12345 − A12354 − A12534, A(4) = A12354(6.18)

These clearly satisfy the constraint alluded to above,

A(1) + A(2) + A(3) + A(4) = 0 . (6.19)

6.3.2 BCJ relations

We can further reduce the set of primitives by using the kinematic-algebra basis that also
accounts for BCJ relations between the amplitudes. In that case we fix quark 3 to be in
position 3 and find the result in terms of two amplitudes,

p2 · p5 A12534 − p1 · p5 A12345 − p14 · p5 A12354 = 0 , (6.20)

A5(1x1 , 2x2 , 3x3 , 4x4 , 5C5) = g3
[
A12345

(
C12345 + C12534

p1 · p5
p2 · p5

)
+A12354

(
C12354 + C12534

p14 · p5
p2 · p5

)]
. (6.21)

6.4 Results for two quark pairs + 1 gluon amplitudes

Manipulating the result derived in the previous section in eq. (5.18) to remove the unphys-
ical pole, we find the amplitude for a positive helicity gluon,

−iA(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

g ) = 1
m⟨45⟩

[
− ⟨13⟩⟨32⟩ ⟨4|1|5]

⟨34⟩ ⟨5|1|5]

+⟨12⟩
s34

(⟨3|2|4] ⟨4|1|5]
⟨5|1|5] + ⟨3|2|(3 + 5)|4⟩ [45]

s345

)]
. (6.22)

The corresponding result for a negative helicity gluon after removal of the unphysical
pole is,

−iA(1Q, 2Q̄, 3−q , 4+
q̄ , 5−g ) = 1

m [45]

[
− [14] [42] ⟨5|1|4]

⟨5|1|5] [34]

+[12]
s34

(⟨35⟩ [4|(3 + 5)|2|4]
s345

− ⟨3|2|4] ⟨5|1|4]
⟨5|1|5]

)]
. (6.23)
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6.4.1 Relationship to other amplitudes

The other leading color amplitude is related to the one given above through charge conju-
gation,

A(1Q, 2Q̄, 5−g , 3−q , 4+
q̄ ) = A(2Q, 1Q̄, 4−q , 3+

q̄ , 5+
g )⟨⟩↔[] . (6.24)

The subleading color amplitude A(1Q, 2Q̄, 3q, 5g, 4q̄) can be obtained by forming a combi-
nation with amplitudes in which the heavy quark and antiquark are interchanged,

A(1Q, 2Q̄, 3−q , 5g, 4+
q̄ ) = A(2Q, 1Q̄, 3−q , 4+

q̄ , 5g) + A(1Q, 2Q̄, 5g, 3−q , 4+
q̄ ) . (6.25)

Simplifying this combination we find,

−iA5(1Q, 2Q̄, 3−q , 5+
g , 4+

q̄ ) = 1
m⟨35⟩⟨45⟩

[
⟨12⟩

(⟨3|1|4]
[34] − [45] ⟨5|(3 + 4)|1|3⟩

[34] s345

)
− ⟨13⟩⟨32⟩

]
.

(6.26)

−iA5(1Q, 2Q̄, 3−q , 5−g , 4+
q̄ ) = − 1

m [35] [45]

[
[12]

(⟨3|1|4]
⟨34⟩ − ⟨35⟩ [5|(3 + 4)|1|4]

⟨34⟩s345

)
+ [14] [42]

]
.

(6.27)
Together with the identities in eq. (6.18), all amplitudes needed to construct the full squared
matrix element for this process are at hand.

7 Six parton amplitudes

7.1 One quark pair + 4 gluon amplitudes

7.1.1 Color structure

Here we describe the color structure for one massive quark pair + 4 gluon amplitudes. The
form of the expansion into color-ordered primitives is taken from eq. (4.1).

A6(1x1 , 3C3 , 4C4 , 5C5 , 6C6 , 2x2)

= g4 ∑
σ∈S4

(tCσ(3)tCσ(4)tCσ(5)tCσ(6))x1x2A6(1Q, σ(3), σ(4), σ(5), σ(6), 2Q̄) , (7.1)

where S4 is the permutation group on 4 elements, and A6 are the tree-level partial ampli-
tudes.

Squaring the amplitude and summing over colors we obtain the following expres-
sion [37],

∑
colors

|A6(1Q, 3C3 , 4C4 , 5C5 , 6C6 , 2Q̄)|2 = g8 (N2 − 1)
N3

3∑
j=0

N2j
∑

σ∈S4

Hj(3, 4, 5, 6) . (7.2)

Introducing the compact notation for the color-ordered primitives A,

(3, 4, 5, 6) = A6(1Q, 3g, 4g, 5g, 6g, 2Q̄) (7.3)
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we get,

H3(3, 4, 5, 6) = |(3, 4, 5, 6)|2,

H2(3, 4, 5, 6) = (3, 4, 5, 6)∗ [−3(3, 4, 5, 6) − (3, 4, 6, 5) − (3, 5, 4, 6)
−(4, 3, 5, 6) + (3, 6, 5, 4) + (5, 4, 3, 6) + (5, 6, 3, 4)
+(5, 6, 4, 3) + (6, 4, 5, 3) + (6, 5, 3, 4)],

H1(3, 4, 5, 6) = (3, 4, 5, 6)∗ [M(3, 4, 5, 6) − M(6, 5, 4, 3)]
M(3, 4, 5, 6) = 3(3, 4, 5, 6) + 2(3, 4, 6, 5) + 2(3, 5, 4, 6) + 2(4, 3, 5, 6) + (3, 5, 6, 4)

+(3, 6, 4, 5) + (4, 3, 6, 5) + (4, 5, 3, 6) + (5, 3, 4, 6),
H0(3, 4, 5, 6) = −(3, 4, 5, 6)∗

∑
σ∈S4

(i, j, k, l). (7.4)

7.1.2 Results for A6(1Q, 3g, 4g, 5g, 6g, 2Q̄)

The all-plus helicity result is taken from Ochirov [7],

−iA(1Q, 3+
g , 4+

g , 5+
g , 6+

g , 2Q̄) = m⟨12⟩
[3|
(̸
p13̸p4 + s13 − m2)(̸p134̸p5 + s134 − m2)

)
|6]

(⟨3|1|3] (s134 − m2) ⟨6|2|6] ⟨34⟩⟨45⟩⟨56⟩)

= −m⟨12⟩m2⟨45⟩ [34] [56] + (s134 − m2) [6|(3 + 4 + 5)|1|3]
(⟨3|1|3] (s134 − m2) ⟨6|2|6] ⟨34⟩⟨45⟩⟨56⟩) .

(7.5)

The result with one negative helicity adjacent to the massive quark is also taken from
ref [7],

−iA6(1,3−
g ,4+

g ,5+
g ,6+

g ,2) =
[

⟨3|1|(4+5+6)|3⟩
ms3456 ⟨3|1|(3+4+5)|6⟩

(
⟨12⟩⟨3|1|(4+5+6)|3⟩−⟨13⟩⟨32⟩s3456

)
+m⟨45⟩⟨3|1|4|3⟩ ⟨3|4|6]⟨6|2|6]+⟨3|4|5]⟨5|2|6]

s34(s134−m2)⟨6|2|6]⟨3|1|3|4⟩⟨3|1|(3+4)|5⟩ (⟨12⟩⟨3|1|4|3⟩−⟨13⟩⟨32⟩s34)

+m
⟨56⟩⟨3|1|(4+5)|3⟩⟨3|(4+5)|6]

s345 ⟨6|2|6]⟨3|1|(3+4)|5⟩⟨3|1|(3+4+5)|6⟩
(
⟨12⟩⟨3|1|(4+5)|3⟩−⟨13⟩⟨32⟩s345

)] 1
⟨34⟩⟨45⟩⟨56⟩ .

(7.6)

The unphysical poles present in this result can be removed, at the expense of generating
a slightly longer expression,

−iA6(1, 3−g , 4+
g , 5+

g , 6+
g , 2) = − 1

⟨45⟩⟨56⟩

[
(
⟨12⟩⟨3|1|(4 + 5)|3⟩

s345
− ⟨13⟩⟨32⟩

)
m

(s134 − m2)

(
⟨35⟩ [56]

⟨34⟩ ⟨6|2|6] + [45] ⟨5|2|6]
⟨3|1|3] ⟨6|2|6] + [46]

⟨3|1|3]

)

+⟨13⟩⟨32⟩ ⟨3|2|6]
⟨34⟩ ⟨6|2|6] m

− ⟨12⟩
s3456⟨34⟩ ⟨6|2|6]

(
⟨36⟩ ⟨3|(4 + 5)|6]2 m

s345
− ⟨3|1|2|3⟩ ⟨3|2|6]

m

)

+⟨12⟩⟨34⟩⟨45⟩ [45] ⟨3|1|4] m

⟨3|1|3] s34s345(s134 − m2)

(
[45] ⟨5|2|6]
⟨6|2|6] + [46]

)]
. (7.7)
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A complete set of amplitudes can be generated after specifying the results for four
other helicity combinations. The first corresponds to a single gluon of negative helicity but
in a different position in the string,

−iA6(1,3+
g ,4−

g ,5+
g ,6+

g ,2) =− m⟨12⟩ [56]⟨4|1|3]2 ⟨4|(1+3)|5]2

⟨34⟩⟨3|1|3]⟨6|2|6] [5|(3+4)|1|3]⟨6|2|(5+6)|4⟩(s134−m2)

+ ⟨12⟩ [56]⟨4|1|3]⟨4|1|2|4⟩⟨4|2|(4+5)|6⟩
⟨36⟩⟨45⟩⟨3|1|3]⟨6|2|(5+6)|4⟩ms56s3456

+ ⟨12⟩⟨46⟩ [56]⟨4|1|2|4⟩2

⟨34⟩⟨36⟩⟨45⟩⟨6|2|(5+6)|4⟩ms56s3456

− m⟨12⟩ [56]⟨4|(5+6)|3]
⟨36⟩⟨45⟩⟨3|1|3]⟨6|2|(5+6)|4⟩s56s456

(
⟨34⟩⟨4|(5+6)|3]⟨4|2|(4+5)|6⟩

s3456
+⟨46⟩⟨4|2|(5+6)|4⟩

)

+ m⟨12⟩⟨34⟩ [35]4 [3|1|(3+4+5)|6]
[45]⟨6|2|6]⟨6|(4+5)|3] [5|(3+4)|1|3]s34s345

+ m⟨12⟩⟨46⟩ [56]⟨4|(5+6)|3]3

⟨45⟩⟨6|(4+5)|3]⟨6|2|(5+6)|4⟩s56s456s3456

+ ⟨14⟩⟨42⟩ [56]⟨4|1|3]
⟨34⟩⟨45⟩⟨3|1|3]⟨6|2|6]ms56

(
⟨4|2|6]+ m2⟨45⟩ [65]

(s134−m2)

)
. (7.8)

The other three amplitudes contain two negative-helicity gluons and are given by,
−iA6(1q,3−

g ,4−
g ,5+

g ,6+
g ,2q̄) =

m2⟨34⟩ [56]⟨4|(1+3)|5]
⟨3|1|3]⟨6|2|6] [3|1|(3+4)|5]⟨6|2|(5+6)|4⟩

( ⟨2|(2+5+6)|1]⟨4|(1+3)|5]
(s134−m2) +[15]⟨42⟩

)
+ ⟨3|1|(5+6)|4⟩
⟨45⟩⟨56⟩⟨3|1|3]⟨6|(4+5)|3]ms456

( [12]⟨4|(5+6)|2|1|(5+6)|4⟩
s3456

−⟨4|(5+6)|1]⟨4|(5+6)|2]
)

+ m⟨34⟩⟨46⟩
⟨45⟩⟨56⟩⟨3|1|3]⟨6|(4+5)|3]⟨6|2|(5+6)|4⟩

(
[12]⟨4|2|(5+6)|4⟩−⟨4|(5+6)|1]⟨4|(5+6)|2]

)
− [5|(3+4)|2|6]

[34] [45]⟨6|2|6]⟨6|(4+5)|3]ms345

( ⟨12⟩ [5|(3+4)|1|2|(3+4)|5]
s3456

+⟨1|(3+4)|5]⟨2|(3+4)|5]
)

+ m [35] [56]
[34] [45]⟨6|2|6]⟨6|(4+5)|3] [5|(3+4)|1|3]

(
⟨12⟩ [5|(3+4)|1|5]−⟨1|(3+4)|5]⟨2|(3+4)|5]

)
− m⟨34⟩2 ⟨4|(5+6)|3] [12]
⟨45⟩⟨56⟩⟨3|1|3]⟨6|(4+5)|3]s3456

− m⟨12⟩⟨6|(3+4)|5] [56]2

[34] [45]⟨6|2|6]⟨6|(4+5)|3]s3456
. (7.9)

−iA6(1q,3+
g ,4−

g ,5+
g ,6−

g ,2q̄) =

⟨4|1|3]⟨4|(1+3)|5]2 ⟨6|2|5]
⟨34⟩ [56]⟨3|1|3]⟨6|2|6] [5|(3+4)|1|3]⟨6|2|(5+6)|4⟩(s134−m2)

×
(
−[13]⟨62⟩⟨46⟩ [56]+⟨14⟩ [52]⟨6|(4+5)|3]+⟨14⟩ [32]⟨6|2|5]+[13]⟨42⟩⟨6|2|5]

)
− ⟨14⟩ [52]⟨46⟩⟨4|1|3]⟨4|(1+3)|5]⟨6|2|5]
⟨34⟩ [56]⟨3|1|3]⟨6|2|6]⟨6|2|(5+6)|4⟩(s134−m2)

+ m⟨46⟩4

⟨45⟩⟨56⟩⟨3|1|3]⟨6|2|(5+6)|4⟩s456

( ⟨4|1|3] [12]
⟨34⟩ −[13] [32]

)
+ m [35]4

[34] [45]⟨6|2|6] [5|(3+4)|1|3]s345

( ⟨12⟩⟨6|2|5]
[56] −⟨16⟩⟨62⟩

)
− [35]4 ⟨6|1|3]

[34] [45]⟨6|(4+5)|3] [5|(3+4)|1|3]ms345

( ⟨12⟩⟨6|2|1|6⟩
s3456

−⟨16⟩⟨62⟩
)

+ ⟨46⟩4 ⟨6|2|3]
⟨45⟩⟨56⟩⟨6|(4+5)|3]⟨6|2|(5+6)|4⟩ms456

( [12] [3|1|2|3]
s3456

+[13] [32]
)

− m⟨12⟩⟨6|(3+4)|5] [35]4

[34] [45] [56] [5|(3+4)|1|3]s345s3456
− m⟨46⟩4 [12]⟨4|(5+6)|3]
⟨34⟩⟨45⟩⟨56⟩⟨6|2|(5+6)|4⟩s456s3456

. (7.10)
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−i A6(1q, 3+
g , 4−g , 5−g , 6+

g , 2q̄) =

− m2⟨45⟩ ⟨4|1|3] ⟨4|(1 + 3)|6] [13] ⟨4|(1 + 3)|(4 + 5)|2⟩
⟨34⟩ ⟨3|1|3] ⟨6|2|6] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

−
m3 ⟨4|1|3]

(
⟨14⟩ ⟨4|(1 + 3)|(4 + 5)|2⟩ ⟨45⟩ [36] + ⟨45⟩2 ⟨4|(1 + 3)|5] [13] [62]

)
⟨34⟩ ⟨3|1|3] ⟨6|2|6] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

− m4⟨14⟩ [62] ⟨45⟩2 [35] ⟨4|1|3]
⟨34⟩ ⟨3|1|3] ⟨6|2|6] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

+
m ⟨4|1|3] ⟨4|(1 + 3)|6]

(
⟨14⟩ ⟨4|(1 + 3)|(4 + 5)|2⟩ [36] + ⟨45⟩ ⟨4|(1 + 3)|5] [13] [62]

)
⟨34⟩ [56] ⟨3|1|3] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

− m2⟨14⟩ [62] ⟨45⟩ ⟨4|1|3]
⟨34⟩ ⟨3|1|3] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

(
⟨4|1|3] − ⟨4|(1 + 3)|6] [35]

[56]
)

+
⟨4|1|3] ⟨4|(1 + 3)|6]

(
⟨14⟩ [62] ⟨4|1|3] ⟨6|2|6] + ⟨4|(1 + 3)|6] [13] ⟨4|(1 + 3)|(4 + 5)|2⟩

)
⟨34⟩ [56] ⟨3|1|3] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

+ m⟨45⟩3

⟨56⟩ ⟨3|1|3] ⟨6|2|(5 + 6)|4⟩ s456

(⟨4|1|3] [12]
⟨34⟩ − [13] [32]

)
− m⟨12⟩ [36]3

[34] [45] [56] ⟨6|2|6] s3456

− ⟨12⟩ [3|(4 + 5)|2|1|(4 + 5)|3]2

[34] [45] ⟨6|2|6] ⟨6|(3 + 4)|5] ⟨6|(4 + 5)|3] ms345s3456

− ⟨12⟩ [3|1|(4 + 5)|3] [5|2|(4 + 5)|3] [3|(4 + 5)|2|1|(4 + 5)|3]
[34] [45] ⟨6|2|6] ⟨6|(3 + 4)|5] ⟨6|(4 + 5)|3] [5|(3 + 4)|1|3] ms3456

+
m⟨12⟩ [35] [36]

(
[35] [6|2|(4 + 5)|3] s3456 − s345 [36] [5|2|(4 + 5)|3]

)
[34] [45] [56] ⟨6|2|6] ⟨6|(3 + 4)|5] [5|(3 + 4)|1|3] s3456

−(⟨14⟩ [34] + ⟨15⟩ [35])(⟨24⟩ [34] + ⟨25⟩ [35]) [3|1|(4 + 5)|3] [6|2|(4 + 5)|3]
[34] [45] ⟨6|2|6] ⟨6|(4 + 5)|3] [5|(3 + 4)|1|3] ms345

+ m2⟨45⟩ ⟨4|1|3]
⟨6|2|6] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

(
[13] ⟨42⟩ [36] − [16] ⟨42⟩ ⟨4|1|3]

⟨34⟩
)

+ ⟨45⟩3 ⟨6|2|3]
⟨56⟩ ⟨6|(4 + 5)|3] ⟨6|2|(5 + 6)|4⟩ms456

( [12] [3|1|2|3]
s3456

+ [13] [32]
)

+ ⟨4|1|3] ⟨4|(1 + 3)|6]
⟨34⟩ [56] [5|(3 + 4)|1|3] ⟨6|2|(5 + 6)|4⟩ (s134 − m2)

(
[16] ⟨42⟩ ⟨4|1|3] + [13] ⟨42⟩⟨43⟩ [36]

)
− m⟨45⟩3 [12] ⟨4|(5 + 6)|3]
⟨34⟩⟨56⟩ ⟨6|2|(5 + 6)|4⟩ s456s3456

. (7.11)

We note that both A6(1Q, 3−g , 4−g , 5+
g , 6+

g , 2Q̄) and A6(1Q, 3+
g , 4−g , 5+

g , 6−g , 2Q̄) are sym-
metric under the relation, 1 ↔ 2, 3 ↔ 6, 4 ↔ 5, ⟨⟩ ↔ []. Similarly, A6(1Q, 3+

g , 4−g , 5−g , 6+
g , 2Q̄)

is anti-symmetric under the relation, 1 ↔ 2, 3 ↔ 6, 4 ↔ 5. These relations can be under-
stood from the charge conjugation properties of these color-ordered amplitudes.

7.1.3 Rules for obtaining remaining amplitudes

Amplitudes with opposite gluon helicities are related by complex conjugation,

A6(1−I , 3−h3
g , 4−h4

g , 5−h5
g , 6−h6

g , 2−J) = −A6(1I , 3h3
g , 4h4

g , 5h5
g , 6h6

g , 2J)|⟨⟩↔[] (7.12)
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In addition we have line reversal,

A6(1−I , 3h6
g , 4h5

g , 5h4
g , 6h3

g , 2−J) = −A6(2J , 6h3
g , 5h4

g , 4h5
g , 3h6

g , 1I) (7.13)

Starting from gluon helicities (−, +, +, +) and (+,−, +, +) this allows us to compute
(+, +, +,−) and (+, +,−, +).

We note that we could have used the 6-point BCJ relations [11] to reduce the number
of helicity combinations that we have to compute. In our labeling, but suppressing gluon
subscripts, the simplest relation is,

A6(1Q, 3, 4, 5, 6, 2Q̄) =
(
A6(1Q, 4, 3, 5, 6, 2Q̄)(s23 + s36 + s35 − m2) (7.14)

+A6(1Q, 4, 5, 3, 6, 2Q̄)(s23 + s36 − m2) + A6(1Q, 4, 5, 6, 3, 2Q̄)(s23 − m2)
)
/(s13 − m2)

In this equation the position of gluon 4 on the right-hand side is fixed, immediately following
the quark 1. This allows the helicities (+,−, +, +) and (−, +,−,−) to be obtained from
(−, +, +, +) and (+,−,−,−) respectively. By using eq. (7.13) the same relation allows the
combinations (+, +,−, +) and (−,−, +,−) to be determined.

In similar fashion, eq. (7.14) could be used to obtain the amplitude (−, +, +,−) from
the results for helicities (+, +,−,−) and (+,−, +,−), and similarly for (+,−,−, +). We
have chosen to instead compute this amplitude directly, cf. eq. (7.11). We also note that
there are further BCJ relations, for example,

A6 (1Q, 3, 4, 5, 6, 2Q̄) =

−
(
A6(1Q, 5, 3, 4, 6, 2Q̄)s35(s24 + s46 − m2) + A6(1Q, 5, 3, 6, 4, 2Q̄)s35(s24 − m2)

+A6(1Q, 5, 6, 3, 4, 2Q̄)(s35 + s36)(s24 − m2)
+A6(1Q, 5, 4, 3, 6, 2Q̄)(s23 + s36 − m2)(s134 + s45 − m2)
+A6(1Q, 5, 4, 6, 3, 2Q̄)(s23 − m2)(s134 + s45 − m2)
+A6(1Q, 5, 6, 4, 3, 2Q̄)(s23 − m2)(s134 + s45 + s46 − m2))
/
[
(s13 − m2)(s134 − m2)

]
. (7.15)

In this equation gluon 5 always appears immediately after quark 1 on the right-hand side,
so it could also be used to obtain (+, +,−, +) and (−,−, +,−) directly. We find it simpler
and more efficient to simply present a complete set of helicities without appealing to the
BCJ relations. However we have checked that they are satisfied by the analytic formulae
given above.

7.2 Two quark pair + two gluon amplitudes

7.2.1 Color structure for two quark pairs and two gluons

The case of two quark pairs and two gluons is the most complicated set of amplitudes that
we calculate. The expectation from table 1 is that we there will be 12 primitive amplitudes,
reducing to six after imposition of BCJ relations. The possible color structures are the
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following,

A6(1Q, 2Q̄, 3q, 4q̄, 5g, 6g) = g4

×
(
(tC5tC6)x1x4δx3x2A(1) + δx1x4(tC5tC6)x3x2A(2) + (tC5)x1x4 (tC6)x3x2A(3)

+ 1
N

(tC5 tC6)x1x2δx3x4A(4) + 1
N

(tC5 tC6)x3x4δx1x2A(5) + 1
N

(tC5 )x1x2(tC6)x3x4A(6)

+ (tC6tC5)x1x4δx3x2B(1) + δx1x4(tC6tC5)x3x2B(2) + (tC6)x1x4 (tC5)x3x2B(3)

+ 1
N

(tC6 tC5)x1x2δx3x4B(4) + 1
N

(tC6 tC5)x3x4δx1x2B(5) + 1
N

(tC6 )x1x2(tC5)x3x4B(6)
)
(7.16)

We find that, numerically, these are related in analogous fashion to the one gluon case,

6∑
i=1

(
A(i) + B(i)

)
= 0 . (7.17)

Squaring the amplitude and summing over colors we have,

∑
colors

|A6|2 = g8V
[
(N2−1)(|A(1)|2+|A(2)|2+|A(3)|2+|B(1)|2+|B(2)|2+|B(3)|2)

+|A(4)|2+|A(5)|2+|A(6)|2+|B(4)|2+|B(5)|2+|B(6)|2

+A(1)(A(6)+A(5)+A(4)+A(2)+B(2)−B(1))∗+B(1)(B(6)+B(5)+B(4)+B(2)+A(2)−A(1))∗

+A(2)(B(6)+B(1)−B(2)+A(5)+A(4)+A(1))∗+B(2)(A(6)+A(1)−A(2)+B(5)+B(4)+B(1))∗

+A(3)(B(6)+B(5)+B(3)+A(6)+A(4))∗+B(3)(A(6)+A(5)+A(3)+B(6)+B(4))∗

+A(4)(A(3)+A(2)+A(1))∗+B(4)(B(3)+B(2)+B(1))∗

+A(5)(A(2)+A(1)+B(3))∗+B(5)(B(2)+B(1)+A(3))∗

+A(6)(B(3)+B(2)+A(3)+A(1))∗+B(6)(A(3)+A(2)+B(3)+B(1))∗

+ 2
N2 |A

(1)+A(2)+A(3)+B(1)+B(2)+B(3)|2

− 1
N2 (|A(5)+B(5)−A(4)−B(4)|2+|A(6)−B(6)|2)

]
. (7.18)

We can also use a decomposition in terms of color-ordered amplitudes [33], similar to the
Melia basis,2

A6(1Q, 2Q̄, 3h3
q , 4+

q̄ , 5+
g , 6+

g ) = g4
(
A125634 C125634 + A125364 C125364 + A125346 C125346

+A123564 C123564 + A123546 C123546 + A123456 C123456
)

+(5 ↔ 6) . (7.19)

2The actual basis proposed by Melia [38] contains the same number of color subamplitudes, but is one
in which the color factor for each subamplitude can be written as a single term that can be easily read off
from a representative Feynman diagram. This alternative decomposition is given in appendix B.
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The color coefficients are given by,

C123456 =
(
tC6tC5tB

)
x1x2

(
tB
)

x3x4

C123546 =
(
tC6tC5tB

)
x1x2

(
tB
)

x3x4
−
(
tC6tB

)
x1x2

(
tBtC5

)
x3x4

C123564 =
(
tC6tC5tB

)
x1x2

(
tB
)

x3x4
−
(
tC6tB

)
x1x2

(
tBtC5

)
x3x4

−
(
tC5tB

)
x1x2

(
tBtC6

)
x3x4

+ tB
x1x2

(
tBtC5tC6

)
x3x4

C125346 =
(
tC6tBtC5

)
x1x2

(
tB
)

x3x4

C125364 =
(
tC6tBtC5

)
x1x2

(
tB
)

x3x4
−
(
tBtC5

)
x1x2

(
tBtC6

)
x3x4

C125634 =
(
tBtC6tC5

)
x1x2

(
tB
)

x3x4
(7.20)

and similarly for 5 ↔ 6. Performing the color algebra allows the two decompositions to be
related as follows,

A(1) = A123465, A(2) = A126534, A(3) = A126345

A(4) = −A126534 − A126354 − A126345 − A123654 − A123645 − A123465

A(5) = −A123564, A(6) = A123654 + A123645 + A125364 + A123564

B(1) = A123456, B(2) = A125634, B(3) = A125346

B(4) = −A125634 − A125364 − A125346 − A123564 − A123546 − A123456

B(5) = −A123654, B(6) = A126354 + A123654 + A123564 + A123546 (7.21)

In this basis the relationship between the subamplitudes in eq. (7.17) is demonstrated ex-
plicitly. The existence of this relationship demonstrates that this basis is overcomplete.
This can be understood by noting that the color coefficients in eq. (7.20) are not indepen-
dent. By explicitly evaluating them we observe that,

C125364 + C126354 − C123546 − C123645 = 0 . (7.22)

We could also employ the BCJ basis, in which the quark 3 always appears in position
three [33]. The remaining six color subamplitudes can be expressed in terms of these
through the BCJ relations,

0 = −A126354 ⟨6|2|6]+(s16+s46+s56−m2)A123654+(s16+s46−m2)A123564+⟨6|1|6] A123546

0 = −A126345 ⟨6|2|6]+(s16+s46+s56−m2)A123645+(s16+s56−m2)A123465+⟨6|1|6] A123456

0 = −A126534 ⟨6|2|6](s256−m2)−⟨6|1|6] (s256+s35−m2)A123546−s36 (s15+s45−m2)A123654

−(s16+s46−m2)(s35+s256−m2)A123564−⟨5|1|5] (s36+s46)A123465

−⟨5|1|5] s36 A123645−⟨6|1|6] (s35+s45+s256−m2)A123456 . (7.23)

A further three relations can be obtained from these by interchanging the gluon labels 5
and 6. We have chosen not to make use of the BCJ relations to determine all amplitudes
from this smaller set. However we have checked that they are fulfilled numerically.
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7.2.2 Complete set of amplitudes

We specify the amplitudes with light quark helicity assignments (3−q , 4+
q̄ ). The opposite

helicity amplitudes, (3+
q , 4−q̄ ) are obtained by complex conjugation.

Five color-ordered subamplitudes that are used to construct our complete set of ampli-
tudes are given in sections 7.2.3 (A123456), 7.2.4 (A123564), 7.2.5 (A125346), 7.2.6 (A123546),
and 7.2.7 (A126354). The amplitude A125634 is computed from A123456 by performing the
operation 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, ⟨⟩ ↔ []. Finally, the operation 5 ↔ 6 is used to generate
the full set of 12 amplitudes.

7.2.3 Results for A6(1Q, 2Q̄, 3q, 4q̄, 5g, 6g, )

−iA6(1,2,3−
q ,4+

q̄ ,5−
g ,6−

g ) =− 1
m [34] [45] [56]

×
[

[12]
⟨3|(4+5)|6]

{
[46]⟨3|2|4] [4|(5+6)|1|4]

[4|(5+6)|1|6] − ⟨3|(5+6)|4] [4|1|2|4]
s3456

}
− [14] [42]⟨6|1|4]

⟨6|1|6]

]
− m

s34

[
[12]⟨35⟩

⟨5|(3+4)|(1+2)|1|6]

{
⟨35⟩2 [34]s3456

s345 ⟨3|(4+5)|6]−
⟨56⟩ [4|(3+5)|2|4]

[45]⟨6|1|6] − ⟨56⟩ [34] [46]⟨3|2|4]
[45] [4|(5+6)|1|6]

}
− [12]⟨56⟩⟨3|2|4]⟨5|(1+6)|4]
⟨6|1|6] [4|(5+6)|1|6](s156−m2)−

[14] [42]⟨34⟩⟨56⟩
[56]⟨6|1|6](s156−m2)

]
. (7.24)

−iA6(1,2,3−
q ,4+

q̄ ,5+
g ,6+

g ) = 1
m⟨45⟩⟨56⟩⟨6|1|6]s34

×
[
(⟨12⟩⟨3|2|4]+⟨13⟩⟨32⟩ [34])

(
⟨4|1|(5+6)|1|6]+⟨4|1|6]s56

)
(s156−m2)

−
m2
(
⟨12⟩⟨56⟩⟨6|1|6]⟨3|(4+5)|6]2 ⟨4|(3+5)|6] [34]

)
⟨5|(3+4)|(1+2)|1|6]s345s3456

+⟨12⟩(⟨45⟩⟨3|2|(5+6)|1|6]+⟨43⟩⟨3|2|3]⟨5|1|6]) [4|(5+6)|1|6]
⟨5|(3+4)|(1+2)|1|6]

]
. (7.25)
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−iA6(1, 2, 3−q , 4+
q̄ , 5−g , 6+

g ) = 1
m [34] ⟨34⟩⟨56⟩

×
[( [12] ⟨5|1|6] + [16] [62] ⟨56⟩

)
⟨35⟩ ⟨5|2|4] ⟨5|1|6]

⟨6|1|6] ⟨5|(3 + 4)|(1 + 2)|1|6]

−
(

[12] ⟨5|1|6] + [16] [62] ⟨56⟩
)
⟨35⟩ ⟨3|2|4] ⟨5|1|6]2 [34]

⟨6|1|6] ⟨5|(3 + 4)|(1 + 2)|1|6] [4|(5 + 6)|1|6]

+ ⟨5|1|6] ⟨5|(1 + 6)|4]
⟨6|1|6] [4|(5 + 6)|1|6] (s156 − m2)

×
(

([12] ⟨5|1|6] + [16] [62] ⟨56⟩) ⟨3|2|4] + ⟨34⟩(⟨56⟩ [16] [42] [46] − [14] [42] ⟨5|1|6])
)]

+ [46]3

m [34] [45] [56]

[
(⟨12⟩ ⟨3|2|4] + ⟨13⟩⟨32⟩ [34]) ⟨4|1|6] [46] + ⟨5|1|6] [56]

⟨3|(4 + 5)|6] [6|1|(5 + 6)|4] s456

− ⟨12⟩ ⟨3|2|6]
⟨3|(4 + 5)|6] s3456

− ⟨12⟩ ⟨3|2|3]
s3456s456

]
+ ⟨35⟩3 [6|1|2|6]
⟨34⟩⟨45⟩ ⟨3|(4 + 5)|6] s345s3456 ⟨5|(3 + 4)|(1 + 2)|1|6]

×
[
(⟨15⟩ [62] + [16] ⟨52⟩) ⟨4|(3 + 5)|6] − (⟨14⟩ [62] + [16] ⟨42⟩) ⟨5|(3 + 4)|6]

]
. (7.26)

−iA6(1, 2, 3−q , 4+
q̄ , 5+

g , 6−g ) = ⟨34⟩ [35] (⟨6|1|4] ⟨6|(3 + 4)|5] − ⟨6|1|5] ⟨6|(3 + 5)|4])
((⟨16⟩ [52] + [15] ⟨62⟩) ⟨6|(3 + 5)|4] − (⟨16⟩ [42] + [14] ⟨62⟩) ⟨6|(3 + 4)|5])

⟨6|(4 + 5)|3] ⟨6|1|(1 + 2)|(3 + 4)|5] s345s3456s34

+ 1
ms34

[⟨36⟩⟨46⟩ [12] [34] ⟨3|2|(4 + 5)|6⟩
⟨45⟩⟨56⟩s456s3456

−(⟨12⟩ ⟨6|1|5] + ⟨16⟩⟨62⟩ [56]) ⟨3|2|5] ⟨6|1|5] [45]
⟨6|1|6] ⟨6|1|(1 + 2)|(3 + 4)|5] [56]

+ (⟨12⟩ ⟨6|1|5] + ⟨16⟩⟨62⟩ [56]) ⟨6|1|5] [45]
⟨6|1|6] ⟨6|1|(1 + 2)|(3 + 4)|5] [56] ⟨4|(5 + 6)|1|6⟩⟨34⟩ ⟨3|2|3] ⟨6|1|5]

−
(
(⟨12⟩ ⟨3|2|4] + ⟨13⟩⟨32⟩ [34]) ⟨6|1|5] − ⟨16⟩⟨32⟩⟨36⟩ [34] [56] + ⟨16⟩⟨62⟩ ⟨3|2|4] [56]

)
× ⟨6|1|5] ⟨4|(1 + 6)|5]

[56] ⟨6|1|6] ⟨4|(5 + 6)|1|6⟩ (s156 − m2)

+⟨36⟩⟨46⟩ [12] [34] ⟨6|2|(4 + 5)|6⟩
⟨45⟩⟨56⟩ ⟨6|(4 + 5)|3] s3456

− [1|(4 + 5)|6⟩ [2|(4 + 5)|6⟩ ⟨34⟩ [34] ⟨46⟩ ⟨6|1|(4 + 5)|6⟩
⟨45⟩⟨56⟩s456 ⟨6|(4 + 5)|3] ⟨6|1|(5 + 6)|4⟩

− [12] ⟨46⟩2 [34] ⟨3|2|(4 + 5)|6⟩ ⟨6|1|(4 + 5)|6⟩
⟨45⟩⟨56⟩s456 ⟨6|(4 + 5)|3] ⟨6|1|(5 + 6)|4⟩

]
. (7.27)
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7.2.4 Results for A6(1Q, 2Q̄, 3q, 5g, 6g, 4q̄)

−iA6(1, 2, 3−q , 5−g , 6−g , 4+
q̄ ) = − 1

m [35] [46] [56]

( [12] [4|1|2|4]
s3456

+ [14] [42]
)

. (7.28)

−iA6(1, 2, 3−q , 5+
g , 6+

g , 4+
q̄ ) = 1

m⟨35⟩⟨46⟩⟨56⟩

(⟨12⟩ ⟨3|1|2|3⟩
s3456

+ ⟨13⟩⟨32⟩
)

. (7.29)

−iA6(1, 2, 3−q , 5−g , 6+
g , 4+

q̄ ) = 1
m ⟨4|(5 + 6)|3]

[
[36]

[35] [56] s356

(⟨12⟩ ⟨4|(3 + 5)|6] [4|1|(3 + 5)|6]
s3456

+ ⟨1|(3 + 5)|6] ⟨2|(3 + 5)|6]
)

− ⟨45⟩
⟨46⟩⟨56⟩s456

(
− [12] ⟨5|(4 + 6)|1|3⟩ ⟨5|(4 + 6)|3]

s3456
+ ⟨5|(4 + 6)|1] ⟨5|(4 + 6)|2]

)
+ 1

s3456

(⟨12⟩ [36] [6|1|(3 + 5)|6]
[35] [56] − [12] ⟨45⟩ ⟨5|1|(4 + 6)|5⟩

⟨46⟩⟨56⟩

)]
. (7.30)

−iA6(1, 2, 3−q , 5+
g , 6−g , 4+

q̄ ) = ⟨36⟩3

m⟨35⟩⟨56⟩ ⟨3|(5 + 6)|4] s356

( [12] [4|1|2|4]
s3456

+ [14] [42]
)

− [45]3

m [46] [56] ⟨3|(5 + 6)|4] s456

(⟨12⟩ ⟨3|1|2|3⟩
s3456

+ ⟨13⟩⟨32⟩
)

. (7.31)

We note that the (5−, 6−) amplitude can be obtained from the (5+, 6+) one by the
operation, 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, ⟨⟩ ↔ []. On the other hand, the (5−, 6+) and (5+, 6−)
amplitudes are symmetric under this operation, although this is not manifest in the forms
given above. This can be understood from the charge conjugation properties of this color-
ordered amplitude.

7.2.5 Results for A6(1Q, 2Q̄, 5g, 3q, 4q̄, 6g)

−iA6(1, 2, 5−g , 3−q , 4+
q̄ , 6−g ) = − [14] [42] ⟨5|2|3] ⟨6|1|4]

m [34] [35] [46] ⟨5|2|5] ⟨6|1|6]

+ [12]
m [34] [35] [46]

[
− ⟨5|2|3] ⟨6|1|4] ⟨5|(2 + 3)|(3 + 5)|2|4]

⟨5|2|5] ⟨6|1|6] ⟨4|(3 + 5)|2|5⟩

+ ⟨5|2|3] ⟨5|2|(3 + 5)|6⟩
⟨5|2|5] ⟨5|2|(1 + 2)|(4 + 6)|3] ⟨4|(3 + 5)|2|5⟩

×
(

[34] ⟨5|(2 + 3)|(3 + 5)|2|4] − [46] (⟨65⟩ [53] ⟨5|2|4] + ⟨5|2|3] ⟨6|2|4])
)

−m2s35
s345

[34] ⟨35⟩⟨45⟩ [46] ⟨5|(1 + 2)|1|6⟩
⟨34⟩ ⟨5|(3 + 4)|6] ⟨6|1|6] ⟨4|(3 + 5)|2|5⟩

]
− m [12] ⟨5|(3 + 6)|4]3 ⟨5|(4 + 6)|3]

s346s3456 [34] [46] ⟨5|(3 + 4)|6] ⟨5|2|(1 + 2)|(4 + 6)|3] . (7.32)
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−iA6(1, 2, 5+
g , 3−q , 4+

q̄ , 6+
g ) =

⟨12⟩ [46] ⟨3|2|5]3 ⟨3|(4 + 6)|1|4⟩
⟨34⟩⟨35⟩⟨46⟩ ⟨5|2|5] ⟨3|(4 + 6)|(1 + 2)|2|5] [4|(3 + 5)|2|5] m

+ ⟨13⟩⟨32⟩ ⟨3|2|5] ⟨4|1|6]
⟨34⟩⟨35⟩⟨46⟩ ⟨5|2|5] ⟨6|1|6] m

− ⟨12⟩ ⟨4|1|6] ⟨3|2|5]2 ⟨3|(2 + 5)|4]
⟨34⟩⟨35⟩⟨46⟩ ⟨5|2|5] ⟨6|1|6] [4|(3 + 5)|2|5] m

− m⟨12⟩ [45]3 [5|(1 + 2)|1|6]
[34] ⟨6|1|6] ⟨6|(3 + 4)|5] [4|(3 + 5)|2|5] s345

+ m ⟨3|(4 + 6)|5]2 ⟨12⟩ ⟨3|(4 + 6)|5] ⟨4|(3 + 6)|5]
⟨34⟩⟨46⟩ ⟨6|(3 + 4)|5] ⟨3|(4 + 6)|(1 + 2)|2|5] s346s3456

. (7.33)

−iA6(1, 2, 5−g , 3−q , 4+
q̄ , 6+

g ) = ⟨4|1|6]
⟨46⟩ ⟨5|2|5] ⟨6|1|6] ⟨4|(3 + 5)|2|5⟩m

((
⟨12⟩ ⟨5|2|3] − ⟨15⟩⟨52⟩ [35]

)((s235 − m2) ⟨5|2|4] − m2⟨53⟩ [34]
)

[34] [35]

−⟨5|2|3]
(
⟨13⟩⟨52⟩⟨35⟩ − ⟨13⟩⟨32⟩ ⟨5|2|3]

[35]
))

+ (s235 − m2) [46] ⟨5|2|3]
[34] ⟨46⟩ ⟨5|2|5] ⟨5|2|(1 + 2)|(4 + 6)|3] m

(⟨12⟩ ⟨5|2|3]
[35] − ⟨15⟩⟨52⟩

)

+
[46] ⟨5|2|3]

(
⟨12⟩ ⟨5|2|3] − ⟨15⟩⟨52⟩ [35]

)(
(s235 − m2) ⟨5|2|6] − m2⟨53⟩ [36]

)
[34] [35] ⟨5|2|5] ⟨5|2|(1 + 2)|(4 + 6)|3] ⟨4|(3 + 5)|2|5⟩m

−

(
⟨15⟩ [62] + [16] ⟨52⟩

)
[36] [46] ⟨5|(3 + 6)|4] ⟨5|1|2|5⟩

[34] ⟨5|(3 + 4)|6] ⟨5|2|(1 + 2)|(4 + 6)|3] s346s3456

−
⟨35⟩2⟨45⟩ ⟨5|2|6]

(
[12] [6|1|2|6] + [16] [62] s3456

)
⟨34⟩ ⟨5|(3 + 4)|6] ⟨4|(3 + 5)|2|5⟩ms345s3456

+(⟨15⟩ [42] + [14] ⟨52⟩) [36] [46] ⟨5|1|2|5⟩
[34] ⟨5|2|(1 + 2)|(4 + 6)|3] s346s3456

+
⟨4|1|6]

(
(⟨13⟩⟨52⟩ + ⟨15⟩⟨32⟩) ⟨5|2|3] + ⟨15⟩⟨52⟩ ⟨5|(2 + 3)|5]

)
⟨46⟩ [35] ⟨6|1|6] ⟨4|(3 + 5)|2|5⟩m

+m⟨35⟩2⟨45⟩([12] ⟨4|1|6] + [16] [62] ⟨46⟩)
⟨34⟩⟨46⟩ ⟨6|1|6] ⟨4|(3 + 5)|2|5⟩ s345

− m⟨35⟩2⟨45⟩ [12] ⟨4|(3 + 5)|6]
⟨34⟩⟨46⟩ ⟨4|(3 + 5)|2|5⟩ s345s3456

.

(7.34)
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−iA6(1, 2, 5+
g , 3−q , 4+

q̄ , 6−g ) =
⟨3|2|5] ⟨6|1|4]

[46] ⟨5|2|5] ⟨6|1|6] [4|(3 + 5)|2|5] m

(⟨3|(2 + 5)|4] ⟨3|2|5] [12]
⟨34⟩⟨35⟩ − ⟨3|(2 + 5)|4] [15] [52]

⟨34⟩

−⟨3|2|5] [14] [42]
⟨35⟩ + [14] [52] [45]

)

+
⟨36⟩ ⟨3|2|5] ⟨3|(2 + 5)|4]

(
⟨3|2|5] [12] − ⟨35⟩ [15] [52]

)
⟨34⟩⟨35⟩ [46] ⟨5|2|5] ⟨3|(4 + 6)|(1 + 2)|2|5] m

+
⟨36⟩ ⟨3|2|5]

(
⟨3|2|5] ⟨6|2|4] − ⟨6|2|5] ⟨35⟩ [45]

)(
⟨3|2|5] [12] − ⟨35⟩ [15] [52]

)
⟨34⟩⟨35⟩ ⟨5|2|5] ⟨3|(4 + 6)|(1 + 2)|2|5] [4|(3 + 5)|2|5] m

−
⟨36⟩3 [5|1|2|5]

(
[15] [5|(3 + 4 + 6)|2⟩ − ⟨1|(3 + 4 + 6)|5] [52]

)
⟨34⟩ ⟨6|(3 + 4)|5] ⟨3|(4 + 6)|(1 + 2)|2|5] s346s3456

+
m [45]3

(
⟨12⟩ ⟨6|1|4] + ⟨16⟩⟨62⟩ [46]

)
[34] [46] ⟨6|1|6] [5|2|(3 + 5)|4] s345

− ⟨16⟩⟨62⟩ [45]3 ⟨6|2|5]
[34] ⟨6|(3 + 4)|5] [5|2|(3 + 5)|4] ms345

− ⟨12⟩ [45]3 ⟨6|2|5] ⟨6|1|2|6⟩
[34] ⟨6|(3 + 4)|5] [5|2|(3 + 5)|4] ms345s3456

− m⟨12⟩ [45]3 ⟨6|(3 + 5)|4]
[34] [46] [5|2|(3 + 5)|4] s345s3456

. (7.35)

We note that the (5−, 6−) amplitude can be obtained from the (5+, 6+) one by the
operation, 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, ⟨⟩ ↔ []. On the other hand, the (5−, 6+) and (5+, 6−)
amplitudes are symmetric under this operation, although this is not manifest in the forms
given above. This can be understood from the charge conjugation properties of this color-
ordered amplitude.

7.2.6 Results for A6(1Q, 2Q̄, 3q, 5g, 4q̄, 6g, )

−iA6(1, 2, 3−q , 5−g , 4+
q̄ , 6−g ) = 1

m [35] [45] [46]

[− [14] [42] ⟨6|1|4]
⟨6|1|6]

− [12] ⟨6|1|4] [4|2|(3 + 5)|4]
⟨6|1|6] s345

− [12] ⟨6|(3 + 5)|4] [4|2|1|4]
s345s3456

]
. (7.36)

−iA6(1, 2, 3−q , 5−g , 4+
q̄ , 6+

g ) = − 1
m [35] [45]

[⟨12⟩ [46]
s3456

( [6|2|(3 + 5)|4]
s345

+ [3|2|(3 + 5)|4]
⟨6|(4 + 5)|3]

)
+
(
⟨1|(3 + 5)|4] ⟨2|(3 + 5)|4] − ⟨12⟩ [4|2|(3 + 5)|4]

)
[3|(4 + 5)|1|6]

⟨6|1|6] ⟨6|(4 + 5)|3] s345

]
−
(
⟨5|(4 + 6)|1] ⟨2|(1 + 2)|(4 + 6)|5⟩ + ⟨5|(4 + 6)|2] ⟨1|(1 + 2)|(4 + 6)|5⟩

)
⟨6|(4 + 5)|3] ⟨46⟩s3456s456

. (7.37)

The remaining amplitudes are obtained from those in section 7.2.7 as follows,

A(1Q, 2Q̄, 3−q , 5+
g , 4+

q̄ , 6+
g ) = A(2Q̄, 1, 6−g , 4−q , 5−g , 3+

q̄ )
∣∣∣
⟨⟩↔[]

(7.38)

A(1Q, 2Q̄, 3−q , 5+
g , 4+

q̄ , 6−g ) = A(2Q̄, 1, 6+
g , 4−q , 5−g , 3+

q̄ )
∣∣∣
⟨⟩↔[]

(7.39)

– 27 –



J
H
E
P
1
0
(
2
0
2
3
)
1
2
5

7.2.7 Results for A6(1Q, 2Q̄, 6g, 3q, 5g, 4q̄)

−iA6(1, 2, 6−g , 3−q , 5−g , 4+
q̄ ) = − 1

m [35] [36] [45]

[− [14] [42] ⟨6|2|3]
⟨6|2|6]

+[12] ⟨6|2|3] [4|1|(3 + 5)|4]
⟨6|2|6] s345

+ [12] ⟨6|(3 + 5)|4] [4|1|(1 + 2)|3]
s345s3456

]
. (7.40)

−iA6(1, 2, 6+
g , 3−q , 5−g , 4+

q̄ ) = − 1
m [35] [45] ⟨6|(3 + 5)|4] s345(⟨12⟩ [46] [4|(3 + 5)|1|(1 + 2)|(3 + 5)|4]

s3456

+(⟨12⟩ [4|1|(3 + 5)|4] + ⟨1|(3 + 5)|4] ⟨2|(3 + 5)|4]) [6|2|(3 + 5)|4]
⟨6|2|6]

)
− ⟨35⟩2⟨46⟩

m⟨36⟩⟨46⟩ ⟨6|(3 + 5)|4] s356

(
[14] [42] + [12] [4|1|2|4]

s3456

)
. (7.41)

The remaining amplitudes are obtained from those in section 7.2.6 as follows,

A(1Q, 2Q̄, 6+
g , 3−q , 5+

g , 4+
q̄ ) = A(2Q̄, 1, 4−q , 5−g , 3+

q̄ , 6−g )
∣∣∣
⟨⟩↔[]

(7.42)

A(1Q, 2Q̄, 6−g , 3−q , 5+
g , 4+

q̄ ) = A(2Q̄, 1Q, 4−q , 5−g , 3+
q̄ , 6+

g )
∣∣∣
⟨⟩↔[]

(7.43)

7.3 Six quark amplitudes

7.3.1 Color structure for three quark pairs

The Feynman diagram evaluation containing six possible color factors is easily reduced to
the Melia basis through commutation relations. One then arrives at the four possible color
structures,

A(1Q, 2Q̄, 3h3
q , 4−h3

q̄ , 5h5
q′ , 6−h5

q̄′ ) = g4
(
(tAtB)x1x2tA

x3x4tB
x5x6A(1) + (tBtA)x1x2tA

x3x4tB
x5x6A(2)

+ (tBtA)x3x4tA
x5x6tB

x1x2A(4) + (tAtB)x5x6tA
x1x2tB

x3x4A(5)
)

.

(7.44)

The color-summed and squared amplitude then takes the form,

∑
colors

|A(1Q, 2Q̄, 3q, 4q̄, 5q′ , 6q̄′)|2 = g8 V N

(
|A(1) + A(5)|2 + |A(2) + A(4)|2

+ 1
N2

(
|A(1) + A(2)|2 + |A(4)|2 + |A(5)|2 − 2 |A(1) + A(2) + A(4) + A(5)|2

))
. (7.45)

For identical quarks (q′ = q) the amplitude can be obtained by forming the combination
(needed when h3 = h5),

A(1Q, 2Q̄, 3h3
q , 4−h3

q̄ , 5h5
q , 6−h5

q̄ ) = A(1Q, 2Q̄, 3h3
q , 4−h3

q̄ , 5h5
q′ , 6−h5

q̄′ )

− A(1Q, 2Q̄, 5h3
q , 4−h3

q̄ , 3h5
q′ , 6−h5

q̄′ ) .
(7.46)
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With the shorthand notation B(i) = A(i)(3 ↔ 5), the color-summed and squared amplitude
for identical quarks is then,

∑
colors

|A(1Q, 2Q̄, 3h3
q , 4−h3

q̄ , 5h5
q , 6−h5

q̄ )|2 =∑
colors

|A(1Q, 2Q̄, 3h3
q , 4−h3

q̄ , 5h5
q′ , 6−h5

q̄′ )|2 +
∑

colors
|A(1Q, 2Q̄, 3h3

q , 4−h3
q̄ , 5h5

q′ , 6−h5
q̄′ )|2

(
A(i) → B(i))

+ δh3h5 g8 2V R
(

A(1)
(
B(1) + B(2) + B(4)

)∗
+ A(2)

(
B(1) + B(2) + B(5)

)∗
+ A(4)

(
B(1) + B(5) − B(4)

)∗
+ A(5)

(
B(2) + B(4) − B(5)

)∗
− 1

N2

[ (
3A(1) + 3A(2) + 2A(4) + 2A(5)

) (
B(1) + B(2)

)∗
+
(
2A(1) + 2A(2) + A(4) + A(5)

) (
B(4) + B(5)

)∗ ])
. (7.47)

7.3.2 Results for six quark amplitudes

We present results only for the case of distinct flavors of massless quarks. The amplitudes
for the case of massless quarks of the same flavor are obtained in an obvious way by
imposing Fermi statistics. Detailed results are given above.

All amplitudes can be constructed from the following five, in which the helicity of
quark 3 has been fixed to be negative (h3 = −). The first two correspond to h5 = −,

−iA(5)(1Q, 2Q̄, 3−q , 4+
q̄ , 5−q′ , 6+

q̄′) =

1
s34s3456

(
(⟨43⟩ [46] (⟨15⟩ [42] + [14] ⟨52⟩) + ⟨63⟩ [46] ([16] ⟨52⟩ + ⟨15⟩ [62]))

s346

−(⟨53⟩ [43] ([16] ⟨32⟩ + ⟨13⟩ [62]) + ⟨53⟩ [45] ([16] ⟨52⟩ + ⟨15⟩ [62]))
s345

)
. (7.48)

−iA(1)(1Q, 2Q̄, 3−q , 4+
q̄ , 5−q′ , 6+

q̄′) =
1

s34s56s3456

[
⟨35⟩ [64] (⟨1|(3 + 4)|2] + ⟨2|(3 + 4)|1]) + ⟨3|(5 + 6)|4] ([16] ⟨52⟩ + ⟨15⟩ [62])

−⟨5|(3 + 4)|6] ([14] ⟨32⟩ + ⟨13⟩ [42])
]

−(m⟨35⟩ [14] [62] + m [46] ⟨13⟩⟨52⟩ + ⟨5|(1 + 3)|4] ⟨13⟩ [62] + ⟨3|(1 + 4)|6] [14] ⟨52⟩)
s34s56(s134 − m2)

+(⟨53⟩ [43] ([16] ⟨32⟩ + ⟨13⟩ [62]) + ⟨53⟩ [45] ([16] ⟨52⟩ + ⟨15⟩ [62]))
s34s345s3456

−(⟨35⟩ [63] ([14] ⟨32⟩ + ⟨13⟩ [42]) + ⟨35⟩ [65] (⟨15⟩ [42] + [14] ⟨52⟩))
s56s356s3456

. (7.49)
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The other three have h5 = +,

−iA(5)(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

q′ , 6−q̄′) =

1
s34s3456

(
⟨36⟩ [34] ([15] ⟨32⟩ + ⟨13⟩ [52]) + ⟨36⟩ [64] (⟨16⟩ [52] + [15] ⟨62⟩)

s346

−⟨34⟩ [54] (⟨16⟩ [42] + [14] ⟨62⟩) + ⟨35⟩ [54] (⟨16⟩ [52] + [15] ⟨62⟩)
s345

)
. (7.50)

−iA(1)(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

q′ , 6−q̄′) =
1

s34s56s3456

[
⟨36⟩ [54] (⟨1|(3 + 4)|2] + ⟨2|(3 + 4)|1]) + ⟨3|(5 + 6)|4] (⟨16⟩ [52] + [15] ⟨62⟩)

−⟨6|(3 + 4)|5] (⟨13⟩ [42] + [14] ⟨32⟩)
]

−(m⟨36⟩ [14] [52] + m [45] ⟨13⟩⟨62⟩ + ⟨3|(1 + 4)|5] [14] ⟨62⟩ + ⟨6|(1 + 3)|4] ⟨13⟩ [52])
s34s56(s134 − m2)

+(⟨34⟩ [54] (⟨16⟩ [42] + [14] ⟨62⟩) + ⟨35⟩ [54] (⟨16⟩ [52] + [15] ⟨62⟩))
s34s345s3456

−(⟨36⟩ [53] (⟨13⟩ [42] + [14] ⟨32⟩) + ⟨36⟩ [56] (⟨16⟩ [42] + [14] ⟨62⟩))
s56s356s3456

. (7.51)

−iA(2)(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

q′ , 6−q̄′) =
1

s34s56s3456

[
⟨6|(3 + 4)|5] (⟨13⟩ [42] + [14] ⟨32⟩) − ⟨36⟩ [54] (⟨1|(3 + 4)|2] + ⟨2|(3 + 4)|1])

−⟨3|(5 + 6)|4] (⟨16⟩ [52] + [15] ⟨62⟩)
]

−(m⟨63⟩ [15] [42] + m [54] ⟨16⟩⟨32⟩ + ⟨3|(1 + 6)|5] ⟨16⟩ [42] + ⟨6|(1 + 5)|4] [15] ⟨32⟩)
s34s56(s156 − m2)

−(⟨34⟩ [54] (⟨16⟩ [42] + [14] ⟨62⟩) + ⟨35⟩ [54] (⟨16⟩ [52] + [15] ⟨62⟩))
s34s345s3456

+(⟨36⟩ [53] (⟨13⟩ [42] + [14] ⟨32⟩) + ⟨36⟩ [56] (⟨16⟩ [42] + [14] ⟨62⟩))
s56s356s3456

. (7.52)

The A(2) amplitude for the other helicity, and the A(4) amplitudes, can be obtained
by interchange of labels and spinor brackets,

A(2)(1Q, 2Q̄, 3−q , 4+
q̄ , 5−q′ , 6+

q̄′) = A(1)(1Q, 2Q̄, 5−q , 6+
q̄ , 3−q′ , 4+

q̄′) ,

A(4)(1Q, 2Q̄, 3−q , 4+
q̄ , 5−q′ , 6+

q̄′) = A(5)(1Q, 2Q̄, 5−q , 6+
q̄ , 3−q′ , 4+

q̄′) ,

A(4)(1Q, 2Q̄, 3−q , 4+
q̄ , 5+

q′ , 6−q̄′) = A(5)(2A
Q, 1B

Q̄
, 5−q , 6+

q̄ , 3+
q′ , 4−q̄′)|⟨⟩↔[] . (7.53)

Finally, the amplitudes for h3 = + are obtained by similar relabelings,

A(1)(1Q, 2Q̄, 3+
q , 4−q̄ , 5h5

q′ , 6−h5
q̄′ ) = −A(2)(2A

Q, 1B
Q̄

, 3−q , 4+
q̄ , 5−h5

q′ , 6h5
q̄′ )|⟨⟩↔[] ,

A(2)(1Q, 2Q̄, 3+
q , 4−q̄ , 5h5

q′ , 6−h5
q̄′ ) = −A(1)(2A

Q, 1B
Q̄

, 3−q , 4+
q̄ , 5−h5

q′ , 6h5
q̄′ )|⟨⟩↔[] ,

A(4)(1Q, 2Q̄, 3+
q , 4−q̄ , 5h5

q′ , 6−h5
q̄′ ) = A(4)(2A

Q, 1B
Q̄

, 3−q , 4+
q̄ , 5−h5

q′ , 6h5
q̄′ )|⟨⟩↔[] ,

A(5)(1Q, 2Q̄, 3+
q , 4−q̄ , 5h5

q′ , 6−h5
q̄′ ) = A(5)(2A

Q, 1B
Q̄

, 3−q , 4+
q̄ , 5−h5

q′ , 6h5
q̄′ )|⟨⟩↔[] . (7.54)
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8 Relation to classic formalism

In order to evaluate amplitudes with massive fermions we need a definite representation
for the massive spinors. This we do by expressing the massive momenta as the sum of
two light-like vectors; this approach meshes nicely with our technique to introduce spin
correlations in top decay, as illustrated below in subsection 8.1. The states for the massive
fermions are computed introducing arbitrary light-like vectors ηp and ηq and decomposing
massive vectors p, q into two light-like vectors, (p♭, ηp), (q♭, ηq), [27]

p = p♭ + m2

⟨p♭ηp⟩
[
ηpp♭

]ηp, q = q♭ + m2

⟨q♭ηq⟩
[
ηqq♭

]ηq, (8.1)

ū−(p) =
[ηp

∣∣(̸p + m)[
ηpp♭

] = m[
ηpp♭

] [ηp

∣∣
α̇

+ ⟨p♭
∣∣α, ū+(p) =

⟨ηp

∣∣(̸p + m)
⟨ηpp♭⟩

= [p♭
∣∣
α̇

+ m

⟨ηpp♭⟩
⟨ηp

∣∣α,

v+(q) =
(̸q − m)

∣∣ηq⟩
⟨q♭ηq⟩

=
∣∣q♭]α̇ −

∣∣ηq⟩α
m

⟨q♭ηq⟩
, v−(q) =

(̸q − m)
∣∣ηq][

q♭ηq
] = −

∣∣ηq]α̇ m[
q♭ηq

] +
∣∣q♭⟩α ,

(8.2)

where p and q are the heavy quark momenta and in the labels for the Dirac spinors we have
suppressed the dependence on their common mass, m. Using the expressions for the Dirac
spinors in eq. (A.30) we can read off the spin-spinors as (suppressing SL(2,C) components
from now on),

⟨pI=1| = ⟨p♭| , [pI=1| = m

[ηpp♭]
[ηp|

⟨pI=2| = m

⟨ηpp♭⟩
⟨ηp| , [pI=2| = [p♭|

|pJ=2⟩ = −|ηq⟩
m

⟨q♭ηq⟩
, |pJ=2] = |q♭]

|pJ=1⟩ = |q♭⟩ , |pJ=1] = −|ηq] m

[q♭ηq]

Note that we have associated v+(q) with the J = 2 component and v−(q) with J = 1.
With these definitions we then have that,

⟨12⟩ =
(
⟨pI=1

1 | p2,J=1⟩ ⟨pI=1
1 | p2,J=2⟩

⟨pI=2
1 | p2,J=1⟩ ⟨pI=2

1 | p2,J=2⟩

)
(8.3)

=

 ⟨1♭2♭⟩ −m⟨1♭η2⟩
⟨2♭η2⟩

m⟨2♭η1⟩
⟨1♭η1⟩

m2⟨η1η2⟩
⟨1♭η1⟩⟨2♭η2⟩

 (8.4)

and, for example,

⟨1k⟩⟨l2⟩ =
(
⟨pI=1

1 |k⟩⟨l|p2,J=1⟩ ⟨pI=1
1 |k⟩⟨l|p2,J=2⟩

⟨pI=2
1 |k⟩⟨l|p2,J=1⟩ ⟨pI=2

1 |k⟩⟨l|p2,J=2⟩

)
(8.5)

=

 ⟨1♭k⟩⟨l2♭⟩ −m⟨1♭k⟩⟨lη2⟩
⟨2♭η2⟩

−m⟨η1k⟩⟨l2♭⟩
⟨1♭η1⟩

m2⟨η1k⟩⟨lη2⟩
⟨1♭η1⟩⟨2♭η2⟩

 (8.6)
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8.1 Inclusion of tree-level decays

Kleiss and Stirling [17] have provided a procedure for including tree-level top quark decays.3

Consider the leptonic decays of on-shell top quarks and antitops,

t̄ → b̄(p3) + e−(p4) + ν̄(p5) , t → b(p6) + ν(p7) + e+(p8) (8.7)

If we denote the four momenta of the top quarks and their decay products by the symbols
given above, the contribution to the matrix element of the heavy quark line and subsequent
decays will be,

M ∝ g4
W

4 ū(p6)γµγL(̸t + m) . . . (−¯̸t + m)γRγνv(p3) × ⟨7|γµ|8] ⟨4|γν |5]

= g4
W ⟨ū(p6)|7⟩ [8|(̸t + m) . . . (−¯̸t + m)|4⟩ [5|v(p3)] (8.8)

Thus the full spin correlations for the decay of the top and antitop can be included by using
the decomposition in eq. (8.1) with auxiliary vectors e, ē and a single helicity combination,
h8 = h4 = +1

2 . This approach has been followed at next-to-leading order in the parton-
level Monte Carlo program MCFM [39] using one-loop results for the top amplitudes from
ref. [40]. This approach has also been pursued for the case of a top quark pair accompanied
by one [41, 42] or two jets [43]. A necessary first step to extend these analyses to NNLO
is the calculation of the amplitudes for top quark pair production at the two loop level.
Although this program is not yet complete, first steps have been taken in refs. [44, 45].
An alternative approach to including the top quark decays, using the spin density matrix
method, has already been used to obtain results at NNLO [46, 47].

9 Conclusions

In this paper we have provided explicit analytic expressions for all four-, five- and six-
parton amplitudes needed for the calculation of pp → tt̄, pp → tt̄ + j and pp → tt̄ + jj

production at hadron colliders. These amplitudes have been presented using the Spin-spinor
approach, that extends the usual spinor notation for massless particles to the massive case.
It thus retains many of the advantages of the original spinor formalism, in particular its
ability to provide results in a compact form. The results, although not always simple,
are considerably more compact than the results obtained using normal Feynman diagram
calculation. We have elucidated the application of BCFW recursion in this approach and
used lower-point amplitudes as buildings blocks to provide new results for some 6-point
amplitudes. In addition we have summarized the BCJ relations that apply in each case
and shown how to construct the squared matrix element, summed over colors, from the
color-ordered amplitudes. As well as their utility in tree-level calculations, we anticipate
that the simple form of some of the amplitudes presented in this paper will enable new
analytic one-loop calculations. Unitarity methods exploit these amplitudes in calculations
of processes containing a loop of massive fermions. Machine readable forms of our results
are available in a Fortran code which evaluates and squares these amplitudes. The Fortran

3Note that eq. (4) of ref. [17] should read t → b(p6) + ν(p7) + e+(p8).
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code is available in the Supplementary Material of this paper. They will also be distributed
in a future version of MCFM [24].
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A Review of spinor techniques

A.1 Conventions

We introduce spinor techniques departing from the Dirac equation, since we believe that
the reader may be more familiar with γ-matrix technology than Weyl spinors. We work
in the metric given by diag(1,−1,−1,−1) and use the Weyl representation of the Dirac
gamma matrices given by,

γµ =
(

0 σµ

σ̄µ 0

)
, (µ = 0, 3), γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 +1

)
, (A.1)

where σµ = (1, σi), σ̄µ = (1,−σi) where σ are the Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

Contracting the four-momentum with the gamma matrices we find an expression for ̸p,

̸p ≡ pµγµ =
(

0 pα̇β

pαβ̇ 0

)
, pα̇β = pµ(σµ)α̇β , pαβ̇ = pµ(σ̄µ)αβ̇ , (A.3)

Explicitly we find in terms of the components of pµ = (p0, p1, p2, p3),

pα̇β =
(

p− −p̄⊥
−p⊥ p+

)
, pαβ̇ =

(
p+ p̄⊥
p⊥ p−

)
, where p± = p0 ±p3, p⊥ = p1 + ip2, p̄⊥ = p1 − ip2 .

(A.4)

A.2 Spinor techniques for massless particles

For massless particles the pµpµ = det pαβ̇ = 0 and the matrices can be expressed as
bi-spinors

pα̇β = |p]α̇⟨p|β , pαβ̇ = |p⟩α[p|β̇ . (A.5)

By convention in the calculation of amplitudes we take all particles to be outgoing. There-
fore the ingredients that we require are the wave functions associated with outgoing fermions
and anti-fermions. The wave functions satisfy the massless Dirac equation for fermions

ū±(p)̸p = 0, where ū−(p) =
(

0 , ⟨p|β
)
, ū+(p) =

(
[p|β̇ , 0

)
(A.6)
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and anti-fermions

̸pv±(p) = 0, where v−(p) =
(

0
|p⟩α

)
, v+(p) =

(
|p]α̇

0

)
(A.7)

Since the charge conjugation relation for Dirac spinors is v± = −iγ2u∗
± so that v±(p) =

CūT
± with

C = iγ2γ0 =
(

iσ2 0
0 −iσ2

)
=


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 =
(

ϵα̇β̇ 0
0 ϵαβ

)
(A.8)

where the two dimensional antisymmetric tensor is,

ϵαβ = ϵα̇β̇ = iσ2 =
(

0 1
−1 0

)
, ϵαβ = ϵα̇β̇ = −iσ2 =

(
0 −1
1 0

)
(A.9)

Thus to raise or lower the index of a spinor quantity, adjacent spinor indices are summed
over when multiplied on the left by the appropriate epsilon symbol,

|p⟩α = ϵαβ⟨p|β , |p]α̇ = ϵα̇β̇ [p|β̇ , (A.10)

and analogously,
⟨p|α = ϵαβ |p⟩β , [p|α̇ = ϵα̇β̇ |p]β̇ , (A.11)

and,
pαβ̇ = ϵαβϵβ̇α̇pα̇β . (A.12)

Using eq. (A.5) we see that the massless spinors satisfy the Weyl equations of motion,

pα̇β |p⟩β = pαβ̇ |p]β̇ = ⟨p|αpαβ̇ = [p|α̇pα̇β = 0 . (A.13)

Part of the simplicity of the spinor calculus derives from the fact that we do not
need explicit expressions for the spinor solutions, until we arrive at the stage of numerical
evaluation. However we can derive solutions to the Weyl equations of motion using the
results in eq. (A.4),

|p⟩α = (
√

p+, p⊥/
√

p+), [p|β̇ = (
√

p+, p̄⊥/
√

p+), (A.14)

⟨p|β = (−p⊥/
√

p+,
√

p+), |p]α̇ = (−p̄⊥/
√

p+,
√

p+). (A.15)

We see that the angle (square) brackets automatically encode the north-west → south-
east (south-west → north-east) summation convention for the SL(2,C) undotted (dotted)
indices. Thus in most circumstances these indices can be dropped. The spinor products
satisfy ⟨ij⟩ = −⟨ji⟩, [ij] = − [ji]. For light-like vectors we can combine the Weyl spinors
to form Dirac spinors as follows,

v(p) =
(
|p]β̇

|p⟩β

)
, ū(p) =

(
[p|α̇ ⟨p|α

)
. (A.16)
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A.3 Spinor techniques for massive particles

A.3.1 Angle notation

We now turn to consider particles with mass, m, so that E2 − P 2 = m2. Now in terms of
a four-vector pµ = (E, P sin θ cos ϕ, P sin θ sin ϕ, P cos θ) we find using the Weyl represen-
tation for the gamma matrices, eq. (A.1), that,

pα̇β =
(

c2P− + ss∗P + −2 c s∗P

−2 c sP ss∗P− + c2P +

)
(A.17)

pαβ̇ =
(

c2P + + ss∗P− 2 c s∗P

2 c sP ss∗P + + c2P−

)
(A.18)

where c = cos( θ
2), s = sin( θ

2) exp(iϕ), s∗ = cos( θ
2) exp(−iϕ). In this equation we have

introduced the notation P± = E ± P , which we write in upper case (to distinguish it
from p± in the massless case eq. (A.4) which was defined differently). We can express
components of the tensor |p⟩I

α and [pI |α̇ where we let the label I run over the two values
1 and 2,

λI
α = |pI⟩α =

√
P−

(
−s∗

c

)
=

√
P−ζ−α , λ̃I α̇ = [pI |α̇ =

√
P−

(
−s

c

)
=

√
P−ζ̃+

α̇ for I = 1

λI
α = |pI⟩α =

√
P +

(
c

s

)
=

√
P +ζ+

α , λ̃α̇ I = [pI |α̇ =
√

P +

(
c

s∗

)
=

√
P +ζ̃−α̇ , for I = 2

(A.19)

so that, ∑
I=∓1

|pI⟩α[pI |β̇ = P−
(

ss∗ −cs∗

−cs c2

)
+ P +

(
c2 cs∗

cs ss∗

)
= pαβ̇ , (A.20)

using the expression for pαβ̇ in eq. (A.17). Note using expressions below we have,

−
∑
I=±

|pI ]α̇⟨pI |β̇ = P−
(

c2 cs∗

cs ss∗

)
+ P +

(
ss∗ −cs∗

−cs c2

)
= pα̇β . (A.21)

We can write eq. (A.19) equivalently as [22]

λI
α = |pI⟩α =

√
P + ζ+

α (p) ⊗ δI
1 ζ− +

√
P− ζ−α (p) ⊗ δI

2 ζ+

λ̃I α̇ = [pI |α̇ =
√

P + ζ̃−α̇ (p) ⊗ δ1
I ζ− +

√
P− ζ̃+

α̇ (p) ⊗ δ2
I ζ+ (A.22)

where I runs over the values 1 and 2. Here we have chosen a representation of the SU(2)
algebra in which σz is diagonal with eigenstates,

ζ+ =
(

1
0

)
, ζ− =

(
0
1

)
. (A.23)

and the expression for the spinors with SL(2,C) Lorentz indices is,

ζ+
α =

(
c

s

)
≡ +ζ̃+ α̇ , ζ−α =

(
−s∗

c

)
≡ −ζ̃− α̇ ,

ζ̃−α̇ =
(

c

s∗

)
≡ +ζ−α , ζ̃+

α̇ =
(
−s

c

)
≡ −ζ+ α . (A.24)
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In terms of these Weyl spinors we have the following relations,

pα̇β ζ±β = ±P∓ζ̃± α̇ ,

pαβ̇ ζ̃± β̇ = ±P±ζ±α ,

ζ±α pαβ̇ = ∓P∓ζ̃±
β̇

,

ζ̃±α̇ pα̇β = ∓P±ζ±β . (A.25)

Raising and lowering the SU(2) index is performed by multiplying by the two-dimensio-
nal totally antisymmetric tensor ϵ on the right, |pI⟩α = |pJ⟩αϵJI and [pI |α̇ = [pJ |α̇ϵJI . To
be completely explicit we write out a complete set,4

|pI⟩α = +
√

P + ζ+
α (p) ⊗ δI

1 ζ− +
√

P− ζ−α (p) ⊗ δI
2 ζ+

|pI ]α̇ = −
√

P− ζ̃+ α̇(p) ⊗ δI
1 ζ− +

√
P + ζ̃− α̇(p) ⊗ δI

2 ζ+

⟨pI |α = +
√

P + ζ+ α(p) ⊗ δI
1 ζ− +

√
P− ζ−α(p) ⊗ δI

2 ζ+

[pI |α̇ = −
√

P− ζ̃+
α̇ (p) ⊗ δI

1 ζ− +
√

P + ζ̃−α̇ (p) ⊗ δI
2 ζ+ (A.26)

|pI⟩α = +
√

P− ζ−α (p) ⊗ δ1
I ζ− −

√
P + ζ+

α (p) ⊗ δ2
I ζ+

|pI ]α̇ = +
√

P + ζ̃− α̇(p) ⊗ δ1
I ζ− +

√
P− ζ̃+ α̇(p) ⊗ δ2

I ζ+

⟨pI |α = +
√

P− ζ−α(p) ⊗ δ1
I ζ− −

√
P + ζ+ α(p) ⊗ δ2

I ζ+

[pI |α̇ = +
√

P + ζ̃−α̇ (p) ⊗ δ1
I ζ− +

√
P− ζ̃+

α̇ (p) ⊗ δ2
I ζ+ (A.27)

In our notation I and J taken on the values 1 and 2. The SU(2) little group indices are
lowered and raised by multiplying to the right by ϵIJ and ϵIJ , cf. eq. (A.9). From these
expressions for the spinors we can see that,(

⟨pI |α
)∗

= |pI ]α̇
(
|pI⟩α

)∗
= [pI |α̇ , (A.28)

but on the other hand,(
⟨pI |α

)∗
= −|pI ]α̇

(
|pI⟩α

)∗
= −[pI |α̇ . (A.29)

In other words, taking the complex conjugate of an angle spinor with a lowered spin index
I, or a square spinor with a raised spin index, introduces an additional minus sign. This
means that if we define the spinors for an outgoing quark and antiquark as,

ū(p) =
(
[pI |α̇ ⟨pI |α

)
v(p) =

(
|pI ]α̇

|pI⟩α

)
, (A.30)

then we must also have,

u(p) =
(

|pI ]α̇

−|pI⟩α

)
v̄(p) =

(
−[pI |α̇ ⟨pI |α

)
. (A.31)

4Eqs. (A.26), (A.27) correct eqs. (C.2) and (C.3) of AHH [22] which contain errors.
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In the massless case the spinor-helicity states |pα], |pβ̇⟩ satisfy the Weyl equation and
are independent of each other. In the massive case dotted and undotted massive spinor
states are related through the equation of motion for the Weyl fields. In terms of this set
of tensors, using the relations in eq. (A.25), we obtain the following equations of motion,

pα̇β |pI⟩β = −m|pI ]α̇, pαβ̇ |pI ]β̇ = −m|pI⟩α,

⟨pI |α pαβ̇ = +m[pI |β̇ , [pI |α̇ pα̇β = +m⟨pI |β . (A.32)

Therefore the scattering amplitude involving massive particles can be expressed either in
terms of |pI ]α or |pI⟩β̇ . In addition we have,

|pI⟩α[pI |β̇ = pαβ̇ |pI ]α̇ ⟨pI |β = −pα̇β (A.33)

|pI⟩α⟨pI |β = m δβ
α |pI ]α̇ [pI |β̇ = −m δα̇

β̇
(A.34)

|pI⟩α[pI |β̇ = −pαβ̇ |pI ]α̇ ⟨pI |β = pα̇β (A.35)

|pI⟩α⟨pI |β = −m δβ
α |pI ]α̇ [pI |β̇ = m δα̇

β̇
(A.36)

The massive fermion propagator is reconstructed as follows,

γµpµ + m =
(

mδα̇
β̇

pα̇β

pαβ̇ mδβ
α

)
=
(

|pI ]α̇[pI |β̇ |pI ]α̇⟨pI |β

−|pI⟩α[pI |β̇ −|pI⟩α⟨pI |β

)
=
(

|pI ]α̇

−|pI⟩α)

)
⊗
(
[pI |β̇ ⟨pI |β

)
(A.37)

Adopting the convention,

| − p⟩ = −|p⟩ , | − p] = |p] , (A.38)

we have that,

γµpµ + m =
(
| − pI ]α̇

| − pI⟩α

)
⊗
(
[pI |β̇ ⟨pI |β

)
= v(−p) ⊗ ū(p) (A.39)

Explicit representations for spinors that satisfy the rules in eq. (A.38) are given in refs. [7, 8].
In a similar way,

ε+
µ (−k)ε−ν (k) + ε−µ (−k)ε+

ν (k) =
(

gµν − (kµbν + kνbµ)
b · k

)
(A.40)

For a review of the Spin-spinor formalism for massive particles, see also refs. [28, 29].

B Melia basis for two quark pair + two gluon amplitudes

An alternative color-ordered basis for this process can be obtained following Melia [38]. In
this basis we have,

A(1Q, 2Q̄, 3h3
q , 4+

q̄ , 5+
g , 6+

g ) = g4
(
A256143 C256143 + A215643 C215643 + A214563 C214563

+A251643 C251643 + A251463 C251463 + A215463 C215463
)

+(5 ↔ 6) . (B.1)
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The color factors in this decomposition can be read off from the Feynman rules,

C256143 =
(
tAtC5tC6

)
i1i2

tA
i3i4 ,

C215643 = tA
i1i2 tB

i3i4 F AC5D F DC6B ,

C214563 = tA
i1i2

(
tC6tC5tA

)
i3i4

,

C251643 =
(
tAtC5

)
i1i2

tB
i3i4 F C6BA ,

C251463 =
(
tAtC5

)
i1i2

(
tC6tA

)
i3i4

,

C215463 = tA
i1i2 F C5BA

(
tC6tB

)
i3i4

, (B.2)

where F ABC = ifABC
√

2, and similarly for 5 ↔ 6. Note that in this basis each color
structure consists of a single term. The amplitudes are related to the ones in the Feynman
diagram decomposition by,

A(1) = A215643

A(2) = −A216453 + A261453 − A261543 + A214653 + A216543 + A256143

A(3) = A261543 − A216543 + A215463 − A215643

A(4) = −A256143

A(5) = −A214653

A(6) = −A251463

B(1) = A216543

B(2) = A265143 − A215463 + A251463 − A251643 + A214563 + A215643

B(3) = A216453 − A216543 + A251643 − A215643

B(4) = −A265143

B(5) = −A214563

B(6) = −A261453 (B.3)
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