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Machine Learning for Ultra High Throughput Screening of
Organic Solar Cells: Solving the Needle in the Haystack
Problem

Markus Hußner, Richard Adam Pacalaj, Gerhard Olaf Müller-Dieckert, Chao Liu,
Zhisheng Zhou, Nahdia Majeed, Steve Greedy, Ivan Ramirez, Ning Li,
Seyed Mehrdad Hosseini, Christian Uhrich, Christoph Josef Brabec, James Robert Durrant,
Carsten Deibel, and Roderick Charles Ian MacKenzie*

Over the last two decades the organic solar cell community has synthesized
tens of thousands of novel polymers and small molecules in the search for an
optimum light harvesting material. These materials are often crudely
evaluated simply by measuring the current–voltage (JV) curves in the light to
obtain power conversion efficiencies (PCEs). Materials with low PCEs are
quickly disregarded in the search for higher efficiencies. More complex
measurements such as frequency/time domain characterization that could
explain why the material performed as it is often not performed as they are
too time consuming/complex. This limited feedback forced the field to
advance using a more or less random walk of material development and has
significantly slowed progress. Herein, a simple technique based on machine
learning that can quickly and accurately extract recombination time constants
and charge carrier mobilities as a function of light intensity simply from
light/dark JV curves alone. This technique reduces the time to fully analyze a
working cell from weeks to seconds and opens up the possibility of not only
fully characterizing new devices as they are fabricated, but also data mining
historical data sets for promising materials the community has overlooked.
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1. Introduction

Over the last 22 years, organic solar
cell efficiencies have risen from 2.5%
in 2001[1] to over 19%[2] today. Much of
this increase in performance can be at-
tributed to steady improvement in mate-
rial systems.[3,4] The first reported cells
relied on blends of MEH-PPV/P3HT
and C60 fullerene derivatives.[1,5] Later
in the late 2000s low bandgap poly-
mers started to emerge with alternat-
ing copolymers of fluorene with Donor-
Acceptor-Donor (D-A-D) segments such
as PTPTB with efficiencies ≈10%.[6] In
the late 2010s the community moved
away from fullerene-based acceptors to
small molecules, with this came effi-
ciencies nearing 20%.[7-9] Although effi-
ciencies are slowly increasing at a rate
of ≈1% a year it takes tremendous ef-
fort from thousands of researchers across
the world to achieve this. Furthermore,
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quantities such as device life time and efficiency still need to
be significantly optimized before commercialization can be con-
sidered for polymer cells.[10,11] This points to another decade of
slowly improving device performance that humanity can ill afford
given the rapidly rising global temperatures.[12] Part of the reason
for this slow progress in organic photo-voltaics (OPV) develop-
ment is a lack of timely and detailed feedback to chemists from
device engineers.[13,14] Typically a new material will be synthe-
sized and then used to fabricate a few test devices using a handful
of solvents and a few annealing temperatures. Simple current–
voltage (JV) curve sweeps will be performed to determine PCE,
Fill Factor (FF), Open Circuit Voltage (Voc) and short-circuit cur-
rent (Jsc). These measurements will take only seconds and allow
the scientist to see if the material has good photovoltaic prop-
erties. However, JV measurements will not give information as
to why the device/material works well or poorly and do not give
hints as to how material form/function should be improved. To
obtain this information one has to perform more time consum-
ing measurements to extract key device parameters such as re-
combination rate, charge carrier mobility, and measures of dis-
order. Examples of techniques that can extract this information
are, impedance spectroscopy (IS),[15,16] Impedance Modulated
Photocurrent Spectroscopy (IMPS),[17] Impedance Modulated
Photovoltage Spectroscopy (IMVS),[18,19] Transient Photocurrent
(TPC),[20,21] Transient Photovoltage (TPV)[22-24] and charge extrac-
tion (CE) measurements.[25,26]

Although considerable efforts have gone into refining these
methods they remain complex and require expertise and equip-
ment that is often not found in the same lab as the people with
knowledge in synthesis. Other approaches to get at fundamen-
tal device parameters such as fitting numerical models to exper-
imental data can often take longer than the experiments them-
selves and also require expertise and models which are rarely
found in the same place as where the material is fabricated.[27]
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Thus very often without detailed characterization the scientist is
left guessing as to why one molecule performs better than an-
other or why devices fabricated under given conditions perform
as they do. This makes it very difficult to determine the next steps
in material/device optimization.

Thus one can think of the development of OPV materials as
a random walk, with chemists developing new materials and
disregarding the majority of them as on first glance they do
not perform. Some more highly performing materials are occa-
sionally investigated with more comprehensive methods (such
as P3HT:PCBM in the past and more recently PM6:Y6). This
may well have led to promising materials being disregarded and
skipped over as they did not perform well in the first batch
or two of fabricated devices due to selecting the wrong sol-
vents/annealing conditions or molecular weights. We are in ef-
fect searching for a needle in the haystack but in the dark.

Although this problem is serious in the academic setting
where a researcher may make a new material every few weeks, it
is much worse in high through-put labs where new materials are
generated daily. Candidate materials are often only tested against
a few standard combinations of donor/acceptor molecules, sol-
vents and annealed at a few temperatures before the materials
are disregarded. Thus there exists a huge back catalogue of JV
curves both in the literature and in the industry for material that
was never fully analyzed.

Our aim when writing this paper was to develop a method that
can accurately extract charge carrier recombination time (𝜏) and
mobility (μ) as a function of light intensity using the most sim-
ple, quickest and easy to perform set of experiments possible.
We wanted a measurement technique that took seconds to apply,
that anybody without expensive lasers/frequency domain equip-
ment could use and enabled the feedback loop from device per-
formance to material parameters to be efficiently closed for all in
the community. We focused on the recombination time constant
and charge carrier mobility because they can be used to identify if
recombination or transport is the key bottleneck in device perfor-
mance, which can in turn give hints as to how to tune the molec-
ular packing and/or morphology. Furthermore, when combined
in the μ⋅𝜏 product they give a standard benchmark for material
performance.[28–30]

Herein, we demonstrate that both charge carrier recombina-
tion time and mobility can be extracted from JV curves alone
using a combination of machine learning (ML) models trained
on physically accurate device models. We compare the values of
recombination rate and charge carrier mobility extracted by our
new method to values extracted by more traditional frequency do-
main/transient measurements from both spin-coated and evap-
orated cells. Thus we develop a high throughput tool that has the
potential to close the feedback loop and accelerate device devel-
opment.

2. Methods

2.1. Time Domain Measurements on Evaporated Devices

Two devices of layer structure Glass/ITO/nC60/C60/DCV-V-Fu-
Ind-Fu-V:C60/MoO3/Ag were deposited by evaporation, in one
device the substrate temperature was held at 50 °C during de-
position of the active layer, while in the other device substrate
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Figure 1. a) Device architecture and schematic depiction of transient techniques TPC/TPV and charge extraction, the nC60 layer is n-doped C60.;
b) Measured JV-curves from 0.025 to 1 Suns for the device evaporated at room temperature. Inset: The molecular structures of DCV-V-Fu-Ind-Fu-V and
C60.

temperature was allowed to float at room temperature.[31] The
device structure is depicted in Figure 1a while the molecular
structures and example JV curves can be seen in Figure 1b. The
active layer was 50 nm thick and made by co-evaporating the
small molecule donor DCV-V-Fu-Ind-Fu-V with C60. TPV was
performed at open circuit and charge extraction at short circuit to
measure recombination times and effective charge carrier mobil-
ity respectively. A summary of these measurements can be seen
in Figure 2.

Both JV curve and transient measurements were performed at
light intensities ranging from 0.025 to 3 Suns. It could be seen
that the charge carrier mobility measured at Jsc was a factor two
higher for the 50 °C devices than for the room temperature de-
vice. This was attributed to slightly better transport properties
caused by favorable morphology. Lifetimes at Voc were almost
identical for both devices, indeed it could be seen from the JV-
curves in Figure 2d that Voc was very close for both temperatures.

It is now anaim to see if using the JV curves alone (see
Figure 1b) coupled with machine learning, this study can predict
all the data extracted using transient measurements presented
in Figure 2. JV curves were very quick and easy to measure.
Thus if this study was able to extract μ and 𝜏 from these curves
alone months of measurement work could be saved. To do this,
the device structure was first set up in the drift-diffusion model
OghmaNano.[27,32]

The model solves Poisson’s equation to take account of elec-
trostatic effects within the device, electron/hole charge carrier
continuity and drift-diffusion equations to describe carrier trans-
port. Finally to describe carrier trapping and recombination, the
LUMO and HOMO Urbach tails were each split up into eight
discrete trap levels and a Shockley-Read-Hall capture escape
equation was solved for each energetic range. This approach al-
lowed carries to be described both in energy and position space
within the device. More details about the model can be found
elsewhere.[33,27,34]

Using this base device structure, over 20,000 copies of the
simulation file were made to form a sample set of virtual de-
vices. Each virtual device had randomly assigned electron/hole
mobilities, trap densities, Urbach tail slopes and other electrical

paramters. From these virtual devices corresponding light and
dark JV curves were generated. Furthermore, for each device the
calculated recombination rate at Voc and charge carrier mobility
at Jsc were stored. This process is described in Figure 3.

Generating this data set took ≈2 h and provided the basis for
training the machine learning algorithm. The advantage of train-
ing the machine learning algorithm on virtual data was that most
machine learning algorithms were very data hungry requiring
thousands of examples to learn. Furthermore, it enables us to
know exactly what the recombination rate is at Voc (mobility at
Jsc) which would be hard to do experimentally.

The next task was to train the machine learning algorithm with
the data. This is depicted in Figure 4. For each device in turn the
light and dark JV curves were presented to the inputs of the neu-
ral network. The network was then asked to predict the values of
charge carrier mobility and recombination rate as a function of
light intensity on the outputs. At the start of training the model
predicts these values quite poorly, however as training progresses
and the network sees more examples, the predicted values of μ

and 𝜏 for each JV curve become closer to the correct values (more
details on the training can be found in the Supporting Informa-
tion). Once the network had been trained on all devices, the order
of the devices was shuffled and training begins again, this pro-
cess repeats until the network can correctly predict μ and 𝜏 for
any given JV curve in the data set. Once the error was sufficiently
small, the weights were fixed and the model was ready to predict
on experimental data. To test the ability of the network to extract
μ and 𝜏 from as of yet unseen data, 20% of the training set was
kept out of the training process, and used at the end of the train-
ing process to assess the performance of the network. Once the
model was trained on virtual data to our satisfaction, the experi-
mental JV curves for each device in Figure 1b were fed into the
neural network in an attempt to predict the values in Figure 2.

The values of 𝜏 and μ predicted from the JV curves are shown
in Figure 2 as solid triangles. It can be seen that the predicted
values follow those of the directly measured values within one
order of magnitude, accurately following the trend of the exper-
imental data. This demonstrated that there was indeed enough
information in the JV curves alone to determine 𝜏 and μ. As Voc
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Figure 2. a) Light intensity dependent charge carrier lifetime measured us-
ing TPV for a device deposited at room temperature (blue)/50 °C (red); b)
The μjsc·𝜏Voc product c) Light intensity dependent charge carrier mobility
measured using charge carrier extraction for a device deposited at room
temperature (blue)/50 °C (red). In this figure the open triangles represent
the experimental measurements and the solid triangles represent the re-
sults of the ML. d) JV-curves for devices deposited at room temperature
(blue)/50 °C (red); inset shows charge carrier lifetime, closed circles show
the predicted lifetime at maximum power point Pmax. Confusion matrices
and R2 scores can be found in Figures S3 and S4 (Supporting Informa-
tion).

was almost the same for both devices, the information gained
with TPV is limited in our case, however the machine learning
model also enables us to also predict lifetimes away from Voc at
the maximum power point Pmax. The inset in 2b showed this pre-
diction.

2.2. Frequency Domain Measurements on Spin Coated Devices

In the previous section, the ability of machine learning was
compared to extract 𝜏 or μ from JV curves to the values 𝜏 or
μ extracted from transient measurements. In this section, we
demonstrate the general ability of the ML-approach by turn-
ing our attention to state-of-the-art PM6:DT-Y6 spin coated de-
vices measured using frequency domain techniques. A series
of glass/ITO/SnO2/PM6:DT-Y6/MoO3/Ag devices with varying
DT-Y6 content were fabricated. The ratios chosen were 0:100,
15:85, 30:70, 45:55, 55:45, 70:30 and 85:15 of DT-Y6 to PM6 re-
spectively. The molecular structure of these materials along with
the device structure can be seen in Figure 5a,b. Current voltage
curves were measured under AM1.5G illumination to obtain Voc,
PCE, Jsc, and FF, theseare plotted in Figure 5c as a function of
blend ratio (See Supporting Information for full curves). It can
be seen that as the DT-Y6 ratio increases so does the PCE with a
maximum PCE observed at around 70:30.

To investigate the performance of these devices in terms of
charge carrier transport and recombination rate IMVS was per-
formed at open circuit and IMPS at short circuit to obtain charge
carrier recombination rates and mobility as a function of light
intensity. Example IMVS/IMPS curves are shown in Figure 6b,c
from 300 μSuns to 1 Suns. The experimental charge carrier life-
times were calculated from the real part of the IMVS-signal and
charge carrier mobilities were inferred from the real part of the
IMPS-signal. A summary of these measurements can be seen in
the top two rows of Figure 7. Note all data extracted from experi-
ment was plotted as open triangles, the closed triangles were the
results of the machine learning and will be discussed later. If the
μ⋅𝜏 product was examined (bottom line of the figure) it could be
seen that μ⋅𝜏 was higher for the high performing DT-Y6 ratios
(55:45, 70:30, and 85:15) mainly due to a higher effective charge
carrier mobility.

The above results represent a base line against which to com-
pare the machine learning. Before going further however, it is
worth underlining some of the points made in the introduction
about detailed characterization being the bottleneck to device de-
velopment by noting that the above measurements took around
6 months to measure and analyze by hand.

Again the experimental JV curves for each device in Figure 6a
were fed into the neural network in an attempt to predict the val-
ues in Figure 7. The predicted values were shown as solid trian-
gles for mean values (geometric mean in case of charge carrier
mobility), solid squares for electrons, and solid circles for holes.
Taking the top row of graphs first, it can be seen that the model
predicts electron mobility to be orders of magnitude higher than
hole mobility. This was in accordance with literature.[35] Further
the predicted geometric mobility was in good agreement with the
experimental IMPS data. Examining the second line of graphs it
could be seen that the Neural Network can predict the absolute
value of the recombination time constant as a function of light
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Figure 3. Creation of the training data set by artificially generating the device with randomly assigned parameters in a drift-diffusion simulation. The
dark JV-curves and at 1 Sun as well as recombination rate at Voc and mobility at Jsc are simulated and stored.

intensity very well with the error being slightly higher for the
lower light intensities. Still the error stays well below one order of
magnitude. Furthermore, the trend of the lifetime was also accu-
rately reproduced. The bottom row of graphs compared the pre-
dicted μjsc⋅𝜏Voc product to the measured values with these trends
also agreeing well.

3. Discussion

Above we have demonstrated that using a combination of ML
algorithms trained on simulated JV curves alone, one can build
a tool to extract charge carrier mobility and recombination rate
as a function of light intensity, thus removing the need for

Figure 4. A diagram of the neural network used to extract material parameters from the data within this paper. Visible on the left-hand side of the image
is the experimental (or simulated) data, with the green dots on the curves representing the points at which the curves were sampled to form input vectors
for the neural network. The JV-curves are being sampled at discrete voltages to provide data points to the neural networks input nodes. Any number
or combination of experimental measurements can be placed on the input to the network, one simply has to extend the number of input neurons, and
retrain the network. The neural network itself has green input nodes, blue hidden layers, and red output nodes. Each output node corresponds to a
device/material parameter such as charge carrier mobility or recombination rate. Inset: A single neuron.
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Figure 5. a) Device structure; b) Polymers of the active layer c) Device parameters depending on DT-Y6 content.

time-consuming and costly characterization. We anticipate this
tool being used by the community to quickly screen new devices
and materials and also as a tool to screen the vast historical data
sets available in the literature and in industry. The method can
also be thought of as a tool to democratize the characterization of
OPV devices. Currently only well-funded labs can perform mobil-
ity and life-time measurements as they require relatively expen-
sive lasers. This tool will allow more people to start extracting this
data.

In some ways it is remarkable that using a simple drift-
diffusion model and a machine learning algorithm we are able
to extract carrier recombination time and charge carrier mobil-
ity as a function of light intensity. One would have thought that
some type of transient measurement would be needed to ex-
tract this information. However, this preconception comes from
a human centric view of solar cell measurements, in that one

thinks measurements such as TPC and SCLC are needed to
measure charge carrier mobility because that is what has been
done in the past. However, we should approach the problem
from the perspective of Shannon entropy. Entropy in informa-
tion theory[36] is a measure of how much information is in a
signal. For example a photograph of a perfectly clear blue sky
contains low entropy (embodied information) as it simply tells
you it is a sunny day. However, a picture of a clouded sky has
higher entropy (embodied information), as it can tell you how
high the clouds are, what type of clouds there are, likelihood
of rain and likelihood of thunder. We should therefore think
of electrical/optical measurements in the same context and ask
how much embodied information does the measurement sig-
nal contain? In this case it is clear JV curves do encode infor-
mation about 𝜏 and μ that the Neural Network can find and de-
code.

Figure 6. a) JV-curves for selected intensities; b) Intensity dependent experimental IMVS; and c) IMPS data for the 45% DT-Y6 device.
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Figure 7. Top row) Open triangles represent charge carrier mobility as a function of light intensity measured at Jsc using IMPS for varying DT-Y6 content.
Middle row) Open triangles represent recombination time constants measured at Voc using IMVS plotted as a function of light intensity for varying DT-Y6
content. Bottom row) Open triangles represent calculated μ⋅𝜏 products from the above two rows. Closed markers represent predicted values extracted
from JV curves alone using machine learning. Closed squares relate to electrons, circles to holes and triangles to the (geometric) mean. Mean mobility
was calculated using Equation (1). A discussion on differentiating between electron and hole mobilities can be found in the Supporting Information.
Confusion matrices and R2 scores can be found in Figures S5 and S6 (Supporting Information).

Continuing this line of reasoning, there is no reason why we
should focus our efforts on decoding JV curves or other standard
measurements such as TPC alone. There may be another, as of
yet unknown, measurement that may be as easy to obtain as a JV
curve but contain more information that a machine learning al-
gorithm can extract. In other words, an experiment designed for
machine learning extraction rather than for human extraction.
Indeed, it may be that the machine has to design its own perfect
experiment to extract maximum possible information from a so-
lar cell.

Now we comment on accuracy, although we demonstrated
above that our method is accurate for the devices we chose. It
should also be noted that it does not need to be completely ac-
curate for all unusual classes of devices to be successful. Our
method just needs to be good enough to show trends between
devices and also flag up promising materials which are unusual.
This first sift can then be used to flag devices to be investigated
with more traditional experimental methods.

A general comment should be made about the measurement
of 𝜏 and μ. It should be noted that the fundamentally difficult
thing about measuring 𝜏 and μ in organic devices is that they
are both a very strong function of carrier density due to the large
number of trap states in the materials. Thus if applied voltage,
photon flux, or contact materials are changed 𝜏 and μ will change.
Therefore it is well known that different experiments that sub-
ject a device to different experimental conditions will produce
different values of mobility/lifetime. For example both Charge

Extraction by Lineally Increasing Voltage (CELIV) and TPC are
commonly used to measure charge carrier mobility. In CELIV
the device is held at under constant illumination and a negative
voltage ramp is applied to study charge carrier mobility while in
TPC the device is usually held at Jsc and the response of the de-
vice to a laser pulse is used to calculate mobility. Generally, such
measurements will produce values of mobility within an order
of magnitude to each other with trends that agree but will not
be identical. Thus it should be noted that when we compare our
simulated values to the experimental values we are not compar-
ing identical quantities (as it always is the case in organics). Our
simulated values of 𝜏 and μ are defined as:

𝜇eff = 1
d

d

∫
0

𝜇freenfree (x)

nfree (x) + ntrap (x)
dx (1)

where μfree is the charge carrier mobility of completely free carri-
ers, nfree is the density of completely free carriers and ntrap is the
density of trapped carriers. The effective mobility is calculated for
each charge carrier specimen separately and an average mobility
is calculated by taking the geometric mean:

𝜇 =
√
𝜇e ⋅ 𝜇h (2)
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Figure 8. Comparison of accuracy and time taken to train Neural Net-
works, k-nearest neighbour regression (KNN), random-forest regression,
extreme-boosted-gradient-descent regression (XG-Boost) and support-
vector regression (SVR) on the SN21 data set. It can be seen the Neural
Network performs best but is slowest to train.

The lifetime 𝜏 is calculated by:

𝜏 =
(
ntotal − n0

) (
ptotal − p0

)

R
(3)

with ntotal/ptotal being the total charge carrier density in the device,
n0/p0 the equilibrium free charge carrier density and R the total
recombination rate.

Thus some of the error in the graphs may be down to slightly
different definitions of mobility and time constant. Further it has
been shown that charge carrier mobility results for the same de-
vice vary up to one order of magnitude when using different mea-
surement techniques and up to a factor of three when different
scientists analyze an identical dataset.[37] Difference between the
ML predictions and experimental measurements is within the ex-
pected experimental error.

Finally, in the above examples we used Neural Networks for the
machine learning, this is because we found their performance to
be more accurate than other more traditional methods. Neural
Networks do however require a lot of data and are also relatively
slow to train. For comparison Figure 8 plots the machine learning
results from four other methods these include, k-nearest neigh-
bour regression (KNN),[38] random-forest regression,[39] extreme-
boosted-gradient-descent regression (XG-Boost)[40] and support-
vector regression (SVR).[41] The figure plots R2 score (accuracy)
v.s. time is taken to train for the data set generated for the

PM6:DT-Y6 device. The size of the bubble represents the size of
the training data set. Data sets of between 5000 and 100 000 de-
vices were used. It can be seen that the XG-Boost algorithm is
the fastest but also the worst, SVRs and KNNs have the same
level of performance while KNN is slower. The best performing
method is the Neural Network, closely followed by the random
forest. Each of these algorithms can be optimised, for example
the number and size of layers in the Neural Network can be tuned
to obtain best performance. However, these results represent our
best efforts.

4. Predicting on Databases

The real strength of the machine learning approach is revealed
when large sets of data have to be analysed, as it enables material
parameters to be extracted that have not directly been measured.
Indeed, the devices may have been made and discarded years ago.
As a demonstration of our method the ML algorithm was used to
predict mobility and trap state density from a set of over 10,000
historical JV curves held by Heliatek GmbH, the results can be
seen in Figure 9. The original database only contained JV-curves
at dark conditions and at 1 Suns light intensity. It can be seen that
the model identifies a clear correlation between Voc and charge
carrier mobility, as well as a clear correlation between PCE and
trap density.

This technique would allow one to data mine these historical
data sets and identify devices with optimal charge carrier trans-
port properties that were potentially overlooked in the past.

5. Conclusion

Above we demonstrated that one does not need complex time
domain/frequency domain measurement techniques to access
charge carrier mobilities and recombination time constants. This
information is encoded within the far more simple to obtain
current–voltage curves. One simply needs a relatively low-cost
computer to extract this information. Furthermore, once trained
the machine learning models take a fraction of a second to ap-
ply which means devices can be analyzed as they are produced.
This is important in the academic setting but more important in
an industrial setting where tens of devices are produced per day.
Furthermore, this approach will allow researchers to scour his-
torical materials for promising candidates that we have skipped
over as a community. Finally, we emphasise that experimental
data should be seen from an information theory point of view.
Maximising entropy by conducting the right combination of ex-
periments will be key to optimise the use of machine learning.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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