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1 Introduction

It is well documented that the perturbative expansion of QCD fails near the kinematic
threshold, as the phase space for real emission is restricted to contain only low-energy (soft)
radiation. Considering the Drell-Yan (DY) process A(pA) + B(pB) → γ∗(Q)[→ ℓℓ̄ ] + X,
with X being the unobserved QCD final state, the threshold regime of the partonic cross
section is characterised by the limit z ≡ Q2/ŝ → 1, where Q2 represents the invariant
mass of the final state lepton pair and ŝ the partonic centre-of-mass energy squared. In
this region, physical observables are expressed as a power expansion in (1 − z) → 0 and
feature large logarithmic corrections in this variable. Reliable results can only be obtained
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by resumming these logarithms to all orders in perturbation theory. This was first achieved
for the leading-power (LP) contribution more than thirty years ago using diagrammatic
techniques in [1, 2] and later using soft-collinear effective theory (SCET) methods in [3–5].

Nowadays the resummation of LP threshold logarithms is understood in DY up to next-
to-next-to-next-to-leading logarithmic (N3LL) accuracy [6–9]. However, comparatively less
is known about terms which are suppressed by a power of (1 − z), the so-called next-to-
leading power (NLP) logarithms, despite the fact that studies of amplitudes with next-to-
soft emissions have quite a long history [10–12]. Focusing on the diagonal (qq̄) channel of
the Drell-Yan process, calculations of partonic cross sections at NLP up to next-to-next-
to-leading order (NNLO) in the strong coupling expansion, and partly beyond, have been
carried out using the expansion-by-regions method [13, 14] and diagrammatic factorization
techniques [15–19]. Investigations of the NLP terms for the DY process within the effective
field theory (EFT) framework were initiated in [20] and [21]. In the former, the NLP
logarithms were resummed to leading logarithmic (LL) accuracy, and in the latter, the
complete subleading power factorization theorem was derived. In the present work, we
complete these investigations by deriving and validating up to NNLO the NLP factorization
theorem for the off-diagonal gq̄ (qg) channel of the DY production process at threshold,
which constitutes the last missing piece up to NLP accuracy.

The development of this framework is timely as plenty of attention has recently been
given to NLP studies of the analogous off-diagonal channels in deep-inelastic scattering
(DIS) at large Bjorken-x and “gluon thrust” in hadronic e+e− annihilation, their cor-
responding diagonal channels, and Higgs production in gluon fusion at threshold [19–32].
Progress beyond LP has also been achieved for variables such as N-jettiness [33–38] and the
qT of the lepton pair or the Higgs boson [39–41]. However, the extension of the standard LP
factorization theorems to NLP has not proved straightforward. The main stumbling block
being the ubiquitous appearance of endpoint divergences in the convolution integrals that
connect the hard, (anti-) collinear and soft functions in NLP factorization theorems [21].
This conceptual issue has been investigated in a number of contexts: for instance, conjec-
ture regarding the form of the leading double logarithms related to soft quark emission has
been presented in [26], and refactorization ideas were developed for DIS [29] and for Higgs
decay to two photons (and gluons) through bottom-quark loops [42–45]. Combination of
standard SCET factorization and endpoint factorization was put forward in [32] to arrive
at a factorization formula for the “gluon thrust” valid in d = 4, such that standard system-
atically improvable Renormalization Group (RG) methods can be applied to perform the
resummation of large logarithms. Endpoint divergences have also recently been explored
in QED [46] and B physics [47–49].

Concerning the study of the all-order resummation for the gq̄ channel of DY, results
at LL accuracy have recently been obtained using diagrammatic techniques in [31] and
d-dimensional consistency relations in [50]. In general, the development of a resummation
framework at higher orders will require a genuine prescription for the treatment of the
endpoint convolution divergences in the presence of hadronic initial states. In this respect,
it is crucial to derive a consistent factorization theorem valid in d = 4. As a first step
toward this goal, however, one needs to develop a consistent factorization theorem at the
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level of the bare cross section, and calculate all of the contributing functions to the relevant
perturbative order in dimensional regularization. While this task has been completed for
the DY qq̄ channel in [21, 51], the gq̄ channel of DY has not been systematically address yet.
The purpose of this paper is to fill this gap: in particular, starting from time-ordered power
suppressed operators in SCET, we derive the factorization of the partonic cross section
in terms of short-distance coefficients times the convolution of collinear and soft matrix
elements, valid at any subleading power. We then focus on the NLP contribution, and
evaluate the collinear and soft functions appearing in the factorization theorem respectively
at O(αs) and O(α2

s), which is the required accuracy to reproduce the known inclusive DY
cross section result at NNLO. This provides a strong sanity check of our framework and
allows us to reach the same accuracy as for the diagonal qq̄ channel in [21, 51].

The collinear function has a purely virtual origin and we evaluate it at one-loop order.
Its appearance is the consequence of the insertion of the power suppressed interaction
which couples a soft quark with collinear gluons and a collinear quark. This function is
practically equivalent (with just some minor differences in its definition) to the radiative
collinear function computed to O(α2

s) in [52]. The calculation of the collinear function
which appears in the factorization formula for the gq̄ channel turns out to be much simpler
in comparison to the evaluation of the collinear functions which appear in [21] since the
derivative terms acting on the momentum conserving delta function are not present in this
case. The soft function depends on the total energy of the soft emissions as well as two
additional convolution variables. We evaluate the soft contributions at NNLO accuracy
in exact d-dimensions by employing the reduction to master integrals and the differential
equations methods that were also employed in [51]. Other soft functions which appear in
the h→ γγ decay NLP factorization formula were computed in [53, 54] at O(αs).

Working with d-dimensional expressions allows us to carry out the convolution in-
tegrals at fixed-order accuracy. This is the first step needed for the application of the
refactorization ideas developed in [32, 44]. We also study asymptotic limits of the obtained
functions which is useful for any such program. However, additional insights concerning
the operatorial structure of the incoming hadronic states are required to carry out this
program, which we leave to a future investigation.

The paper is organised as follows: in section 2 we derive the general subleading power
factorization formula for the partonic off-diagonal channels of the DY process and we
specialize it to NLP. Then, in sections 3 and 4 we calculate the required NLP collinear and
generalized soft functions up to O(αs) and O(α2

s), respectively. As a last step in section 4,
we consider asymptotic limits of the soft function. The obtained accuracy of the soft and
collinear functions enables the validation of the factorization formula derived in section 2
to NNLO, which is carried out in section 5. We summarize and discuss possible future
developments in section 6.
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2 Factorization near threshold

We consider the Drell-Yan invariant mass distribution
dσDY
dQ2 = 4πα2

em
3NcQ4

∑
a,b

∫ 1

τ
dz

∫
dxadxb δ

(
z− τ

xaxb

)
fa/A(xa)fb/B(xb) σ̂ab(z)+O

(Λ
Q

)
, (2.1)

where fa/A(xa) and fb/B(xb) are the usual parton distribution functions (PDFs) of partons
a, b, with momentum fractions xa, xb; σ̂ab(z) represents the partonic cross section for
the process a(pa)b(pb) → γ∗(q)[→ ℓℓ̄ ] + X; τ = Q2/s and z = Q2/ŝ are respectively the
hadronic and partonic threshold variables, with s = (pA +pB)2 and ŝ = (pa +pb)2 = xaxb s

the hadronic and partonic centre of mass energy; Q2 ≡ q2 is the invariant mass of the final
state photon; last, Λ is the confinement scale of QCD. In the present analysis, we do not
consider power corrections in Λ/Q.

Near threshold the partonic cross section has the following power expansion

σ̂ab(z) = σ̂ LP
ab (z) + σ̂NLP

ab (z) +O(λ2), (2.2)

where the power-counting parameter is defined as λ =
√
1− z ≪ 1; the leading power

term in the equation above is O(λ−2) and the next-to-leading power term is O(λ0). Only
the diagonal production channel ab = qq̄ contributes at LP. At NLP more channels open
up: in addition to the NLP correction to the qq̄ channel, which has been studied at length
in [21, 51], there are also contributions from the gluon-antiquark gq̄ and the quark-gluon
qg channels, which are the topic of the present work. In this section we derive their
factorization structure near threshold, valid at general subleading powers. Given that the
two channels gq̄ and qg give identical contributions, in what follows we focus for simplicity
on the gluon-antiquark gq̄ channel.

We derive the factorization theorem for the bare cross section in d = 4−2ϵ dimensions:
in this case, dimensional regularization regulates the endpoint divergences arising in con-
volution integrals, hence calculations at fixed orders are well defined. In order to facilitate
comparison with literature, we will consider an equivalent form of eq. (2.1), given by

dσDY
dQ2 = σ0

∑
a,b

∫ 1

τ

dz

z
Lab

(
τ

z

)
∆ab(z) +O

(Λ
Q

)
, σ0 = 4πα2

em
3NcQ2s

, (2.3)

where the parton luminosity function Lab(y) is defined as

Lab(y) =
∫ 1

y

dx

x
fa/A(x) fb/B

(
y

x

)
, (2.4)

and ∆ab(z) is related to the partonic cross section σ̂ab(z) in eq. (2.1) by

∆ab(z) =
1

(1− ϵ)
σ̂ab(z)
z

. (2.5)

In order to obtain the factorization theorem for ∆gq̄(z) let us start from the standard
expression for the hadronic d-dimensional differential cross section. After integration over
the phase-space for the final state leptons one has

dσ = 4πα2
em

3s q2
ddq

(2π)d

(
− gµρWµρ

)
, (2.6)
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where Wµρ is the hadronic tensor

gµρWµρ =
∫
ddx e−iq·x ⟨A(pA)B(pB)|J† ρ(x)Jρ(0)|A(pA)B(pB)⟩

=
∑
X

(2π)dδ(d)
(
pA + pB − q − pXs − pXPDF

c
− pXPDF

c̄

)
×⟨A(pA)B(pB)|J†

ρ(0)|X⟩⟨X|Jρ(0)|A(pA)B(pB)⟩ , (2.7)

and in turn Jρ =
∑

q eqψ̄qγ
ρψq represents the electromagnetic quark current. In eq. (2.7),

pXs + pXPDF
c

+ pXPDF
c̄

= pX is the total momentum of the final state radiation X. In order
to not obscure the derivation of the factorization theorem, in what follows we work with a
single quark flavour and set the electromagnetic charge eq = 1.

The partonic kinematic threshold corresponds to the case where almost all of the energy
in the interaction between the two incoming partons is carried away by the intermediate off-
shell boson, γ∗. The relevant modes consist thus of PDF-collinear and PDF-anticollinear
modes, threshold-collinear and threshold-anticollinear modes, and soft modes. Momenta
are decomposed along two light-like directions nµ

±, defined by nµ
− = 2pµ

A/
√
s, nµ

+ = 2pµ
B/

√
s,

such that a generic momentum lµ has decomposition lµ = n+l n
µ
−/2 + n−l n

µ
+/2 + lµ⊥.

The scaling of a given momentum lµ is thus indicated by the scaling of the compo-
nents (n+l, l⊥, n−l). The PDF-collinear and anticollinear modes scale respectively as
pµ

XPDF
c

∼ (Q,Λ,Λ2/Q) and pµ

XPDF
c̄

∼ (Λ2/Q,Λ, Q), where Λ ≪ Qλ = Q(1 − z)1/2 rep-
resents the confinement scale of QCD, while threshold collinear, anticollinear, and soft
modes scales respectively as pc ∼ Q(1, λ, λ2), pc̄ ∼ Q(λ2, λ, 1) and ps ∼ Q(λ2, λ2, λ2).
We work in position-space SCET [55, 56] and describe each mode by its own set of fields.
We have therefore PDF- and threshold-collinear quarks and gluons, and soft quarks and
gluons. These fields are expressed in terms of gauge-invariant building blocks, after the soft-
collinear decoupling transformation has been applied. For instance, we express collinear
fields modes in terms of the gauge-invariant building blocks

χ(0)
c (z) = Y †

+(z−)χc(z), A(0)µ
c (z) = Y †

+(z−)Aµ
c (z)Y+(z−), (2.8)

where χc = W †
c ξc and Aµ

c = W †
c [iDµ

c Wc] represent the original non-decoupled collinear
fields. In turn, the covariant derivative is defined as iDµ

c = i∂µ + gsA
µ
c . In what follows we

will always work with decoupled fields, and drop the index (0). In eq. (2.8) the soft Wilson
lines are defined as

Y± (x) = P exp
[
igs

∫ 0

−∞
ds n∓As (x+ sn∓)

]
, (2.9)

while the collinear Wilson lines reads

Wc (x) = P exp
[
igs

∫ 0

−∞
ds n+Ac (x+ sn+)

]
. (2.10)

In both of the above equations P is the path ordering operator. Notice also that in eq. (2.8)
the soft Wilson lines are evaluated at zµ

− ≡ (n+z)nµ
−/2, in accordance with the fact that
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γ∗

γ∗

A0 A0

1 1

c c

c̄c̄

Figure 1. Schematic representation of the lowest-power contribution to the gluon-antiquark chan-
nel in Drell-Yan. It involves the conversion of a (PDF) collinear gluon into a (threshold) collinear
quark by emission of a soft anti-quark. The emission proceeds first at NLP by means of a time-
ordered product, involving the leading power SCET current JA0 times the insertions of the power
suppressed Lagrangian L(1)

ξq , indicated by the index “1” in the picture. The matching of threshold
modes onto PDF modes is trivial for the anti-collinear sector, as there is no power suppression on
this leg [21].

soft fields are multipole expanded when multiplying collinear fields [56]. Concerning soft
fields, we write them in terms of the gauge invariant building blocks

q± = Y †
± qs . Bµ

± = Y †
± [iDµ

s Y±] , (2.11)

where the soft covariant derivative is iDµ
s = i∂µ+gsA

µ
s . The power-suppressed soft-collinear

Lagrangian L(i) = L(i)
ξ + L(i)

ξq + L(i)
YM is then expressed in terms of these fields, as listed in

appendix A of [21]. We refer to [55, 56] for a thorough derivation of the SCET Lagrangian
and SCET fields definition.

Given that the final state is forced to only contain soft radiation, the hard matching to
SCET fields can be performed at amplitude level, since there are no contributions to the
hadronic tensor where the currents at positions 0 and x are connected by hard partons. For
the process gq̄ → γ∗+X to take place in the z → 1 limit, the incoming c-PDF gluon must
be converted to a threshold collinear quark through the emission of a soft antiquark. The
threshold-collinear quark retains almost all of the momentum of the incoming c-PDF gluon.
The soft-quark interaction with collinear fields is inherently a subleading power effect. This
can be deduced from the fact that soft quarks at leading power only appear in the soft term,
q̄si /Dsqs, in the SCET Lagrangian; the soft quarks first appear in soft-collinear interaction
terms at O(λ) in L(1)

ξq ,

L(1)
ξq = q̄+A/c⊥χc + h.c.. (2.12)

Therefore, unlike in the case of the qq̄-channel discussed in [21], the contribution to the
Drell-Yan cross-section from the gq̄-channel begins at NLP (i.e., at O(λ2)), through a
time-ordered product insertion of L(1)

ξq into the amplitude and its complex conjugate, as
represented in figure 1.
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2.1 Factorization at general subleading powers

The formal factorization formula for the gq̄-channel at general subleading can be obtained
following closely the derivation for the qq̄-channel given in [21], therefore we provide here
a rather concise discussion and draw attention to the differences between the two cases.
Our discussion below follows the derivation given in [57]. In general, one needs to take
into account the contribution of time-ordered products involving the (multiple) insertions
of L(i) = L(i)

ξ + L(i)
ξq + L(i)

YM Lagrangian terms and operators arising from the expansion
of the Drell-Yan current, with the constraint that the time-ordered products must involve
a collinear gluon and at least one soft quark emission. Omitting the index structure for
clarity, the general, all power, hard matching of the vector current is given by

ψ̄γρψ(0) =
∑

m1,m2

∫
{dtk} {dt̄k̄} C̃

m1,m2
(
{tk}, {t̄k̄}

)
Js(0) J m1,m2

ρ

(
{tk}, {t̄k̄}

)
, (2.13)

where the symbols {dtk}, {tk} (and the barred ones for the anticollinear direction) indicate
sets of convolution variables associated to the number of fields in each collinear direction.
The indices m1 and m2 label the basis of SCET operators (and their corresponding short-
distance matching coefficients C̃m1m2), following the formalism and notation developed
in [58–60].1 The function Js involves only soft fields and starts at O(λ3) [58]. Given that
the DY process involves a collinear and an anticollinear direction, the currents J m1,m2

ρ

explicitly read

J m1,m2
ρ

(
{tk}, {t̄k̄}

)
= J m1

c̄

(
{t̄k̄}

)
Γm1,m2

ρ J m2
c ({tk}) , (2.14)

where for instance the terms J m2
c ( {tk}) are constructed using collinear-gauge-invariant

collinear building blocks given in eq. (2.8). In this general construction, the indices m1,
m2 consist of letters A, B, C etc., labelling the number of fields in a particular collinear
direction, and numbers 0, 1, 2 etc., denoting the overall power of λ of the current with
respect to the LP, which is labelled 0. The function Γm1,m2

ρ in eq. (2.14) gives the appro-
priate spinor and Lorentz structure of the operator. For instance, the structure of the LP
operator reads ΓA0,A0

ρ = γ⊥ρ ; at O(λ) one has ΓA0,A1
ρ = n+ρ, etc.

Hard modes are integrated out in the matching between QCD and SCET, and ap-
pear as short-distance coefficients C̃m1,m2 in eq. (2.13). In the next step, one integrates
out threshold-collinear and anticollinear modes. As discussed in [20, 21], this gives rise
to a matching equation, which involves on the left-hand-side the SCET Lagrangian with
threshold-collinear and soft fields, and on the right-hand side PDF-collinear and soft fields,
times a short-distance coefficient, defined as “collinear function”, which arises as a conse-
quence of integrating out threshold-collinear modes. The collinear function is the analogue
of the “radiative jet” discussed in [12, 18, 19], and we refer to section 2 of [21] for a detailed
discussion. The specific form of the matching equation is dictated by gauge invariance,
momentum and Fermion number conservation. For the gq̄ channel, the general collinear

1See e.g. [61–64] for the construction of power suppressed operator bases in the label formulation of
SCET.
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matching equation reads

im
∫
{ddzj}T

[
{ψc(tkn+)} ×

{
L(l)(zj)

}]
= 2π

∑
i

∫
du

∫
{dzj−} G̃i ({tk}, u; {zj−})

1
gs
APDF

c (un+) si({zj−}) , (2.15)

where {ddzj} =
∏m

j=0 d
dzj and {dzj−} =

∏m
j=0

dn+zj

2 . {zj−} denotes the set of m positions
at which the soft building block insertions are located, and T represents the time-ordering
operator. On the left-hand side,

{
L(l)(zj)

}
is a set of m O(λl)-suppressed Lagrangian

insertions and {ψc(tkn+)} denotes a set of n collinear fields, ψc = χc or Aµ
c⊥, each dependent

on one variable from the n-sized set {tk}, originating from the collinear part of the Drell-Yan
current operators. On the right-hand side, the function G̃i represents the NLP collinear
function resulting from the matching of threshold collinear fields onto the initial state
PDF-collinear gluon APDF

c and is analogous to the NLP collinear function J̃i in [20, 21],
representing the matching onto an initial state PDF-collinear quark, which appears in
the factorization of the qq̄ channel. Last, as in case of the qq̄ channel, the soft operator
si({zj−}) represents a series of soft structures, containing the soft fields originating from
the power-suppressed soft-collinear interaction. In case of the gq̄ channel si({zj−}) must
contain at least one soft quark, i.e.

si({zj−}) ∈
{

gs

in−∂z
q+(z−), . . .

}
, (2.16)

where the index i labels the soft structures, and the ellipsis refers to additional structures
appearing beyond NLP. Note that, for consistency with the qq̄ channel, we normalise the
collinear function such that at tree level it contributes to O(g0

s), and we absorb a factor
of gs into the soft structures, as can be seen explicitly in eq. (2.16). Notice also that the
collinear gauge invariant building block itself contains a factor of gs, which is compensated
by the explicit factor of g−1

s in eq. (2.15). The matching for the anticollinear leg, with an
incoming antiquark, is analogous to eq. (2.15), and involves the anticollinear function ¯̃J ī,
as for the qq̄ case, and the soft structures given in eq. (3.45) of [21]. After the second
matching onto collinear and anticollinear PDF modes has been performed, the derivation
of the factorization theorem follows very closely that of the qq̄ channel. Taking into account
the factorization of the state |X⟩ = |Xc⟩ ⊗ |Xc̄⟩ ⊗ |Xs⟩, the gq̄ matrix element reads

⟨X|ψ̄γρψ(0)|A(pA)B(pB)⟩ =
∑

m1,m2

∑
i,̄i

∫
{dtk} {dt̄k̄} C̃

m1,m2
(
{tk}, {t̄k̄}

)
× 2π

∫
dū

∫
{dz̄ j̄+}

¯̃J m1
ī

(
{t̄k̄}, ū; {z̄ j̄+}

)
⟨XPDF

c̄ |χ̄PDF
c̄ (ūn−)|B(pB)⟩

× 2π
∫
du

∫
{dzj−} G̃m2

i ( {tk}, u; {zj−}) ⟨XPDF
c | 1

gs
APDF

c⊥ (un+)|A(pA)⟩

×Γm1,m2
ρ ⟨Xs|T

(
s̄ ī ( {z̄ j̄+})

[
Y †
− Js Y+

]
(0) si ({zj−})

)
|0⟩ , (2.17)

where explicit Dirac, Lorentz, and color indices are suppressed. The index k (k̄) counts
the number of collinear (anticollinear) building block fields in a given current, and we sum
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over all of the possible currents. The index j ( j̄ ) counts the number of insertions of the
subleading power Lagrangians into each collinear (anticollinear) sector, and again we sum
over all of the occurrences.

In order to take the square of the matrix element in eq. (2.17) it proves useful to
write it in terms of the momentum-space representation of the various functions, which are
obtained by means of Fourier transformation. For the short-distance coefficients C̃m1, m2

one has

C̃
(
{tk}, {t̄k̄}

)
=
∫ {

dn+pk

2π

}{
dn−p̄ k̄

2π

}
ei (n+pk) tkei (n−p̄ k̄) t̄k̄ C({n+pk}, {n−p̄ k̄}), (2.18)

then we need to introduce the momentum-space representation of the PDF-collinear and
anticollinear fields. For instance, for the c-PDF gluon field we use

APDF
c⊥ (un+) =

∫
dn+pa

2π e−i(n+pa)uÂPDF
c⊥ (n+pa), (2.19)

with analogous definition for the c̄-PDF antiquark field. Furthermore, the Fourier transform
of the collinear function is given as2

∫
{dtk}

∫
du G̃m2

i ( {tk}, u; { zj−} ) ei(n+pk) tke−i(n+pa) u

=
∫ {

dωj

2π

}
e−iωjzj− Gm2

i ( {n+pk}, n+pa; {ωj}) , (2.20)

with an analogous definition for the anticollinear function. Here the set {ωj} denotes the
variables with a soft scaling that are conjugate to { zj−} and in the exponents Einstein’s
summation convention is used. Also,

{
dωj

2π

}
= dω1

2π × . . .× dωm
2π .

Making use of these definitions, eq. (2.17) becomes

⟨X|ψ̄γρψ(0)|A(pA)B(pB)⟩ =
∑

m1,m2

∑
i,̄i

∫ {
dn+pk

2π

} {
dn−p̄ k̄

2π

}

×
∫
d(n+pa) d(n−pb)Cm1,m2({n+pk}, {n−p̄k̄})

×
∫ {dω̄ j̄

2π

}
J̄ m1

ī

(
{n−p̄k̄},−n−pb; {ω̄ j̄}

)
⟨XPDF

c̄ | ˆ̄χPDF
c̄ (n−pb)|B(pB)⟩

×
∫ {

dωj

2π

}
Gm2

i ( {n+pk}, n+pa; {ωj}) ⟨XPDF
c | 1

gs
ÂPDF

c⊥ (n+pa)|A(pA)⟩

×Γm1,m2
ρ

∫
{dz̄ j̄+ }

∫
{dzj−} e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×⟨Xs|T
(
s̄ ī ({z̄ j̄+})

[
Y †
− Js Y+

]
(0) si({zj−})

)
|0⟩ . (2.21)

2Let us notice here that, in order to keep equations compact, we use the same symbol to indicate
zµ
− ≡ n+z

n
µ
−
2 ≡ z− nµ

− and z− ≡ n+z

2 . Therefore, when z− appears as argument of functions, as in
G̃m2

i ( {tk}, u; { zj−} ), or in scalar products z− · k, we refer to the vector zµ
−, while when z− appears in

exponents or integration measures, such as in e−iωj zj− or dzj−, we refer to the scalar zj− = n+zj

2 or
dzj− = d(n+zj )

2 , respectively.
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The matrix element can be written in a more compact form by introducing the following
amplitude level coefficient functions

Dm1,m2ρ
īi

(n+pa,−n−pb; {ωj}, {ω̄j̄}) = (2π)2
∫ {

dn+pk

2π

}{
d(n−p̄k̄)

2π

}
×Cm1,m2({n+pk}, {n−p̄k̄})× J̄m1

ī

(
{n−p̄k̄},−n−pb; {ω̄j̄}

)
×Γm1,m2ρGm2

i ({n+pk}, n+pa; {ωj}) , (2.22)

such that the matrix element reads

⟨X|ψ̄γρψ(0)|A(pA)B(pB)⟩ = 1
(2π)2

∑
m1,m2

∑
i,̄i

∫
d(n+pa) d(n−pb)

∫ {dω̄j̄

2π

}∫ {
dωj

2π

}

×
∫
dg dḡ ei(n+pa)ge−i(n−pb)ḡ Dm1,m2 ρ

i ī
(n+pa,−n−pb; {ωj}, {ω̄j̄})

× ⟨XPDF
c̄ |χ̄PDF

c̄ (ḡ n−)|B(pB)⟩ ⟨XPDF
c | 1

gs
APDF

c⊥ (g n+)|A(pA)⟩

×
∫
{dz̄j̄+ }

∫
{dzj− } e−iω̄ j̄ z̄ j̄+ e−iωj zj−

× ⟨Xs|T
(
s̄ ī( {z̄j̄+})

[
Y †
− Js Y+

]
(0) si( {zj−})

)
|0⟩ . (2.23)

We can now insert this expression into the definition of the hadronic tensor Wρµ in
eq. (2.7), with an equivalent expression for the complex conjugate matrix element, and
obtain the factorized expression at general subleading powers for the cross section given in
eq. (2.6). To this end one still needs to identify the PDF-collinear and anticollinear matrix
elements respectively with the gluon and anti-quark parton distribution functions. For the
former we use the following relation from appendix A of [65]3

⟨A(pA)|
1
g2

s

AA′, PDF
c⊥η′ (x+ g′n+)AA, PDF

c⊥η (gn+)|A(pA)⟩

= −g⊥ηη′

(d− 2)
δAA′

(N2
c − 1) ×

∫ 1

0

dxa

xa
fg/A(xa)eixa(x+g′n+−gn+)·pA , (2.24)

while for the anticollinear matrix element we use

⟨B(pB)|χ̄PDF
c̄,αa (ḡn−)χPDF

c̄,δj (x+ ḡ′n−)|B(pB)⟩

= −δja

Nc

(
/n+
4

)
δα

(n−pB)
∫ 1

0
dxb e

−i(ḡn−−ḡ′n−−x)·pBxbfb/B(xb). (2.25)

Let us remark that, although we do not make indices explicit in this general derivation, it is
understood that the indices appearing in eq. (2.24) are absorbed by the collinear functions.
Integrating over the auxiliary variables g, ḡ, g′, ḡ′ and the momenta n+pa, n+pb, n+p

′
a,

3Note the different normalization of the gauge-invariant gluon field building block used in this work,
compared to [65]: here Aµ

c = W †
c [iDµ

c Wc], while in eq. (2.26) of [65] one defines Aµ
c = g−1

s W †
c [iDµ

c Wc].
This difference is at the origin of the factor g−2

s in eq. (2.24).
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n+p
′
b, after some elaboration we obtain the gq̄-channel Drell-Yan cross-section as defined

in eq. (2.5):

∆gq̄(z) =
∑

m′
1,m′

2,
m1,m2

∑
i′ ,̄i′

i,̄i

∫ { dω̄′
j̄′

2π

}{
dω′

j′

2π

} {
dω̄j̄

2π

}{
dωj

2π

}

× 1
2z(1− ϵ)2

[
Dm1,m2 ρ

i ī
(xan+pA, xbn−pB; {ωj}, {ω̄j̄})

(
/n+
4

)

×D∗m′
1,m′

2
i′ ī′ ρ

(xan+pA, xbn−pB; {ω′
j′}, {ω̄′

j̄′})
]

×
∫

dd−1q⃗

(2π)3 2
√
Q2 + q⃗ 2

Q

2π

∫
ddx ei(pAxa+pBxb−q)·x

×S̃gq̄; i ī i′ ī′(x; {ωj}; {ω̄j̄}; {ω′
j′}; {ω̄′

j̄′}). (2.26)

This is the result for the general form of the power-suppressed gq̄-induced partonic cross-
section in the z → 1 limit. The notation with bars (̄ ) and tildes (˜) is used here in
the same way as in the derivation of the qq̄-induced partonic cross-section of [21]. They
refer to the anticollinear direction and objects with dependence on the coordinate variables
respectively. Also, the contributions from the complex conjugate amplitude are denoted
with a prime ( ′ ) symbol.

In the last line of equation (2.26) we have introduced the generalised multi-local soft
function for the gq̄-channel. It is given by

S̃gq̄; i ī i′ ī′(x; {ωj}; {ω̄j̄}; {ω′
j′}; {ω̄′

j̄′}) =
∫
{dz̄′j̄′+}

∫
{dz′j′−}

∫
{dz̄j̄+ }

∫
{dzj− }

× e
+i

(
ω̄′

j̄′ z̄
′
j̄′+

)
e

+i

(
ω′

j′z
′
j′−

)
e−i(ω̄ j̄ z̄ j̄+) e−i(ωjzj−)

× 1
N2

c − 1⟨0|T̄
(
s̄′i′( {x+ z′j′−})

[
Y †

+(x)J†
sY−(x)

]
s′ ī′( {x+ z̄′j̄′+})

)
×T

(
s̄ ī( {z̄j̄+})

[
Y †
−(0)JsY+(0)

]
si( {zj−})

)
|0⟩ . (2.27)

Let us also recall that, in the same fashion as the qq̄-channel factorization theorem in [21],
the result in eq. (2.26) is formally valid in d-dimensions.

2.2 Factorization at next-to-leading power

Let us now specialise the factorization theorem in eq. (2.26) to next-to-leading power. As
discussed above, near threshold the production of an off-shell photon from an initial gq̄ state
involves at least the emission of a soft quark into the final state. Soft quarks can arise from
the factor Js(0) in the expansion of the vector current, but this term is at least of O(λ3),
therefore any such contribution is beyond NLP. Hence, the only remaining possibility to
achieve a power suppression is provided by time-ordered products with insertions of the
Lagrangian terms L(i)

ξq . Up to NLP only the two terms with i = 1, 2 can appear. The
L(2)

ξq Lagrangian insertion, however, can also be dropped, as the corresponding amplitude
would have to be interfered with a leading power amplitude in order to yield an O(λ2)
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power suppressed cross-section, and such contribution vanishes. This leaves solely the
contribution due to L(1)

ξq multiplied with the leading power JA0 current. Therefore, using
the Fourier transforms in eqs. (2.20) and (2.19), at NLP the collinear matching in eq. (2.15)
reduces to

i

∫
ddz T

[
χc,γf (tn+) L(1)

ξq (z)
]
= 2π

∫
dω

2π

∫
dn+p

2π e−i(n+p)t
∫
dn+pa

2π

×Gη,A
ξq;γα,fa (n+p, n+pa;ω)

1
gs
ÂPDF A

c⊥η (n+pa)
∫
dz− e

−iω z− sξq;α,a(z−), (2.28)

where we have written indices explicitly: α and γ are Dirac indices, η is a Lorentz index,
a, f and A are a fundamental and adjoint color indices respectively. This is the analogue of
eq. (3.23) in [21] for the qq̄-channel at NLP. Here we do not sum over the soft structures,
as at NLP there is only one, originating from L(1)

ξq , given by the term written in eq. (2.16).
With explicit indices it reads

sξq;α,a(z−) =
gs

in−∂z
q+

α,a(z−) . (2.29)

In order to simplify the next-to-leading power factorization formula as much as possible,
we make use of generic properties of the collinear function Gη,A

ξq;γα,fa (n+p, n+pa;ω) in the
matching equation (2.28). Firstly, as in case of the qq̄ channel, the collinear function
must be proportional to the delta function in the collinear momenta, δ (n+p− n+pa), since
the kinematic set-up does not allow for threshold collinear radiation into the final state.
Therefore the incoming c-PDF momentum is the same as the outgoing threshold collinear
momentum. Further simplification arises from the fact that L(1)(z) does not contain ex-
plicit factors of the position, such as for instance n−z, thus there are no momentum-space
derivatives acting on the collinear momentum delta function, as it happens for the collinear
function J1 in case of the qq̄ channel, cf. eq. (3.40) in [21]. Concerning the color structure,
we note that Gη,A

ξq;γα,fa (n+p, n+pa;ω) carries one adjoint color index A and two fundamen-
tal color indices fa, therefore we can extract a TA

fa color generator and transfer it into the
definition of the soft function. The collinear function also carries a single Lorentz index η

and two Dirac indices γ, α. From the matching equation in (2.28) we see that the Lorentz
index is contracted with a ⊥ structure. Therefore, in the collinear function a γη

⊥ must
appear, as the only other possible single Lorentz index carrying structures are nη

±, which
would vanish upon contraction with ÂPDF A

c⊥η . Based on these considerations, we expect the
collinear function Gη,A

ξq,γα,fa to have the following structure at all orders:

Gη,A
ξq,γα,fa(n+p, n+pa;ω) = Gξq(n+p;ω) δ

(
n+p− n+pa

)
TA

fa

[
/n−γ

η
⊥

]
γα

, (2.30)

where we introduced the scalar collinear function Gξq. At tree level the factor /n− arises
due to the collinear quark propagator from the point tn+ to z. At higher orders the
function Gη,A

ξq,γα,fa(n+p, n+pa;ω) is given in terms of loops corrections to the collinear quark
propagator, therefore it is constrained by gauge- and reparametrization invariance to have
the form on the right-hand side of eq. (2.30). This can be seen explicitly by noticing
that additional factors of γ⊥ cannot appear, because they would be contracted with the
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G∗
G

A A

B B

γ∗ γ∗A0 A0∗

ω ω′

Figure 2. Graphical representation of the factorization theorem in eq. (2.34), valid for the gq̄

channel in Drell-Yan near threshold at NLP. In this picture red lines represents soft fields, blue
lines represents collinear fiends, and green lines are anti-collinear fields. The purple circles denoted
by “A0” and “A0∗” represent the leading power short-distance coefficient CA0(Q2) and its com-
plex conjugate, respectively. The blue ovals denoted by G, G∗ represents the (momentum-space
representation of the) collinear functions, introduced in the matching equation eq. (2.15). The red
double lines represent the soft Wilson lines and the red filled circles are insertions of the soft quark
building blocks. Last, ω and ω′ are the convolution variables between the collinear functions and
the soft function.

collinear momentum, and thus would be power suppressed. The only possible remaining
structures are given by factors of /n+ and /n−. Given an odd number of these factors, one
has /n−/n+/n− = 4/n−, /n+/n+/n− = 0, and /n−/n−/n− = 0. Since at least one factor of /n−
always appears due to the tree level quark propagator, the rules above can be used to
systematically reduce any loop correction to the form in eq. (2.30). We will show this
explicitly at one loop in section 3, and this structure was verified at two loops in [52].

In order to simplify further eq. (2.26), we note now that the time-ordered product
at NLP, both in the amplitude and the complex conjugate amplitude involves the leading
power current JA0, therefore the structure Γm1,m2 ρ in eq. (2.22) (and the corresponding
Γ̄m′

1,m′
2

ρ in the complex conjugate matrix element) reduce respectively to γρ
⊥ and γ⊥ρ. Using

this information, and the structure of the collinear function in eq. (2.30), we find that the
spin structure implicit in the factor D ρ

(
/n+
4

)
D∗

ρ in eq. (2.26) takes the form

[
γ⊥η/n−

]
σβ

(γ⊥ρ)βδ

(
/n+
4

)
δλ

(
γρ
⊥
)

λγ

[
/n−γ

η
⊥

]
γα

= 4
/n−σα

4 (d− 2)2 . (2.31)

In the following we will absorb the factor of /n−σα/4 into the definition of the soft function,
which we give below.
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The last simplification which can be applied when considering eq. (2.26) up to NLP
concerns the phase space integration. As discussed for the qq̄ channel in [21], also the
kinematic factors in eq. (2.26) need to be expanded consistently to NLP: this implies
that the matrix element squared expanded to NLP needs to be integrated against the
LP expansion of the phase space, while the LP matrix element needs to be multiplied by
the phase space expanded up to NLP. These two contributions are identified respectively
as “dynamical” and “kinematic” terms: ∆NLP(z) = ∆dyn

NLP(z) + ∆kin
NLP(z). In case of the

gq̄ channel the matrix element squared starts at NLP, therefore there is no kinematic
contribution:

∆gq̄(z)|NLP = ∆dyn
gq̄ (z)|NLP . (2.32)

Taking the LP approximation of the phase space implies the following replacement in
eq. (2.26):

1
2z(1− ϵ)2

∫
dd−1q⃗

(2π)3 2
√
Q2 + q⃗ 2

Q

2π

∫
ddx ei(pAxa+pBxb−q)·x → 1

8π(1− ϵ)2

∫
dx0 ei Ω

2 x0
,

(2.33)
where Ω = Q(1 − z). As a consequence of this approximation, we can set x⃗ = 0 in
the argument of the position space soft function. Last, we observe that we can carry
out a further simplification by setting the anticollinear function to its LP expression,
J̄ī (n−p̄, xbn−pB; ω̄) = δ(n−p̄ − xbn−pB), given that the suppression to NLP is already
provided by the two insertions of L(1)

ξq .
Applying all these simplifications to eq. (2.26) we finally get

∆gq̄|NLP(z) = 8H(Q2)
∫
dω dω′G∗

ξq(xan+pA;ω′)Gξq(xan+pA;ω)S(Ω, ω, ω′) , (2.34)

where the hard function is also given by the LP approximation of the LP short-distance
coefficient squared: H(ŝ) = |CA0,A0(xan+pA, xbn−pB)|2 = H(Q2) + O(λ2), and the soft
function S(Ω, ω, ω′) is given by

Sgq̄(Ω, ω, ω′) =
∫
dx0

4π

∫
dz−
2π

∫
dz′−
2π e−iωz−e+iω′z′−e+i Ω x0/2

× 1
N2

c − 1⟨0|T̄
(

gs

in−∂z′
q̄+(x0 + z′−)TA {Y †

+(x0)Y−(x0)
})

×
/n−
4 T

({
Y †
−(0)Y+(0)

}
TA gs

in−∂z
q+(z−)

)
|0⟩ . (2.35)

The L(1)
ξq insertion in the amplitude is at position z−, whereas in the conjugate amplitude we

place the same insertion at position z′−. The conjugate variables to these coordinate-space
variables are ω and ω′ respectively. A graphical representation of the factorization theorem
in eq. (2.34) is given in figure 2. We note that the factorization formula in eq. (2.34),
in the same way as the results for the qq̄-channel Drell-Yan cross-section, is formally
valid in d-dimension. The objects appearing in the factorization formula, Gξq(xan+pA;ω),
G∗

ξq(xan+pA;ω′), and Sgq̄(Ω, ω, ω′), should not be treated as renormalized objects, because
the convolution linking the collinear and soft functions must be performed in d-dimensions.
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We stress that the factorization formula in eq. (2.34) is valid at the level of the partonic
cross section. In particular, in the context of SCET, it was argued in [7] that Glauber
modes give scaleless contributions at partonic level and therefore Glauber fields are not
included in the construction of the effective theory. In the next two sections we compute
the collinear and soft functions, respectively to O(αs) and O(α2

s), which is necessary to
achieve NNLO accuracy for the invariant mass distribution.

3 Collinear functions

We now proceed to calculate the collinear function Gξq(xan+pA;ω) up to one loop, by
means of the matching equation (2.28). Before continuing, let us notice that an equivalent
collinear function has been defined in the context of H → gg in [52], which has been
calculated up to two loops. We provide here an independent calculation and check that
our result for the one-loop collinear function defined in eq. (2.28) is indeed equivalent to
the one considered in [52]. In order to set-up the calculation it proves useful to introduce
the short-hand notation

T̃γf (t) ≡ i

∫
d4z T

[
χc,γf (tn+)L(1)

ξq (z)
]
, (3.1)

for the left-hand side of (2.28). We then consider its Fourier transform

Tγf (n+q) =
∫
dt ei(n+q) t T̃γf (t) , (3.2)

and rewrite the matching equation (2.28) in momentum space as follows

Tγf (n+q) = 2π
∫
dn+pa

2π

∫
du ei (n+pa) u

∫
dω

2π

×G η,A
ξq;γα,fa (n+q, n+pa;ω)

1
gs
APDF A

c⊥η (un+)
∫
dz− e

−iω z− sξq;α,a(z−) .
(3.3)

Starting from this definition, we extract the perturbative collinear functions by considering
suitable partonic matrix elements of the operator matching equation. In this case, the
relevant matrix element involves an incoming c-PDF gluon and an outgoing soft quark
⟨q+(k)| . . . |g(p)⟩. We compute both sides of the matching equation with the leading power
decoupled Lagrangian, considering the soft fields as external. Hence, we only need the
soft matrix element ⟨q+(k)|sξq;α,a(z−)|0⟩ at tree level. Similarly, for the c-PDF matrix
element ⟨0|APDF A

c⊥η (un+)|g(p)⟩ the loop corrections are scaleless and ⟨0|APDF A
c⊥η (un+)|g(p)⟩

contributes only at tree level. The calculation of the left-hand side of eq. (3.3) is done
using the momentum-space Feynman rules given in appendix A of [59]. Before moving
to the description of the actual calculation, we point out that this calculation is far more
straightforward compared to the case of the corresponding collinear functions in the qq̄

channel, see [21]. This is because, as discussed above, we need to consider the single soft
structure given in eq. (2.29); furthermore, the Lagrangian insertion L(1)

ξq which induces the
power suppression does not contain any explicit position variables, which means that, in
momentum space, no derivatives on the momentum conserving delta functions appear at
subleading power soft-collinear interaction vertices. This reduces drastically the number of
terms which appear in each diagram and the number of integrals involved in the calculation.
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1

p s
k

Figure 3. Tree-level EFT diagram in the gq̄-channel.

3.1 Tree-level collinear function

We first consider the right-hand side of (3.3) and evaluate the tree-level matrix element

⟨q+
b (k)|Tγf (n+q)|gB(p)⟩ = 2π

∫
dn+pa

2π

∫
du ei (n+pa) u

∫
dω

2π

∫
dz− e

−iω z−

×G η,A
ξq;γα,fa (n+q, n+pa;ω) ⟨0|

1
gs
APDF A

c⊥η (un+)|gB(p)⟩ ⟨q+
b (k)|sξq;α,a(z−)|0⟩ , (3.4)

where B is the adjoint color index and b is the fundamental color index of the external
final state. The c-PDF matrix element in (3.4) evaluates to the following

⟨0| 1
gs
APDF A

c⊥η (un+)|gB(p)⟩ = δAB
√
Zg,PDF ϵ⊥η(p) e−i(n+p)u. (3.5)

The factor
√
Zg,PDF is the on-shell renormalization factor of the c-PDF gluon field. The

soft matrix element on the right-hand side of (3.4) becomes

⟨q+
b (k)|sξq;α,a(z−)|0⟩ = ⟨q+

b (k)| gs

in−∂z
q+

α,a(z−)|0⟩ = −δba
gs

n−k
vα(k) eiz−·k . (3.6)

In the second step we have used the form of the soft structure as given in eq. (2.29). As
originally discussed below eq. (4.3) of [21] for the case of collinear functions involving
PDF and threshold quarks, the matrix elements in eqs. (3.5) and (3.6) do not have loop
corrections. This is true in eq. (3.5) because the loop corrections are scaleless, and it also
holds for eq. (3.6) because here the soft field is treated as external. Next, we substitute
the matrix elements evaluated in eqs. (3.5) and (3.6) into (3.4) and find

⟨q+
b (k)|Tγf (n+q)|gB(p)⟩ = −(2π) gs

n−k
G η,B

ξq;γα,fb (n+q, n+p;n−k)

× vα(k)
√
Zg,PDF ϵ⊥η(p) . (3.7)

This result constitutes the final expression for the matrix element with the chosen partonic
external states of the right-hand side of the matching equation in (3.3). Since the matrix
elements in eqs. (3.5) and (3.6) have no loop corrections, the expression in eq. (3.7) is valid
to all orders in αs.

Having obtained an expression for the right-hand side of the matching equation (3.4),
we now compute the left-hand side, which corresponds to the diagram in figure 3. The
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Lagrangian insertion in eq. (3.1) can be computed by means of the Feynman rule given in
eq. (A.36) of [59] and we obtain

⟨q+
b (k)|Tγf (n+q)|gB(p)⟩ = (2π)δ(n+q − n+p)

1
n−k

gsTB
fb

×
(
/n−
2 γ⊥η

)
γα

vα(k)
√
Zg,c|treeϵ

η
⊥(p) +O(αs). (3.8)

The tree-level value of the on-shell wave function renormalization factor of the gluon field
is
√
Zg,c|tree = 1 in the EFT.
Since at next-to-leading power in the gq̄-channel only a single soft structure is rel-

evant, no additional manipulations relating to the use of equation-of-motion identity, or
on-shell and transversality conditions are necessary here, in contrast to the calculation of
the collinear functions for the qq̄-channel, see section 4.1 of [21]. At this point, we simply
compare the result for the left-hand side of the matching equation given in eq. (3.8) to the
right-hand side in eq. (3.7) and read off the tree-level result for the collinear function

G η,B
ξq;γα,fb (n+q, n+p;ω) = − δ(n+q − n+p)TB

fb

(
/n−
2 γ⊥η

)
γα

+O(αs) . (3.9)

Using the decomposition introduced in eq. (2.30) we can extract the scalar collinear function
Gξq(n+p;ω) which appears in the factorization formula in (2.34). Namely, we find

G
(0)
ξq (n+p;ω) = −1

2 , (3.10)

where the superscript (0) denotes the tree-level result.

3.2 One-loop collinear function

We are now ready to consider the O(αs) correction. For the right-hand side of the matching
we use eq. (3.7). Here the on-shell wave function renormalization factor is unity to all
orders in perturbation theory:

√
Zg,PDF = 1. This holds in dimensional regularization,

which we use to treat infrared and ultraviolet divergences, since the loop corrections are
scaleless. The situation is the same for the

√
Zg,c factor on the left-hand side of the

matching equation, see eq. (3.8). Given that the calculation is relatively straightforward,
we skip the details of the computation and present the results for the one-loop matrix
element ⟨q+

b (k)|Tγf (n+q)|gB(p)⟩ on the left-hand side of the matching equation (3.3), which
is given by the sum over the one loop diagrams represented in figure 4 (a)–(i). Let us only
notice that diagram (e), (g) and (i) are zero, the latter because the collinear loop does not
have a scale. Furthermore, diagrams (a) and (b) contribute with a color factor CF , (c) and
(d) with a color factor (−CA/2), (h) and (f) are proportional to (CF − CA/2). We obtain

⟨q+
b (k)|Tγf (n+q)|gB(p)⟩(1) = (2π)δ(n+q − n+p)

αs

4π gs TB
fb

(
CF − CA

)(n+p n−k

µ2

)−ϵ

× eϵγEΓ[1 + ϵ]Γ[1− ϵ]2

Γ[2− 2ϵ]
2− 4ϵ− ϵ2

ϵ2
1
n−k

(
/n−
2 γ⊥η

)
γα

vα(k) ϵη⊥(p) , (3.11)
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1

s

(a)

1

s

(b)

1

s

(c)

1

s

(d)

1

s

(e)

1

s

(f)

1

s

(g)

1

s

(h)

1

s

(i)

Figure 4. One-loop diagrams contributing to the collinear function.

where the superscript (1) on the left-hand side indicates that the matrix element is con-
sidered at order αs. We match this result to the right-hand side of eq. (3.7), from which
we extract the perturbative matching coefficient, the collinear function, at one-loop order

G
η,B (1)
ξq;γα,fb (n+q, n+p;ω) = − αs

4π TB
fb

(
CF − CA

) (n+pω

µ2

)−ϵ 2− 4ϵ− ϵ2

ϵ2

×e
ϵγEΓ[1 + ϵ]Γ[1− ϵ]2

Γ[2− 2ϵ]

(
/n−
2 γη

⊥

)
γα

δ(n+q − n+p) . (3.12)

Using the decomposition introduced in eq. (2.30), the scalar collinear function Gξq(n+p;ω)
at one loop reads

G
(1)
ξq (n+p;ω) = − αs

4π
(
CF − CA

) (n+pω

µ2

)−ϵ 2− 4ϵ− ϵ2

2ϵ2
eϵγEΓ[1 + ϵ]Γ[1− ϵ]2

Γ[2− 2ϵ] . (3.13)

This is the O(αs) correction to the tree-level collinear function presented in eq. (3.10), valid
to all orders in ϵ. As anticipated it agrees with the result given in [52], see in particular
eqs. (1.4), (2.1) and (2.3) there, apart from an overall normalization factor ∝ 1/ω, that
by definition we shuffle into the soft function such as to define a dimensionless collinear
function. Expanding eq. (3.13) in ϵ = (4− d)/2 we arrive at

G
(1)
ξq (n+p;ω)=−αs

4π
(
CF −CA

)[ 1
ϵ2
− 1
ϵ
ln
(
n+pω

µ2

)
− 1
2−

π2

12+
1
2 ln2

(
n+pω

µ2

)
+O(ϵ)

]
. (3.14)
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n−

n+

n−

n+

z− z′−

Figure 5. Diagram contributing to the soft function at first order (NLO in αs).

It is interesting to compare the above result for the collinear function appearing in the
gq̄-channel to the collinear functions in the qq̄-channel, which have been given in their
expanded form in equations (4.31) and (4.34) of [21]. We note that here, in contrast
to J

(1)
1 and J

(1)
6 , the collinear function G

(1)
ξq exhibits 1/ϵ2 poles, and finite logarithms ∝

ln2(n+pω/µ
2). At cross-section level, as we will show in section 5 below, these correspond

to leading logarithmic contributions appearing in the collinear sector. This fact complicates
the adaptation of the resummation treatment developed for the qq̄-channel [20] to the off-
diagonal gq̄-channel. We provide additional details in section 5. It is noteworthy that the
leading pole structure in the above equation is proportional to CF − CA. As discussed
in several instances in literature, cf. [26, 29, 32, 66–68], this structure characterizes the
conversion of a collinear gluon into a collinear quark by means of an emission of a soft-
quark; its factorization into soft and collinear parts typically involves divergent convolution
integrals.

4 Soft functions

The last ingredient needed to reproduce the partonic cross section up to NNLO in pertur-
bation theory are the one and two-loop soft function defined in eq. (2.35), that we calculate
in this section. To this end it is useful to insert a complete set of states between the T̄ and
T products, and use the momentum operator to translate the fields in the anti-time-ordered
part. Performing the integration over x0 in eq. (2.35) gives rise to an energy conserving
delta function. Writing spinor and color indices explicitly one has

Sgq̄(Ω, ω, ω′) =
∑
Xs

∫
dz−
2π

∫
dz′−
2π e−iz−ωe+iz′−ω′

δ(Ω− 2EXs)

× 1
N2

c − 1⟨0|T̄
( gs

in−∂z′
q̄+

σk(z
′
−)(TD)kl

{
Y †

+(0)Y−(0)
}

la

)
|Xs⟩

×
/n−σβ

4 ⟨Xs|T
({
Y †
−(0)Y+(0)

}
af
(TD)fj

gs

in−∂z
q+

βj(z−)
)
|0⟩. (4.1)

In what follows we evaluate the soft function at first and second order in αs, which is
indicated below by a superscript (1) and (2), respectively.

– 19 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
8

4.1 First order

At one loop the final state contains a single soft quark and the matrix element reads

⟨qs,e(k)|T
({
Y †
−(0)Y+(0)

}
af
(TD)fj

gs

in−∂z
q+

βj(z−)
)
|0⟩ = gs(TD)ae

−n−k
vs,β(k) eiz−·k +O(g3

s),

(4.2)
The complex-conjugate matrix element can be derived accordingly. Inserting these into
eq. (4.1) and introducing the notation∫

[dk] ≡
(
µ2eγE

4π

)ϵ ∫
ddk

(2π)d
, (4.3)

we easily get

S
(1)
gq̄ (Ω, ω, ω′) = 2π g2

s TF

∫
[dk] δ

+(k2)
n−k

δ(ω − n−k)δ(ω′ − n−k)δ(Ω− n+k − n−k)

= αs TF

4π
eϵγE

Γ[1− ϵ]
1
ω

(
µ2

ω (Ω− ω)

)ϵ

δ(ω − ω′) θ(Ω− ω)θ(ω), (4.4)

which we express in terms of the color factor Tr[TATB] = TF δ
AB = δAB/2, characteristic

of the quark-gluon channel.

4.2 Second order: virtual-real contribution

At second order in αs we need to take into account two different types of corrections:
the virtual-real contribution, involving a soft gluon loop in the matrix element (or in the
complex conjugate one) and the real-real contribution, involving the emission of a soft gluon
in addition to the soft anti-quark. We start by considering the virtual-real contribution.
The one-loop matrix element is given by

⟨qs,e(k1)|T
({
Y †
−(0)Y+(0)

}
af
(TD)fj

gs

in−∂z
q+

βj(z−)
)
|0⟩

= ig3
s(TD)ae

∫
[dk]

{
CF

2
k2(n+k)(−n−k)(−n−k1)

eiz−·k1

−
(
CF − CA

2

) 2
k2(n+k)(−n−k)(−n−k − n−k1)

eiz−·k1

−
(
CF − CA

2

) (/k + /k1)/n+
k2(k + k1)2(n−k)(−n−k − n−k1)

eiz−·(k1+k)

+
(
CF − CA

2

) (/k + /k1)/n−
k2(k + k1)2(n−k)(−n−k − n−k1)

eiz−·(k1+k)

− CF

(/k + /k1)/n−
k2(k + k1)2(n−k)(−n−k1)

eiz−·k1

}
vs,β(k1) +O(g5

s), (4.5)

where linear propagators are written such that they carry a small positive imaginary factor
+i0+, and the terms on the right-hand side represent respectively figure 6 (f), (c), (a),
(b), (d), while (e) is immediately zero. Among these, it turns out that only diagram (c)
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n−

n+

n−

n+

z− z′−

(a)

n−

n+

n−

n+

z− z′−

(b)

n−

n+

n−

n+

z− z′−

(c)

n−

n+

n−

n+

z− z′−

(d)

n−

n+

n−

n+

z− z′−

(e)

n−

n+

n−

n+

z− z′−

(f)

Figure 6. Diagrams contributing to the virtual-real part of the soft function at second order in
αs. The part to the left (right) of the cut corresponds to the time-ordered (anti-time-ordered) part
of the diagram, and lines labeled by n± with in (out)-going arrow correspond to soft Wilson lines
Y∓(Y †

∓). The filled square in this figure stands for the soft quarks and the Wilson lines contained
in q+ = Y †

+qs.

contributes. We focus on this term and insert the matrix element in eq. (4.1) with the
complex conjugate matrix element taken at lowest order; furthermore, we recall that we
need to take into account also the complex conjugate one-loop matrix element times the
tree level matrix element, such that the full contribution to the virtual-real part of the soft
function reads

S
(2)1r1v
gq̄ (Ω, ω, ω′) = Re

{
ig4

sTF (2CF − CA)
∫
[dk1]

∫
[dk]

× (2π)δ(k2
1)θ(k0

1)δ(Ω− 2k0
1)δ(ω′ − n−k1)δ(ω − n−k − n−k1)

× (k + k1)2 − k2 + n−k1(n+k + n+k1) + n+k1(n−k + n−k1)
k2(k + k1)2(n+k)(−n−k − n−k1)(−n−k1)

}
.

(4.6)

We evaluate the integrations over k and k1 following two independent approaches: within
the first, we integrate directly the terms appearing in eq. (4.6); within the second we first
reduce such terms to a basis of master integrals, in which case eq. (4.6) reads

S
(2)1r1v
gq̄ (Ω, ω, ω′) = Re

{
− i

α2
s TF

(4π)2 (2CF − CA)
[ 1
ωω′ Ĵ1 +

(ω + ω′)(Ω− ω′)
ωω′ Ĵ2

]}
, (4.7)
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n+
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n+

z− z′−

(b)

n−

n+

n−

n+

z− z′−

(c)

n−

n+

n−

n+

z− z′−

(d)

n−

n+

n−

n+

z− z′−

(e)

n−

n+

n−

n+

z− z′−

(f)

n−

n+

n−

n+

z− z′−

(g)

n−

n+

n−

n+

z− z′−

(h)

n−

n+

n−

n+

z− z′−

(i)

Figure 7. Diagrams contributing to the real-real part of the soft function. The part to the left
(right) of the cut corresponds to the time-ordered (anti-time-ordered) part of the diagram, and lines
labeled by n± with in (out)-going arrow correspond to soft Wilson lines Y∓(Y †

∓). The filled square
in this figure stands for the soft quarks and the Wilson lines contained in q+ = Y †

+qs.

where the master integrals Ĵi are defined in eq. (A.3) and calculated in eqs. (A.4) and (A.5)
of appendix A.1. Using the results given there we get

S
(2)1r1v
gq̄ (Ω, ω, ω′) = α2

s TF

(4π)2 (2CF − CA)
e2ϵγE Γ[1 + ϵ]
ϵΓ[1− ϵ]

×Re
{ 1
(−ω)ω′

[
ω + ω′

ω′ 2F1

(
1, 1 + ϵ, 1− ϵ,

ω

ω′

)
− 1

](
µ4

(−ω)ω′(Ω− ω′)2

)ϵ

θ(−ω)

+ 2(ω + ω′)
ωω′(ω′ − ω)

(
µ4

(ω′ − ω)2(Ω− ω′)2

)ϵ Γ[1− ϵ]2

Γ[1− 2ϵ]θ(ω
′ − ω)

}
θ(ω′)θ(Ω− ω′). (4.8)
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4.3 Second order: real-real contribution

We consider now the final state emission of a soft gluon in addition to the soft-antiquark.
The matrix element reads

⟨qs,e(k1)gH
s (k2)|T

({
Y †
−(0)Y+(0)

}
af
(TD)fj

gs

in−∂z
q+

βj(z−)
)
|0⟩

= g2
s

[
(THTD)ae

1
n−k1

(
n+ε(k2)
n+k2

− n−ε(k2)
n−k2

)
ei z−·k1 (4.9)

+ (TDTH)ae
1

n−(k1 + k2)

(
n+ε(k2)
n−k2

− ( /k1 + /k2)/ε(k2)
(k1 + k2)2

)
ei z−·(k1+k2)

]
vs,β(k1) +O(g4

s).

In practice we have four contributions: three diagrams where the gluon is taken from one of
the three Wilson lines in eq. (4.9), counting also the Wilson line implicit in q+ = Y †

+qs, and
the fourth where the gluon is taken from the insertion of the (leading power) soft Lagrangian
L(0)

s (y) = q̄s(y)gs /As(y)qs(y). The soft function is obtained according to eq. (4.1) where the
complex conjugate matrix element can be derived from eq. (4.9). In figure 7 we list the
diagrams which give a non-zero contribution. We obtain

S
(2)2r0v
gq̄ (Ω, ω, ω′) = (2π)2g4

sTF

∫
[dk1]

∫
[dk2]δ(Ω− 2k0

1 − 2k0
2)

× δ(k2
1)θ(k0

1)δ(k2
2)θ(k0

2)
{
CF

[
− 4
n−k1n−k2n+k2

δ(ω − n−k1)δ(ω′ − n−k1)

− 1
(k1 + k2)2

( 4n−k1
n−k2n−(k1 + k2)

+ 2(1− ϵ)n−k2
[n−(k1 + k2)]2

)
× δ(ω − n−k1 − n−k2)δ(ω′ − n−k1 − n−k2)

]
+
(
CF − CA

2

)[ 2
n−(k1 + k2)n−k2n+k2

+ 1
n−k1n−(k1 + k2)n+k2

− n+k1
n−k1n+k2(k1 + k2)2 − n+(k1 + k2)

n−(k1 + k2)n+k2(k1 + k2)2

+ 2
(k1 + k2)2n−k2

][
δ(ω − n−k1)δ(ω′ − n−k1 − n−k2)

+ δ(ω′ − n−k1)δ(ω − n−k1 − n−k2)
]}
. (4.10)

As for the virtual-real contribution, we evaluate the integrals over k1 and k2 both by
directly integrating the expression in eq. (4.10), and by reducing such expression to a basis
of master integrals, in which case eq. (4.10) becomes

S
(2)2r0v
gq̄ (Ω,ω,ω′) = α2

s

(4π)2TF

[
CF

((4−ϵ)(1−ϵ)(1−2ϵ)
ϵ2ω2(Ω−ω) Î6+

4(2−3ϵ)(1−3ϵ)
ϵ2ω(Ω−ω)2 Î5

)
δ(ω−ω′)

+(CA−2CF )
( (1−2ϵ)(ω+ω′)
ϵωω′(Ω−ω)(ω−ω′) Î3−

(1−2ϵ)(ω+ω′)
ϵωω′(Ω−ω′)(ω−ω′) Î1

+(Ω−ω)(ω+ω′)
2ωω′ Î4+

(Ω−ω′)(ω+ω′)
2ωω′ Î2

)]
. (4.11)
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The master integrals Îi are defined and evaluated in appendix A.2. After substituting the
expressions for the master integrals in eqs. (A.14)–(A.17) we finally obtain

S
(2)2r0v
gq̄ (Ω,ω,ω′)= α2

sTF

(4π)2

{
CF

e2ϵγEΓ[1−ϵ]
ϵ2

1
ω

[ 4
Γ[1−3ϵ]

(
µ4

ω(Ω−ω)3

)ϵ

+ (4−ϵ)Γ[2−ϵ]
(1−2ϵ)Γ[1−2ϵ]2

(
µ4

ω2(Ω−ω)2

)ϵ]
δ(ω−ω′)θ(Ω−ω)θ(ω)

+(CA−2CF )
2e2ϵγE

ϵΓ[1−2ϵ]
ω+ω′

ωω′(ω′−ω)

(
µ4

ω(ω′−ω)(Ω−ω′)2

)ϵ

(4.12)

×
[

2F1
(
1,−ϵ,1−ϵ, ω

ω−ω′

)
−1
]
θ(ω)θ(ω′)θ(ω′−ω)θ(Ω−ω′)

}
.

Eqs. (4.8) end (4.12) provide the complete result for the two-loop soft function.

4.4 Asymptotic limits

With the results of the NNLO soft function calculation at hand, we now have the op-
portunity to study the asymptotic limits of this object. This is useful, because endpoint
divergences arise exactly in these limits, thus understanding the emergent asymptotic struc-
ture of the soft function is useful for any future study of endpoint refactorization. Indeed,
as shown for instance for the off-diagonal “gluon” thrust in [32], the asymptotic limits of
the soft (and collinear) functions are the objects one needs to subtract from the full func-
tions, in order to define matrix elements free of endpoint divergences. After this procedure
has been completed, it is then possible to implement the standard resummation procedure,
based on the renormalization-group evolution of the subtracted functions.

At NLO the soft function is relatively simple, and inspecting eq. (4.4) we see that an
endpoint divergence arises for ω, ω′ → 0:

S(Ω, ω, ω′, µ)|ω,ω′→0 = αs TF

4π
eϵγE

Γ[1− ϵ]
1
ω

(
µ2

ωΩ

)ϵ

δ(ω − ω′) θ(Ω)θ(ω). (4.13)

In particular, notice that, because of the factor δ(ω−ω′), one has effectively a dependence on
a single variable ω. This is analogous to the situation in [32] where the relevant asymptotic
limit is ω, ω′ → ∞, however identical simplification occurs, namely, the presence of a Dirac
Delta function reduces the functional dependence of the soft function to a single ω variable
(see e.g. eq. (27) in [32]).

The calculation of the soft function at two loops in sections 4.2, 4.3 gives us the
opportunity to explore its asymptotic limits for the first time beyond NLO. Indeed, we
find a more involved structure of endpoint singularities, which arise for ω → 0, ω′ → 0
separately, as well as for ω′ − ω → 0. To be more specific, let us write the soft function as
follows:

S(2)(ω, ω′) = Ŝ(2)(ω) δ(ω − ω′) θ(Ω− ω)θ(ω)
+S(2A)(ω, ω′) θ(−ω)θ(ω′)θ(Ω− ω′)
+S(2B)(ω, ω′) θ(ω′ − ω)θ(ω′)θ(Ω− ω′)
+S(2C)(ω, ω′) θ(ω)θ(ω′)θ(ω′ − ω)θ(Ω− ω′), (4.14)
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Figure 8. Integration domain for the three terms of the two-loop soft functions, defined (from left
to right) respectively as S(2A)(ω, ω′), S(2B)(ω, ω′) and S(2C)(ω, ω′) in eq. (4.14). The shaded blue
areas represent endpoint regions where the integral of the soft function is divergent.

where for simplicity we have dropped the dependence on Ω and the scale µ. In eq. (4.14)
we classify the various contributions in terms of their domain of integration. The term
Ŝ(2)(ω) corresponds to the first contribution of the double-real correction in eq. (4.12):

Ŝ(2)(ω) = α2
sTF

(4π)2 CF
e2ϵγEΓ[1− ϵ]

ϵ2
1
ω

[ 4
Γ[1− 3ϵ]

(
µ4

ω(Ω− ω)3

)ϵ

+ (4− ϵ)Γ[2− ϵ]
(1− 2ϵ)Γ[1− 2ϵ]2

(
µ4

ω2(Ω− ω)2

)ϵ]
, (4.15)

and the domain of integration for this term is the same as the one of the NLO soft function.
We then have S(2A)(ω, ω′) and S(2B)(ω, ω′), which correspond respectively to the first and
second term of the virtual-real contribution in eq. (4.8):

S(2A)(ω, ω′) = α2
sTF

(4π)2 (2CF − CA)
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

×Re
{ 1
(−ω)ω′

[
ω + ω′

ω′ 2F1

(
1, 1 + ϵ, 1− ϵ,

ω

ω′

)
− 1

](
µ4

(−ω)ω′(Ω− ω′)2

)ϵ}
,

S(2B)(ω, ω′) = α2
sTF

(4π)2 (2CF − CA)
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

×Re
{ 2(ω + ω′)
ωω′(ω′ − ω)

(
µ4

(ω′ − ω)2(Ω− ω′)2

)ϵ Γ[1− ϵ]2

Γ[1− 2ϵ]

}
. (4.16)

– 25 –



J
H
E
P
1
2
(
2
0
2
3
)
0
2
8

Last, we have the double real contribution of eq. (4.12) not proportional to δ(ω − ω′):

S(2C)(ω, ω′) = α2
s TF

(4π)2 (2CF − CA)
2e2ϵγE

ϵΓ[1− 2ϵ]
ω + ω′

ωω′(ω′ − ω)

×
(

µ4

ω(ω′ − ω)(Ω− ω′)2

)ϵ[
1− 2F1

(
1,−ϵ, 1− ϵ,

ω

ω − ω′

)]
. (4.17)

The integration domains of the three functions are represented in figure 8, with the blue
shaded areas representing the endpoint regions where singularities occur. In this regard, let
us notice that a further divergence for ω → ∞ would be present for the factors S(2A)(ω, ω′)
and S(2B)(ω, ω′) taken separately, but it cancels in their sum. In the boundary regions of
figure 8, taking the limit ω, ω′ → 0 with ω ∼ ω′ we have

Ŝ(2)(ω)|ω,ω′→0 = α2
sTF

(4π)2CF
e2ϵγEΓ[1− ϵ]

ϵ2
1
ω

[ 4
Γ[1− 3ϵ]

(
µ4

ωΩ3

)ϵ

+ (4− ϵ)Γ[2− ϵ]
(1− 2ϵ)Γ[1− 2ϵ]2

(
µ4

ω2Ω2

)ϵ]
, (4.18)

S(2A)(ω, ω′)|ω,ω′→0 = α2
sTF

(4π)2 (2CF − CA)
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

× Re
{ 1
(−ω)ω′

[
ω + ω′

ω′ 2F1

(
1, 1 + ϵ, 1− ϵ,

ω

ω′

)
− 1

](
µ4

(−ω)ω′Ω2

)ϵ}
,

(4.19)

S(2B)(ω, ω′)|ω,ω′→0 = α2
sTF

(4π)2 (2CF − CA)
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

× Re
{ 2(ω + ω′)
ωω′(ω′ − ω)

(
µ4

(ω′ − ω)2Ω2

)ϵ Γ[1− ϵ]2

Γ[1− 2ϵ]

}
, (4.20)

S(2C)(ω, ω′)|ω,ω′→0 = α2
sTF

(4π)2 (2CF − CA)
2e2ϵγE

ϵΓ[1− 2ϵ]
ω + ω′

ωω′(ω′ − ω)

×
(

µ4

ω(ω′ − ω)Ω2

)ϵ[
1− 2F1

(
1,−ϵ, 1− ϵ,

ω

ω − ω′

)]
. (4.21)

These limits provide valuable information that will be useful to set up a refactorization
procedure such as the one devised in [32]. This analysis goes beyond the scope of this
paper, and we leave it for future work.

5 Comparison to fixed order results

We can now use the one loop collinear and the two loop soft functions, which appear in the
factorization theorem eq. (2.34), to evaluate the partonic cross section up to the second
order in perturbation theory. We check the result by comparing the bare cross section
with an in-house calculation of the NLP NNLO partonic cross section obtained with the
method of regions [69]. Next we remove the initial-state collinear singularities via PDF
renormalization and compare with the finite cross section available in the literature [70].
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5.1 First order

The partonic cross section in the gq̄ channel starts at first order in perturbation theory. At
this order, taking into account eq. (3.10), and the fact that H(Q2) = 1 +O(αs), we have

∆(1)
gq̄ (z)|NLP = 2

∫
dω dω′ S(1)(Ω, ω, ω′) . (5.1)

We replace the soft function in eq. (4.4) and integrate over ω, ω′. The exact result reads

∆(1)
gq̄ (z)|NLP = −αsTF

4π

(
µ2

Ω2

)ϵ 2eϵγEΓ[1− ϵ]
ϵΓ[1− 2ϵ] . (5.2)

Expanding in ϵ, identifying Ω = Q(1− z) and setting for simplicity µ = Q we get

∆(1)
gq̄ (z)|NLP = αsTF

4π

[
− 2
ϵ
+ 4L1(z) + ϵ

(
3ζ2 − 4L2(z)

)
+O(ϵ2)

]
, (5.3)

where, in order to keep equations compact, we introduced the notation

Ln(z) ≡ lnn(1− z). (5.4)

Let us notice here that the one loop soft function in eq. (4.4) is finite for ω ̸= 0, therefore
the single pole in eq. (5.3) arises from the integration over ω, for ω → 0: we see explicitly
that the expansion in powers of ϵ and renormalization before taking the convolution in ω,
ω′ would result in an endpoint divergence.

5.2 Second order

At second order we need to take into account three contributions. The first involves the
hard function at one loop:

∆(2)
gq̄ (z)|NLP,h = 2H(1)(Q2)

∫
dω dω′ S(1)(Ω, ω, ω′) . (5.5)

The integration over the soft function is the same as the one occurring at NLO, and the
one loop hard function H(1)(Q2), where superscript (1) indicates order αs result, can be
found in eq. (5.6) of [21].4 Integrating over ω, ω′, the result with exact scale dependence
can be expressed as:

∆(2)
gq̄ (z)|NLP,h =

(
αs

4π

)2
TF CF

(
µ2

Ω2

)ϵ( µ2

Q2

)ϵ 2eϵγEΓ[1− ϵ]
ϵΓ[1− 2ϵ]

[ 4
ϵ2

+ 6
ϵ
+ 16 + 14ζ2

+ ϵ

(
32− 21ζ2 −

28ζ3
3

)
+ ϵ2

(
64− 56ζ2 − 14ζ3 +

73ζ4
4

)
+O(ϵ2)

]
. (5.6)

4At higher orders the hard function can be obtained from the standard definition H(Q2) = |CA0(Q2)|2

as given above eq. (2.35), where the two-loop Wilson coefficient can be found e.g. in [7], and the three loop
coefficient has been given in [71].
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Expanding in powers of ϵ, identifying Ω = Q(1− z) and setting µ = Q we get

∆(2)
gq̄ (z)|NLP,h =

(
αs

4π

)2
TF CF

{ 8
ϵ3

+ 12− 16L1(z)
ϵ2

+ 32− 24L1(z) + 16L2(z)− 40ζ2
ϵ

+ 64− 112ζ3
3 + L1(z)(80ζ2 − 64) + 24L2(z)−

32
3 L3(z)− 60ζ2 +O(ϵ)

}
.

(5.7)

This result is in agreement with the in-house method of regions calculation where the
virtual gluon is hard and the emitted quark is soft.

The second contribution involves the collinear function at one loop:

∆(2)
gq̄ (z)|NLP,c = 8H(0)(Q2)

∫
dω dω′[G(0)∗

ξq (xan+pA;ω′)G(1)
ξq (xan+pA;ω)

+G
(1)∗
ξq (xan+pA;ω′)G(0)

ξq (xan+pA;ω)
]
S(1)(Ω, ω, ω′) ,(5.8)

which, taking into account the result for the tree level jet function, simplifies to

∆(2)
gq̄ (z)|NLP,c = −4

∫
dω dω′

(
G

(1)
ξq (xan+pA;ω) +G

(1)∗
ξq (xan+pA;ω′)

)
S(1)(Ω, ω, ω′) . (5.9)

Inserting the one loop jet function from eq. (3.13), the one loop soft function eq. (4.4) and
integrating we get

∆(2)
gq̄ (z)|NLP,c = −

(
αs

4π

)2
TF (CF − CA)

(
µ2

Ω2

)ϵ( µ2

QΩ

)ϵ

× 2(2− ϵ(4 + ϵ))
ϵ3(1− 2ϵ)

e2ϵγEΓ2[1− ϵ]Γ[1 + ϵ]
Γ[1− 3ϵ] . (5.10)

Expanding in powers of ϵ, identifying Ω = Q(1− z) and setting µ = Q we get

∆(2)
gq̄ (z)|NLP,c =

(
αs

4π

)2
TF (CF − CA)

{
− 4
ϵ3

+ 12L1(z)
ϵ2

+ 2− 18L2(z) + 12ζ2
ϵ

+4 + 18L3(z)− L1(z)(6 + 36ζ2) +
104ζ3
3 +O(ϵ)

}
. (5.11)

This result also agrees with the in-house method of regions calculation, where the virtual
gluon is collinear and the emitted quark is soft. As discussed after eq. (3.14), let us high-
light that, in contrast to the qq̄ channel, where the collinear function starts contributing
only at NLL accuracy, in this case it contributes already at LL level. Comparing eqs. (3.14)
and (5.11) we see more in detail how this happens. Focusing on the highest pole contri-
bution, which is in direct correspondence with the LL, we see that the collinear function
itself contains a 1/ϵ2 pole, which becomes a 1/ϵ3 leading pole by means of the convolution
with the one loop soft function. In this respect, the collinear contribution in the qq̄ channel
contains a 1/ϵ pole (see eqs. (4.30)–(4.34) in [21]), which is then raised to a 1/ϵ2 sublead-
ing pole by the convolution integration. A physical interpretation of this phenomenon has
been put forward in [26, 29]. In general, the idea is that in a splitting 1 → 2 + 3 with
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soft 3, the leading pole is related to the difference of the Casimir charge of the energetic
particles 1 and 2. In the diagonal qq̄ channel the collinear quark 1 emits a soft gluon 3,
continuing as the collinear quark 2, thus there is no change of the Casimir charge along the
collinear direction. In the gq̄ channel, a collinear gluon 1 emits a soft quark 3, continuing
as a collinear quark, which has a different Casimir charge. Indeed, the collinear function
in eq. (3.14) is proportional to the difference of the Casimir charges CF − CA.

Last, the third contribution involves the soft function at two loops:

∆(2)
gq̄ (z)|NLP,s = 2

∫
dω dω′ S(2)(Ω, ω, ω′) . (5.12)

As discussed in section 4, the soft function at two loops receives two contributions, where
the additional soft gluon is respectively virtual or real. These two contributions have
been given respectively in eqs. (4.8) and (4.12). For a better comparison with the method
of regions, it proves useful to evaluate the two contributions separately. Furthermore,
the integration of the term involving the virtual gluon, eq. (4.8), is comparatively more
involved. In particular, the term in the last line of eq. (4.8) requires some care, because
of the singularity at ω = 0, which can be integrated by considering the standard identity
1/(ω − i0+) = P (1/ω) + iπδ(ω), where P indicates the principal value prescription. The
term in the second line of eq. (4.8) instead can be integrated over ω and ω′ without
particular issues. In the end we obtain a result for eq. (5.12) valid to all orders in ϵ:

∆(2)
gq̄ (z)|NLP,s,1r1v = −

(
αs

4π

)2
TF

(
CA − 2CF

)(µ2

Ω2

)2ϵ

× 2Re[e−iϵπ]e2ϵγEΓ[1− 2ϵ]Γ[1− ϵ]2Γ[1 + ϵ]2

ϵ3Γ[1− 4ϵ] . (5.13)

Expansion in powers of ϵ, identifying Ω = Q(1− z) and setting µ = Q gives

∆(2)
gq̄ (z)|NLP,s,1r1v =

(
αs

4π

)2
TF

(
CF − CA

2

){ 4
ϵ3

− 16L1(z)
ϵ2

+ 32L2(z)− 28ζ2
ϵ

− 128
3 L3(z) + 112ζ2L1(z)−

224ζ3
3 +O(ϵ)

}
. (5.14)

The integration of the double real contribution, eq. (4.12) is straightforward. Again, we
obtain a result valid to all order in ϵ:

∆(2)
gq̄ (z)|NLP,s,2r = −

(
αs

4π

)2
TF

(
µ2

Ω2

)2ϵ e2ϵγEΓ[1− ϵ]2

ϵ3(1− 2ϵ)Γ[1− 4ϵ]

{
CF

[
12− (21− ϵ)ϵ

]
− (CA − 2CF )

[1
ϵ
− 9 + 14ϵ− 2F1

[
2, 2, 3− 2ϵ, 1

]
1− ϵ

+4(1− 2ϵ) 3F2
[
{1, 1,−ϵ}, {1− ϵ,−2ϵ}, 1

]]}
, (5.15)
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which upon expansion in ϵ, identifying Ω = Q(1− z) and setting µ = Q gives

∆(2)
gq̄ (z)|NLP,s,2r =

(
αs

4π

)2
TF

{
CF

[
− 8
ϵ3

+ 32L1(z)− 3
ϵ2

+ 12L1(z)− 64L2(z)− 7 + 60ζ2
ϵ

+ 256
3 L3(z)− 24L2(z) + L1(z)(28− 240ζ2)− 14 + 21ζ2 +

556ζ3
3

]
+CA

[
− 2
ϵ3

+ 8L1(z)
ϵ2

+ 12ζ2 − 16L2(z)
ϵ

+ 64
3 L3(z)

− 48ζ2L1(z) +
94ζ3
3

]
+O(ϵ)

}
(5.16)

Summing together all terms contributing at NNLO we obtain

∆(2)
gq̄ (z)|NLP =

(
αs

4π

)2
TF

{
CF

[9 + 12L1(z)
ϵ2

+ 27− 12L1(z)− 34L2(z) + 4ζ2
ϵ

+54 + 50L3(z)− L1(z)(42 + 84ζ2)− 39ζ2 + 108ζ3

}
+CA

[4L1(z)
ϵ2

+ 14ζ2 − 2− 14L2(z)
ϵ

− 4 + 74
3 L3(z) + L1(z)(6− 68ζ2) + 34ζ3

]
+O(ϵ)

}
. (5.17)

This gives our result for the bare partonic cross section at NNLO in perturbation theory.
The result agrees with an in-house computation of the bare partonic cross section obtained
with the method of regions. This provides us with a first confirmation that the (bare)
factorization theorem in eq. (2.34) is correct, and is not missing any contribution up to
O(α2

s).

5.3 Renormalization

As a final check, we need to compare with the known result in literature [70], for which we
need the finite partonic cross section. As discussed in appendix B, the latter is obtained by
applying PDF renormalization to eq. (5.17), which relies on the finiteness of the hadronic
cross section:

dσDY
dQ2 = σ0

∑
a,b

∫ 1

τ

dz

z
Lbare

ab

(
τ

z

)
∆bare

ab (z) = σ0
∑
a,b

∫ 1

τ

dz

z
Lren

ab

(
τ

z

)
∆ren

ab (z), (5.18)

where by “ren” we indicate the finite, renormalized functions. In practice, the finite cross
section is obtained by applying a counterterm to the bare cross section. We provide these
counterterms as a function of the Altarelli-Parisi splitting kernels in eq. (B.8). At first
order in perturbation theory, the explicit calculation gives

∆ren (1)
gq̄ (z) = αsTF

4π

[
4L1(z) + ϵ

(
3ζ2 − 4L2(z)

)
+O(ϵ2)

]
, (5.19)

which agree respectively with eqs. (2.19) and (2.21) of [70] upon expansion to first order
in (1 − z). The pole in eq. (5.3) is correctly removed by the term P

(0)
qg /(ϵ) in the second
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line of eq. (B.8). Proceeding in a similar way and evaluating explicitly the counterterm in
the third equality of eq. (B.8) we have:

∆(2)
gq̄ (z)|ren

NLP

= ∆(2)
gq̄ (z)|NLP +

(
αs

4π

)2
TF

{
CF

[
− 9 + 12L1(z)

ϵ2
+ 34L2(z) + 12L1(z)− 27− 4ζ2

ϵ

− 64− 12L2(z)−
80
3 L3(z) + 51ζ2 + 68ζ2L1(z)− 32ζ3

]
(5.20)

+CA

[
− 4L1(z)

ϵ2
+ 2 + 14L2(z)− 14ζ2

ϵ
− 16L3(z) + 44ζ2L1(z)− 32ζ3

]}
,

and in the end we get

∆(2)
gq̄ (z)|ren

NLP =
(
αs

4π

)2
TF

{
CF

[26
3 L3(z) + L1(z)(6− 24ζ2)− 4 + 2ζ3

]
+CA

[70
3 L3(z)− 12L2(z)− L1(z)(42 + 16ζ2)− 10 + 12ζ2 + 76ζ3

]
+O(ϵ)

}
, (5.21)

which reproduces eq. (B.38) + (B.39) of [70]. This concludes our validation of the factor-
ization theorem in eq. (2.34).

6 Summary

In this work, we derived the factorization formula for the gq̄-channel of the Drell-Yan
production process at general powers in the threshold expansion. Specifying the result to
the first non-trivial power, which is at next-to-leading power in (1 − z) compared to the
leading qq̄ channel, we arrived at a compact formula comprising of a LP hard function,
two NLP collinear functions on each side of the cut and one generalized soft function.
The simplicity of this result is in contrast with the more involved structure of the qq̄

case, where four separate soft functions contribute along with their corresponding collinear
functions [21]. The first main result of this work is the NLP factorization formula given in
eq. (2.34).

In sections 3 and 4 we calculated the collinear and soft functions which appear in
the factorization formula. In order to validate this formula to NNLO accuracy, hard and
collinear functions are needed up to O(αs) while the soft function up to O(α2

s). The
hard function which appears in eq. (2.34) is the LP hard function which is known in the
literature. In section 3, we calculated the NLP collinear function with an external PDF-
collinear gluon which we have defined in an analogous way to the collinear functions with
an external PDF-collinear quark appearing in [21]. Due to its relation to the radiative
jet functions appearing in h → gg amplitude, the radiative corrections of this object are
known up to O(α2

s) [52]. We found agreement for the O(αs) contribution which is given in
eq. (3.13).

In section 4, we calculated the soft function which contains soft quark insertions on both
sides of the cut. We carried out the computation by utilising state-of-the-art fixed-order
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loop integral methods such as reduction to master integrals and application of differential
equations. The O(αs) result for the soft function is given in eq. (4.4), and two-loop soft
function results are presented in eq. (4.8) and eq. (4.12) for the one-real one-virtual and
double-real contributions, respectively. We have retained all-order ϵ dependence through-
out the calculation of the NLO and NNLO contributions to the soft function, which enabled
us to study the structure of its asymptotic limits in section 4.4. In particular, we noticed
a relatively simple structure at NLO, where singularities arise for ω → 0. More involved
structure emerges at NNLO which has implications for resummation beyond LL using
refactorization procedures such as the ones developed in [32, 44].

Using the calculations in sections 3 and 4, we tested the validity of the factorization
formula derived in section 2 through a comparison of our results against in-house expansion-
by-regions calculations and known results in the literature. We evaluated the convolutions
over the ω, ω′ variables obtaining results valid in exact d-dimensions at O(αs) and O(α2

s).
We then expanded the final results to d→ 4, carried out PDF-factorization of the collinear
divergences appearing in initial states, which is standard for fixed order calculations, and
we compared with [70], finding agreement.

In summary, the bare factorization theorem derived here, along with the higher-order
calculations of the functions appearing in our formula and the study of the asymptotic
limits of the soft function, will serve as a spring board for future investigations of this
channel and an eventual desirable four dimensional renormalization prescription.
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A Soft function master integrals

A.1 Virtual-real MIs

The integrals appearing in the calculation of the virtual-real contribution to the O(α2
s) soft

function are written as

ĴT (α1, α2, α3, α4, α5, α6, α7) = (4π)4
(
eγEµ2

4π

)2ϵ ∫ ddk

(2π)d

ddk1
(2π)d−1

7∏
i=1

1
Pαi

i

, (A.1)

where k identifies the loop momentum while k1 identifies the real emission momentum.
The set of propagators Pi are identified by the single topology A which is defined as

P1 = k2, P2 = (k + k1)2, P3 = n+k, P4 = k2
1, (A.2)

P5 =
(
Ω− n−k1 − n+k1

)
, P6 =

(
ω − n−k − n−k1

)
, P7 =

(
ω′ − n−k1

)
,

where the propagators {P4, P5, P6, P7} are cut. The virtual-real contribution to the soft
function in eq. (4.7) is given in terms of the two master integrals of topology A

Ĵ1(Ω, ω, ω′) ≡ ĴA(0, 1, 1, 1, 1, 1, 1), Ĵ2(Ω, ω, ω′) ≡ ĴA(1, 1, 1, 1, 1, 1, 1), (A.3)

which can be calculated by direct integration by combining the propagators in terms of
Feynman parameters, or by the differential equation method. We explicitly obtain the
following expressions for these integrals

Ĵ1(Ω, ω, ω′) = i
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

[
µ4

(−ω)ω′(Ω− ω′)2

]ϵ

θ(−ω) θ(ω′) θ(Ω− ω′) , (A.4)

and

Ĵ2(Ω, ω, ω′) = 2ie
2ϵγEΓ[1− ϵ]Γ[1 + ϵ]

ϵΓ[1− 2ϵ]

[
µ4

(ω′ − ω)2(Ω− ω′)2

]ϵ θ(ω′) θ(ω′ − ω) θ(Ω− ω′)
(ω′ − ω)(Ω− ω′)

− i
e2ϵγEΓ[1 + ϵ]
ϵΓ[1− ϵ]

[
µ4

(−ω)ω′(Ω− ω′)2

]ϵ θ(−ω) θ(ω′) θ(Ω− ω′)
ω′ (Ω− ω′) 2F1

(
1, 1 + ϵ; 1− ϵ; ω

ω′

)
.

(A.5)

A.2 Double real MIs

The integrals appearing in the soft double real contribution are expressed as

ÎT (α1, α2, α3, α4, α5, α6, α7) = (4π)4
(
eγEµ2

4π

)2ϵ ∫ ddk1
(2π)d−1

ddk2
(2π)d−1

7∏
i=1

1
Pαi

i

, (A.6)

where the set of seven propagators Pi defines a corresponding topology T . In total, for
this contribution we need to introduce four different topologies. The first, A, is defined by
the following set of propagators:

P1 = (k1 + k2)2, P2 = n+k2, P3 = k2
1, P4 = k2

2,

P5 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P6 =

(
ω − n−k1

)
,

P7 =
(
ω′ − n−k1 − n−k2

)
, (A.7)
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where the last five propagators are cut. Similarly, the second topology, B, is defined by the
following propagators:

P1 = (k1 + k2)2, P2 = n+k2, P3 = k2
1, P4 = k2

2,

P5 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P6 =

(
ω − n−k1 − n−k2

)
,

P7 =
(
ω′ − n−k1

)
, (A.8)

where the last five are again cut. Topology A and B are related to topology H of [51] by the
following relabellings {ω → ω1, ω

′ → ω1 + ω2} and {ω → ω1 + ω2, ω
′ → ω2}, respectively.

As a consequence we can extract the results for the master integrals of topologies A and
B from the computations carried out for topology H in [51], after applying the relevant
substitutions. We have then the topology C, which is equivalent to topology A of [51],
defined by the following set of propagators:

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, P4 = k2
1, P5 = k2

2,

P6 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1

)
, (A.9)

where the last four propagators are cut. The last topology, D, is equivalent to topology D
in [51] and it is defined by the following set of propagators:

P1 = (k1 + k2)2, P2 = n+k2, P3 = n−k2, P4 = k2
1, P5 = k2

2,

P6 =
(
Ω− n−k1 − n−k2 − n+k1 − n+k2

)
, P7 =

(
ω − n−k1 − n−k2

)
, (A.10)

where the last four propagators are cut. Please note that for topologies A and B we exclude
the δ(ω − ω′) factor from the topology definition and we include it explicitly in eq. (4.11).

The double real emission contribution of the soft function in eq. (4.11) is expressed in
terms of six master integrals belonging to the above topologies. In particular, two master
integrals belong to topology A

Î1(Ω, ω, ω′) ≡ ÎA(0, 0, 1, 1, 1, 1, 1), Î2(Ω, ω, ω′) ≡ ÎA(1, 1, 1, 1, 1, 1, 1), (A.11)

two belong to topology B

Î3(Ω, ω, ω′) ≡ ÎB(0, 0, 1, 1, 1, 1, 1), Î4(Ω, ω, ω′) ≡ ÎB(1, 1, 1, 1, 1, 1, 1), (A.12)

and the last two belong to topology C and D

Î5(Ω, ω) ≡ ÎC(0, 0, 0, 1, 1, 1, 1), Î6(Ω, ω) ≡ ÎD(0, 0, 0, 1, 1, 1, 1), (A.13)

respectively. Î1 can be easily extracted from the results in [51], we find

Î1(Ω, ω, ω′) = e2ϵγE

Γ[2− 2ϵ]

[
µ4

ω(ω′ − ω)(Ω− ω′)2

]ϵ

(Ω− ω′)θ(ω)θ(ω′)θ(ω′ − ω)θ(Ω− ω′).

(A.14)

Î2 was not explicitly required for the calculations carried out in [51], hence we evaluate it for
the first time here by employing the differential equation method. Î2 appears in a system
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with Î1 and the differential equation can be solved to all orders in ϵ. The ϵ-dependent
integration constant can be fixed by matching to the version of this integral where ω and
ω′ are integrated over first. We find that the constant is zero to all-orders in ϵ and the final
integral reads

Î2(Ω, ω, ω′) = − 2e2ϵγE

ϵΓ[1− 2ϵ]

[
µ4

ω(ω′ − ω)(Ω− ω′)2

]ϵ θ(ω)θ(ω′)θ(ω′ − ω)θ(Ω− ω′)
(ω′ − ω)(Ω− ω′)

× 2F1

(
1,−ϵ, 1− ϵ,

ω

ω − ω′

)
. (A.15)

By exploiting exchange symmetries among topology A and B we find the following relations
among integrals Î3(Ω, ω, ω′) = Î1(Ω, ω′, ω) and Î4(Ω, ω, ω′) = Î2(Ω, ω′, ω). Finally the last
two master integrals read

Î5(Ω, ω) =
e2ϵγEΓ[1− ϵ]
Γ[3− 3ϵ]

[
µ4

ω(Ω− ω)3

]ϵ

(Ω− ω)2 θ(ω)θ(Ω− ω), (A.16)

Î6(Ω, ω) =
e2ϵγEΓ[1− ϵ]2

Γ[2− 2ϵ]2
[

µ4

ω2(Ω− ω)2

]ϵ

ω(Ω− ω) θ(ω)θ(Ω− ω). (A.17)

B PDF renormalization

In this appendix we briefly set our notation for PDF renormalization. Let us start from
eq. (2.3), and write it in the form

dσDY
dQ2 = σ0

∑
a,b

∫ 1

τ
dz

∫
dxa dxb δ(τ − xaxbz) fbare

a/A (xa, µ) fbare
b/B (xb, µ)∆bare

ab (z, µ), (B.1)

where we added a superscript to indicate that all functions are unrenormalized.5 Due to
renormalization invariance of the differential cross section, eq. (B.1) can be expressed as
well in terms of the corresponding renormalized function:

dσDY
dQ2 = σ0

∑
a,b

∫ 1

τ
dz

∫
dxa dxb δ(τ − xaxbz) f ren

a/A(xa, µ) f ren
b/B(xb, µ)∆ren

ab (z, µ). (B.2)

The relation between the bare and renormalized partonic cross section can be obtained by
considering the relation between bare and renormalized PDFs:

f ren
a/A = fbare

b/A ⊗ Γab, (B.3)

where the convolution explicitly reads

f ren
a/A(xa) =

∫ 1

0
dy1dy2 δ(xa − y1y2) fbare(y1)b/A Γab(y2). (B.4)

5However, we implicitly assume that UV renormalization has been taken into account, by expressing the
functions in terms of the renormalized coupling constant αs(µ), related to the bare coupling constant by
αb

s(4π)ϵe−ϵγE = αs(µ)µϵ
[
1− αs/(4π)β0/ϵ

]
, with β0 = 11/3CA − 2/3nf .
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In turn, the function Γab(x) has the following perturbative expansion

Γab(x) = δab δ(1− x) +
∞∑

n=0

(
αs

4π

)n+1
Γ(n)

ab (x), (B.5)

and for our analysis we need the first two orders:

Γ(0)
ab (x) = −

P
(0)
ab (x)
ϵ

,

Γ(1)
ab (x) = 1

2ϵ2
[(
P (0)

ac ⊗ P
(0)
cb

)
(x) + β0 P

(0)
ab (x)

]
− 1

2ϵP
(1)
ab (x). (B.6)

inserting eq. (B.3) into eq. (B.2) we get the relation

∆bare
cd (z) =

[
Γac ⊗ Γbd ⊗∆ren

ab

]
(z). (B.7)

This equation can then be solved order by order in αs to obtain the renormalized cross
section coefficients in terms of the bare ones. Taking into account the UV renormalization
and the explicit form of eqs. (B.5) and (B.6), for the gq̄ channel one has6

∆ren (0)
gq̄ (z) = ∆bare (0)

gq̄ (z),

∆ren (1)
gq̄ (z) = ∆bare (1)

gq̄ (z) + P
(0)
ab (z)
ϵ

,

∆ren (2)
gq̄ (z) = ∆bare (2)

gq̄ (z) + 1
ϵ2

[3
2
(
P (0)

qq ⊗ P (0)
qg

)
(z) + 1

2
(
P (0)

gg ⊗ P (0)
qg

)
(z)− β0

2 P
(0)
qg (z)

]
+ 1
ϵ

[1
2P

(1)
qg (z) +

(
P (0)

qq ⊗∆bare (1)
gq̄

)
(z) +

(
P (0)

gg ⊗∆bare (1)
gq̄

)
(z)

+
(
P (0)

qg ⊗∆bare (1)
qq̄

)
(z)− β0 ∆bare (1)

gq̄ (z)
]
, (B.8)

where the last term originates from expressing the bare cross section as an expansion
in terms of the renormalized strong coupling constant. Near x → 1 we can expand the
Altarelli-Parisi splitting kernels in powers of 1− x, and up to NLP we need

P (0)
qq (z) = CF

[
4D0(z) + 3δ(1− z)− 4

]
+O(1− z),

P (0)
qg (z) = 2TF +O(1− z)
P (0)

gg (z) = CA

[
4D0(z)− 4

]
+ β0 δ(1− z) +O(1− z), (B.9)

where we introduced the notation

Dn(z) =
lnn(1− z)

1− z

∣∣∣∣
+
, (B.10)

and

P (1)
qg (z) = CATF

[
4 + 2π2

3 − 4L2(z)
]
+ CFTF

[
10− 4π2

3 + 4L2(z)
]
+O(1− z). (B.11)

6Notice that by symmetry we take q̄ = q in the indices of Γab and Pab.
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