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A B S T R A C T

In industrial processes, control valve stiction is known to be one of the primary causes for poor control
loop performance. Stiction introduces oscillatory behaviour in the process, leading to increased energy
consumption, variations in product quality, shortened equipment lifespan and a reduction in overall plant
profitability. Several detection algorithms using routine operating data have been developed over the last
few decades. However, with the exception of a handful of recent publications, few attempts to apply classical
supervised learning techniques have been published thus far. In this work, principal component analysis, linear
discriminant analysis and a one-class support vector machine are trained to detect stiction using time series
features as input. These features are extracted from the data using the tsfresh package for Python. The
training data consists of simulated stiction examples generated using the XCH stiction model as well as other
sources of oscillation. The classifier is subsequently benchmarked against closed-loop stiction data collected in
an industrial setting, with performance exceeding that of existing methods.
1. Introduction

In a process plant, product quality, operational safety, and consump-
tion of energy and materials are all linked to the performance of its
control systems. As a result, the topic of control performance monitor-
ing (CPM) has been an active area of research for the last three decades.
A recent survey by Bauer et al. (2016) found that control engineers are
often responsible for maintaining up to one thousand control loops at
any given time. Such responsibility necessitates the use of automated
systems and performance indices to assist in tracking down problematic
loops. These kinds of tools are key in allowing control engineers to
prioritise maintenance scheduling and avoid unnecessary shutdowns.

One of the main symptoms of a poorly controlled loop is oscillation.
There are a number of causes of oscillatory behaviour, however the two
most common are poor controller tuning and control valve stiction.
Such behaviour in an industrial process can lead to increased energy
consumption, variations in product quality, shortened equipment lifes-
pan and a reduction in overall plant profitability. Stiction in particular
is said to be the result of several factors: seal degradation, lubricant
depletion, foreign debris and activation at metal sliding surfaces during
high temperatures (Jelali and Huang, 2010). However, the primary
contributor is thought to be the excessively tight packing surround-
ing the stem, due to the strict regulations regarding the leakage of
volatile organic compounds into the body of the valve (see Fig. 1).

∗ Corresponding author.
E-mail address: yousaf.a.khalid@durham.ac.uk (Y. Khalid).

This causes friction around the stem, restricting its movement and the
responsiveness of the valve, ultimately leading to poor control.

The primary contribution of this work is the development and
training of a new stiction classification procedure that combines prin-
cipal component analysis, linear discriminant analysis and a one-class
support vector machine. The method is shown to reliably detect stiction
whilst requiring only the process variable (PV), the controller output
(OP) and the control loop set point (SP). This system is trained us-
ing a detailed stiction simulation covering a wider variety of process
parameters than previous works, and includes both integrating and
self-regulating processes which are known to exhibit different stiction
patterns. A simple procedure for selecting a suitable data window based
on zero-crossings is given towards the end of the paper, and is shown
to improve results when applied to industry data. When applied to the
full set of industry benchmark data, the method produces the largest
number of correct classifications (69/81), with an emphasis on high
precision, meaning the method is unlikely to produce a false positive
result. Moreover, when applied to a subset of the benchmark data
containing only loops with known faults, the method ties for the highest
number of correct classifications (22/26). As well as the ISDB data, the
method is applied to an additional ten control loops with stiction to
further demonstrate its effectiveness.

The remainder of this document is structured as follows. In Sec-
tion 2, a brief introduction to the topic is provided as well as a survey
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Fig. 1. Typical pneumatic control valve schematic.

of some of the methods developed for the automatic detection and
quantification of control valve stiction. A description of the one-class
support vector machine and dimensionality reduction techniques are
also presented in this section. Section 3 describes the methodology of
the proposed detection procedure, covering data generation, feature
extraction and model training. In Section 4, a description of the metrics
used to evaluate the model, as well as the results when classifying both
simulated loops and real cases from industry. This section compares
performance with a number of well-known methods on the widely used
‘International Stiction DataBase’ (ISDB) benchmark dataset presented
in Jelali and Huang (2010) (available at Huang (2020), Bauer et al.
(2020)). Analysis of incorrect loops and a method to address issues
of data windowing are also provided. An additional ten control loops
taken from the chemical industry and suffering from stiction are used
for further testing. Finally, in Section 5 concluding remarks, suggested
improvements and directions for further research are discussed.

2. Background

2.1. Valve stiction

The term ‘stiction’ is a portmanteau derived from the words static
and friction, and is a phenomenon that has many definitions across the
literature (Jelali and Huang, 2010). The one most generally accepted
is that of Choudhury et al. (2005), which reads as follows:

‘‘The presence of stiction impairs proper valve movement, i.e. the
valve stem may not move in response to the output signal from
the controller or the valve positioner. The smooth movement of the
valve in response to a varying input from the controller or valve
positioner is preceded by a stickband and an abrupt jump termed
the slip-jump. Its origin in a mechanical system is static friction,
which exceeds the dynamic friction during smooth movement’’.

This definition is best explained by the behaviour of the controller
output (OP) versus valve position (VP) plot seen in Fig. 2. For a
perfectly healthy valve, the phase plot would travel along the dash-
dotted line, where any amount of OP adjustment would result in an
equal change in the position of the valve. In contrast, for a sticky
valve, the static and kinetic/dynamic frictional components must be
considered, leading to one of three states:

• Sticking. After stopping or changing direction, the valve position
remains constant with the time, as it is unable to overcome the
frictional forces.
2

t

Fig. 2. Controller output vs valve position phase diagram.

• Jumping. The valve position changes abruptly, as the force sup-
plied by the valve exceeds the friction.

• Motion. The valve moves freely until a reduction in velocity
or change in direction. The valve is opposed only by dynamic
friction forces.

The severity and widespread nature of the stiction phenomenon has
ed to many research articles and books over the last few decades,
overing various sub-topics such as stiction modelling, detection, quan-
ification, compensation and smart detection. In Jelali and Huang
2010), several stiction detection methods are presented and applied
o a benchmark dataset of 93 control loops taken from industries such
s chemicals, buildings, mining, metal processing, power generation
nd pulp & paper mills. The techniques featured in this book are the
icoherence and ellipse fitting method of Choudhury et al. (2004)
BIC), the cross-correlation method of Horch (1999) (CORR), the his-
ogram method of Horch (2010) (HIST), the relay technique of Scali
nd Ghelardoni (2008) (RELAY), the area-peak method of Singhal and
alsbury (2005) (AREA), the curve fitting approach of He et al. (2007)
CURVE) and the two hammerstein identification methods of Lee et al.
2008), Karra and Karim (2009) (HAMM2, HAMM3). After applying
ach method to the available data, the take-home message was that no
ingle method is able to produce consistent, reliable results in every
ituation. Many new detection systems are reviewed in Bacci di Capaci
nd Scali (2018), however due to a lack of benchmark results only the
ethods of Dambros et al. (2016) (SLOPE & ZONES) are discussed here.

One technique which has been published since Bacci di Capaci and
cali’s review is the non-linear principal component analysis applica-
ion of Teh et al. (2018) (NLPCA-AC). Although principal component
nalysis is closely related to machine learning, as there is no prior
raining process this method is considered separate from the methods
iscussed in Section 2.2. The new NLPCA-AC method attempts to
mprove on previous work by Zabiri and Ramasamy (2009), which had
lso used NLPCA, through additional pre-processing, post-processing
nd the consideration of the number of zero-crossings in the auto-
ovariance function, a metric which is also used in Thornhill et al.
2003). NLPCA-AC has been applied to the benchmark dataset and
xceeds the total number of correct responses previously achieved by
he BIC method. This is recognised in the paper and is used to support
he claim that the method is more reliable. Whilst the results are im-
ressive, caution is advised when using the number of correct verdicts
s a means of determining the best overall method, particularly in the
ase of BIC which is predominantly limited by the window length of

he test data. In an online setting, the length of the data should only be
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an issue for loops with frequent step changes (BIC requires a minimum
of 1000 samples without an abrupt set point change). Recent advances
surrounding the bicoherence statistic indicates that this limitation can
be eased further, as (Lang et al., 2018) show an improved ‘bihocerence’
statistic for shorter time series that is successfully applied to CHEM_22,
a loop containing only 721 samples.

In contrast to the recent wave of machine learning-based techniques
presented in recent years (discussed in the following section), Damarla
et al. (2022) instead propose a sigmoid function-based method for the
detection of stiction in control valves. Applicable to both stationary
and non-stationary signals, this method can be used across various
control loops, including flow, temperature, concentration, pressure, and
analyzer-related loops. The proposed method asserts that if oscillations
are caused by stiction, the OP(𝑘) vs 𝛥PV(𝑘) phase plot will display an
s-like shape or sigmoid-like curve, which is a distinctive characteristic
of a sticky control valve. By fitting the sigmoid function to the data,
a correlation coefficient (𝑅) can be computed. If 𝑅 is greater than or
equal to a chosen threshold (𝑅threshold), stiction is deemed the cause
of oscillations. This method was tested on twenty control loops from
the ISDB database, as well as two flow control loops from an oil sands
industry, demonstrating its effectiveness beyond the ISDB dataset.

In Zheng et al. (2021), the authors propose a stiction detection
method that takes advantage of the slow PV response relative to OP
changes via K-means clustering. Although technically a machine learn-
ing method, what differentiates it from those in the following section
is that it is unsupervised i.e., no labels are required during training.
This method is compatible with both stationary and nonstationary
signals of varying lengths. Applicable to flow, temperature, pressure,
and concentration loops, it can identify various faulty valves, including
frozen, clogged, and severely stuck valves. Although the method is
robust against low levels of noise in PV or OP signals, moderate to
high noise levels necessitate denoising before analysis. By examining
the distribution of the ratio of 𝛥OP to 𝛥PV, the method can determine
he likelihood of valve stiction and enhance stiction detection reliability
sing a moving window-based approach. Just like the sigmoid method,
his method was tested on twenty control loops from the ISDB database,
s well as three loops from the oil sands industry.

.2. Supervised learning-based methods

The methods discussed in this section are those which are able
o identify, or quantify stiction through supervised machine learning.
his process is where labelled training data are fed to a classifica-
ion/regression algorithm, enabling it to make predictions for new data
ased on patterns learned during training. A classifier is an algorithm
hich is designed to predict discrete class labels e.g. ‘stiction’, ‘aggres-

ive tuning’ or ‘disturbance’, whereas a regressor instead learns to pre-
ict continuous values. There are four stiction detection/quantification
ethods described in the literature that match this description, the first

f which, developed by Farenzena and Trierweiler (2009), is a neural
etwork trained using simulated data to quantify stiction through
rediction of the parameters 𝑆 (deadband + stickband) and 𝐽 (slip-
ump). The simulation of Farenzena and Trierweiler consists of control
oops with varying characteristics such as controller parameters 𝐾𝑝

and 𝑇𝑖, process parameters 𝜏 (time constant) and white noise variance,
nd of course the stiction model parameters 𝑆 and 𝐽 . The following
even values are considered as inputs for the neural-network-based
uantification scheme:

• 𝛥𝑃𝑉 : The difference between the maximum and minimum value
in the 𝑃𝑉 time series;

• 𝛥𝑂𝑃 : The difference between the maximum and minimum value
in the 𝑂𝑃 time series;

• 𝛥𝑃𝑉 ∕𝛥𝑂𝑃 : The ratio between 𝛥𝑃𝑉 and 𝛥𝑂𝑃 ;
• 𝐸𝑤: The integral of the squared error of the difference between
𝑃𝑉 and the best wave-shape curve interpolation (𝑃𝑉𝑤) (Rossi and
Scali, 2005);
3

• 𝐸𝑇 : The integral of the squared error of the difference between
𝑃𝑉 and the best triangle-shaped curve interpolation (𝑃𝑉𝑇 );

• 𝑍𝐶: The number of zero-crossings in the mean corrected data;
• 𝑍𝐶𝐴𝐶𝑉 : The number of zero-crossings in the autocovariance func-

tion (Thornhill et al., 2003).

However, after applying feature selection based on stepwise regres-
sion, only the 𝛥𝑃𝑉 , 𝛥𝑃𝑉 ∕𝛥𝑂𝑃 and 𝑍𝐶𝐴𝐶𝑉 features were found to be
seful. This method is unfortunately limited to just quantification, but
he proposition of combining machine learning with simulated training
ata has served as inspiration for the remaining methods in this section,
s well as the work presented in this paper.

One method developed more recently is the stiction detection net-
ork (SDN) by Amiruddin et al. (2019), who have designed a learning-
ased strategy which is once again powered by a neural network. The
DN is trained using simulated cases of stiction, but also other sources
f oscillation such as poor tuning and external disturbance. This is
mportant if a classifier is going to be applied to a real control loop,
s one trained using only stiction cases runs the risk of being unable
o distinguish stiction from a regular sinusoidal oscillation. Where the
DN differs significantly from the previous approach, is that rather than
electing a handful of calculated features as input, the authors consider
00 data points from both the OP and PV data, and compute a new
ariable

𝑖 =
√

(𝑥𝑖 − 𝑥𝑐 )2 + (𝑦𝑖 − 𝑦𝑐 )2, (1)

where 𝑥𝑖, 𝑦𝑖 are the 𝑖th elements of the OP and PV data, and 𝑥𝑐 , 𝑦𝑐 are
heir respective means. The output is then interpreted as a probability
hat the loop is suffering from stiction, making the SDN a binary
lassifier, as opposited to a multi-class classifier which would attempt
o identify the other cases also.

The SDN is one of the highest performing detection methods re-
iewed here. Although others may report higher accuracy, this might be
result of limiting their application to a subset of the available loops in

he ISDB. BIC, for example, is applied to just 57 loops, eliminating many
f the shorter length, manually controlled and heavily quantised loops.
n applying SDN to the same 57 loops tested by BIC, SDN achieves
0/561 correct responses, compared with 48/57 from BIC. This is a
urprising result given that the network is trained using just a single
rocess model.

Shortly after publishing SDN, the same group produced a second
ethod with the name ‘‘butterfly-shape detection’’ (BSD) (Kamarud-
in et al., 2020). The algorithm for BSD is derived from Stenman’s
ne-parameter stiction model:

𝑘 =

{

𝑥𝑘−1 if |𝑢𝑘 − 𝑥𝑘−1| < 𝑑,
𝑢𝑘 otherwise

(2)

here 𝑢 and 𝑥 are the valve input (OP) and output (VP), respectively,
nd 𝑑 is the band of valve stiction. Based on this model, if the valve
s stuck then the output remains at its previous value. Taking this
s the starting point, and using PV instead of VP in place of 𝑥, the
raph of the |𝑂𝑃𝑘 − 𝑃𝑉𝑘−1| was plotted against PV and a butterfly-like
attern was observed for stiction cases (see Fig. 3(a)). Note that the
eason for replacing VP with PV is that the adoption of smart valves is
till relatively low, meaning that the valve position is rarely available.
onfirmation of stiction from the butterfly plot still requires manual

nspection, so to automate this the authors introduce the Identification
f Round Objects Method (IROM) to count the number of enclosed
reas of the plot. The background of the plot counts as one, and so
hould each wing of the butterfly, so an IROM index > 1 is considered
s sufficient evidence of stiction. The learning element of the method
omes once stiction has been confirmed, as a pre-trained neural net-
ork is used later to quantify the level of stiction. The network is a

1 Verdict missing for CHEM_41, which is experiencing OP saturation.
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Fig. 3. Butterfly plots for a real stiction case and a simulated non-stiction case. Along
with controller output (OP) and error (𝐸𝑅 = 𝑆𝑃 − 𝑃𝑉 ) time plot.

convolutional neural network (CNN) which is a powerful technique
used in image classification (Rawat and Wang, 2017). Rather than
predicting the values of 𝑆 and 𝐽 , the stiction class is divided into three
sub-classes: weak, medium and strong stiction, and the CNN is used to
classify loops accordingly.

The BSD algorithm performs well on a selection of industrial control
loops, however the IROM index approach for identifying stiction can
lead to false positives. As evidenced by Fig. 3(b), the butterfly pattern,
and therefore the number of enclosed areas indicated by the IROM
index, are practically identical for sinusoidal disturbances, which could
be a problem depending on how often such disturbances occur in real
processes. This issue could be eliminated by referring to a CNN for both
detection and quantification, as such a technique should be capable of
spotting the subtle differences between plots.

Another recent stiction detection and quantification method is that
of Henry et al. (2020), which makes use of the data simulation process
described in Amiruddin et al. (2019), Kamaruddin et al. (2020). Here,
the raw time series data (PV-OP) is transformed into an image using the
unthresholded recurrence plot (URP). The authors make use of AlexNet,
a well-known pre-trained network that was the first convolutional
neural network to win the ImageNet Large Scale Visual Recognition
Challenge in 2012 (Krizhevsky et al., 2012). This network is partially
re-trained by securing the weights contained in the first few layers and
allowing only those in final layers to be modified. In essence, this trains
AlexNet to be specialised in recognising the URP simulated control loop
data. The 4096 nodes contained in the second fully connected layer
of the network are used as features and are fed into a PCA model for
stiction detection. Both Hotelling’s 𝑇 2 and the 𝑄-statistic are used to
identify the stiction, however the 𝑄-statistic was found to be better
at distinguishing different levels of stiction. A support vector machine
with linear kernel is used to classify stiction as either weak (needs
to be monitored) or strong (needs to be fixed) stiction. The method
is applied to 78 loops from the industry benchmark and achieves 55
correct verdicts. The ability to track stiction progression over time using
the Q-statistic as well as the output of the SVM makes this method very
compelling.

Finally, a recent method is the convolution based approach for
industrial time-series data presented in Zhang et al. (2022), one which
utilizes self-supervised contrastive learning and specifically targets
valve stiction. The approach comprises two components: data trans-
formation and representation learning. A temporal distance matrix
4

transformation method is introduced, converting raw time-series data
into temporal distance matrices based on dynamic time warping (DTW)
distances, effectively capturing temporal and spatial information. A
convolution-based encoder is employed to encode the matrices into
embedding representations, guided by a new multitimescale feature
consistent constraint (MTFCC) for self-supervised representation learn-
ing. Finally, a general fault detection framework consisting of an unsu-
pervised feature learning module and a detection module is presented,
and its effectiveness in valve stiction detection tasks is demonstrated
using industrial benchmark datasets, a hardware experimental system,
and real industrial environments (see Table 1).

2.3. One-class support vector machines

The one-class support vector machine (OCSVM) is an extension
of standard multi-class SVM of Cortes and Vapnik (1995). The au-
thors, Schölkopf et al. (2000), believed that the general multi-class
approach was poorly suited for novelty detection and so developed
an alternative solution for the one-class case. The main difference is
that the original SVM requires examples of both ‘normal’ and ‘faulty’
data to train the model, whereas the one-class SVM requires only the
former. The usual way of applying the one-class SVM is to train using
normal operating data such that an issue is detected if the process
deviates significantly from the expected behaviour, requiring further
investigation to obtain a specific diagnosis. Here instead, the one-class
SVM is trained using stiction as the ‘normal’ case, this way a stiction/no
stiction diagnosis is given immediately. A mathematical description of
the one-class SVM is provided below.

Consider the training data {𝒙1,𝒙2,… ,𝒙𝑚}, where each 𝒙𝑖 is a feature
vector that lies in some feature-space 𝑋. Let 𝜙 be a function that maps
𝑋 → 𝐹 , where 𝐹 is a higher dimensional feature space, and 𝑘 a kernel
function such that

𝑘(𝒙𝑖,𝒙𝑗 ) = 𝜙
(

𝒙𝑖
)

⋅ 𝜙
(

𝒙𝑗
)

. (3)

For data which is not linearly separable in 𝑋, a kernel function that is
used often is the radial basis function (RBF)

𝑘(𝒙𝑖,𝒙𝑗 ) = exp
(

−𝛾‖𝒙𝑖 − 𝒙𝑗‖2
)

. (4)

The parameter 𝛾 controls how the training data influences the shape of
the decision boundary; high values mean that data closer to the decision
boundary have greater influence, whereas lower values increase the
weight given to points further away.

The goal of the One-Class SVM is to create a function 𝑓 which
returns ‘+1’ for all points within the region containing the training
data and ‘−1’ everywhere else. This is achieved by mapping the data
into the new feature-space 𝐹 corresponding to the chosen kernel, and
finding a hyperplane that separates the data from the origin with
maximal margin. New data are then classified based on where they
are positioned in relation to the decision boundary when viewed in
original-space 𝑋 (see Fig. 4). This function can be obtained through
the following optimisation problem:

min
𝒘,𝝃,𝜌

1
2
‖𝒘‖

2 + 1
𝜈𝑁

𝑁
∑

𝑖=1
𝜉𝑖 − 𝜌

s.t. 𝒘 ⋅ 𝜙(𝒙𝑖) ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0.

(5)

ere, 𝜉𝑖 are slack variables, 𝜌 is the bias term and 𝜈 ∈ (0, 1] is a
arameter which controls what portion of the supplied training data
an be regarded as outliers. Low values for 𝜈 can resulting in overfitting
Fig. 4(a)), so it is advisable to tune this hyperparameter in order
o obtain a more general decision boundary (Fig. 4(b)). Note that
he issue of over/under-fitting appears frequently in machine learning
pplications and is commonly referred to as the bias–variance tradeoff.

The desired decision function is of the form

(𝒙) = sgn

(

∑

𝛼𝑖𝑘(𝒙𝑖,𝒙) − 𝜌

)

, (6)

𝑖
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Table 1
A selection of stiction detection methods that have been tested on a significant portion of the 81 loops from benchmark data of Jelali and
Huang (2010), based on and updated from (Bacci di Capaci and Scali, 2018).

Method Features

Name Author(s) Type Loop applicability Correct verdicts

CORR Horch (1999) Cross-correlation No LC 20/49
HIST Horch (2010) Statistics All type 31/65
BIC Choudhury et al. (2004) NL detection All 48/57
RELAY Rossi and Scali (2005) Waveform shape All 34/69
AREA Singhal and Salsbury (2005) Waveform shape No LC 30/48
CURVE He et al. (2007) Waveform shape All 27/63
HAMM2 Lee et al. (2008) Hammerstein Identification All 40/76
HAMM3 Karra and Karim (2009) Hammerstein Identification All 44/81
SLOPE Dambros et al. (2016) Waveform shape All 29/61
ZONES Dambros et al. (2016) Waveform shape All 28/61
NLPCA Teh et al. (2018) Nonlinear PCA All 54/81
SIGMOID Damarla et al. (2022) Shape-based All 17/20
KMEANS Zheng et al. (2021) K-Means (w/ Quantification) All 16/20
SDN Amiruddin et al. (2019) ML-based (Neural Network) All 61/80
BSD Kamaruddin et al. (2020) ML-based (Convolutional Neural Network) All 20/26
CNN-PCA Henry et al. (2020) ML-based (Convolutional Neural Network) All 55/78
MTFCC Zhang et al. (2022) ML-based (SVM) All 22/26
d
s

c
e

where coefficients 𝛼𝑖 are obtained via the solution of the dual problem

min
𝜶

1
2
∑

𝑖𝑗
𝛼𝑖𝛼𝑗𝑘

(

𝒙𝑖,𝒙𝑗
)

s.t. 0 ≤ 𝛼𝑖 ≤
1
𝜈𝑁

,
∑

𝑖
𝛼𝑖 = 1.

(7)

his can be solved using standard quadratic programming routines.
he training data with non-zero 𝛼𝑖 are called support vectors, which

s where the SVM gets its name.
For those interested in reading about the one-class SVM applied

pecifically to a control-related problem, see Mahadevan and Shah
2009), where the method is applied to a Tennessee Eastman process
imulation to detect 18 out of 21 faults. The one-class SVM is compared
ith principal component analysis (PCA) and dynamic principal com-
onent analysis (DPCA) and outperforms both with respect to detection
peed and accuracy for most faults.

.4. Techniques for dimensionality reduction

For learning problems involving many features, a good solution can
e difficult to obtain even if said features are useful for prediction. The
igher the dimensionality of the data, the more training samples are
equired to obtain a good result. This problem is referred to as the curse
f dimensionality. Many reduction techniques have been developed to
ackle this issue, two of which are discussed in this section and applied
s part of the proposed stiction detection method in Section 3.

.4.1. Principal component analysis
Principal component analysis, or PCA, is an unsupervised technique

ith a variety of applications including dimensionality reduction, data
ompression, feature extraction and data visualisation. PCA can be
efined as the orthogonal projection of data onto a lower dimen-
ional linear space, such that the variance of the projected data is
aximised (Hotelling, 1933). Following this definition, the method is

pplied as follows.
First, let 𝑋 ∈ R𝑚×𝑛 be a feature matrix containing 𝑚 observations

nd 𝑛 features, then compute the 𝑛 × 𝑛 covariance matrix

𝑡 =
1
𝑚
(𝑋 −𝑀)𝑇 (𝑋 −𝑀), (8)

where 𝑀 is an 𝑚×𝑛 matrix whose columns are populated by the means
f each of the features in 𝑋.

Next, find all pairs of eigenvectors and eigenvalues of 𝑆𝑡, sorting
each pair by eigenvalue in descending order. Define a matrix 𝑊 with
5

l

Fig. 4. Illustrative example of the one-class support vector machine. In (a), the two
new examples (○ = inlier, □ = outlier) are falsely classified due to the overfitted
ecision boundary. In (b), the new examples are correctly classified as a result of the
impler decision boundary.

olumns containing the eigenvectors corresponding to the ordered
igenvalues i.e. let the first column contain the eigenvector with the
argest eigenvalue, and so on. The original data 𝑋 is mapped onto a
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new coordinate system by multiplication with 𝑊 , where the axes of
this new frame of reference are called the principal components.

𝑋PCA = 𝑋𝑊 . (9)

A reduction in dimensionality is achieved by selecting a subset
of the eigenvectors to place in 𝑊 . The variance explained by each
rincipal component is determined by its associated eigenvalue, and
hus a method for choosing the number of components to use is to select
s many as are required as to retain the desired amount of variance.
his is typically defined as a percentage of the total variance.

.4.2. Linear discriminant analysis
Linear discriminant analysis, or LDA, is similar to PCA in that it

rojects the original data into lower dimensions. Whilst PCA creates
omponents that maximise variance, LDA selects components that max-
mise the distance between labelled classes. This means that unlike
CA, it is a supervised method that requires labelled data to perform the
ransformation. LDA is also restricted by the number of classes, as the
aximum number of dimensions that can be obtained from the method

s 𝑐 − 1, where 𝑐 is the number of unique class labels.
The method is described as follows. As before, let 𝑋 ∈ R𝑚×𝑛

e a feature matrix containing 𝑚 observations and 𝑛 features. Only
ow suppose that each observation in 𝑋 can be categorised into one
f 𝑐 classes, with a class label stored in the vector 𝒚 ∈ R𝑚. The

‘within-class‘ covariance matrix is then computed by separating 𝑋 into
roups corresponding the class labels in 𝒚, then summing the individual
ovariance matrices multiplied by the class priors

𝑤 =
𝑐
∑

𝑖=1

𝑝𝑖
𝑚𝑖

(𝑋𝑖 −𝑀𝑖)𝑇 (𝑋𝑖 −𝑀𝑖). (10)

Here 𝑋𝑖 are the sub-matrices of 𝑋 corresponding to class 𝑖, 𝑀𝑖 are the
matrices containing the means of each feature column in 𝑋𝑖, 𝑚𝑖 are the
number of observations of class 𝑖 and 𝑝𝑖 = 𝑚𝑖∕𝑚 are the class priors
estimated as the proportion of observations of class 𝑖 with respect to
the total. The ‘total’ covariance matrix is computed just as in PCA,

𝑆𝑡 =
1
𝑚
(𝑋 −𝑀)𝑇 (𝑋 −𝑀), (11)

where 𝑀 is a matrix whose columns are populated by the means of
each feature in 𝑋. The ‘between-class’ covariance matrix is result of
subtracting the ‘within-class’ covariance from the ‘total’ covariance

𝑆𝑏 = 𝑆𝑡 − 𝑆𝑤. (12)

The original 𝑛-dimensional data is projected down to (𝑐 − 1) dimen-
sions via the 𝑛 × (𝑐 − 1) matrix 𝑊 whose columns are formed by the
eigenvector solutions of the generalised eigenvalue problem

𝑆𝑏𝒘𝑖 = 𝜆𝑖𝑆𝑤𝒘𝑖. (13)

Just as with PCA, the eigenvectors are ordered by their correspond-
ing eigenvalues. The projected data is obtained via the multiplication

𝑋LDA = 𝑋𝑊 . (14)

In most applications, the resulting transformation should preserve
the class clusters despite the reduction in dimensionality. An example of
both PCA and LDA being applied to a dummy 2-D dataset is presented
in Fig. 5. The top two graphs show how the original data is projected
into a single dimension, and the bottom two show where the points
lie on the new axis. In Fig. 5(c), the classes overlap heavily, meaning
that any classifier applied to this data will not perform well. On the
otherhand, in Fig. 5(d), there is minimal overlap and the subsequent
6

classification problem is now much easier.
Fig. 5. A comparison of PCA and LDA used to reduce dummy two-dimensional data
to a single dimension.

3. Methodology

In this section, the procedures for generating data, performing
feature extraction and training the one-class support vector machine
are described. Section 3.1 provides the details of the MATLAB &
Simulink setup used to generate the training data. Section 3.2 describes
the feature extraction and dimensionality reduction techniques used
to provide inputs for the classifier. Section 3.3 defines the classifier
training procedure.

3.1. Generating training data

The data used for training the classification model is generated
entirely via simulation in MATLAB & Simulink. A simplified view of the
Simulink model can be seen in Fig. 6, the elements of which are detailed
throughout this section. In contrast with previous methods, two process
models are used for generating the training data: a self-regulating
process and an integrating process (Figs. 7 and 8). This is important,
as stiction is known to present differently for integrating processes,
as demonstrated in Figs. 9(a) and 9(b). Improving on the simulation
work of Amiruddin et al. (2019), many of the process parameters used
to generate the training data are altered with each simulation. This
is in response to the findings of Rossi and Scali (2005), where it is
demonstrated that parameters such as time constant 𝜏 and time delay
𝑇𝑑 have a noticeable influence on the shape of the PV and OP time
series. This is evidenced in Fig. 10, where adjusting the ratio between
𝑇𝑑 and 𝜏 results in significantly different stiction patterns.

The parameters considered and their respective ranges are defined
in Table 2. To avoid simulating all possible combinations, a Monte
Carlo style approach is adopted where parameters are selected ran-
domly with each simulation.

3.1.1. Cases considered
In accordance with the scenarios presented in Choudhury et al.

(2004), four cases are considered for simulation:
• A well-tuned loop with no oscillation;
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Table 2
Range of parameters used for the simulations.

Cases Parameter Description Range
All

𝐾 Process gain [1 ∶ 0.1 ∶ 3]
𝜏 Process time constant [[0.1 ∶ 0.1 ∶ 1.9][2 ∶ 1 ∶ 11][12 ∶ 6 ∶ 54][60 ∶ 12 ∶ 240]]a

𝑇𝑑 Process dead time [[0.1 ∶ 0.1 ∶ 0.9][1 ∶ 1 ∶ 9][10 ∶ 5 ∶ 60]]
𝑇𝑠 Sampling period [0.1, 1, 3, 5, 10, 12, 15, 20, 30, 60]
𝑁 Sample length [500 ∶ 250 ∶ 2000]
𝑆𝑃 Setpoint [30 ∶ 1 ∶ 70]
𝑉 Variance of noise [0.0001 ∶ 0.001 ∶ 0.005] × 𝑆𝑃
𝐾𝑝 Proportional gain Determined by pidtune function
𝐾𝑖 Integral gain Determined by pidtune function

Stiction
𝑆 Deadband + stickband [1 ∶ 0.1 ∶ 10]
𝐽 Slip-jump [1 ∶ 0.1 ∶ 10]

Disturbance
𝐴 Sine wave amplitude [0.25 ∶ 2]
𝜙 Sine wave phase [0 ∶ 2𝜋]
𝑓 Sine wave frequency [0.005 ∶ 0.005 ∶ 0.05] × 1∕𝑇𝑠

Aggressively Tuned
𝐾𝑝 Proportional gain 0.75𝐾𝑢

aTime constant 𝜏 is restricted to [0.1 ∶ 0.1 ∶ 1.9] for integrating cases to represent fast flow dynamics.
Fig. 6. A simplified view of the Simulink model used to generate the control loop data.
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Fig. 7. Self-regulating process based on Kano et al. (2004).

Fig. 8. Integrating process based on Kano et al. (2004).

• An aggressively tuned, oscillating loop;
• A well-tuned loop with sinusoidal disturbance;
• A well-tuned loop suffering from stiction.

lthough the non-stiction examples are not technically required for
raining the one-class SVM, they are however necessary for the dimen-
ionality reduction, specifically linear discriminant analysis. This will
e discussed in greater detail in Section 3.2. Non-stiction cases are also
seful in validation and testing stage.

.1.2. Controller tuning
In all cases a PI controller is used and suitable values for the

ontroller gains 𝐾𝑝 and 𝐾𝑖 must be automatically determined. Although
here is autotuning functionality built into the PID Controller block in
imulink, at the time of writing it does not seem possible to automate
his from within a MATLAB script. To address this, the process model
nd moving average filter are defined in MATLAB, allowing the use
f the pidtune function which automatically determines the optimal
ontroller gains. The parameters are then provided to the Simulink
odel using the set_param function.
7

a

For the aggressive tuning case, the proportional gain 𝐾𝑝 is set to 3∕4
of the ultimate gain 𝐾𝑢 (calculated by applying the margin function to
he MATLAB representation of the open-loop system, without stiction).
or perspective, the commonly used Ziegler–Nichols tuning rules sug-
est a value of 0.45𝐾𝑢 as a starting point for further manual tuning. An
xample of a simulated aggressively tuned case can be seen in Fig. 9(c),
xhibiting the expected rapid and erratic oscillations.

.1.3. Noise and disturbance
For the externally disturbed cases, a sine wave of fixed amplitude

nd frequency is added to the system at the location marked by 𝑑
n Figs. 7 and 8. With each simulation, the amplitude and phase are
elected randomly in the ranges [0.25 ∶ 2], [0 ∶ 2𝜋] respectively.
he frequency is dependent upon the sampling period 𝑇𝑠 (measured in
econds) and is a random value in the range 1∕𝑇𝑠×[0.005 ∶ 0.005 ∶ 0.5].
his produces sinusoidal oscillations with frequencies similar to the
tiction cases, which should be difficult for the classifier to distinguish.
he hope is that this will force LDA to find projections that differentiate
tiction from regular sinusoidal oscillations. An example of a loop
isturbed by a sine wave can be seen in Fig. 9(d). For all other cases
he disturbance is switched off by commenting out the sine wave block.

Gaussian distributed white noise with zero mean and constant vari-
nce is added to the process value (𝑃𝑉 ) to simulate sensor noise. The
ariance of the noise is proportional to the setpoint, and is randomly
elected from the range [0.0001 ∶ 0.001 ∶ 0.005] × 𝑆𝑃 . As the minimum
nd maximum setpoint are 30 and 70 respectively, this means that the
inimum and maximum possible variance are 0.003 and 0.2870, which

s similar to that used in Amiruddin et al. (2019).

.1.4. Setpoint
The stiction patterns in both the OP and ER variables are best

reserved in the absence of abrupt changes in control loop setpoint.
or this reason, the preferred setpoint mode for each simulation is

fixed value, where the transient portion of the data found at the
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Fig. 9. Simulated examples of oscillation in a control loop.
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Fig. 10. The effect of varying the ratio between time delay 𝑇𝑑 and time constant
𝑇𝑐 (Rossi and Scali, 2005).

beginning of each simulation is discarded. Given that the data will
be standardised prior to feature extraction, it is unlikely the choice of
setpoint contributes anything to the stiction behaviour, that said, the
value is randomly chosen from the range [30 ∶ 1 ∶ 70] as a precaution.

An observation from the benchmark data of Jelali and Huang (2010)
is that due to the cascaded design of some loops, the setpoint of the
inner-loop can itself become oscillatory as result of the stiction. In
particular, Fig. 11(a) to 11(c) show that loops CHEM_02, CHEM_19
and CHEM_22 exhibit a distinct pattern in the ER and OP signals.
To emulate this behaviour, a sine wave with amplitude, phase and
frequency identical to those defined for the sinusoidal disturbance case
in Table 2 is added to the original setpoint. When the frequencies of
the setpoint and stiction oscillations are aligned, the observed pattern
can indeed be reproduced (see Fig. 11(d)).

3.1.5. Stiction model
The model used to create the stiction behaviour is the XCH model

of Xie et al. (2013), an improved version of the widely-used model
8

of Choudhury et al. (2005). The modifications to the original model
address the issues identified in Garcia (2008), which are seen when the
model is subjected to the control valves tests set by the International
Society of Automation.

The deadband + stickband parameter 𝑆 and slip-jump parameter 𝐽
escribed in Fig. 2 are each randomly chosen from the range [1 ∶ 0.1 ∶
0]. Therefore the stiction simulations cover the three cases described
n Choudhury et al. (2005):

• 𝑆 < 𝐽 (overshoot);
• 𝑆 > 𝐽 (undershoot);
• 𝑆 = 𝐽 (no offset).

Loops experiencing deadband (𝐽 = 0) are not considered here,
s this technically differs from stiction and only induces limit cycling
ehaviour for integrating processes. For all other cases the 𝑆 and 𝐽
arameters are set to zero.

An issue not discussed in Amiruddin et al. (2019), Kamaruddin et al.
2020), Henry et al. (2020) is the handling of noisy control signals and
heir influence on the stiction model. In Choudhury et al. (2005), it
s stated that their model is sensitive to noise and recommend placing
n exponentially weighted moving average (EWMA) filter between the
ontroller and the stiction model. As the XCH model used here is based
n the Choudhury model, it inherits the variable 𝑣𝑛𝑒𝑤 = 𝑥(𝑘) − 𝑥(𝑘 − 1)
nd uses it as a means of detecting a change in valve direction. It
s therefore likely that the XCH model is also sensitive to noise and
o an EWMA filter is placed after the controller for all simulations as
uggested.

.1.6. Sampling frequency and window size
The rate at which data is recorded is chosen from the following

et of values: [0.1, 1, 3, 5, 10, 12, 15, 20, 30, 60] (samples per second). This
matches the sampling rates seen in benchmark data of Jelali and Huang
(2010). To avoid over/under-sampling, the closed-loop bandwidth 𝜔𝑏
(rad/s) of the loop (assuming no stiction) is computed, and only cases
satisfying the inequality:

3𝜔𝑏 ≤ 1∕𝑇𝑠 ≤ 10𝜔𝑏, (15)

are simulated. This restriction is a modification of the recommended
sampling frequencies suggested by Åström and Wittenmark (1997).

Some of the control loops from the industry benchmark include
cases with a limited amount of data. It is therefore beneficial to produce
a classifier that can be applied to such cases, not only to produce a good
benchmark result, but to provide freedom to select shorter windows of

data in the event that setpoint changes or disturbances are preventing a
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Fig. 11. Error and controller output signals when stiction is combined with an oscillatory setpoint.
reliable diagnosis. More than 97% of the loops in the benchmark have
at least 500 samples available for testing, therefore the simulated data
will consist of loops with mixed window sizes, ranging from 500 to
2000 samples.

3.1.7. Summary
For the simulated data presented in the following sections there are

3910 cases in total: 2434 loops with stiction (926 of which have an
oscillating setpoint), 796 with aggressively tuned controllers, 353 with
well-tuned controllers and 327 with sinusoidal disturbance. The ratio of
self-regulating to integrating cases is approximately 50-50. A simplified
summary of the simulation procedure is provided by the flowchart in
Fig. 12.

3.2. Feature extraction & pre-processing

Feature extraction is performed in Python using the package ts-
resh (v0.14.1), developed by Christ et al. (2018). The time series
ignals used are the error 𝐸𝑅 and controller output 𝑂𝑃 , both stan-
ardised to have zero mean and unit variance. The number of features
omputed per signal is 794 (the default set of features computed by
9

sfresh), giving 1588 in total. The types of features computed range
from common statistical metrics such as mean, median, variance etc.,
to more abstract features such as the coefficients from a fast Fourier
transform or auto-regressive model. It is worth noting however, that
these are not totally unique. There are only 63 base features (see
Table 9), however many of them are parameterised such that each new
parameterised computation constitutes a new feature. For example, the
autocorrelation feature is computed for lags 0 through 9, giving 10
distinct inputs to the model. A full and updated list of features, along
with details of how the features are extracted can be found in the
tsfresh documentation (Christ et al., 2020).

When dealing with such a large number of features, it can be easy
to overfit to the simulated training data. To mitigate this risk, principal
component analysis (PCA) is applied to deal with correlated features
and reduce dimensionality. The hypothesis testing element of the ts-
fresh package, used for feature selection (dimensionality reduction),
is not utilised in this paper as this did not yield satisfactory results
for our dataset. A second and more significant reduction is achieved
using linear discriminant analysis (LDA), a supervised technique which
maps the input data onto a new set of variables such that the distances
between the labelled classes in the new feature-space are maximised.
The restriction when using LDA is that the number of components must
be less than or equal to min(n_classes - 1, n_features). As there are four
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Fig. 12. An overview of the data generation process.

lasses in this work (stiction, sinusoidal disturbance, aggressive tuning,
ood tuning), LDA is able to reduce the number of dimensions to three
t most. This allows the data and decision function to be visualised
n a 3-D plot, which enables improved understanding of the data and
he final decision region. The combination of LDA with PCA has shown
romise when applied to supervised learning tasks, as demonstrated
n Pechenizkiy et al. (2006).

.3. Model training

The features extracted from the simulated data are stored in a
910 × 1588 feature matrix 𝑋, where each row corresponds to a unique
imulation and each column a computed feature. For every row in

there is an associated class label stored in a vector 𝑦, with labels
orresponding one of the four simulation cases. The feature matrix
10
Fig. 13. Pre-processing pipeline during training.

and class labels are split into three sets: 70% of the data is used
for training (X_train, y_train), 15% for validation (X_val,
y_val) and the remaining 15% for testing (X_test, y_test).
All data is stratified by the label such that each of the four cases are
represented equally across the datasets. The classifier is the scikit-learn
(v0.22.1) implementation of the one-class support vector machine with
RBF kernel, discussed in Section 2.3. The 𝛾 parameter in the RBF kernel
(Eq. (4)) is defined using the default option 1/(n_features). The 𝜈
parameter of the one-class SVM (Eq. (7)) determines how much of the
training data can be regarded as outlying; in order to achieve a more
generalised decision boundary, it is considered as a hyperparameter
which is optimised as part of the training process. The full training
process is shown in Fig. 13, and the steps are detailed below:

Step 1 Begin with X_train, a DataFrame of the features extracted
from the simulated data.

Step 2 Remove cases where number of zero-crossings (computed by
tsfresh) exceeds some percentile 𝐿.

Step 3 Impute the data to ensure there are no missing values for any
of the features (replace with zeros).

Step 4 Scale the extracted features using the mean and standard
deviation of

Step 5 Compute the desired number of principal components of the
data to decorrelate the data and reduce dimensionality.

Step 6 Scale the principal components using a second standard scaler.
Step 7 Project the scaled principal components onto 3 dimensions

using linear discriminant analysis.
Step 8 Scale the LDA features using a third standard scaler.
Step 9 Remove any non-stiction examples, as the One-Class SVM is

an unsupervised method and requires only the stiction data.
Note that this step is reserved till last as LDA requires all four
classes to transform the data.

Steps 3-8 can be combined into a single Pipeline object, as all future
predictions need to undergo an identical scaling and transformation

process. With the training data, .fit(X_train, y_train) is used
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Fig. 14. Fitted pipeline used to transform new data.

Table 3
Parameters considered in the grid search.
Parameter Values

nu [0.01, 0.02, . . . , 0.40]
𝐿 [0.70, 0.71, . . . , 0.90]
n_components [0.9900, 0.9990, 0.9999]

to determine all of the necessary parameters to perform the scaling
and transformation, and .transform(X_train) is used to apply
them. For convenience, .fit_transform(X_train, y_train)
performs the fit and transform actions sequentially. All non-training
data use just the transform method i.e. .transform(X_test) (see
Fig. 14).

The hyperparameters considered for the model are selected from
Table 3. The default parameters for each component in the pipeline are
listed in Table 10. The nu parameter for the one-class SVM determines
how many examples in the data can be considered as outliers; a value
of 0.10 would assume that 10% of the data are outliers and use the
remaining 90% to create the decision function. The n_components
parameter of the PCA transform determines how many principal com-
ponents are used in the transform, this can be a number or a fraction.
If a fraction is used, then the number of components is chosen such
that the amount of variance that needs to be explained is greater than
the percentage specified by the fraction. For example, n_components
=0.9999 gives 1109 principal components, which is the number
needed to explain 99.99% of the variance of the data. The 𝐿 parameter
is the upper limit of the number of zero-crossings in the error signal,
where 𝐿 = 0.7 implies that any training examples where the number
of crossings exceed the 70th percentile of X_train are removed. This
step was added after it was discovered that filtering X_train in this
way had a significant impact on the overall performance of the model,
this is discussed further in Section 4.2. To ensure that such cases are
still classified correctly, this filtering is not applied to the testing and
validation data.

4. Results and comparisons

In this section a collection of optimised stiction classification models
are presented. The top performing models are applied to loops from the
‘‘international stiction database’’ (ISDB) benchmark data found in Jelali
and Huang (2010). The best result is compared with a number of ex-
isting methods, including a handful of newly developed learning-based
solutions.
11
Fig. 15. Decision region of the one-class SVM (Model 1), along with simulated testing
data coloured by label.

4.1. Simulation results

With a trained model, new predictions can be made via the process
demonstrated in Fig. 16. As there are three latent features produced
by LDA, they can be plotted with the 3-dimensional decision region
derived from the SVM. This is seen in Fig. 15, which shows a scatter
plot of the simulated test data in the new feature space. All subsequent
predictions are labelled as either true positive (TP), true negative (TN),
false positive (FP) or false negative (FN). The metrics used to evaluate
performance are as defined as follows:

Precision =
(𝑇𝑃 )

(𝑇𝑃 + 𝐹𝑃 )
(16)

Recall = (𝑇𝑃 )
(𝑇𝑃 + 𝐹𝑁)

(17)

F1-Score = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(18)

Balanced Accuracy = 1
2

( 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

+ 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

)

(19)

Note that balanced accuracy is preferred to regular accuracy to
account for differences in the number of stiction versus non-stiction
cases. To derive the best results, the model is trained using different
values for the hyperparameters discussed earlier and the performance is
recorded. As most existing methods show a preference for false positive
predictions over false negative, there is some distrust when it comes to
the reliability of existing stiction detection methods. To address this
the validation results are sorted by prioritising precision over recall.
The parameters and results of the top 10 selected models are given in
Table 4.

As the training set consists of only stiction cases, the precision, F1-
score and balanced accuracy metrics are omitted for this set. Model 1
provides the highest precision and F1-score on the validation set and is
considered to be the best result. This is also mirrored in the test data,
which implies the selected parameters have not led to overfitting.

4.2. Industrial benchmark results

Next, the classifier is applied to 81 industrial control loops from the
benchmark dataset presented in Jelali and Huang (2010). As evidenced
by Fig. 17, the classifier performs best on the simulated data when
applied to window lengths between 750–1500. For this reason, window
lengths of 1000 are preferred when testing the industry data. For
consistency, where possible, any data used in testing is either identical
to, or a subset of, the window used to evaluate the bicoherence and
ellipse fitting method of Choudhury et al. (2004) (BIC), as it is the
highest performing method in the book. BIC is restricted to loops with
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Fig. 16. An artificial example of the time series feature extraction, scaling and dimensionality reduction pipeline.
Table 4
Results of the top 10 models (with 𝐿 ≤ 0.9) when applied to simulated data, sorted by precision and recall on the validation set.
Model Parameters Training (𝑛 = 1651–1687) Validation (𝑛 = 586) Testing (𝑛 = 587)

n_comp 𝐿 nu Prec. Rec. F1 Bal. Prec. Rec. F1 Bal. Prec. Rec. F1 Bal.

1 0.9999 0.70 0.34 NA 0.660 NA NA 0.996 0.658 0.792 0.827 0.996 0.630 0.772 0.813
2 0.9999 0.75 0.37 NA 0.630 NA NA 0.996 0.644 0.782 0.820 0.996 0.625 0.768 0.810
3 0.9999 0.70 0.35 NA 0.651 NA NA 0.996 0.638 0.778 0.817 1.000 0.614 0.761 0.807
4 0.9999 0.75 0.38 NA 0.620 NA NA 0.996 0.633 0.774 0.814 0.996 0.616 0.761 0.806
5 0.9999 0.70 0.36 NA 0.639 NA NA 0.996 0.630 0.772 0.813 1.000 0.608 0.756 0.804
6 0.9999 0.70 0.37 NA 0.630 NA NA 0.996 0.630 0.772 0.813 1.000 0.597 0.748 0.799
7 0.9999 0.71 0.37 NA 0.630 NA NA 0.996 0.625 0.768 0.810 0.995 0.592 0.742 0.794
8 0.9990 0.75 0.39 NA 0.611 NA NA 0.996 0.619 0.764 0.807 0.995 0.603 0.751 0.799
9 0.9999 0.75 0.39 NA 0.609 NA NA 0.996 0.619 0.764 0.807 1.000 0.605 0.754 0.803
10 0.9999 0.70 0.38 NA 0.619 NA NA 0.996 0.616 0.761 0.806 1.000 0.592 0.744 0.796
Table 5
Industry benchmark results, all windows (left) and average result per loop (right).
Model Industry Benchmark (𝑛 = 378) Average Industry Benchmark (𝑛 = 81)

TP TN FP FN Correct Prec. Rec. F1 Bal. TP TN FP FN Correct Prec. Rec. F1 Bal.

1 92 213 19 54 305 0.829 0.630 0.716 0.774 24 42 3 12 66 0.889 0.667 0.762 0.800
2 78 219 13 68 297 0.857 0.534 0.658 0.739 19 42 3 17 61 0.864 0.528 0.655 0.731
3 91 215 17 55 306 0.843 0.623 0.717 0.775 24 42 3 12 66 0.889 0.667 0.762 0.800
4 78 219 13 68 297 0.857 0.534 0.658 0.739 19 42 3 17 61 0.864 0.528 0.655 0.731
5 89 215 17 57 304 0.840 0.610 0.706 0.768 24 42 3 12 66 0.889 0.667 0.762 0.800
6 87 216 16 59 303 0.845 0.596 0.699 0.763 23 42 3 13 65 0.885 0.639 0.742 0.786
7 86 215 17 60 301 0.835 0.589 0.691 0.758 22 42 3 14 64 0.880 0.611 0.721 0.772
8 81 223 9 65 304 0.900 0.555 0.686 0.758 19 42 3 17 61 0.864 0.528 0.655 0.731
9 76 220 12 70 296 0.864 0.521 0.650 0.734 18 42 3 18 60 0.857 0.500 0.632 0.717
10 87 217 15 59 304 0.853 0.596 0.702 0.766 23 42 3 13 65 0.885 0.639 0.742 0.786
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at least 1000 data points, and as a result there are several cases where
the BIC method has not been applied due to an insufficient number of
samples; in these instances, the full length of data is used in this work
(see Table 11 for details).

To address intermittent oscillations and to demonstrate consistency,
where possible, multiple windows from the same loop are tested.
Table 5 contains the results when applied to 378 different time series
windows from the benchmark data. In the event that windows from
the same loop produce conflicting results, the most common verdict
is taken (stiction is assumed if 50-50). This would mimic the rec-
ommended use of this classifier when applied in a real system, as
only loops which demonstrate consistent stiction behaviour should be
flagged for investigation.

The model which produced the best result on the simulated data
performs comparably here. Small differences are expected due to dis-
turbances, insufficient data and infrequent sampling, but generally
performance is quite similar. Optimising for precision on the validation
data has a corresponding effect on the industrial data, as false positives
appear minimal. Note that the non-averaged results of Model 1 in
Table 5 show 19 false positives, which may seem excessive but upon
further inspection 13 of these can be attributed to just two loops
(PAP_09, CHEM_27). However infrequent, false positives can occasion-
ally appear as a result of process disturbances, which is one reason why
the average prediction is the preferred metric (see Fig. 18).

In Table 3 note that 𝐿 ≤ 0.9, if this restriction is not imposed when
searching for optimal hyperparameters, then the optimal model found
is one with 𝐿 ∼ 1, i.e. no filtering on zero-crossings. Without filtering,
12

a

the performance of each classifier when applied to the simulated test
set does not correlate well with the industry dataset, which could
mean that the classifiers are overfitting to the simulated data. If the
maximum value for 𝐿 is set to 0.9, the hyperparameter search finds
a local optimum with 𝐿 = 0.7–0.75, as shown in Table 4. These

odels perform comparably across both the simulated and real data,
nd are therefore most suitable for presentation in this section. Both
he filtering on zero-crossings discussed here and the data re-sampling
iscussed below tend to increase the similarity between the training
ata used and the industrial data, and it is possible that this makes
he classification problem easier, leading to enhanced performance on
he real-world data. In principle, fixing a maximum value for 𝐿 to
chieve similarity with the industrial data could introduce an element
f bias to the classifier, as ideally one would not make changes purely
o improve the final classification result. However, given the consistent
erformance across each dataset and the modest stiction detection rate
e believe this bias to be minimal.

.3. Comparison with other detection methods

The performance of Model 1 is compared with the methods de-
cribed in Jelali and Huang (2010), along with several subsequently
eveloped methods. In Table 6 we see the results of these methods using
he metrics in Eqs. (16)–(19). Uncertain verdicts produced by other
ethods are not included. The one-class SVM (OCSVM) produces the

est overall performance with regard to number of correct responses

nd precision. A balanced accuracy score of 80% falls just behind the
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Table 6
ISDB benchmark results of 81 loops with comparison against other detection methods.

TP TN FP FN Precision Recall F1 Score Acc. Bal Acc. Correct Verdicts Applications

BIC 23 25 8 1 0.742 0.958 0.836 0.842 0.858 48 57 57
CORR 13 7 5 1 0.722 0.929 0.813 0.769 0.756 20 26 49
HIST 21 10 18 8 0.538 0.724 0.618 0.544 0.541 31 57 65
RELAY 27 7 27 3 0.500 0.900 0.643 0.531 0.553 34 64 69
CURVE 22 5 16 7 0.579 0.759 0.657 0.540 0.498 27 50 63
AREA 15 15 5 13 0.750 0.536 0.625 0.625 0.643 30 48 48
HAMM2 31 9 32 4 0.492 0.886 0.633 0.526 0.553 40 76 76
HAMM3 33 11 34 3 0.493 0.917 0.641 0.543 0.581 44 81 81
SLOPE 22 7 13 9 0.629 0.710 0.667 0.569 0.530 29 51 61
ZONES 19 9 14 11 0.576 0.633 0.603 0.528 0.512 28 53 61
NLPCA-AC 20 34 6 15 0.769 0.571 0.656 0.720 0.711 54 75 78
SIGMOID 11 6 1 2 0.917 0.846 0.880 0.850 0.852 17 20 20
KMEANS 13 3 4 0 0.765 1.000 0.867 0.800 0.714 16 20 20

SDN 26 35 9 10 0.743 0.722 0.732 0.763 0.759 61 80 80
BSD 12 8 3 3 0.800 0.800 0.800 0.769 0.764 20 26 26
CNN-PCA 27 28 14 9 0.659 0.750 0.701 0.705 0.708 55 78 78
MTSFCC 13 9 2 2 0.867 0.867 0.867 0.846 0.842 22 26 26
OCSVM 24 42 3 12 0.889 0.667 0.762 0.815 0.800 66 81 81
OCSVM* 27 42 3 9 0.900 0.750 0.818 0.852 0.842 69 81 81
Fig. 17. Number of correct responses per window length on simulated validation and
testing data.

BIC method, which is able to achieve 86%, although its application is
limited to 57 loops in the database. When applied to only those loops,
the new method ties for 50/57 with the stiction detection network
(SDN) method of Amiruddin et al. (2019).

As many of the benchmark loops have not been officially diagnosed,
it is possible that some of the suspected diagnoses are incorrect. In
Table 7, the results when applied to only the 26 loops with confirmed
13
Fig. 18. A selection of loops from the ISDB benchmark data.

faults are presented. The new method also produces the most correct
responses here.

4.4. Analysis and discussion

It is important that the misdiagnosed loops be studied to try to
identify any shared behaviour, as they may provide some insight into
how to improve results for future iterations. In total, 27 cases of stiction
were diagnosed by Model 1, just 3 of which were false positive:

• CHEM_27 demonstrates a clear oscillatory pattern, although not
the sharp triangular signal expected of a level loop. The classifier
has no knowledge of the process type, so an incorrect result may
stem from the confusion between self-regulating and integrating
training data.

• PAP_04 is listed as suffering from ‘‘deadzone + tight tuning’’.
Whilst deadzone can induce oscillations in integrating loops,
as this is a self-regulating process the oscillations are possibly
a symptom of the poor tuning. Manual inspection of the loop
shows that the oscillations are dissimilar to the aggressively tuned
training data, and instead more closely resemble a stiction case
with low resolution sampling.

• PAP_09 is simply labelled as ‘‘no stiction’’. This loop is amongst
those with known faults, but with no detailed explanation behind
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Table 7
ISDB benchmark results of the 26 loops with known faults.

TP TN FP FN Precision Recall F1 Score Acc. Bal Acc. Correct Verdicts Applications

BIC 14 4 5 0 0.737 1.000 0.848 0.783 0.722 18 23 23
CORR 9 5 3 0 0.750 1.000 0.857 0.824 0.813 14 17 23
HIST 11 5 5 3 0.688 0.786 0.733 0.667 0.643 16 24 25
RELAY 14 3 7 0 0.667 1.000 0.800 0.708 0.650 17 24 26
CURVE 11 3 4 3 0.733 0.786 0.759 0.667 0.607 14 21 25
AREA 8 3 2 5 0.800 0.615 0.696 0.611 0.608 11 18 18
HAMM2 14 4 7 1 0.667 0.933 0.778 0.692 0.648 18 26 26
HAMM3 14 3 8 1 0.636 0.933 0.757 0.654 0.603 17 26 26
SLOPE 12 3 2 3 0.857 0.800 0.828 0.750 0.700 15 20 25
ZONES 10 6 2 4 0.833 0.714 0.769 0.727 0.732 16 22 25
NLPCA-AC 8 8 3 7 0.727 0.533 0.615 0.615 0.630 16 26 26
SIGMOID 11 6 1 2 0.917 0.846 0.880 0.850 0.852 17 20 20
KMEANS 13 3 4 0 0.765 1.000 0.867 0.800 0.714 16 20 20

SDN 11 8 3 4 0.786 0.733 0.759 0.731 0.730 19 26 26
BSD 12 8 3 3 0.800 0.800 0.800 0.769 0.764 20 26 26
CNN-PCA 12 9 2 3 0.857 0.800 0.828 0.808 0.809 21 26 26
MTSFCC 13 9 2 2 0.867 0.867 0.867 0.846 0.842 22 26 26
OCSVM 12 9 2 3 0.857 0.800 0.828 0.808 0.809 21 26 26
OCSVM* 13 9 2 2 0.867 0.867 0.867 0.846 0.842 22 26 26
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this verdict it is difficult to provide a reason for the incorrect
result.

Of the 54 negative predictions there are 12 loops which were falsely
dentified as not having stiction:

• BAS_06 has less than the preferred 1000 samples, but the issue
appears to be the frequency of oscillation. A correct result can
be achieved by manually upsampling the data and reducing the
number of oscillations in a given window.

• CHEM_05 has far too few samples. Upsampling can be used to
obtain a correct result, but it is risky due to the amount of data
that needs to be inferred.

• CHEM_07 and CHEM_08 are in manual mode, so a regular stiction
pattern cannot be identified. Like BIC, loops in manual control
would be excluded from testing in practice, however the results
are presented to provide a worst case scenario.

• CHEM_12 has very few oscillations in a 1000 sample window, this
can be addressed by using the full 2000 samples and downsam-
pling.

• CHEM_19 exhibits the pattern shown in Fig. 11 and should be
detected, however there is a disturbance in the data which may
be interfering with the diagnosis.

• CHEM_20 shows very fast oscillations due to stiction. However,
the controller appears slightly sluggish, so the dominant oscilla-
tion in the error signal is due to the oscillating setpoint, making
the stiction oscillations seem more noise-like.

• CHEM_25 shows a clear stiction pattern but with frequent oscil-
lations that may be tuning related. This theory agrees with the
original comments accompanying the loop, which suggest that
the loop is ‘‘possibly marginally stable’’. A correct verdict can be
achieved through manually upsampling.

• CHEM_29 also exhibits similar patterns to Fig. 11, however there
are too many oscillations in a 1000 sample window. Upsampling
halves the number of oscillations per window, and leads to a
correct result.

• PAP_01 shows the classic stiction pattern, but contains barely two
full oscillation cycles. With more data this is expected to produce
a correct result.

• PAP_11 indeed shows an underlying stiction pattern, but its ap-
pearance is masked by the large spikes in the error signal. These
spikes are a common occurrence in the aggressively tuned loops,
so it is not surprising that this loop lies amongst the tuning cases
when added to a plot such as Fig. 15.
14

p

Fig. 19. Frequency distribution (stacked) of predictions for simulated stiction cases.

• POW_01 has fast oscillations and sampling is fairly low resolution.
Manually upsampling helps a little, but not enough to produce an
overall correct result.

The findings above indicate that there is indeed a pattern with
he missed stiction cases, as many of them can be correctly detected
hrough manually upsampling or downsampling. This suggests the
lassifier is sensitive to the number of oscillations in a given window.

.4.1. Automated data re-sampling
The idea of including re-sampling as part of the data pre-processing

s explored further by studying the true positive/false negative pre-
iction rates on the simulated stiction data. It can be seen in Fig. 19
hat loops with fewer than 1 or greater than 12 zero-crossings per 100
amples are very likely to be classified incorrectly. This provides further
vidence for the theory that the classifier is sensitive to oscillation
requency. Loops BAS_06, CHEM_05, CHEM_25, CHEM_29 and POW_01
ll benefit from upsampling, as this can make up for insufficient data
nd reduce the number of oscillations in a given window. Conversely,
oops such as CHEM_12 and PAP_01 (if more data was available) could
enefit from downsampling i.e. increasing the number of oscillations
er window. There are also a handful of non-stiction cases where
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Table 8
Details of 10 control loops supplied by Phillips 66 Ltd and our OCSVM and OCSVM* classification results (verdict given in parentheses). The range of data used, and the resampling
rates used for the OCSVM* results, are also shown. The resampling rate, obtained using the algorithm shown in Fig. 20, is either 0.5 (upsampled with linear interpolation), 1
(original data) or 2 (sampled every other data point).

NAME INDUSTRY LOOP TYPE SAMPLES SAMPLE_FREQ COMMENTS WINDOW RESAMPLE STICTION OCSVM OCSVM*

P66_01 Chemical Level 8588 [8–51] Stiction 1–8588 1 YES 11/16 (YES) 11/16 (YES)
P66_02 Chemical Temperature 16383 [4–20] Stiction 1–16383 1 YES 29/31 (YES) 29/31 (YES)
P66_03 Chemical Pressure 8635 [18–41] Stiction 1–8635 0.5 YES 0/16 (NO) 30/33 (YES)
P66_04 Chemical Flow 16830 [4–20] Stiction 1–16830 1 YES 19/32 (YES) 19/32 (YES)
P66_05 Chemical Pressure 5248 [19–180] Stiction 1–5248 1 YES 0/9 (NO) 0/9 (NO)
P66_06 Chemical Flow (Turbine Meter) 12475 [5–30] Stiction 1–12475 1 YES 1/23 (NO) 1/23 (NO)
P66_07 Chemical Flow 17035 [4–15] Stiction 1–17035 1 YES 26/33 (YES) 26/33 (YES)
P66_08 Chemical Flow (Turbine Meter) 12969 [4–45] Stiction 1–12969 1 YES 0/24 (NO) 0/24 (NO)
P66_09 Chemical Flow 17152 [5–15] Stiction 1–17152 1 YES 2/33 (NO) 2/33 (NO)
P66_10 Chemical Level 16092 [4–20] Stiction 1–16092 2 YES 6/31 (NO) 10/15 (YES)
Fig. 20. Data resample selection flow chart.

ot enough oscillations are captured, such as BAS_01, which could be
eceiving a free ‘‘no stiction’’ verdict as a result. Resampling such loops
ould provide a fairer assessment of the predictive capabilities of the
odel.

The problem of determining a suitable window and sampling rate
as been raised previously in Amiruddin et al. (2019), but there is as
f yet no attempt at automating this process. Here, a simple method
or determining a suitable resampling rate is presented. The method
ses the oscillation index of Forsman and Stattin (1999) to identify
hether the loop is sufficiently oscillatory. Since the index is heavily
ependent on the number of zero-crossings, the 5-point rolling median
s computed first to reduce the influence of noise. A value less than
.25 for the index means that the loop shows very little evidence of
scillation, so resampling is not necessary. If the index is greater than
.25 then the average number of zero-crossings per 100 data points
𝑍100) is computed, and a sampling rate is chosen such that this value
alls within a desired range. Loops exceeding this range use a single pass
f linear interpolation to upsample the data. Whereas loops falling short
15
of this range are downsampled until either the number of zero-crossings
per 100 samples is greater than one, or until there is not enough data to
downsample further (500 minimum). The flow diagram for this process
is seen in Fig. 20.

The results when combining this resampling process with Model
1 are recorded as OCSVM* in Tables 6, 7 and 11. The verdicts for
loops BAS_06, CHEM_12 and CHEM_25 switch from ‘‘no stiction’’ to
‘‘stiction’’, increasing the number of correct detections by 3 without
introducing any new false positives. In addition, loops such as BAS_01,
CHEM_24 and CHEM_44 retain their correct responses despite the
change in sampling. The verdict for CHEM_05, originally false negative,
stays consistent despite upsampling; the reason for this is possibly
insufficient data as there are still only 400 data points after upsampling.

4.5. Additional industry data

Normalised OP and ER data taken from 10 new control loops from
the chemical industry are seen in Fig. 21. These loops are subjected to
classification both with and without the automated re-sampling, and
the results are seen in Table 8. Each control loop is labelled as stiction,
however it is not known whether this has been officially confirmed with
a full valve test. Without re-sampling, the OCSVM method identifies
just four cases of stiction: P66_01, P66_02, P66_04 and P66_07. Manual
inspection of loops P66_05, P66_06, P66_08 and P66_09 show that
excessive noise in the error signal is most likely the primary contributor
to these false diagnoses. It is worth noting that these loops fail to show
the butterfly-like pattern discussed in Kamaruddin et al. (2020), so it
is possible that this method would also misdiagnose these cases. The
remaining loops, P66_03 and P66_10, display a clear stiction pattern
which is undetected due to the number of oscillations present per
window. Running each loop through the re-sampling process described
in Fig. 20 yields re-sampling consistent with that which would have
been chosen manually. That is, upsampling is suggested for P66_03 and
downsampling for P66_10. The remaining 8 loops are left unchanged,
bringing the total number of correct responses to 6.

5. Conclusions

In this study, a one-class SVM is trained using a variety of simulated
process models. Using the PCA-LDA transformed time series features
of tsfresh, the method is shown to reliably detect stiction with a
low false positive rate. The method demonstrates good accuracy on
both simulated and real-world control loops, whilst requiring just the
standard OP, PV and SP data. The detection algorithm is easily applied
to new examples, as the pre-processing pipeline and classifier can be
exported as a single ‘‘pickled’’ python file (Van Rossum, 2020). A
simple automated window selection/data re-sampling procedure is also
presented; this also improves the reliability and can even be used in
conjunction with other methods.

The method is designed for online application, as the features can

be extracted from the raw control loop data in real-time. Control loops
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Fig. 21. Normalised time and phase plots for 10 new control loops from the chemical industry (1000 data points each).
Table 9
A short description of the features extracted from the time series using tsfresh, based on the feature calculators documentation and Christ et al.
(2020). A full list of the exact features and parameters is provided as a separate CSV file.

Feature Description

abs_energy(x) Returns the absolute energy of the time series which is the sum
over the squared values in 𝑥.

absolute_sum_of_changes(x) Returns the sum over the absolute value of consecutive changes in
the series 𝑥.

agg_autocorrelation(x, param) Calculates the value of an aggregation function (e.g. the variance or
the mean) over the autocorrelation for different lags.

agg_linear_trend(x, param) Calculates a linear least-squares regression for values of the time
series that were aggregated over chunks versus the sequence from 0
up to the number of chunks minus one.

approximate_entropy(x, m, r) Computes the vectorised approximate entropy algorithm.

(continued on next page)
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Table 9 (continued).
Feature Description

ar_coefficient(x, param) This feature calculator fits the unconditional maximum likelihood of
an autoregressive AR(𝑘) process.

augmented_dickey_fuller(x, param) The Augmented Dickey–Fuller test is a hypothesis test which checks
whether a unit root is present in a time series sample.

autocorrelation(x, lag) Calculates the autocorrelation of the specified lag.

binned_entropy(x, max_bins) Bins the values of 𝑥 into max_bins equidistant bins, then calculates
the value of ∑min(max_bins, len(𝑥))

𝑘=0 𝑝𝑘𝑙𝑜𝑔(𝑝𝑘) ⋅ 𝟏(𝑝𝑘>0) where 𝑝𝑘 is the
percentage of samples in bin 𝑘.

c3(x, lag) Uses c3 statistics to measure non linearity in the time series.

change_quantiles(x, ql, qh, isabs, f_agg) First fixes a corridor given by the quantiles 𝑞𝑙 and 𝑞ℎ of the
distribution of 𝑥. Then calculates the average, absolute value of
consecutive changes of the series 𝑥 inside this corridor.

cid_ce(x, normalize) This function calculator is an estimate for a time series complexity
(a more complex time series has more peaks and valleys)

count_above_mean(x) The number of values in 𝑥 that are higher than the mean of 𝑥.

count_below_mean(x) The number of values in 𝑥 that are lower than the mean of 𝑥.

cwt_coefficients(x, param) Calculates a continuous wavelet transform for the Ricker wavelet,
also known as the ‘‘mexican hat wavelet’’.

energy_ratio_by_chunks(x, param) Calculates the sum of squares of chunk 𝑖 out of 𝑁 chunks expressed
as a ratio with the sum of squares over the whole series.

fft_aggregated(x, param) Returns the spectral centroid (mean), variance, skew, and kurtosis
of the absolute fourier transform spectrum.

fft_coefficient(x, param) Calculates the fourier coefficients of the one-dimensional discrete
Fourier Transform for real input by using the fast fourier
transformation algorithm.

first_location_of_maximum(x) Returns the first location of the maximum value of 𝑥.

first_location_of_minimum(x) Returns the first location of the minimal value of 𝑥.

friedrich_coefficients(x, param) Coefficients of polynomial ℎ(𝑥), which has been fitted to the
deterministic dynamics of the Langevin model.

has_duplicate(x) Checks if any value in 𝑥 occurs more than once.

has_duplicate_max(x) Checks if the maximum value of 𝑥 is observed more than once.

has_duplicate_min(x) Checks if the minimal value of 𝑥 is observed more than once.

index_mass_quantile(x, param) The relative index 𝑖 where 𝑞% of the mass of the time series 𝑥 lie
left of 𝑖.

kurtosis(x) Returns the kurtosis of 𝑥 (calculated with the adjusted
Fisher–Pearson standardised moment coefficient G2).

large_standard_deviation(x, r) Boolean variable denoting if the standard dev of 𝑥 is higher than 𝑟
times the range (the difference between max and min of 𝑥).

last_location_of_maximum(x) Returns the relative last location of the maximum value of 𝑥.

last_location_of_minimum(x) Returns the last location of the minimal value of 𝑥.

length(x) Returns the length of 𝑥.

linear_trend(x, param) Calculate a linear least-squares regression for the values of the time
series versus the sequence from 0 to len(𝑥) − 1.

longest_strike_above_mean(x) Returns the length of the longest consecutive subsequence in 𝑥 that
is bigger than the mean of 𝑥.

longest_strike_below_mean(x) Returns the length of the longest consecutive subsequence in 𝑥 that
is smaller than the mean of 𝑥.

max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics argmax𝑥ℎ(𝑥) = 0 estimated from
polynomial ℎ(𝑥), which has been fitted to the deterministic
dynamics of the Langevin model.

maximum(x) Calculates the highest value of the time series 𝑥.

mean(x) Returns the mean of 𝑥.

mean_abs_change(x) Returns the mean over the absolute differences between subsequent
time series values.

mean_change(x) Returns the mean over the differences between subsequent time
series values.

mean_second_derivative_central(x) Returns the mean value of a central approximation of the second
derivative.

median(x) Returns the median of 𝑥.

minimum(x) Calculates the lowest value of the time series 𝑥.

number_crossing_m(x, m) Calculates the number of crossings of 𝑥 on 𝑚.

(continued on next page)
17



Digital Chemical Engineering 8 (2023) 100116H. O’Neill et al.
Table 9 (continued).
Feature Description

number_cwt_peaks(x, n) Number of different peaks in 𝑥. To estimate the number of peaks, 𝑥
is smoothed by a ricker wavelet for widths ranging from 1 to 𝑛.
This feature calculator returns the number of peaks that occur at
enough width scales and with sufficiently high signal-to-noise-Ratio
(SNR).

number_peaks(x, n) Calculates the number of peaks of at least support n in the time
series 𝑥. A peak of support 𝑛 is defined as a subsequence of 𝑥
where a value occurs, which is bigger than its 𝑛 neighbours to the
left and to the right.

partial_autocorrelation(x, param) Calculates the value of the partial autocorrelation function at the
given lag.

percentage_of_reoccurring_datapoints_
to_all_datapoints(x)

Returns the percentage of non-unique data points.

percentage_of_reoccurring_values_to_all_values(x) Returns the percentage of values that are present in the time series
more than once.

quantile(x, q) Calculates the 𝑞 quantile of 𝑥.

range_count(x, min, max) Count observed values between min and max.

ratio_beyond_r_sigma(x, r) Ratio of values that are more than 𝑟𝜎 away from the mean of 𝑥.

ratio_value_number_to_time_series_length(x) Returns a factor which is 1 if all values in the time series occur
only once, and below one if this is not the case.

sample_entropy(x) Calculate and return sample entropy of x.

skewness(x) Returns the sample skewness of 𝑥 (calculated with the adjusted
Fisher–Pearson standardised moment coefficient G1).

spkt_welch_density(x, param) This feature calculator estimates the cross power spectral density of
the time series 𝑥 at different frequencies.

standard_deviation(x) Returns the standard deviation of 𝑥.

sum_of_reoccurring_data_points(x) Returns the sum of all data points, that are present in the time
series more than once.

sum_of_reoccurring_values(x) Returns the sum of all values, that are present in the time series
more than once.

sum_values(x) Calculates the sum over the time series values.

symmetry_looking(x, param) Boolean variable denoting if the distribution of 𝑥 looks symmetric.

time_reversal_asymmetry_statistic(x, lag) Returns the time reversal asymmetry statistic.

value_count(x, value) Count occurrences of value in time series 𝑥.

variance(x) Returns the variance of 𝑥.

variance_larger_than_standard_deviation(x) Boolean variable denoting if the variance of 𝑥 is greater than its
standard deviation.
Table 10
Defaults for PCA, LDA, StandardScaler and OneClassSVM.

Method Default Options

SimpleImputer() StandardScaler()
with_mean=True
with_std=True

PCA() whiten=False
svd_solver=‘‘auto’’
tol=0.0
iterated_power="auto
random_state=None

LDA() solver=‘‘svd’’
shrinkage=None
priors=None
store_covariance=False
tol=1e-4

OneClassSVM() kernel=‘‘rbf’’
degree=3
gamma=‘‘scale’’
coef0=0.0
tol=1e-3
nu=0.5
shrinking=True
cache_size=200
max_iter=-1
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which demonstrate consistent stiction behaviour can be queued for
maintenance during the next scheduled plant shutdown. Quantification
post-detection using the calculated tsfresh features is yet to be
explored and will be a focus of future research. The classification tool
is written entirely in Python and can be implemented on low-cost edge
devices such as a Raspberry Pi. Further optimisations on the window
length and number of features may be necessary to improve speed,
as this is the primary drawback of the method. Of course, caution is
always advised when applying automated systems; manual inspection
and further diagnostic tests are recommended before fully committing
to valve replacement/repairs.

With regards to future research there are a number of directions
to take that could advance the field. Machine learning based stiction
diagnosis/quantification is still in its infancy but appears to produce
very promising results. As demonstrated by Henry et al. (2020), tech-
niques that have proven useful in other domains such as the bayesian
network approaches for fault detection in Kumari et al. (2022b,a),
can be adapted to fit the stiction problem. Additional input features
such as control-specific performance indices may also provide a boost
to performance. Window selection and data pre-processing can also
yield improved results, as demonstrated by the simple procedure im-
plemented in this work. There is also the issue of data, as until such
time that there is a vast amount of real data to both train and test
machine learning approaches, there will always be improvements that
could be made to the simulation. A universal simulated training/testing
set would be useful to compare different learning-based approaches, as
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Table 11
Detailed ISDB benchmark information from Jelali and Huang (2010) and our OCSVM and OCSVM* results. The range of data used, and the resampling rates used for the OCSVM*
results, are also shown. The resampling rate, obtained using the algorithm shown in Fig. 20, is either 0.5 (upsampled with linear interpolation), 1 (original data) or 2 (sampled
every other data point). The selection of data windows used for our analysis is explained in Section 4.2.

NAME LOOP TYPE SAMPLES SAMPLE_FREQ COMMENTS WINDOW RESAMPLE STICTION OCSVM OCSVM*

BAS_01 Temperature 277115 1 No oscillation 77001–80000 2 NO NO NO
BAS_02 Temperature 277115 1 No oscillation 35001–39096 1 NO NO NO
BAS_03 Temperature 246827 3 Intermittent oscillation 30001–34096 1 NO NO NO
BAS_04 Pressure 246827 3 Intermittent oscillation 77001–81096 1 NO NO NO
BAS_06 Temperature 501 1 Stiction and tight tuning 1–501 0.5 YES NO YES
BAS_07 Temperature 560 1 Stiction 1–560 1 YES YES YES
BAS_08 Temperature 42512 60 No oscillation 1–20000 1 NO NO NO
CHEM_01 Flow 1625 1 Stiction 1–1625 1 YES YES YES
CHEM_02 Flow 1000 1 Stiction 1–1000 1 YES YES YES
CHEM_03 Temperature 1945 30 Quantisation 1–1945 1 NO NO NO
CHEM_04 Level 200 1 Tuning problem 1–200 1 NO NO NO
CHEM_05 Flow 201 1 Stiction 1–201 0.5 YES NO NO
CHEM_06 Flow 1000 1 Stiction 1–1000 1 YES YES YES
CHEM_07 Pressure 4685 1 Open-loop data; stiction 1–4685 1 YES NO NO
CHEM_08 Pressure 900 1 Open-loop data; stiction 1–900 1 YES NO NO
CHEM_09 Pressure 2732 1 Stiction 1–2732 1 YES YES YES
CHEM_10 Pressure 1000 1 Stiction 1–1000 1 YES YES YES
CHEM_11 Flow 1000 1 Stiction 1–1000 1 YES YES YES
CHEM_12 Flow 2000 1 Stiction 1–2000 2 YES NO YES
CHEM_13 Analyser 1500 20 Faulty steam sensor; no stiction 1–1500 1 NO NO NO
CHEM_14 Flow 1500 20 Faulty steam sensor; no stiction 1–1500 1 NO NO NO
CHEM_15 Pressure 1500 20 Interaction (likely); no stiction 1–1500 1 NO NO NO
CHEM_16 Pressure 1500 20 Interaction (likely); no stiction 1–1500 1 NO NO NO
CHEM_17 Temperature 1500 20 Faulty steam sensor; no stiction 1–1500 1 NO NO NO
CHEM_18 Flow 1040 12 Stiction (likely) 1–1040 1 YES YES YES
CHEM_19 Flow 721 12 Stiction (likely) 1–721 1 YES NO NO
CHEM_20 Flow 721 12 Stiction (likely) 1–721 1 YES NO NO
CHEM_21 Flow 721 12 Disturbance (likely) 1–721 1 NO NO NO
CHEM_22 Flow 721 12 Stiction (likely) 1–721 1 YES YES YES
CHEM_23 Flow 1500 12 Stiction (likely) 1–1500 1 YES YES YES
CHEM_24 Flow 1500 12 Stiction (likely) 1–1500 0.5 YES YES YES
CHEM_25 Pressure 721 12 Stiction + possible margin stability 1–721 0.5 NO NO YES
CHEM_26 Level 1094 12 Stiction (likely) 1–1094 1 YES YES YES
CHEM_27 Level 1333 12 Disturbance (likely) 1–1333 1 NO YES YES
CHEM_28 Temperature 721 12 Stiction (likely) 1–721 1 YES YES YES
CHEM_29 Flow 7201 60 Stiction 1–4096 1 YES NO NO
CHEM_30 Flow 17281 15 Stiction 1–4096 1 YES YES YES
CHEM_32 Flow 1998 10 Stiction (likely) 1–1998 1 YES YES YES
CHEM_33 Flow 721 12 Disturbance (likely) 1–721 1 NO NO NO
CHEM_34 Flow 719 10 Disturbance (likely) 1–719 1 NO NO NO
CHEM_35 Flow 2000 10 Stiction (likely) 1–2000 1 YES YES YES
CHEM_36 Level 804 12 Disturbance (likely) 1–804 1 NO NO NO
CHEM_37 Level 1711 12 Disturbance (likely) 1–1711 1 NO NO NO
CHEM_38 Pressure 933 10 Disturbance (likely) 1–933 1 NO NO NO
CHEM_39 Pressure 719 60 Disturbance (likely) 1–719 1 NO NO NO
CHEM_40 Temperature 1441 60 No clear oscillation (according to power spectrum) 101–1124 1 NO NO NO
CHEM_41 Temperature 1441 60 OP saturation 1–1441 1 NO NO NO
CHEM_44 Temperature 1441 60 Too few cycles; no clear oscillation; OP saturation 1–1441 2 NO NO NO
CHEM_45 Pressure 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_46 Pressure 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_47 Pressure 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_48 Pressure 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_52 Level 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_53 Level 1441 60 No clear oscillation 1–1441 1 NO NO NO
CHEM_54 Level 1441 60 No clear oscillation 1–1441 1 NO NO NO
CHEM_56 Flow 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_58 Flow 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_59 Flow 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_61 Flow 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
CHEM_62 Flow 1441 60 No clear oscillation (according to power spectrum) 1–1441 1 NO NO NO
MET_01 Gauge 1716 0.05 External disturbance (likely) 1–1716 1 NO NO NO
MET_02 Gauge 4411 0.05 External disturbance (likely) 1–4411 1 NO NO NO
MET_03 Gauge 5642 0.05 No oscillation 1–5642 1 NO NO NO
MIN_01 Temperature 2641 60 Stiction 1–2641 1 YES YES YES
PAP_01 Flow 849 1 Stiction 1–849 1 YES NO NO
PAP_02 Flow 1196 1 Stiction 1–1196 1 YES YES YES
PAP_03 Level 1147 1 Stiction 1–1147 1 YES YES YES
PAP_04 Concentration 1196 1 Deadzone and tight tuning; no stiction 1–1196 1 NO YES YES
PAP_05 Concentration 18000 0.2 Stiction 1–4096 1 YES YES YES
PAP_06 Level 846 1 No stiction 1–846 1 NO NO NO
PAP_07 Flow 14101 0.2 External disturbance 5–4096 1 NO NO NO

(continued on next page)
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Table 11 (continued).
PAP_08 Level 1800 5 No stiction 1–1800 1 NO NO NO
PAP_09 Temperature 1800 5 No stiction 1–1800 1 NO YES YES
PAP_11 Level 4179 15 Stiction 1–4179 1 YES NO NO
PAP_12 Level 4462 15 Stiction 1–4462 1 YES YES YES
PAP_13 Level 4237 15 Stiction 1–4237 1 YES YES YES
POW_01 Level 8641 5 Stiction 1–4096 1 YES NO NO
POW_02 Level 8641 5 Stiction 1–4096 1 YES YES YES
POW_03 Level 8641 5 No stiction 1–4096 1 NO NO NO
POW_04 Level 8641 5 Stiction 1–4096 1 YES YES YES
POW_05 Level 8641 5 No stiction 1–4096 1 NO NO NO
it is not clear whether the method or the data has led to the increase
in accuracy over other methods.
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