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We study resurgence in the context of the partition function of 2-dimensional SU(N) and
U(N) Yang–Mills theory on a surface of genus h. After discussing the properties of the
transseries in the undeformed theory, we add a term to the action to deform the theory.
The partition function can still be calculated exactly, and the deformation has the effect
of analytically continuing the effective genus parameter in the exact answer so that it is
noninteger. In the deformed theory we find new saddle solutions and study their properties.
In this context each saddle contributes an asymptotic series to the transseries which can be
analyzed using Borel-Écalle resummation. For specific values of the deformation parameter
we find Cheshire cat points where the asymptotic series in the transseries truncate to a few
terms. We also find new partial differential equations satisfied by the partition function, and
a number of applications of these are explained, including low-order/low-order resurgence.
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1. Introduction
Écalle’s resurgence theory [1] (see Refs. [2–4] for nice introductions) is rapidly becoming a stan-
dard tool in the toolbox of quantum field theorists. The theory is typically used to make sense
of the asymptotic series, with zero radius of convergence, so prevalent in the field. The weakest
version of the program (see discussion on p. 45 of Ref. [5], also Refs. [6–9]) aims to show that
all observables in quantum field theory (QFT) can be written as ambiguity-free Borel-Écalle re-
summations of transseries. In this setting a transseries is an object which takes, e.g. in a theory
with weak coupling g, the heuristic form

O(g) =
∑

i

∑
j

σie−Si/gci, jgj . (1)
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The series contains a sum of perturbative series ci, jgj, each dressed with a nonperturbative part
e−Si/g with Si some appropriate constant,1 and a transseries parameter or Stokes constant σ i.
Note that transseries can be much more complicated than this, containing e.g. logarithms and
multiple couplings [10]. For this version of the program there is a large and growing volume of
evidence that supports that this is indeed true.2

A stronger version of the program aims to show that the full nonperturbative transseries, up
to the values of the transseries parameters, can be derived from the perturbative data alone.
(There are some caveats to this; e.g. the contributions to a transseries in a different topological
sector are not normally included, which we will address in a moment.) Many positive exam-
ples of this exist, but there are also examples that appear to rule this option out (see, e.g. the
supersymmetric models discussed in Refs. [11–17], and the integrable models discussed in Refs.
[5–9]). It is another such supposed counterexample of the stronger version of the resurgence
program, that being 2-dimensional Yang–Mills theory (2d YM), with which this work is con-
cerned. In this paper we will focus on the resurgence part of the story, and in Ref. [18] we will
study the Picard–Lefschetz counterpart of the same story.

The Cheshire cat resurgence method, first developed in Ref. [19], has in recent years taken a
number of theories thought to be counterexamples of the stronger version of the resurgence
program, and shown them to in fact be more cases where the stronger version applies [20–
24]. The work of Ref. [19] has also recently been made mathematically rigorous in Ref. [25]
using methods from Exact Wentzel–Kramers–Brillouin (Exact WKB). In all these cases, the
Borel-Écalle resummation procedure applied to the perturbative data alone does not appear to
reproduce the full transseries. However, in all these cases, a very slight deformation away from
the theory in question renders deformed perturbative data from which the full transseries can
be derived, up to the values of the transseries parameters, for the deformed case. At the end of
the analysis one can return the deformation to zero, and one is left with the full transseries in
the undeformed case.

In the cases studied so far, what is happening is as follows. In the space of possible theories,
there exist very special points where there are sufficient cancellations between different contri-
butions to the perturbative data (the bosonic and fermionic contributions in the cases studied
so far) that the perturbative series is no longer asymptotic, and a resurgence analysis cannot
be used to derive all the nonperturbative data. We call these points Cheshire cat points. How-
ever, these points appear to be isolated, and after a small deformation away from them the full
transseries can be derived from the perturbative data. It is important to emphasize that the
authors are by no means claiming that this is the case for every theory that appears to be a
counterexample to the stronger version of the resurgence program. Simply, it is interesting to
note that this is the case in a growing number of examples, and it is a line of research worth
pursuing to see if this is the case in more (or all) theories where it appears at first sight that the
full transseries cannot be derived from the perturbative data alone.

1In many examples Si is the action of a saddle in the semiclassical decomposition, i.e. a finite-action
solution to the equations of motion. It remains an open question whether this is always the case.

2A complete list of references in support of this would be far too long for the present work. The reader
is pointed to the comprehensive (but now slightly out of date) bibliography of Ref. [3] for a starting point,
though many more recent works exist.
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To date, the Cheshire cat resurgence phenomenon has only been observed3 in supersymmet-
ric quantum field theories, and supersymmetric or quasi-exact-solvable quantum mechanical
systems. In these cases cancellations between bosonic and fermionic contributions are the rea-
son a resurgence analysis of the perturbative data doesn’t render the full transseries. For these
theories, the Cheshire cat deformation analytically continues the number of bosons, fermions,
or both,4 so that it is slightly noninteger (see Refs. [19–21] for details).

In this paper we will discuss a nonsupersymmetric theory, which as we will see also proves
to display the Cheshire cat resurgence phenomenon.5 Two-dimensional YM has been studied
extensively in various contexts, e.g. as a solvable QFT providing a toy model for Yang–Mills in
higher dimensions (e.g. [26]), and as a string theory (e.g. [27,28]). Many excellent reviews exist;
see, e.g. Refs. [29,30] and references therein for a history of the subject.

In fact, in the large N case, the perturbative data are asymptotic with zero radius of conver-
gence. This has been studied in Refs. [31,32], and in Ref. [31] a resurgence analysis was per-
formed in the large N case. The authors studied the theory on a torus, finding a non-Borel
summable asymptotic perturbative series from which they could compute the 1-instanton con-
tribution. In this work we will be exclusively interested in small N.

The model can be solved exactly [26,33–36], making a full investigation into its resurgence
properties possible. We will mostly consider the partition function in this work, which can be
written in various ways. In particular it can be written as a weak or strong coupling transseries.
In the weak coupling case the exponentially suppressed terms correspond to semiclassical sad-
dle points. For the case of finite N the perturbative expansion is truncating, in both the strong
and weak coupling cases, rendering a resurgence analysis seemingly useless. However, as in the
previous cases cited, it turns out that a small deformation of the theory will uncover an asymp-
totic series in each sector of the transseries on which a resurgent analysis can be performed.

In both the works Ref. [20] and Ref. [21] where Cheshire cat resurgence has been studied in a
QFT context, the deformation was applied to an effective description of the partition function
after localization had been performed. To put it another way, a genuine path integral deforma-
tion of the Ultraviolet (UV) theory was not found. In the present case, we have been able to
find a genuine deformation of the UV theory, i.e. a term we can add to the Lagrangian of the
theory which uncovers the Cheshire cat structure. This deformation still allows us to calculate
the partition function (and other observables) exactly. In the effective description of the theory,
the deformation appears as a deformation of the genus h of the manifold on which the theory
lives (i.e. the base space) so that it is noninteger. The deformation is somewhat similar to that
of Ref. [19], namely it is a quantum deformation that appears normally upon integrating out
certain fields in the theory.

Unlike the previous Cheshire cat examples studied, in 2d YM, we have access to not only the
weak coupling representation of the partition function, but also the strong coupling represen-
tation. As we will see, the procedure described above will allow us to find a divergent asymptotic

3At least in physical theories; see Refs. [22–24] for examples in various mathematical functions and
series.

4Actually, a parameter in an effective theory that appears to describe the boson or fermion number.
5The story is actually slightly more subtle than this. In order to gauge fix, typically ghosts are added

with fermion statistics, and this gives the theory BRST symmetry, a supersymmetry. In the 2-dimensional
case this can be used to calculate the partition function exactly. However, it must be recalled that these
ghosts are not physical, i.e. the physical theory does not actually have this symmetry.
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Fig. 1. The resurgence triangle. �
(k)
n is the contribution from the kth part of the nth topological sector.

Using resurgence we can often calculate all of the contents of a column from one entry of that column,
but not the contents of any of the other columns. Typically what is observed is that �

(0)
1 would be the

contribution from say an instanton, �
(0)
−1 an anti-instanton, and �

(1)
0 an instanton-anti-instanton. Thus

the triangle shape; as we move down the vertical axis the value of the constant Si (in this example the
action of the saddle) in the exponential part of the contribution to the transseries increases.

transseries in both the weak and strong coupling cases, and from the perturbative data alone
(within each topological sector) we will be able to find all the nonperturbative data (within each
topological sector), up to the exact value of the transseries parameter. But having access to both
a strong and weak coupling transseries description will actually allow us to go even further; by
demanding that the strong and weak transseries representations describe the same object, we
will be able to determine the transseries parameters exactly, which is not normally possible.

As mentioned above, a normal caveat to the stronger version of the resurgence program is that
terms in the transseries in a different topological sector can typically not be derived from the
perturbative expansion alone, using only a resurgence analysis. Perhaps the best way to see this
is through the connection between Écalle resurgence and Picard–Lefschetz theory (see Ref. [ 37]
for a nice introduction). In order for us to be able to use Borel-Écalle resummation to generate
data for one transseries contribution from another, there must be a Lefschetz thimble connect-
ing the saddles responsible for those contributions (assuming the contributions have saddle
explanations). For saddles with different topology, such a smooth thimble cannot occur. Thus
nonperturbative contributions with different topology to the perturbative contribution cannot
be uncovered using a resurgence analysis of the perturbative part. Thus, in such a theory, the
terms in the transseries arrange themselves into what is known as the resurgence triangle. Con-
tributions with the same topology are said to be in the same topological sector. An illustration
of this is given in Fig. 1.

Determining whether saddles are topologically distinct in general is actually not a simple
question. For example, there are cases where there is an emergent topological structure for
certain parts of the parameter space, e.g. in Refs. [38,39]. As another example, when we are
dealing with a gauge theory we need to consider not just the topology of the gauge group, but
also the topology of a gauge slice of the fields. There are thus two lines of inquiry we will need
to consider in this work. The first line is to determine whether the truncation of the perturbative
series in 2d YM is due to Cheshire cat phenomena, or topological grading of saddles. It turns
out we will see examples of both.
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The second line is whether there are additional structures that can be combined with resur-
gence to make it possible to calculate, from the perturbative data, the contributions to the
transseries from a different topological sector. We refer to such a calculation as making a side-
ways step in the resurgence triangle. In Refs. [40–42] (see also Refs. [43–45]), such a relation
was developed for certain quantum mechanical models, known as the Dunne–Ünsal relation,
to allow one to make a sideways step in the resurgence triangle. This is also referred to as
low-order/low-order resurgence, as one can use these relations to calculate the low orders in
perturbation theory around one saddle from the low-order contributions to a different saddle.
This was then further elaborated on in Ref. [21] to explain similar such structures found in
N = (2, 2) theories on S2, N = 2 theories on squashed S3, and N = 2 theories on squashed
S4. In all these cases,6 the additional structure allows one (when combined with a Cheshire cat
resurgence analysis) to produce the full transseries, with all the nonperturbative data from all
topological sectors, from the perturbative data alone.

In the case of 2d YM, when the gauge group is U(N), one can add a topological theta angle
to the theory. In this case the normal resurgence triangle structure appears. However, it turns
out that even without a topological theta angle there is still a nontrivial resurgence triangle
structure, graded by monopole numbers. In the first part of this paper we will explore this
structure, and the resurgence properties of the partition function within each topological sector,
with and without a deformation. We will then consider what happens when we try to apply
resurgence unaware of the topological grading of the saddles, having derived the transseries
using a method other than saddle decomposition, with some important takeaways. In the latter
part of this paper we will discuss various structures, in this case factorization of the partition
function, and various partial differential equations the partition functions satisfy, that can play
the role of the abovementioned structures in 2d YM. We will thus be able to produce the full
transseries with data from all topological sectors from the perturbative data alone. The partial
differential equations will have other applications as well as allowing us to make a sideways
step, and we will discuss some of these as well.

The structure of the remaining part of this paper is as follows. In Sect. 2 we will discuss the
exact solution of the partition function, our deformation of the theory, and the saddles of
the theory including their topological properties. In Sect. 3 we will then perform a resurgence
analysis of the weak coupling transseries for gauge groups U(2) and SU(2), within a topolog-
ical sector. In Sect. 4 we will then derive the strong coupling transseries in the deformed case,
and analyze its resurgence properties. As we will see, demanding consistency of the weak and
strong transseries representations will in fact allow us to completely fix the transseries param-
eters. Sect. 5 will be devoted to studying what happens when we try to analyze the transseries
without knowledge of the saddles and their topology. We first derive the perturbative series as
an infinite sum of correlators. Without knowledge of the saddles the resurgence structure seems
highly unusual, as we will see, but knowledge of the saddles and their topology clarifies what is
happening. In Sect. 6 we briefly turn our attention to the case of higher N.

In Sect. 7 we will then turn our attention to studying partial differential equations satisfied
by the partition function, and discuss various applications including moving sideways in the
resurgence triangle. Finally, in Sect. 8 we will wrap up with some conclusions and future di-
rections. In Appendix A we give some more details about the cases where the genus h ≥ 1. In

6To be precise, not including the case of N = 2 theories on squashed S4, where a Cheshire cat resur-
gence analysis has yet to be performed.
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Appendix B we discuss an alternative way of deriving the transseries in the SU(2) case using a
method by Zagier [46].

In the latter stages of completing, this work [47] appeared on the arXiv. The authors consider
resurgence in 2d YM with T T̄ deformation (not the deformation we have used), and find a
number of results similar to our own, in particular the emergence of asymptotic series on which
Borel-Écalle resummation can be performed. It would be interesting to consider the relation
between the results found here and those of Ref. [47].

2. Two-dimensional Yang–Mills on genus h surface
Here we begin by recalling some useful facts about 2d YM, its action, saddles, and exact parti-
tion function. The second half of this section will be dedicated to describing our deformation
of the theory, and seeing how various features of the theory are changed once we turn the
deformation on. Much of this section follows the excellent reviews in Refs. [29] and [30].

In this work we will be concerned with the theory defined on a compact surface (though
we will focus mostly on closed surfaces) �h, where h denotes the genus. The theory will have
gauge group G (which for us will be U(N) or SU(N)). Depending on the context there are two
couplings used in the literature: the Yang–Mills coupling gYM, and the string coupling g. These
are related by

g = A gY M, (2)

where A is the area of �h. We will stick with using the string coupling to avoid carrying around
an extra factor of A in all our equations (alternatively of course one may think of this as work-
ing with the Yang–Mills coupling whilst setting the area to be 1). For a theory with gauge group
SU(N), we cannot include a theta angle term,7 and the action is simply given by

SSU (N )(g, h) = 1
2g

∫
�h

tr(F 2). (3)

It will also be helpful to write the action as

SSU (N )(g, h) = i
∫

�h

tr(� ∧ F ) + g
2

∫
�h

tr(�2)K. (4)

Here � is an auxiliary scalar field taking values in the Lie algebra of G, and K is the volume
form.

When the gauge group is U(N) we can add a theta angle term. We will work with the action

SU (N )(g, h, θ ) = 1
2g

∫
�h

tr(F 2) + i
θ

2π

∫
�h

tr(F ). (5)

However, for the sake of avoiding confusion, it is worth mentioning that there is another pop-
ular action found in the literature, given by

SU (N )(g, h, θ ′) = i
∫

�h

tr(� ∧ F ) + iθ ′
∫

�h

tr(� ∧ K ) + g
2

∫
�h

tr(�2)K. (6)

Here again � is a scalar field that can be integrated out. We have put a prime on θ
′
to distinguish

it from the θ in Eq. (5). When one integrates out � one finds the action

SU (N )(g, h, θ ′) = 1
2g

∫
�h

tr(F 2) + θ ′

g

∫
�h

tr(F ) + O
(
(θ ′)2) , (7)

where there is a constant term proportional to (θ
′
)2. These actions, Eqs. (5) and (7), just differ

by θ = 2πθ ′
ig , and removing a constant term from the action. We will focus on Eq. (5) here,

7Recall tr(F ) = 0 for all elements of the Lie algebra of SU(N).
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which results in our expressions being slightly different from some of those commonly found
elsewhere.

2.1. Saddle points and topology
The theory possesses nonperturbative saddles, i.e. nontrivial finite-action solutions to the
Euler–Lagrange equations of motion:

d ∗ F = 0. (8)

These solutions are monopoles, and are completely classified by their first Chern class, or
monopole number. We will work in the torus gauge (see Sect. 2.2) in this paper, which will
result in the relevant monopoles being those where Aμ lies in the Cartan subalgebra. In this
case we have that the solutions are given by

dAi = 2πniK. (9)

Here the index i runs over the elements of the Cartan subalgebra. The action for these solutions
for SU(N) is given by

1
2g

∫
�h

tr(F 2) = 1
2g

N−1∑
i=1

(2πni)2. (10)

For U(N) the action is given by

1
2g

∫
�h

tr(F 2) + i
θ

2π

∫
�h

tr(F ) =
N∑

i=1

(
(2πni)2

2g
+ iθni

)
. (11)

In order to consider if there will be Stokes phenomena between the expansions around each
saddle we need to consider the topology of these solutions. For SU(N) we may naively think
that there will be resurgence between different saddles, as we cannot associate a theta angle to
the monopoles. Likewise for U(N) we would naively expect to find Stokes phenomena occurring
between saddles with the same theta angle dependence.

This turns out not to be correct. Although we cannot associate a theta angle to the SU(N)
saddle configurations, we can associate a different topological quantity. We have already seen
this. These are the monopole numbers. Likewise for saddle configurations in the U(N) case, we
can associate N − 1 more monopole numbers than theta angles (N monopole numbers in total),
and thus there exists a much finer topological grading.

The reason for this is as follows. We actually need to consider the topology of a gauge slice
of the fields

F : �h → (
Agf

μ , �gf ) . (12)

Here gf means gauged fixed. We will see explicitly shortly that we are dealing with Torus bun-
dles. In this case the � fields are fixed to lie in the Cartan subalgebra, rank (N − 1) for SU(N),
and rank N for U(N). Torus bundles are completely classified by their first Chern class (i.e.
monopole number). Thus we can associate one monopole number to each element of the Car-
tan subalgebra, and configurations with different sets of monopole numbers will be in different
topological sectors.

Before concluding that there shouldn’t be Stokes phenomena occurring between saddles we
need to consider whether we expect composite solutions. In cases where there is topological
grading, Stokes phenomena may still occur because of the existence of composite saddles. For
example, in many theories there is no Stokes phenomenon between the perturbative saddle and
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Fig. 2. Heuristic illustration of monopole configurations when the base space is a sphere. The right-hand
plot shows that we can’t separate two monopoles.

Fig. 3. The resurgence triangle for the undeformed SU(2) case. �n is the contribution from the saddle in
the nth topological sector. Using resurgence we can often calculate all of the contents of a column from
one entry of that column, but not the contents of any of the other columns. In this case this is trivial
as there is only one entry in each column. As we move down the vertical axis the value of the action
increases.

an instanton saddle, but there is between the perturbative and instanton-anti-instanton saddles.
We say the instanton-anti-instanton saddle is in the same topological sector as the perturbative
saddle, as it has the same topology. These saddles may be “saddle point at infinity” (see Ref.
[48]), where the approximate saddle point constructed by putting an instanton and an anti-
instanton far away from each other becomes exact when one takes the distance between them to
be infinity. However, in many situations these become exact, finite-size saddles in the quantum
theory (see, e.g. Refs. [48–52]).

In the present case, however, we do not expect such solutions to exist. In order to construct
such solutions we typically need the instantons to be localized to some point on the surface of
the manifold. In this way we can take two solutions and put them far apart. Our monopoles are
not localized to points on the base manifold though (see Fig. 2), and thus such a construction
is impossible. Thus we do not expect to see any Stokes phenomena between any of the saddles
in the theory.

In summary, in the undeformed theory, we have a resurgence triangle structure as is shown
in Fig. 3 for the undeformed SU(2) case. Here we have precisely one saddle in each topological
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sector (so no column of saddles in each sector). The monopole number(s) parameterizes which
sector we are in. The triangle shape in Fig. 3 arises due to the action of the saddle in each sector
increasing as we move away from the perturbative sector.

2.2. Calculating the exact partition function
The exact partition function for 2d YM has been known for some time and can be calculated in
various ways [26,33–36]. In this section we will give an outline of one method for calculating the
partition function. We will follow here the methods of Ref. [29]. This involves a semiclassical
expansion that turns out to be exact. For the reader who is already familiar with this calculation
this section can be skipped. There are of course many ways of calculating the partition function
for 2d YM theory. This method however allows us to motivate our deformation and make
contact with work already conducted on Cheshire cat resurgence [19–21].

Recall in the SU(N) case the Lagrangian can be rewritten as

SSU (N )(g, h) = 1
2g

∫
�h

tr(F 2)

= i
∫

�h

tr(� ∧ F ) + g
2

∫
�h

tr(�2)K. (13)

Here K is the volume form and � is a scalar field, taking values in the Lie algebra, which can
be integrated out to return us to the original Lagrangian.

In order to proceed we now need to gauge fix. We will follow the usual Becchi-Rouet-Stora-
Tyutin (BRST) procedure. First we write

�tT t = �iT i + �αT α, AtT t = AiT i + AαT α. (14)

Here t runs over the whole Lie algebra, i runs over the Cartan subalgebra, and α over the roots.
To fix the gauge to be the torus gauge, we set the off-diagonal elements of � to zero:

�α = 0. (15)

The situation is actually slightly more complicated than this as this cannot always be done
globally. This subtlety will be taken care of for us by summing over monopole backgrounds
shortly, but see Ref. [29] for a more detailed explanation of why this is correct. There is still a
residual gauge symmetry to be fixed, which we’ll return to in a moment. In this gauge the action
is given by

SSU (N )(g, h) =
∫

�h

tr
(

i�tF t + iθ�tK − g
2
�t�tK

)

+
∫

�h

K tr
(
bα�α + c̄α[�t, cα]

)
. (16)

This action is invariant under a BRST symmetry:

Qφα = α(�)cα, Qcα = 0,

Qφi = 0, Qc̄α = bα, Qbα = 0. (17)
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Here, and in what follows, α(�) = α(Ti)�i. The bα integral can then be performed, giving a
delta function that sets the off-diagonal elements of � to be zero, leaving us with the action

SSU (N )(g, h) =
N−1∑
i=1

∫
�h

(
i�idAi + iθ�iK − g

2
�i�iK

)

+
∑

α

∫
�h

(
α(�)AαA−α + α(�)c̄−αcαK

)
. (18)

With this action we will now find the path integral is quite simple to perform.
BRST symmetry is a supersymmetry, in the sense that it is a symmetry between bosonic and

fermionic degrees of freedom. The difference between BRST symmetry and conventional su-
persymmetry is that here the fermions are ghosts, i.e. they are not physical. There are many
cases, starting with the work of Ref. [11], where supersymmetry can be utilized via localization
to calculate the partition function exactly. In most settings BRST symmetry does not enable us
to calculate observables exactly. This is because BRST-localization reduces the path integral to
integrals over gauge orbits, which is still typically an infinite-dimensional path integral. It turns
out, however, that fixing the gauge in 2d YM so drastically reduces the degrees of freedom of
the fields that it leads to a finite-dimensional integral expression for the partition function. Let
us see how this works.

In order to proceed we expand the gauge field around solutions to the Yang–Mills equa-
tions of motion:

dAi = 2πniK. (19)

The quantum fluctuations around these solutions (write Ai = Ai
c + Ai

q, c for classical and q for
quantum) require further gauge fixing, so we demand they satisfy

d ∗ Ai
q = 0, (20)

which is the Landau gauge. At this point we need to add more ghosts to fix the Landau gauge,
and the relevant part of the action is then given by

N−1∑
i=1

∫
�h

2πni�
iK + �idAi

q + bid ∗ Ai
q + Kc̄id ∗ dci. (21)

The integral over Ai
q returns the constraint

d�i + ∗dbi = 0 ⇒ d�i = dbi = 0. (22)

(To see how the RHS follows from the LHS, square the LHS and integrate.) Thus we now only
need to integrate over constant �i modes. The integrals over ci, c̄i, and bi decouple and return
an unimportant constant.

The integrals over Aα and cα can be performed, giving a ratio of 1-loop determinants (this
is just the Faddeev–Popov determinant). See Ref. [29] for the details of how this is calculated.
The result is

detk
(
ad(�t)

)χ (�h )/2
, χ (�h) = 2 − 2h, if detk

(
ad(�t)

) �= 0,

0 if detk
(
ad(�t)

) = 0. (23)

Here χ (�h) is the Euler characteristic of the manifold, t is the Cartan subalgebra, and k the
roots. If χ (�h) > 0 the second line above is irrelevant, as we are just removing a point where
the integrand is 0. But for χ (�h) ≤ 0 it will mean we need to remove a point where the inte-
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grand is singular or 1 from the integration contour. We review one method for achieving this
in Appendix A.

It will be important to note here that h can actually be half-integer, not just integer, in the
undeformed theory. The reason is that one can calculate the partition function on a surface with
an appropriate boundary, or equivalently with the insertion of an appropriate Wilson loop. For
appropriate loops of boundaries the result is equivalent to increasing the genus of the surface
by 1

2 .
Putting this all together then, we are left with the expression for the partition function

ZSU (N )(g, h) =
N−1∏
i=1

∑
ni∈Z

∫ ′

d�ie−2π ini�
i− g

2 �i�i
detk

(
ad(�t)

)χ (�h )/2
. (24)

Here we have ignored an unimportant constant multiplicative factor, and
′
indicates that we are

excluding from the integration contour points where detk(ad(�t)) = 0. As anticipated, gauge
fixing has reduced an infinite-dimensional integration to a simple finite-dimensional integral.

In the case of U(N), the same procedure can be followed in exactly the same way as above.
The result in this case is

ZU (N )(g, h, θ ) =
N∏

i=1

∑
ni∈Z

∫ ′

d�ie−2π ini�
i−iθni− g

2 �i�i
detk

(
ad(�t)

)χ (�h )/2
. (25)

Again there is an unimportant constant we have ignored.
One final thing we need here are the 1-loop determinants. The 1-loop determinant for the

U(N) case is given by

detk
(
ad(�t)

)χ (�h )/2 =
∏

1≤ j<i≤N

(�i − � j )2−2h. (26)

For SU(N) things are not quite so neat, but in this paper we will only need explicitly the results
for SU(2) and SU(3) which are given by

detk
(
ad(�t)

)χ (�h )/2 = �2−2h for SU (2).

detk
(
ad(�t)

)χ (�h )/2 = �2−2h
1 �2−2h

2 (�1 − �2)2−2h for SU (3). (27)

From here there are now two standard ways of solving the integral: one which will result in a
strong coupling description of the partition function, and the other which will result in a weak
coupling description. We will look at each in turn.

2.2.1. The strong coupling transseries. To get the strong coupling representation of the par-
tition function we need to use the standard identity∑

ni∈Z

ei ni�
i

2π =
∑
mi∈Z

δ(�i − 4π2mi). (28)

Applying this to Eq. (24) we find

ZSU (N )(g, h) =
N−1∏
i=1

⎛
⎝∑

mi∈Z

⎞
⎠

′

detk (ad(mt))
2−2h e−gm2

i /2. (29)

Here again the
′

indicates that we are excluding from the sum points where detk(ad(mt)) = 0.
Specializing to SU(2) this is

ZSU (2)(g, h) =
∑

m∈Z/0

m2−2he−gm2/2, (30)
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and for SU(3) we have

ZSU (3)(g, h) =
⎛
⎝∑

m1∈Z

∑
m2∈Z

⎞
⎠

′

m2−2h
1 m2−2h

2 (m1 − m2)2−2he−g(m2
1+m2

2 )/2. (31)

For the U(N) case things are much the same. Substituting Eq. (26) into Eq. (25) and applying
Eq. (28) the result we get is

ZU (N )(g, h, θ ) =
⎛
⎝∑

m1∈Z

· · ·
∑

mN∈Z

⎞
⎠

′ ⎛
⎝ ∏

1≤i< j≤N

(mi − mj )2−2h

⎞
⎠ e

−
N∑

i=1
g(mi−θ/2π )2/2

. (32)

Both of these are clearly transseries representations of the partition function. Moreover, they
are also lacking an asymptotic perturbative series (or in fact any series at all) attaching to each
exponential. For the weak case this is expected as all the saddles are in different topological
sectors. For the strong case we do not have a strong coupling effective action, so we cannot say
what saddles there are that may be responsible for the different contributions to the transseries.
However, we can see that they do not seem to interact via resurgence and exhibit Stokes phe-
nomena.

A comment is in order here. The expression usually found in the literature is

ZG(g, h, θ ) =
∑

R

(dim R)2−2he− g
2C2(R)+iθ ′C1(R). (33)

Here we are summing over representations R of the Lie algebra of G, and C1(R) and C2(R)
are the first and second Casimirs. We have written θ

′
because the difference in θ dependence

between Eq. (32) and Eq. (33) is the difference between Eq. (5) and Eq. (6) which we have already
explained. After this adjustment, to get between our expression and the standard expression
found in the literature is then a matter of substituting in expressions for the Casimirs, shifting
the dummy variables in the sums appropriately, and absorbing a factor into the multiplicative
constant we are suppressing.

For us the most important cases are SU(2) and U(2). For SU(2) we can label representations
by a single integer m, and the relevant data are then

dim R = m,

C1(R) = 0,

C2(R) = m2

2
− 1

2
,

for m = 1, 2, 3, . . . . (34)

To get to U(2) we use the relation

U (N ) = SU (N ) × U (1)/ZN . (35)

In other words we decompose representations of U(2), R, into representations of SU(2), R,
along with a U(1) charge given by q = m + 2r, for r ∈ Z. We then have

dimR = m,

C1(R) = q,

C2(R) = m2

2
− 1

2
+ q2

2
,

for m = 1, 2, 3, . . . , q = m + 2r. (36)
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Using these data it is now a simple exercise to show that for SU(2) and U(2), Eq. (33) reduces to
Eq. (29) and Eq. (32), respectively. See, e.g. Ref. [53] for further explanation of this, including
the case of other gauge groups.

2.2.2. The weak coupling case. The second way of solving Eqs. (24) and (25), first given by
Witten [54], is simply solving the Gaussian integrals as they are, without using the identity (28).
This results in a weak coupling, semiclassical expansion of the partition function.

For the sake of simplicity, we will mostly only consider the case where the genus (actually the
effective genus, see next section) is less than 1, to avoid the complication of removing the points
where the Faddeev–Popov determinant is zero. However, all our conclusions carry over to h ≥
1, which we show in Appendix A.

Let us illustrate this here for the SU(2) and U(2) cases, for h = 0. For SU(2) we have that Eq.
(24) becomes

ZSU (2)(g, h = 0) =
∑
n∈Z

∞∫
−∞

d� �2e−2π in�− g
2 �2

=
∑
n∈Z

√
2πe− (2πn)2

2g (g−3/2 − 4n2π2g−5/2). (37)

This is a weak coupling transseries. Again we see that there is no asymptotic series attached
to each exponential. Thus there are no Stokes phenomena between saddles, as expected (see
Fig. 3).

In the U(2) case we have

ZU (2)(g, h = 0, θ ) =
∑

n1,n2∈Z

∞∫
−∞

d�1

∞∫
−∞

d�2(�1 − �2)2e−2π in1�1−2π in2�2− g
2 (�2

1+�2
2 )−iθ (n1+n2 )

=
∑

n1,n2∈Z

4πe− 1
2g ((2πn1 )2+(2πn2 )2 )−iθ (n1+n2 )(g−2 − 2π2(n1 − n2)2g−3). (38)

Again, this is a weak coupling transseries, where the perturbative series attached to each expo-
nential is not asymptotic.

In the weak coupling case we have a semiclassical explanation for the nonperturbative contri-
butions to the transseries, i.e. the saddles discussed in Sect. 2.1. For the strong coupling case, to
find such an explanation, we would need to know the strong coupling effective action. For this
work, we will content ourselves with working with the transseries without looking for saddle
descriptions of the nonperturbative contributions in the strong coupling case.

2.3. The deformation
We now introduce the deformation of the theory we will study in this paper. In Refs. [19–21]
a deformation was shown to work in supersymmetric or quasi-exact-solvable quantum me-
chanics, N = (2, 2) on S2, and N = 2 on a squashed S3, where the effective parameters for the
number of bosons and the number of fermions were deformed to be slightly different from each
other, such as to slightly break supersymmetry. In the latter two papers, it was also possible to
deform the theory such that the effective parameter for the number of bosons and fermions
was equal, but noninteger, revealing an asymptotic perturbative series.
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In the quantum mechanical case [19], the authors were also able to show how this deformation
in the effective parameter could be produced by adding a deformation term to the action in the
path integral. This was not possible in Refs. [20,21]. In Ref. [19] certain fields, the fermions in
their case, could be integrated out, resulting in an additional term in the bosonic effective action.
Adding this same term to the action with a noninteger coefficient mimics having a noninteger
number of fermions.

For 2d YM we can also find a bona fide deformation of the UV action of the theory. Like
the case of quantum mechanics this can be seen to simply be adding the determinant arising
from integrating out certain fields (i.e. that of Eq. (23)) back into the action, with a noninteger
coefficient. This happens to mimic analytically continuing the genus of the surface on which the
theory lives so that it is noninteger. Actually, this turns out to be almost identical to deforming
the effective parameter for the number of bosonic and fermionic fields so that it is noninteger as
well. Both amount to setting the exponent of the ratio of 1-loop determinants to be noninteger.
In this case that exponent is χ (�h). In the cases studied in Refs. [20,21] the exponent is the
effective parameter for the number of chiral multiplets. This naturally prompts the question,
can we use the same trick to find a genuine deformation of the UV action in the cases studied
in Refs. [20,21], but we won’t consider this question in this work.

It was noted in Ref. [35] that we can consider a family of theories related to 2d YM by adding
any symmetric polynomial of � to the action. For example, we could add any term of the
form tr(�i) j to the action and get another valid theory. Adding such terms gives us a way of
deforming the theory.

The particular deformation of the theory we want to consider in this work is given by

δ

∫
K log det

⎛
⎜⎜⎜⎜⎜⎜⎝

tr(�2N−2) tr(�2N−3) . . . tr(�N ) tr(�N−1)
tr(�2N−3) tr(�2N−4) . . . tr(�N−1) tr(�N−2)

...
...

. . .
...

...
tr(�N ) tr(�N−1) . . . tr(�2) tr(�)

tr(�N−1) tr(�N−2) . . . tr(�) N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (39)

This may look odd but actually it is nothing but the Faddeev–Popov determinant (23), moved
into the action (hence the logarithm), with a new coefficient δ.

Calculating the partition function goes through unhindered in the exact same way as achieved
in Sect. 2.2. The effect on the exact formula for the partition function is to shift h:

h → h + δ. (40)

For example, for the SU(2) case, the deformation is given by

δ

∫
K log

(
tr(�2)

)
. (41)

The localized partition function is then given by

ZSU (2)(g, h, δ) =
∑
n∈Z

∞∫
−∞

d� �2−2he−2π in�− g
2 �2−δ log(�2 )

=
∑
n∈Z

∞∫
−∞

d� �2−2(h+δ)e−2π in�− g
2 �2

. (42)
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So we have found a genuine deformation of the theory that in the effective description gives
rise to a shift in the genus. This will allow us to consider the theory with the effective genus
noninteger.

Before moving on, two comments are in order. First, in the remainder of this paper, we will
denote

h̃ = h + δ. (43)

We will work with h̃ < 1 to avoid the complications described in Sect. 2.2.2, but as explained
there, all conclusions carry over simply to the case h̃ ≥ 1. Second, it is worth noting that this
deformation is a quantum deformation. The deformation used in the original work on Cheshire
cat resurgence [19] was also a quantum deformation. With a simple rescaling of the fields we
can rewrite the action as (say for SU(N))

SSU (N ) = 1
g

⎛
⎜⎜⎜⎜⎜⎜⎝

i
∫

�h

tr(� ∧ F ) + 1
2

∫
�h

tr(�2)K +

+ g δ

∫
K log det

⎛
⎜⎜⎜⎜⎜⎜⎝

tr(�2N−2) tr(�2N−3) . . . tr(�N ) tr(�N−1)
tr(�2N−3) tr(�2N−4) . . . tr(�N−1) tr(�N−2)

...
...

. . .
...

...
tr(�N ) tr(�N−1) . . . tr(�2) tr(�)

tr(�N−1) tr(�N−2) . . . tr(�) N

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

. (44)

From this expression for the action we can clearly see the additional term we have added is
order g.

The fact that this is a quantum deformation has important consequences. For starters any sad-
dles will not be “semiclassical” saddles in the traditional sense, but rather saddles of a quantum
action. We will mostly defer the discussion of this to Ref. [18] where we will study the Picard–
Lefschetz decomposition of this theory. For now the key thing is that the O(g) and higher cor-
rections to the saddles we are about to discuss won’t appear in the exponent of the exponential
factors of the contributions in the transseries (once we have expanded to get perturbative series
for each sector). Rather they will contribute to the perturbative series itself in each sector. In
other words, the action of these solutions can be expanded as

1
g

S(g, h̃) = 1
g

S0(h̃) + S1(h̃) + gS2(h̃) + . . . . (45)

However, the exponent of the exponential factors of the contributions in the transseries will
simply be

1
g

S0(h̃). (46)

We could of course send δ → δ
g , and our deformation would no longer be quantum. For a

number of reasons though, including making contact with previous work, and the fact that this
deformation arises naturally upon integrating out Aα and cα, we will work with the quantum
deformation here and in Ref. [18].
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2.4. New saddles
It now turns out that the deformation we have just introduced has actually introduced new
saddle points into the theory (now saddles of the quantum action rather than saddles of the
classical action). To start let us consider the SU(2) theory. The Euler–Lagrange equations of
motion after the deformation are given by

d ∗ � = 0,

iF + g�K + 2δ
�

tr(�2)
K = 0. (47)

The first equation means that we need to consider constant �. Taking the adjoint exterior
derivative of the second equation, and using the first equation to delete the d∗� terms, we find
that in the deformed case we still have at the saddle points

d ∗ F = 0. (48)

That is, our saddles will still be classified by monopole number. Working in the torus gauge
again, we restrict � to be in the Cartan subalgebra. For SU(2) this gives us just one scalar field
to work with, �. Substituting in the monopole solutions (9) we are thus left to solve

2π in + g� + 2δ

�
= 0. (49)

This is just a quadratic equation. The saddles are thus given by

dA = 2πnK, � = −i
g

(
πn +

√
π2n2 + 2δg

)
,

dA = 2πnK, � = −i
g

(
πn −

√
π2n2 + 2δg

)
. (50)

The first of these two solutions is the same as the undeformed solution to order g0. The second is
not a solution in the undeformed theory, rather, it makes an appearance in the deformed theory
only. Its action is 0 at order g0, i.e. it contributes to the perturbative part of the transseries (but
has a distinct contribution for each n). In other words, these solutions have respective actions

S[Aμ, �] = (2πn)2 + O(g)
2g

,

S[Aμ, �] = 0 + O(g)
2g

. (51)

They thus arrange themselves into the resurgence triangle structure shown in Fig. 4. For the
remainder of this work we will refer to the first of these solutions as the “nonperturbative
solution,” and the second as the “perturbative solution,” within each topological sector.

For U(2) things follow through in similar fashion, but now we need two integers to
parametrize solutions, as there are two elements of the Cartan subalgebra. The solutions are
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Fig. 4. The resurgence triangle for the deformed SU(2) case. �(p)
n is the contribution from the perturbative

saddle in the nth topological sector, �
(np)
n is the contribution from the nonperturbative saddle in the nth

topological sector, and �
(n,p)
0 is the contribution from the perturbative and nonperturbative saddles in

the 0th topological sector. Using resurgence we can get all of the contents of a column from one entry of
that column, but not the contents of any of the other columns. As we move down the vertical axis the
value of the action increases.

now given by

dA1 = 2πn1K, dA2 = 2πn2K, �1 = −i
2g

(
3πn1 + πn2 −

√
π2(n1 − n2)2 + 4δg

)
,

�2 = −i
2g

(
πn1 + 3πn2 +

√
π2(n1 − n2)2 + 4δg

)
;

dA1 = 2πn1K, dA2 = 2πn2K, �1 = −i
2g

(
3πn1 + πn2 +

√
π2(n1 − n2)2 + 4δg

)
,

�2 = −i
2g

(
πn1 + 3πn2 −

√
π2(n1 − n2)2 + 4δg

)
. (52)

Again the first of these saddles in the δ → 0 limit is just the monopole saddle, and the second is
a new saddle that only exists in the deformed theory. These solutions have respective actions

S[Aμ, �] = (2π )2
(
n2

1 + n2
2

) + O(g)

2g
+ iθ (n1 + n2),

S[Aμ, �] = ((n1 + n2)π )2 + O(g)
g

+ iθ (n1 + n2). (53)

One can draw a resurgence triangle structure similar to that of Fig. 4, although now the fig-
ure would need to be 3-dimensional.

Thus for both the SU(2) and U(2) cases we have doubled the number of saddles for each n
or (n1, n2). Also the new saddles have an action smaller than that of the original saddles, so
the new saddles will dominate in the transseries. For the new SU(2) saddles, and the new U(2)
saddles in the n1 + n2 = 0 sector, the action of the saddle is 0 (plus order g), so it will show up
in the transseries as a perturbative contribution.

For higher N things continue in this way. It is easy to see that the vector field part of the
equations of motion will always be given by the monopole solutions. The solutions to the scalar
field part will be given by solutions to a polynomial in the constant modes of the Cartan-
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subalgebra elements of the field. For higher N the order of this polynomial grows, and we can
no longer analytically write down all the solutions due to the Abel–Ruffini theorem.

2.5. Integrals and contours
It will be convenient to introduce the following basis of integrals:

Zμ(g, h̃) =
∫

d� �2−2h̃eiμ�− g
2 �2

. (54)

For the SU(2) and U(2) cases we will be able to write all the relevant integrals in this form.
But we need to be careful about what contour we take. In the undeformed case the contour

will just be the real axis. However, our deformation has introduced a singularity in the action
at the origin, so we now need to use a different contour. For this work we choose to deform
the contour so it passes just above the singularity at the origin. The transseries parameters are
dependent on this choice. When we consider the Picard–Lefschetz decomposition of the path
integral in Ref. [18] we will see an explanation of this due to intersection numbers.

Finally let us note that it is now easy to relate this function to the parabolic cylinder function.
A standard integral representation of the parabolic cylinder function U(a, z) is [55]

U (a, z) = e
1
4 z2

i
√

2π

c+i∞∫
c−i∞

dt̃ e−zt̃+ 1
2 t̃2

t̃−a− 1
2 . (55)

Here c > 0. If we make the substitution � → −i� in Eq. (54) and do some rearranging, we see
that Zμ(g, h̃) can be written as

Zμ(g, h̃) = −i
√

2πe− μ2

4g

(
i√
g

)3−2h̃

U
(

2h̃ − 5
2
,

μ√
g

)
. (56)

Thus we see that the partition functions in the SU(2) and U(2) cases will be functions of
parabolic cylinder functions. The resurgence properties of parabolic cylinder functions are well
studied (see, e.g. Ref. [40]), but as we will see the resurgence story of 2d YM is not limited to
this.

3. Resurgence in deformed Yang–Mills theory: weak coupling semiclassical transseries
In this section we explore the resurgence structure of the weak coupling semiclassical
transseries. We first review the resurgence structure of the parabolic cylinder function U(a, z),
and then apply this in the SU(2) and U(2) cases.

3.1. Review: resurgence in U(a, z) parabolic cylinder function
As we have discussed, in many cases we will be able to write the partition function in terms
of the parabolic cylinder function U(a, z). It will therefore be efficient to review the resurgent
properties of this function here. Later we will be able to make use of this in a number of con-
texts.

Consider again the integral representation of U(a, z) presented in Eq. (55). We have two cases
to consider: the case when R(z) > 0 and the case when R(z) < 0. The exponent in the integrand
of Eq. (55) has a saddle at t̃ = z. For R(z) > 0 the contour can be deformed to pass through
the saddle with no added complications. For R(z) < 0, in deforming the contour we pick up a
contribution from the branch point at the origin. Thus in the first of these cases we only have
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Fig. 5. Plots of the contours for the parabolic cylinder function integral for the real part of z being R(z)
> 0 and R(z) < 0. For R(z) < 0 we also distinguish the cases for the imaginary part of z being 
(z)
> 0 and 
(z) < 0, which we have plotted for the infinitesimal imaginary part. The blue line shows the
original contour. The green lines and purple lines show the contours we integrate over. The green line
passes through the saddle point, and the purple around the branch cut. Solid lines are on the same sheet
as the original contour, and the dashed lines on the neighbouring sheet. The green cross represents the
saddle point, and the red cross the branch point, with the red dashed line representing the branch cut.

one contribution to the transseries for the parabolic function, and in the latter case we have
two. These are plotted in Fig. 5.

For the case R(z) > 0 we first deform the contour to pass through the saddle. Changing
variables so t̃ = 0 is at the saddle point we are left with the integral

U (a, z) = e− 1
4 z2

i
√

2π

i∞∫
−i∞

dt̃ (t̃ + z)−a− 1
2 e

1
2 t̃2

. (57)

Taylor expanding (t̃ + z)−a− 1
2 for large z, and then performing the remaining Gaussian integral,

we find the standard asymptotic expansion of U(a, z) for large z:

U (a, z) ∼ e− 1
4 z2

z−a− 1
2

∞∑
j=0

(−1) j (a + 1/2)2 j

j!(2z2) j
, (x)n = �(x + n)

�(x)
. (58)

This is a factorially divergent, alternating sum. For us this will correspond to the series ex-
pansion around the nonperturbative term of the transseries in each sector. Thus, the series
being alternating and factorially divergent is good news; we expect to find a branch cut on the
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negative real axis of the Borel plane corresponding to the contribution from the perturbative
contribution to the transseries.

For R(z) < 0 things differ as follows. As already stated, when deforming the integral to pass
through the saddle we pick up a contribution from the branch cut originating at the origin.
The contribution coming from the saddle is identical to the case R(z) > 0. So we just need to
calculate the contribution from the branch cut.

In order to calculate the perturbative series in large z for the contribution coming from the
branch cut, we first Taylor expand the e

1
2 t̃2

term in the integral:

U (a, z) ∼
∞∑
j=0

(1/2) j

j!
e

1
4 z2

i
√

2π

c+i∞∫
c−i∞

dt̃ e−zt̃t̃2 j−a− 1
2 . (59)

As we have negative z we can now close the contour around the branch point at the origin and
negative real axis, leaving us with a simple integral which returns a Gamma function. Thus we
find the following transseries for U(a, z):

U (a, z) ∼
√

2π

�(a + 1/2)
e

1
4 z2

za−1/2
∞∑
j=0

(1/2 − a)2 j

j!(2z2) j

× ∓ ie±iπae− 1
4 z2

z−a− 1
2

∞∑
j=0

(−1) j (a + 1/2)2 j

j!(2z2) j
. (60)

The upper sign of the Stokes constant will be for 
(z) > 0 and the lower sign for 
(z) < 0. For
us this new contribution will correspond to that of the perturbative saddle. It is a nonalter-
nating factorially divergent asymptotic series, as expected. This will allow us to calculate the
nonperturbative data from the perturbative data.

Let us now study how such a resurgence analysis of the above perturbative series works. We
first focus on the series in what will become our perturbative sector:

Up(a, z) =
√

2π

�(a + 1/2)
e

1
4 z2

za−1/2
∞∑
j=0

(1/2 − a)2 j

j!(2z2) j
. (61)

We choose a Borel-transform that divides each term by �(j − a/2 + 1/4):

∞∑
j=0

(1/2 − a)2 j

j!(2z2) j
= (

2z2) 1
4 − a

2

∞∫
0

dt
∞∑
j=0

(1/2 − a)2 j

j!�
(

j − a
2 + 1

4

)t j− a
2 − 3

4 e−2z2t

= (
2z2) 1

4 − a
2

∞∫
0

dt
t− a

2 − 3
4 (1 − 4t)

a
2 − 3

4

�
( 1

4 − a
2

) e−2z2t. (62)

The Borel plane has a cut starting at t = 1
4 . Thus we can see from the Borel plane that there is

a nonperturbative part with exponential part e− 1
4 z2

. We can calculate the imaginary part of the
jump as we cross the Stokes line in the usual way, by calculating the discontinuity across this
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cut:

Disc0(a, z) =
√

2π

�(a + 1/2)
e

1
4 z2

za−1/2 (
2z2) 1

4 − a
2

×
⎛
⎝ ∞+iε∫

0

−
∞−iε∫
0

⎞
⎠ dt

t− a
2 − 3

4 (1 − 4t)
a
2 − 3

4

�
( 1

4 − a
2

) e−2z2t

= ∓
(

eiπ( a
2 − 3

4 ) − e−iπ( a
2 − 3

4 )
) √

2π

�(a + 1/2)
e− 1

4 z2
za−1/2 (

2z2) 1
4 − a

2

×
∞±iε∫
0

dt

(
t + 1

4

)− a
2 − 3

4 (4t)
a
2 − 3

4

�
( 1

4 − a
2

) e−2z2t. (63)

In the second line we have written the discontinuity in terms of the integral either above or
below the cut, with an appropriate jump in the imaginary part of the transseries parameter
dressing this. Note, the discontinuity in the first line begins at t = 1/4, so the integrals exactly

cancel till then, i.e. in the first line we really only have the integrals
∞±iε∫

1
4

. To get to the second

line we have then changed variables, t → t + 1/4, so the lower limit returns to 0 and we pull out
the exponential term that dresses the nonperturbative contribution. We will see momentarily
that this ambiguity is exactly cancelled by the ambiguity in the nonperturbative sector.

We can turn this discontinuity into a perturbative series expansion around the nonperturba-
tive contribution by expanding the (t + 1

4 )−
a
2 term in the integrand and performing the inte-

gral, which just returns a Gamma function. The result is, up to fixing the transseries parameter,
identical to Eq. (58). In other words, the Borel-Écalle resummation procedure has allowed us
to calculate the nonperturbative part of the transseries from the perturbative part, up to the
transseries parameter.

More briefly let us now consider a resurgence analysis of the nonperturbative contribution
to the transseries. Starting from Eq. (58) we choose a Borel transformation that divides each
term by �(j + a/2 + 1/4). In this way we have

U (a, z) ∼ e− 1
4 z2

z−a− 1
2

∞∑
j=0

(−1) j (a + 1/2)2 j

j!(2z2) j

= e− 1
4 z2

z−a− 1
2
(
2z2) a

2 + 1
4

∞∫
0

dt
∞∑
j=0

(−1) j (a + 1/2)2 j

j!�
(

j + a
2 + 1

4

)t j+ a
2 − 3

4 e−2z2t

= e− 1
4 z2

z−a− 1
2
(
2z2) a

2 + 1
4

∞∫
0

dt
t

a
2 − 3

4 (1 + 4t)−
3
4 − a

2

�
( a

2 + 1
4

) e−2z2t. (64)

We have a cut beginning at t = − 1
4 corresponding to the perturbative contribution to the

transseries. Indeed, after a change of coordinates for t, we see we have the same integrand
in the Borel plane as before. As above we can calculate the discontinuity across the cut to find
the perturbative contribution to the transseries up to the transseries parameter.

From Eq. (64) it is also simple to see that the ambiguity in the Borel resummation of the
perturbative sector is exactly cancelled by the jump in the transseries parameters in the non-
perturbative sector. Applying the duplication formula for the Gamma function, we see that the
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jump (63) is exactly canceled by Eq. (64) once we have dressed the latter with the transseries
parameters from Eq. (60).

3.2. SU(2) resurgence analysis
We have seen that we can write the partition function of undeformed 2d YM as transseries
in two ways: as a strong coupling transseries and as a weak coupling transseries. The weak
coupling case has an interpretation as a sum over contributions from saddle points. In both
cases the perturbative series encountered in each contribution, in the undeformed case, are not
asymptotic but rather truncating. In the strong case this truncation is rather severe, to just
one term (i.e. a number). This is fine, as we were not expecting to find resurgence phenomena
occurring due to topological grading.

In this section will begin to discuss how this changes when we deform the theory. Here we
focus on the gauge group SU(2), and in the next subsection we will tackle the case of U(2).
With the deformation we have introduced new saddles into the theory. We will see that we
now have nontruncating asymptotically divergent series in each contribution to the transseries.
We also have the manifestation of Cheshire cat phenomena occurring for specific values of
the deformation parameter. As discussed in the introduction, there are multiple approaches to
deriving the weak coupling expansions we can study. In this section we will be concerned with
the semiclassical expansion around each of the saddles.

Thanks to the results of Sects. 2.5 and 3.1 most of the hard work is now over. We can write
the SU(2) partition function in terms of the parabolic cylinder functions U(a, z) as follows:

ZSU (2)(g, h̃) =
∞∑

n=−∞
Z−2πn(g, h̃)

=
∞∑

n=−∞
−i

√
2πe− (2πn)2

4g

(
i√
g

)3−2h̃

U
(

2h̃ − 5
2
, −2πn√

g

)
. (65)

For the semiclassical expansion of the partition function we can restrict ourselves to working
within a single topological sector, n. We can then use Eqs. (58) and (60) to derive the perturbative
series and nonperturbative series in each topological sector. Working with g real and positive
for the moment, for n > 0 we thus have

Z−2πn(g, h̃) = −ieπ ih̃ (2π )2h̃−2n2h̃−3

�(2h̃ − 2)

∞∑
j=0

(3 − 2h̃)2 j

j!

( g
8π2n2

) j

− e±2π ih̃ e2π h̃

√
n

(
2πn

g

) 5
2 −2h̃

e− (2πn)2

2g

∞∑
j=0

(−1) j (2h̃ − 2)2 j

j!

( g
8π2n2

) j
. (66)

Here we have the nonperturbative contribution coming from the monopole, now dressed with a
divergent asymptotic series, and also a contribution coming from the new perturbative saddle.
For n < 0 we have

Z−2πn(g, h̃) = −e2π h̃

√
n

(
2πn

g

) 5
2 −2h̃

e− (2πn)2

2g

∞∑
j=0

(−1) j (2h̃ − 2)2 j

j!

( g
8π2n2

) j
. (67)

In this case we only have the nonperturbative saddle, as discussed in Sect. 3.1. For generic values
of the deformation parameter we can perform a Borel-Écalle analysis of each of these series to
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find the other contributions to the transseries, up to the transseries parameters, following the
steps in Sect. 3.1.

Here a comment is in order. The above transseries are for real and positive g. As we vary the
phase of g, the second argument of the parabolic cylinder U(a, z) function varies in phase. As
the real part of z crosses over from positive to negative values, we again get Stokes phenomena.
This jump in the transseries parameters effectively swaps the R(n) > 0 and R(n) < 0 transseries
with each other.

Let us now consider what happens as we vary the deformation parameter. The above series
truncate for any value of 2 − 2h̃ which is a nonnegative integer. This is due to the factor of
�(2h̃ − 2) in the denominator of both the contributions to the transseries (in the nonperturba-
tive contribution this is coming from the (2h̃ − 2)2 j factor). At these points the nonperturbative
series truncate to a finite number of terms, and the perturbative contribution vanishes entirely
(not the saddle itself, just its contribution).

We also have that when 2h̃ − 3 is a nonnegative integer, the perturbative series in the pertur-
bative sector truncates to few terms. These are the terms we have shown how to calculate in
Appendix A. In this case the nonperturbative sector doesn’t truncate, and we can still derive
the perturbative data from the nonperturbative data, but not vice versa. Note also that at these
points the jump in the transseries parameters vanishes. This is to be expected as there is no
ambiguity in the Borel-resumption of the perturbative sector.

We can make use of the following formula to calculate the truncated perturbative series:

lim
ε→0

�(−m + ε)
�(−n + ε)

= (−1)(m−n) �(n + 1)
�(m + 1)

. (68)

Thus, e.g. for the case h̃ = 0 we have no perturbative contribution, and the nonperturbative
contribution is given by

Z−2πn(g, 0) =
√

2πe− (2πn)2

2g (g−3/2 − 4n2π2g−5/2). (69)

This is exactly what we saw in Eq. (37).
In summary, in the SU(2) case we have found that upon deforming the theory we both in-

troduced new saddles into the theory, and rendered the previously truncating weak coupling
perturbative series in each sector of the transseries now divergent asymptotic. For generic val-
ues of the deformation parameter this leads to us being able to analyze the transseries using
Borel-Écalle resummation. Indeed, for generic values of the deformation parameter we can
calculate all the data in a given topological sector of the transseries from the contribution of a
single saddle in that sector.

However, at specific values of the deformation parameter we land on a Cheshire cat point.
Here the series truncate, and Borel-Écalle resummation is trivial. At these points the effective
genus is an integer or half-integer, i.e. the partition function is identical to that of undeformed
YM on a different genus surface, perhaps with boundaries or Wilson loop insertions.

Thus we have two different descriptions of the points where the perturbative series truncate.
In undeformed 2d YM (e.g. h̃ = 1 with h = 1 and δ = 0) the extra saddles in our deformed
theory don’t exist, and there is only one saddle in each sector, thus no nontrivial resurgence
structure. However, they are still present in our deformed theory (e.g. h̃ = 1 with h = 0 and δ

= 1), even at the Cheshire cat points, but at the Cheshire cat points they don’t contribute. The
latter of these two descriptions is Cheshire Cat resurgence. There is a nice geometrical reason
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for the perturbative saddles not contributing at the Cheshire cat points, which will be presented
in Ref. [18].

3.3. U(2) resurgence analysis
We now turn to the U(2) case. In this case we have an explicit topological angle, which splits the
partition function into topological sectors as usual, but also the topological grading discussed
in Sect. 2.1. Upon deforming we have new saddles, now two saddles in each topological sector.

We have that the U(2) partition function can be written as:

ZU (2)(g, h, θ ) =
∑

n1,n2∈Z

∞∫
−∞

d�1

∞∫
−∞

d�2(�1 − �2)2−2h̃e−2π in1�1−2π in2�2− g
2 (�2

1+�2
2 )−iθ (n1+n2 ).(70)

We can analyze the resurgence structure of this by making the following change of coordinates:

x = �1 − �2, y = �1 + �2, (71)

which gets us to the expression

ZU (2)(g, h, θ ) = 1
2

∑
n1,n2∈Z

∞∫
−∞

dx

∞∫
−∞

dy x2−2h̃e−π ix(n1−n2 )−π iy(n1+n2 )− g
4 (x2+y2 )−iθ (n1+n2 )

=
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2 ))2

g −iθ (n1+n2 )

∞∫
−∞

dx x2−2h̃e−π ix(n1−n2 )− g
2 x2

=
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2 ))2

g −iθ (n1+n2 )Z(n2−n1 )π

(g
2
, h̃

)
. (72)

In the last line we have managed to write the partition function in terms of Zμ(g, h̃) integrals,
which as we have seen can be written in terms of parabolic cylinder functions.

Thus from here the resurgence story for gauge group U(2) in each topological sector is almost
identical to that of SU(2), the difference being a different pre-factor and a change of arguments
in the Zμ(g, h̃) functions. Within each topological sector of Eq. (72), i.e. each choice of (n1, n2),
we find two contributions, with the exponent of the exponential factor given by

S(g, θ ) = (π (n1 + n2))2

g
+ iθ (n1 + n2)

S(g, θ ) = (π (n1 + n2))2

g
+ (π (n1 − n2))2

g
+ iθ (n1 + n2)

= 2
((

n2
1 + n2

2

))
π2

g
+ iθ (n1 + n2). (73)

This is exactly as we expected from Eq. (53).
Moreover, in the U(2) case we have Cheshire cat phenomena, as in the SU(2) case, for the

same values of the deformation parameter. At each of these points we have two descriptions,
one being undeformed Yang–Mills with no new saddles, on a different genus surface, perhaps
with Wilson loop insertions or boundaries. The other description is that of our deformed theory
with new saddles included but exhibiting Cheshire cat resurgence phenomena. Again the disap-
pearance of the additional saddles in the deformed theory has a nice geometrical explanation,
which we will present in Ref. [18].
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4. Resurgence in deformed Yang–Mills theory: strong coupling transseries
In this section we now turn our attention to the strong coupling transseries for deformed Yang–
Mills. We will focus here just on the SU(2) gauge group. Making the substitutions as in Eq. (71)
things carry over to U(2) just as before. We will first start by deriving the transseries and analyz-
ing its resurgence properties. It turns out that in the case of 2d YM, we can use the consistency
of the strong and weak transseries representations of the partition function to completely de-
termine the transseries parameters, which resurgence on its own will normally not accomplish.
Our weapon of choice to achieve this is Poisson resummation. We will explore this after we
have explored the strong coupling transseries.

4.1. Strong coupling
Let us now turn our attention to the strong coupling transseries in the case of SU(2). The
partition function (30) looks, even for a noninteger genus, like there is a truncating expansion
in every sector. However, the story is slightly more complicated than this. Let us begin with the
integral representation of the partition function and begin by performing the sum in a different
manner to before:

ZSU (2)(g, h̃) =
∑
n∈Z

∞∫
−∞

d� �2−2h̃e−2π in�− g
2 �2

= (1 + e−2π ih̃)

⎛
⎝21/2−h̃�(3/2 − h̃)g−3/2+h̃ +

∞∑
n=1

∞∫
−∞

d� �2−2h̃e−2π in�− g
2 �2

⎞
⎠

= (1 + e−2π ih̃)

⎛
⎝21/2−h̃�(3/2 − h̃)g−3/2+h̃ +

∞∫
−∞

d� �2−2h̃ e− g
2 �2

e2π i� − 1

⎞
⎠ . (74)

Here we have separated out the n = 0 case, then turned the remainder of the sum into a sum
over positive n only by making a substitution � → −� for the case of negative n, and then we
have performed the sum using the geometric series summation formula.

Next we focus on the remaining integral, and expand the integrand as follows:
∞∫

−∞
d� �2−2h̃ e− g

2 �2

e2π i� − 1
=

∞∫
−∞

d� e− g
2 �2

�2−2h̃

⎛
⎝−1

2
+

∞∑
j=0

B2 j (2π i�)2 j−1

(2 j)!

⎞
⎠

= − (1 + e−2π ih̃)
2

21/2−h̃�(3/2 − h̃)g−3/2+h̃

+ (1 − e−2π ih̃)
1

21+h̃π i

∞∑
j=0

B2 j (−8π2) j

(2 j)!
�(1 + j − h̃)gh̃−1− j . (75)

Substituting this into Eq. (74) we find

ZSU (2)(g, h̃) = (1 − e−4π ih̃)

(
2−1/2−h̃�(3/2 − h̃)g−3/2+h̃

+ 1

21+h̃π i

∞∑
j=0

B2 j (−8π2) j

(2 j)!
�(1 + j − h̃)gh̃−1− j

⎞
⎠ . (76)

We have found a perturbative expansion of the partition function in the strong coupling limit.
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As j → ∞ we have

B2 j ∼ (−1) j+1 2(2 j)!
(2π )2 j

. (77)

Thus this perturbative series is nonalternating, and thus non-Borel summable. We have an
asymptotic divergent series. Thus we expect to be able to apply Borel-Écalle resummation to be
able to determine the other contributions to the transseries.

The Cheshire cat points are again half-integers: h̃ ∈ Z/2. In these limits (1 − e−4π ih̃) → 0.
Thus the deformations where the partition function is identical to that of the undeformed
theory on a different genus surface, perhaps with boundaries or Wilson loop insertions, are
Cheshire cat points.

Let us now apply Borel-Écalle resummation to the perturbative series to see how we derive
the nonperturbative data in the strong coupling case. We can focus on the sum in Eq. (76), and
Borel-transform as follows:

∞∑
j=0

B2 j (−8π2) j

(2 j)!
�(1 + j − h̃)gh̃−1− j =

∞∫
0

dt e−gt
∞∑
j=0

B2 j (−8π2) j

(2 j)!
t j−h̃

=
√

2π

∞∫
0

dt e−gtt1/2−h̃ cot(π
√

2t). (78)

The integrand has singularities at m2

2 on the Borel plane, for m = 0, 1, 2, …, precisely corre-
sponding to the nonperturbative contributions to the transseries. Inserting this into Eq. (76)
we can write the partition function as

ZSU (2)(g, h̃) = (1 − e−4π ih̃)

(
2−1/2−h̃�(3/2 − h̃)g−3/2+h̃

+ 1

21/2+h̃i

∞∫
0

dt e−gtt1/2−h̃ cot(π
√

2t)

⎞
⎠ . (79)

We can now use the discontinuity across the poles to calculate the nonperturbative contri-
butions to the transseries. In this case the discontinuity of the above integral can be written
as

Disc0(g, h̃) = (1 − e−4π ih̃)

21/2+h̃i

⎛
⎝ ∞+iε∫

0

−
∞−iε∫
0

⎞
⎠ dt e−gtt1/2−h̃ cot(π

√
2t)

= −(1 − e−4π ih̃)
∞∑

m=1

m2−2h̃e−gm2/2. (80)

This looks a lot like the nonperturbative contribution we are expecting. We do have a complica-
tion though. This jump clearly vanishes when h̃ is an integer. But we have no way of determining
the real part of the transseries parameter by applying only resurgence, and thus cannot find the
real contribution that remains as we approach these Cheshire cat points. For now we write

Z(m)
SU (2)(g, h̃) = σs(m)m2−2h̃e−gm2/2. (81)

Here σ (m) is the undetermined transseries parameter. We next turn to look at how we can
calculate this parameter using consistency of the strong and weak coupling transseries repre-
sentations.
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4.2. Using weak–strong consistency to determine the transseries parameters
Thus far we have considered Borel-Écalle resummation of the strong and weak coupling expan-
sions of the partition function. As noted, this process only allows us to calculate the jump in the
imaginary part of the transseries parameters, but does not allow us to calculate the transseries
parameters exactly. Of course in this setting we can calculate the transseries parameters (and
indeed the full nonperturbative contributions to the transseries) directly from Eq. (42). But here
there is another method that doesn’t require access to Eq. (42) at all, just access to the strong
and weak coupling transseries, and a single transseries parameter.

Our weapon of choice to achieve this is Poisson resummation:

∑
m∈Z

f(m) =
∑
n∈Z

∞∫
0

dm e−2π imnf(m). (82)

Applying Poisson resummation to say the strong coupling transseries will allow us to derive a
weak coupling transseries. But the weak coupling transseries we get will be dependent on the
transseries parameters of the strong coupling transseries. Thus by demanding consistency we
can derive the transseries parameters.

As a simple way of introducing the method, let us consider the undeformed case, and suppose
that by some means (perhaps Cheshire cat resurgence coupled with the methods of Sect. 7) we
had obtained the strong and weak transseries representations of the partition function up to the
transseries parameter. Here let us also consider h̃ = 0 for simplicity. We now have the following
two representations of the partition function:

ZSU (2)(g, h̃ = 0) =
∑
m∈Z

σs(m)m2e− g
2 m2

,

ZSU (2)(g, h̃ = 0) =
∑
n∈Z

σw(n)
√

2πe− (2πn)2

2g (g−3/2 − 4n2π2g−5/2). (83)

Here the top line is the strong coupling representation, and the bottom line the weak coupling
representation. σ s(n) are the undetermined transseries parameters in the strong case, and σ w(m)
are the undetermined transseries parameters in the weak case.

Note that upon summation in Eq. (83), any odd part of either σ s(n) or σ w(m) will give no
contribution to the partition function. We will thus assume the odd parts of σ s(n) and σ w(m)
are both 0.

We of course also know what the transseries parameters are in the perturbative sectors of
each transseries, i.e. we know that

σw(0) = σs(0) = 1. (84)

This fact allows us to use consistency of these expressions to calculate all the other transseries
parameters.

Taking the Poisson summation of the strong coupling representation we have

ZSU (2)(g, h̃ = 0) =
∑
ñ∈Z

∞∫
−∞

dm e−2π imñσs(m)m2e− g
2 m2

. (85)
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We now equate this with the second line of Eq. (83). Equating coefficients of the exponentials,
we see we have n = ñ. For the n = 0 case, using our knowledge that σ w(0) = 1, we have

√
2π

g3/2
=

∞∫
−∞

dm σs(m)m2e− g
2 m2

. (86)

From this we can read off (from the g dependence of both sides, and assuming that the odd
part of σ s(m) is 0)

σs(m) = 1. (87)

Then from equating the coefficients of the exponentials in Eq. (85) for the n �= 0 cases we find

σw(n) = 1. (88)

Thus, once we have returned to the undeformed case, it is very simple to use consistency of the
strong and weak versions of the transseries to calculate the transseries parameters exactly. In
fact we didn’t even need to use our knowledge of σ s(0). The knowledge of just one transseries
parameter in just one of the transseries representations was enough to determine all of the
transseries parameters in both transseries representations.

Let us consider the deformed case where h̃ �= 0. Here things are conceptually the same, though
the equations are more complicated.

We have for the strong case that the perturbative part is given by Eq. (76), and the nonper-
turbative part by Eq. (81). In order to use the Poisson resummation method outlined above we
need to have the transseries in the form

ZSU (2)(g, h̃) =
∑
n∈Z

f (n). (89)

The nonperturbative part is already in this form. For the perturbative part we can use the iden-
tity

B2 j = −2 jζ (−2 j + 1), (90)

and then write ζ ( − 2j + 1) as a sum over the integers:

ζ (−2 j + 1) =
∞∑

n=1

n2 j−1. (91)

Applying these identities we get Eq. (76) into the form of a sum over the integers. In this way
we can write the strong partition function in the form

ZSU (2)(g, h̃) =
∑
m∈Z

⎛
⎝σ p

s (m)gh̃−1
∞∑
j=0

c jm2 j−1g− j + σ np
s (m)m2−2h̃e−gm2/2

⎞
⎠ . (92)

The coefficients ca can easily be read from Eq. (76), and because the sum in Eq. (91) starts at n
= 1 we have

σ p
s (m) = 0 for m < 1. (93)

For the sake of clarity of presentation, we write the weak transseries as a sum of integrals as
follows:

ZSU (2)(g, h̃) =
∑
n∈Z

(
σ p

w (n)
∫

Jp

�2−2h̃e−2π in�− g
2 �2 + σ np

w (n)
∫

Jnp

�2−2h̃e−2π in�− g
2 �2

)
. (94)

Here Jp is the perturbative contour that circles round the branch point at the origin, and Jnp is
the nonperturbative contour that goes from negative infinity to positive infinity passing through
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the saddle (see Fig. 5). For the n = 0 case we know what the transseries parameters are from
our input (Sect. 2.5), and let us suppose that this is all we know.

We are now in a position to do Poisson resummation and compare our two representations
of the transseries. We choose to resum the strong series. The result is

ZSU (2)(g, h̃) =
∑
n∈Z

∞∫
−∞

dm

⎛
⎝σ p

s (m)gh̃−1
∞∑
j=0

c jm2 j−1g− j + σ np
s (m)m2−2h̃e−gm2/2

⎞
⎠ e−2π imn. (95)

From the n = 0 part of the weak transseries that we know, we can determine that

σ p
s (m) = 0, σ np

s (m) = 1. (96)

(We can also determine the ambiguity in the contour of the integral after Poisson resummation,
which passes through a singularity.) We can then substitute these into Eq. (95), and from here
determining the weak coupling transseries parameters is identical to the contour decomposition
we discussed in Sect. 3.1. Thus we can calculate all the transseries parameters in both the strong
and weak coupling transseries just from knowledge of the weak n = 0 transseries parameters.

This sheds some light on the strong coupling transseries. We see that the additional pertur-
bative series we found in the deformed case arises due to the ambiguity in the contour in the
integral representation of the partition function. Fixing the ambiguity, here just by fixing one
of the transseries parameters in the weak transseries, has caused this strong perturbative series
to have zero contribution, as we expected from Eq. (30).

5. Resurgence in deformed Yang–Mills theory: more on weak coupling transseries
Thus far, for weak coupling, we have examined the perturbative series associated to a saddle ex-
pansion around the various saddles in the theory. In this section we examine the weak coupling
expansion produced from expanding the partition function as a sum of (nearly) topological
correlators.8

Let us see what we mean explicitly in the SU(2) case. Starting from the path integral expression
for the partition function, we can expand it as

ZSU (2)(g, h̃) =
∫

D�DA ei
∫
�h

tr(�∧F )+ g
2

∫
�h

tr(�2 )K+δ
∫
�h

log(tr(�2 ))K

=
∫

D�DA
∞∑
j=0

(
g
2

∫
�h

tr(�2)K
) j

j!
ei

∫
�h

tr(�∧F )+δ
∫
�h

log(tr(�2 ))K
. (97)

We write this as

ZSU (2)(g, h̃) = ZSU (2)(g = 0, h̃) +
∞∑
j=1

( g
2

) j

j!

〈(∫
�h

tr(�2)K
) j

〉
g=0

. (98)

Here we have defined

〈O〉g=0 =
∫

D�DA O e−i
∫
�h

tr(�∧F )−δ
∫
�h

log(tr(�2 ))K
, (99)

i.e. it is a correlation function which hasn’t been normalized by dividing out the partition func-
tion. Thus we see that we can write the partition function as a perturbative series in weak cou-
pling, summing over a particular set of correlator-like objects. Let us look at the undeformed
and deformed cases in turn.

8The correlators depend on the area of the base space, but aside from this depend only on topology.
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5.1. Undeformed SU(2) theory
For the undeformed theory, the remaining action once we have expanded out the g

2

∫
�h

tr(�2)K
term is given by

Stop = i
∫

�h

tr(� ∧ F ). (100)

This is a well-studied topological theory (hence the “top” subscript on the above action), i.e.
it has no metric dependence. See Ref. [29] for a nice review. The partition function is in fact
the symplectic volume of the space of flat connections, and the correlators are observables in
the topological theory that lie in the 4th cohomology class of the space of flat connections. In
summary

ZSU (2)(g = 0, h) = Vol (MF (�h, G)) ,∫
�h

tr(�2)K ∈ H4 (MF (�h, G)) . (101)

Thus in the undeformed case, our perturbative series has an interpretation in terms of a sum
over topological correlators of a particular topological theory. Note here we have written h
rather than h̃ as δ = 0.

However, as the reader has probably noticed, in the undeformed case, this is not a particularly
useful series (for resurgence). We have that〈(∫

�h

tr(�2)K
) j

〉
g=0

=
∑
n∈Z

∞∫
−∞

d� �2−2h+2 je−2π in�. (102)

For h = 0 the integral is 0 for all n (recall 2 − 2h + 2j is an integer in this case), apart from n
= 0 where it diverges for all j. In this case we can regulate the divergence, say by regulating the
integral limits so the integral goes from −β

2 to β

2 . We now get a finite answer, for which we can
do the j summation. At the end we can take β → ∞, and the result is

ZSU (2)(g, h) ∼ 2
√

π

g3/2
. (103)

This is just the perturbative contribution to the transseries we found in the exact result in Eq.
(37).

For h > 0 we pick up extra terms coming from the pole that now exists at the origin. These
terms are exactly the extra terms we derive in Appendix A for the case h ≥ 1. But again this series
is truncating, i.e. not an asymptotic divergent series, so Borel-Écalle resummation is trivial.

Of course this is all we ever could have expected in the undeformed case. However, once we
apply the deformation to the theory, things begin to get more interesting.

5.2. Deformed SU(2) theory
In the deformed case we now have〈(∫

�h

tr(�2)K
) j

〉
g=0

=
∑
n∈Z

∞∫
−∞

d� �2−2h̃+2 je−2π in�. (104)

To calculate this we need to consider three cases: n = 0, n positive, and n negative. For n = 0 the
integrals diverge. We again need to regulate as in the previous subsection, and the result after
summing over j is

(1 + e−2π ih̃)21/2−2h̃�(3/2 − h̃)g−3/2+h̃ . (105)
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This is the contribution to the perturbative and nonperturbative saddles in the n = 0 topological
sector.

Recall we are taking the contour to pass over the branch point at the origin. For negative n we
can close the contour in the upper half plane. The contour encloses no singularities or branch
points, and thus for positive n all the integrals are 0.

For positive n, however, we must close the contour in the negative half plane, around the
branch cut. In this case the contribution to the correlator is

∞∑
n=1

eπ ih̃
(

1 − e−4π ih̃
)(

i
2πn

)3−2h̃ (g/(8π2n2)) j

j!
�(3 + 2 j − 2h̃)

= eπ ih̃
(

1 − e−4π ih̃
)(

i
2π

)3−2h̃ (g/(8π2)) j

j!
ζ (3 + 2 j − 2h̃)�(3 + 2 j − 2h̃). (106)

Putting this all together, we have the perturbative series

Zpert
SU (2)(g, h̃) = (1 + e−2π ih̃)21/2−2h̃�(3/2 − h̃)g−3/2+h̃

+ eπ ih̃
(

1 − e−4π ih̃
) (

i
2π

)3−2h̃

×
∞∑
j=0

(g/(8π2)) j

j!
ζ (3 + 2 j − 2h̃)�(3 + 2 j − 2h̃). (107)

Thus we have an alternative perturbative asymptotic expansion for the partition function. In
fact, this is just the sum of the perturbative series associated to each of the perturbative saddles
in all the topological sectors with positive n. But of course, the transseries, unlike the saddle
decomposition, doesn’t distinguish contributions with an identical exponential part. Thus all
the perturbative saddles are included in the transseries as just one contribution.

5.2.1. Weak coupling resurgence analysis I: nonperturbative data from perturbative data. We
now perform a resurgence analysis of Eq. (107). Here we want to ask whether we can recover the
nonperturbative part of the transseries from this perturbative part alone, for which the answer
will be yes. In the next section we will ask the converse question, can the perturbative data be
derived from the nonperturbative data, for which the answer is more complicated.

There are various ways of applying resurgence to Eq. (107). The most basic is just to use the
standard Borel resummation, dividing out by the factorial part, and then applying the Laplace
transformation to get to a resummed result. We will look at this way in a moment. However,
e.g. one can divide out by something more complicated, and change the measure of the Laplace
transform appropriately to get the resummed result (see Refs. [13,56]). We mention this here as,
in this case, it is quite tempting to divide out by �(3 + 2 j − 2h̃), or ζ (3 + 2 j − 2h̃)�(3 + 2 j −
2h̃). However, calculating the nonperturbative contributions to the transseries using either of
these methods turns out to be somewhat nonstandard.9

9To be more precise, if one divides out by too much, rather than a function on the Borel plane with
singularities, one ends up with an entire function with exponential part that decays faster than the Borel
measure. In this case the nonperturbative contributions manifest themselves through thimble decompo-
sition of the Borel inverse transform, rather than through discontinuities on the Borel plane.
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Let us now perform a resurgence analysis of the weak perturbative series. First we need to
Borel resum Eq. (107). We focus on the contents of the sum, so write

Zpert
SU (2)(g, h̃) = (1 + e−2π ih̃)21/2−2h̃�(3/2 − h̃)g−3/2+h̃

+ eπ ih̃
(

1 − e−4π ih̃
)(

i
2π

)3−2h̃

Z̃pert
SU (2)(g, h̃). (108)

Our chosen way to Borel resum is

Z̃pert
SU (2)(g, h̃) =

∞∑
j=0

(g/(8π2)) j

j!
ζ (3 + 2 j − 2h̃)�(3 + 2 j − 2h̃)

=
(

8π2

g

) 3
2 ∞∑

j=0

∞∫
0

dt e− 8π2t
g t j+1/2 ζ (3 + 2 j − 2h̃)�(3 + 2 j − 2h̃)

�( j + 1)�( j + 3/2)
. (109)

Here we have chosen a Borel summation that divides each term in the series by �(j + 3/2). We
can then use the following representation of the zeta function:

ζ (z)�(z) =
∞∫

0

dx
xz−1

ex − 1
. (110)

This allows us to write Eq. (109) as

Z̃pert
SU (2)(g, h̃) =

(
8π2

g

) 3
2 ∞∑

j=0

∞∫
0

dt e− 8π2t
g

t j+1/2

�( j + 1)�( j + 3/2)

∞∫
0

dx
x2+2 j−2h̃

ex − 1

=
(

8π2

g

) 3
2

∞∫
0

dt e− 8π2t
g

∞∫
0

dx
x1−2h̃ sinh(2

√
tx)√

π (ex − 1)
. (111)

Here we have used the identity
∞∑
j=0

xj

�( j + 1)�( j + 3/2)
= sinh(2

√
x)√

x
√

π
. (112)

We also now make use of the integral representation of the Hurwitz zeta function:

�(s)ζ (s, a) =
∞∫

0

dx
xs−1e−ax

1 − e−x
. (113)

We can use this identity, after writing the sinh(2
√

tx) function in Eq. (111) in terms of expo-
nentials, to write Eq. (111) as

Z̃pert
SU (2)(g, h̃) =

(
8π2

g

) 3
2 �(2 − 2h̃)

2
√

π

∞∫
0

dt e− 8π2t
g

(
ζ (2 − 2h̃, 1 − 2

√
t) − ζ (2 − 2h̃, 1 + 2

√
t)

)

=
(

8π2

g

) 3
2 �(2 − 2h̃)

8
√

π

∞∫
0

dt e− 2π2t
g

(
ζ (2 − 2h̃, 1 − √

t) − ζ (2 − 2h̃, 1 + √
t)

)
.

(114)

Thus, using Borel resummation, we can write our perturbative series as the Laplace transfor-
mation of a particular function, and as desired, this function has branch cuts starting at the
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locations of the nonperturbative contributions. In particular, ζ (s, t) has cuts on the t plane at t
= 0, −1, −2, −3, ….

In order to retrieve the nonperturbative data contained in perturbative series we now need
to calculate the ambiguities in the Laplace transform. To do this let us first use the standard
formula for the Hurwitz zeta function

ζ (s, a) =
∞∑

n=0

1
(n + a)s

. (115)

Substituting this sum into Eq. (114) we see that we can write the inverse Borel-transform as an
infinite sum of inverse Borel-transforms, one corresponding to each nonperturbative contribu-
tion.

The calculation of the ambiguity is now elementary. The discontinuity across the cuts on the
positive real axis is given by

Disc0(g, h̃) =
(

8π2

g

) 3
2 �(2 − 2h̃)

2
√

π

⎛
⎝ ∞+iε∫

0

−
∞−iε∫
0

⎞
⎠ dt e− 2π2t

g

∞∑
n=1

1

(n − √
t)2−2h̃

= (1 − e−4π ih̃)
(

8π2

g

) 3
2 �(2 − 2h̃)

2
√

π

∞∑
n=1

∞+iε∫
n2

dt e− 2π2t
g

1

(n − √
t)2−2h̃

. (116)

By a series of involved transformations the integrand of this integral can be shown to be of the
form of Eq. (62). In other words, as one would expect, the Borel-transform of the perturbative
series (107) is that of the infinite sum of the Borel-transforms over each sector of Eq. (65).

In order to extract the perturbative series for each nonperturbative part we shift t → t + n
and use the expansion(

1

n − √
t + n2

)2−2h̃

= e−2π ih̃(2h̃ − 2)
(

2n
t

)2−2h̃ ∞∑
j=0

�(2 j − 2 + 2h̃)

�( j + 1)�( j − 1 + 2h̃)

(
− t

(2n)2

) j

.

(117)

After performing the integral and manipulating the Gamma functions we end up with the non-
perturbative part of Eq. (66) up to the transseries parameter.

From here things are as before. In order to determine the transseries parameter we need to
use something like the strong-weak consistency already discussed, or an analysis of the orig-
inal integral as discussed in Sect. 3.1. Having determined them we will be able to analytically
continue the deformation back to 0, retaining the nonperturbative data, as we did in Sect. 3.2.

5.2.2. Weak coupling resurgence analysis I: perturbative data from nonperturbative data. We
now briefly comment on what happens when we now try to go the other way round, calculating
the perturbative contribution to the transseries from the nonperturbative part alone. As should
be clear, if we try to calculate the perturbative contribution from the nth nonperturbative con-
tribution we will not find the full perturbative contribution in Eq. (107). Instead we will find
only part of it. To be more precise, we will find the contribution to the perturbative series (107)
that is coming from the perturbative saddle in the nth topological sector. From the discussion
of saddles and topology in Sects 2.1 and 2.4 this is obvious, but it is not obvious if we were only
to have access to the perturbative series (107).
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The takeaway lesson for this section is that a knowledge of the saddles and their topology
really does help to untangle some of the mysteries of the transseries. In this case we have an in-
finite number of saddles with action equal to 0 up to quantum corrections, which all contribute
to the same term in the transseries. Without knowledge of the saddles and their topology we
have a strange phenomenon where we can calculate all the nonperturbative data from the per-
turbative data, but the other way round we can only calculate part of the perturbative data.
But from studying the saddles and their topology, we can see the reason is that there are in fact
an infinite number of perturbative saddles, one for each topological sector. Thus the perturba-
tive contribution to the transseries contains information in this case about all the topological
sectors, whereas each nonperturbative saddle only contains information about one topological
sector. Hence one way the analysis is possible, but not the other.

5.3. Deformed U(2) theory
Here we briefly consider the case of U(2), focusing on the contributions with n1 = 1 − n2.
Without knowledge of the saddles and their topology, one might be tempted to think that
these contributions are all in the same topological sector; after all, they all have the same theta
angle dependence. The saddles in this subset have action (excluding quantum corrections)

S(g, θ ) = ((n1 + n2)π )2

g
− iθ (n1 + n2) = π2

g
− iθ,

S(g, θ ) = (2π )2
(
n2

1 + n2
2

)
2g

− iθ (n1 + n2) = (2π )2(2n2 − 2n + 1)
2g

− iθ. (118)

In the second line we have briefly defined n = n1. Thus we see the saddles with the smallest
action are of the first type, and all the saddles of the first type have the same action. Thus we
find the very same phenomena as we found in the SU(2) theory in other topological sectors of
U(2) as well. In fact, it is easy to see that the first kind of saddle will have identical action (up
to quantum corrections) for all contributions with the same theta angle dependence, i.e. n1 = c
− n2, for any c.

In the case of U(2), when analyzing the transseries without knowledge of the saddles and
their topology, one may be tempted to think that topological sectors are graded only by theta
angle dependence. Within the set of saddles with given theta angle dependence, one may again
be tempted to think that the contribution to transseries with action of the first kind of saddle
above is coming from only one saddle. In this case, one would be surprised to find that from
this contribution one could calculate the contributions to the transseries from all the other
sectors with equal theta angle dependence, but not the other way around. Moreover, one cannot
calculate the contribution from one of these other nonminimal nonperturbative contributions
with a given theta angle dependence from a different one with the same theta angle dependence.
The answer again lies in the topology of the saddles. There is a finer topological grading than
theta angle dependence, and for a given theta angle dependence there are an infinite number of
saddles, one for each topological sector, that have the same action.

Let us briefly see this for the n1 = 1 − n2 sector. Starting from Eq. (72) we see that the n1 = 1
− n2 part is given by

ZU (2)|n1=1−n2 (g, h, θ ) =
√

π

g
e− π2

g −iθ
∑
n∈Z

∞∫
−∞

dx x2−2h̃e−π ix(2n−1)− g
2 x2

. (119)
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The sum and integral here are very similar to what we have already calculated in the SU(2) case.
Shifting n by 1

2 (thus dropping the n = 0 contribution), and substituting g → g
2 into the SU(2)

case we can extract the sum and integral we need for the U(2) case. The result is

ZU (2)|n1=1−n2 (g, h, θ ) =
√

π

g
e− π2

g −iθeπ ih̃
(

1 − e−4π ih̃
) (

i
2π

)3−2h̃

×
∞∑
j=0

(g/(16π2)) j

j!
ζ (3 + 2 j − 2h̃, 1/2)�(3 + 2 j − 2h̃). (120)

Writing this as

ZU (2)|n1=1−n2 (g, h, θ ) =
√

π

g
e− π2

g −iθeπ ih̃
(

1 − e−4π ih̃
) (

i
2π

)3−2h̃

Z̃pert
U (2)|n1=1−n2 (g, h), (121)

we can perform a Borel-Écalle resummation as before. The result is

Z̃pert
U (2)|n1=1−n2 (g, h) =

(
16π2

g

) 3
2 �(2 − 2h)

8
√

π

×
∞∫

0

dt e− 4π2t
g

(
ζ (2 − 2h, 1/2 − √

t) − ζ (2 − 2h,
√

t + 1/2)
)

. (122)

This has singularities in the right location and from it we can calculate all the contributions
to the transseries with the same theta angle dependence. But as before, this does not work the
other way around.

6. Analysis for higher N
For higher N in principle things are much the same as for N = 2. However, our partition func-
tion ((24) or (25)) now involves multiple infinite sums, and higher-dimensional integrals, which
practically complicates things greatly. The higher-dimensional integrals turn out to be very
tricky to solve, and regulating multiple-dimensional infinite sums is difficult to do. Here we will
briefly look at the strong coupling SU(3) case, where we can see some of these issues come into
play.

The integral representation for the SU(3) partition function is given by

ZSU (3)(g, h̃) =
∑

n1,n2∈Z

∫
d�1 d�2 �2−2h̃

1 �2−2h̃
2 (�1 − �2)2−2h̃ e2π i(n1�1+n2�2 )− g

2 (�2
1+�2

2). (123)

We will find the strong coupling transseries representation by a direct analysis of the integral.
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First we split the sums up, and make appropriate substitutions such that they are over positive
integers, so that the results of the sums will give zeta functions. This gives us

ZSU (3)(g, h̃) =
∫

d�1 d�2 �2−2h̃
1 �2−2h̃

2 (�1 − �2)2−2h̃ e− g
2 (�2

1+�2
2)

+ (1 + e−4π ih̃)
∞∑

n=1

∫
d�1 d�2 �2−2h̃

1 �2−2h̃
2 (�1 − �2)2−2h̃ e2π in1�1− g

2 (�2
1+�2

2)

+ (e−2π ih̃ + e−4π ih̃)
∞∑

n=1

∫
d�1 d�2 �2−2h̃

1 �2−2h̃
2 (�1 + �2)2−2h̃ e2π in1�1− g

2 (�2
1+�2

2)

+ (1 + e−6π ih̃)
∞∑

n1=1

∞∑
n2=1

∫
d�1 d�2 �2−2h̃

1 �2−2h̃
2 (�1 − �2)2−2h̃

× e2π i(n1�1+n2�2 )− g
2 (�2

1+�2
2). (124)

These terms can now be expanded to produce a perturbative series, using the identity
∞∑

n=1

e2π in� = 1 +
∞∑

m=1

(2π i�)mζ (−m)
m!

, (125)

and the result of the integral
∞∫

−∞
dx

∞∫
−∞

dy xayb(x − y)ce−g/4(x2+y2 )

= π3/22a−1e−iπbg
1
2 (−a−b−c−2) (A(x) + 2b+c(B(x) + C(x))

)
. (126)

Here we have

A(x) =
(

−2
(−1 + e2iπb

)
�(b + 1)

(
(−1)a+b+c − 1

)
csc(π (b + c))�

( 1
2 (a + b + c + 2)

)
�(−c)

× 3F̃2

(
b + 1

2
,

b + 2
2

,
1
2

(a + b + c + 2); 1
2

(b + c + 2),
1
2

(b + c + 3); −1
))

,

B(x) = (
(−1)a+1 + 1

)
c�

(a
2

+ 1
) (

e2iπb − eiπ (b+c)
)

csc
(

1
2
π (b + c)

)

× 3F̃2

(
a
2

+ 1,
1
2

− c
2
, 1 − c

2
; 3

2
, −b

2
− c

2
+ 1; −1

)
,

C(x) = 2 ((−1)a + 1) �

(
a + 1

2

) (
eiπ (b+c) + e2iπb

)
sec

(
1
2
π (b + c)

)

× 3F̃2

(
a + 1

2
,

1 − c
2

, − c
2
; 1

2
,

1
2

(−b − c + 1); −1
)

. (127)

It’s a simple matter of applying these formulas to Eq. (124) to get a perturbation series in
1
g . The result however is a very long formula which we shall not write down here as it is not
particularly illuminating. Importantly the terms do diverge factorially and are nonalternating,
so we can apply a resurgence analysis to it.

In summary, with higher N the deformation does indeed introduce new saddles and render the
perturbative series in each sector divergent asymptotic. However, it reintroduces the problem
of the complexity involved in deriving the asymptotic series themselves. Whilst for N = 3 we
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still have access to the explicit perturbation series, for higher N we would probably need to
turn to numerical methods. The takeaway lesson is that, whilst the deformation renders the
truncating perturbative series asymptotic and divergent, thus uncovering a resurgence structure,
perturbation theory is generally hard.

7. Factorization and partial differential equations
In this section we now turn our attention away from Borel-Écalle resummation and towards
structures that are not restricted to a single column of the resurgence triangle. As explained in
the introduction, and as we have seen throughout this paper, the normal caveat to the stronger
version of the resurgence program is that one cannot expect to be able to derive contributions
to the transseries in different topological sectors from the perturbative data alone. However,
as we explained, in Refs. [21,40–42] various additional structures have been looked at that can
be combined with resurgence to take such a sideways step in the resurgence triangle. In this
section we will unpack three such structures that are present in 2d YM. These are factorization,
various partial differential equations for the N = 2 case, and a way of writing higher N partition
functions in terms of the N = 1 partition function. We will look at each of these in turn, and
consider some applications including ways of taking a sideways step, and low-order/low-order
resurgence.

7.1. Factorization
At large N the 2d YM partition function factorizes (or at least is conjectured to), satisfying the
Ooguri-Strominger-Vafa (OSV) conjecture [57]:

ZY M = |�top|2. (128)

Here �top is the partition function of a topological string on a particular local Calabi–Yau
threefold. In this case we have a factorization formula very similar to the cases of 3-dimensional
N = 2 and 4-dimensional N = 2 supersymmetric Yang–Mills studied in Ref. [21]. In that work
it was demonstrated how to use such a factorization formula to take a sideways step in the
resurgence triangle.

For finite N such factorization is not possible in general, but for U(2) we can find similar
factorization equations that our partition functions satisfy that will allow us to move sideways
in the resurgence triangle. Let us start with U(2).

We work with the strong coupling representation of the partition function to derive the fac-
torization equation for h̃ = 0. Starting from Eq. (25) we have

ZU (2)(g, 0, θ ) =
∑

m1,m2∈Z

(m1 − m2)2e− g
2 ((m1−θ/2π )2+(m2−θ/2π )2 )

=
(

−4
∂

∂g
− 4π2

g2

∂2

∂θ2
− 2

g

) ⎛
⎝ ∑

m1,m2∈Z

e− g
2 ((m1−θ/2π )2+(m2−θ/2π )2 )

⎞
⎠

=
(

−4
∂

∂g
− 4π2

g2

∂2

∂θ2
− 2

g

) (∑
n∈Z

e− g
2 ((n−θ/2π )2 )

)2

. (129)

We have found a way of writing the U(2) partition function in terms of a differential operator
acting on a factorized object, similar to the h̃ = 1 partition function. Generalizing to h̃ = 1 is
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obviously trivial. For higher h̃ we need an integral operator rather than a differential operator,
but this is quite easy to do. We can now use this to take a sideways step in the resurgence triangle.

Let us demonstrate this by calculating the contribution to the (1,0) and (0,1) topological
sectors from the contribution in the (1,1) topological sector, in the weak coupling case (using
notation (n1, n2)). From our knowledge of the saddle point of the action we can write Eq. (129)
in the form

ZU (2)(g, 0, θ ) = 4π

g2
+ 4πe− 4π2

g

(
1
g2

− 8π2

g3

)
+ Z(1,0)(g)e− 2π2

g +iθ + Z(0,1)(g)e− 2π2
g −iθ + . . .

=
(

−4
∂

∂g
− 4π2

g2

∂2

∂θ2
− 2

g

)

×
[(

Z0(g) + Z1(g)e− 2π2
g +iθ + Z−1(g)e− 2π2

g −iθ + . . .

)2
]

. (130)

Here Zn(g) is the nth component of the sum in the final line of Eq. (129). We want to calculate
Z(1, 0)(g) and Z(0, 1)(g). The tactic is to calculate Z0(g), Z1(g), and Z−1(g) by separating out the
coefficients of the exponentials in the equation, which gives us

Z0(g) =
√

2π

g
,

Z1(g) = Z−1(g) =
√

π

g
. (131)

Then we can substitute these back into Eq. (130) to find

Z(1,0)(g) = Z(0,1)(g) = 4π

(
1
g2

− 2π2

g3

)
. (132)

This is exactly the contribution we expected from Eq. (38).
We have found our first additional structure that can allow us to make a sideways step in

the resurgence triangle. Unfortunately we have not found a way of extending this procedure to
other U(N) or SU(N) gauge groups (except for infinite N by the OSV conjecture).

7.2. Differential equations the partition function satisfies
In Ref. [21] it was noted that the tt∗ equations in 2-dimensional N = (2, 2) theories provide a
relation in that context to take a sideways step in the resurgence triangle. The tt∗ equations are
partial differential equations satisfied by the partition functions of such theories. We now turn
to look at partial differential equations that are satisfied by the N = 2 partition functions of 2d
YM.

We have found multiple such equations; a number are satisfied by the SU(2) partition func-
tion as well as the U(2). In the next subsection we’ll discuss the equations obeyed by the SU(2)
partition function, equivalent to the sum of the (n, −n) topological sectors of the U(2) parti-
tion function, and their applications. Then in Sect. 7.2.2 we’ll discuss the U(2) specific partial
differential equations.

7.2.1. SU(2) partition function. We first look for a differential operator F such that we can
write a formula of the form

ZSU (2)(g, h̃) = F
[
Zn=0

SU (2)(g, h̃)
]
. (133)
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In other words we are looking for a differential operator that we can apply to the perturbative
data to get the whole partition function. Here we are working with SU(2), or equivalently, the
sum of the (n, −n) topological sectors of U(2).

We can derive such an operator and formula in the following way. We start with the integral
representation of the SU(2) partition function (24) and write

ZSU (2)(g, h̃) =
∑
n∈Z

∞∫
−∞

d� �2−2h̃e−2π in�− g
2 �2

=
∞∫

−∞
d� �2−2h̃e− g

2 �2 +
∑
n�=0

∞∫
−∞

d� �2−2h̃e−2π in�− g
2 �2

=
∞∫

−∞
d� �2−2h̃e− g

2 �2 +
∑
n�=0

∞∑
j=0

∞∫
−∞

d� �2−2h̃ (−2π in�) j

j!
e− g

2 �2

=
∞∫

−∞
d� �2−2h̃e− g

2 �2 +
∞∑

n=1

∞∑
j=0

(1 + (−1) j )

∞∫
−∞

d� �2−2h̃ (2π in�) j

j!
e− g

2 �2
.

(134)

Here we have Taylor expanded e2π in�, and to get to the final line have used that the sum over
negative integers is the sum over the positive integers with a factor of −1 inserted appropriately.
Now the factor (1 + ( − 1)j) will only survive for even j, so we can substitute j → 2j. Proceeding
we have

ZSU (2)(g, h̃) =
∞∫

−∞
d� �2−2h̃e− g

2 �2 + 2
∞∑

n=1

∞∑
j=0

∞∫
−∞

d� �2−2h̃ (2π in�)2 j

(2 j)!
e− g

2 �2

=
∞∫

−∞
d� �2−2h̃e− g

2 �2 + 2
∞∑

n=1

∞∑
j=0

(
8π2n2 ∂

∂g

) j

(2 j)!

∞∫
−∞

d� �2−2h̃e− g
2 �2

=
(

1 + 2
∞∑

n=1

cosh

(
2
√

2πn

√
∂

∂g

)) [
Zn=0

SU (2)(g, h̃)
]

=
∞∑

n∈Z

cosh

(
2
√

2πn

√
∂

∂g

) [
Zn=0

SU (2)(g, h̃)
]
. (135)

Here we have used the summation formula
∞∑
j=0

xj

(2 j)!
= cosh(

√
x). (136)

Thus we have a formula of the form of Eq. (133).
Let us note here that this formula is actually much more general than just a formula for the

full partition function from the n = 0 part alone. Writing

ZSU (2)(g, h̃) =
∑
n∈Z

∞∫
−∞

d� �2−2h̃e−2π in�−2π i�− g
2 �2

, (137)
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and then expanding e−2π in� as before and following the same steps as above, we would end up
with almost the same formula:

ZSU (2)(g, h̃) =
∞∑

n∈Z

cosh

(
2
√

2πn

√
∂

∂g

) [
Zn=1

SU (2)(g, h̃)
]
. (138)

One can see that this is in fact a formula for the full partition function in terms of any sector
you like:

ZSU (2)(g, h̃) =
∞∑

n∈Z

cosh

(
2
√

2πn

√
∂

∂g

) [
Z(n)

SU (2)(g, h̃)
]
. (139)

Taking a more careful look at the derivation above we can also see that cosh
(

2
√

2πn
√

∂
∂g

)
is a

sort of shift operator, acting as

cosh

(
2
√

2πm

√
∂

∂g

) [
Z(n)

SU (2)(g, h̃)
]

= 1
2

(
Z(n+m)

SU (2) (g, h̃) + Z(n−m)
SU (2) (g, h̃)

)
. (140)

It is now tempting to look for an operator that looks like sinh rather than cosh as a comple-

mentary shift operator. This is possible, but we have a problem in defining odd powers of
√

∂
∂g .

We can circumnavigate this by shifting h̃ by 1
2 using the shift operator. In this way we have

2π ime− 1
2 ∂h̃

sinh
(

2
√

2πm
√

∂
∂g

)
2
√

2πm
√

∂
∂g

[
Z(n)

SU (2)(g, h̃)
]

= 1
2

(
Z(n+m)

SU (2) (g, h̃) − Z(n−m)
SU (2) (g, h̃)

)
. (141)

One can now see how we can combine these to get any one sector of the transseries from any
other sector. For example, we have

⎛
⎝cosh

(
2
√

2πm

√
∂

∂g

)
+ 2π ime− 1

2 ∂h̃

sinh
(

2
√

2πm
√

∂
∂g

)
2
√

2πm
√

∂
∂g

⎞
⎠ [

Z(n)
SU (2)(g, h̃)

]
= Z(n+m)

SU (2) (g, h̃).

(142)

We have found a shift operator for contributions to the transseries from individual topological
sectors.

Let’s see three different ways Eq. (135) comes in handy. First, for the case where h̃ = 0, let’s
check we can indeed get all the nonperturbative data from the perturbative part only. In this
case we have

Zn=0
SU (2)(g, 0) =

√
2π

g3/2
. (143)
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Thus, applying Eq. (135) we have

ZSU (2)(g, 0) =
∞∑

n∈Z

cosh

(
2
√

2πn

√
∂

∂g

)[√
2π

g3/2

]

=
∞∑

n∈Z

∞∑
j=0

(
8π2n2 ∂

∂g

) j

(2 ja)!

[√
2π

g3/2

]

=
√

2π

∞∑
n∈Z

∞∑
j=0

(
8π2n2

) j
�(−1/2)

(2 j)!�(−1/2 − j)g3/2+ j

=
∑
n∈Z

√
2πe− (2πn)2

2g (g−3/2 − 4n2π2g−5/2). (144)

Excellent!
Of course, we can also do the above calculation with h̃ not integer. Performing this calculation

will give us the perturbative series in all the sectors contributing to the transseries, and also allow
us to compute the transseries parameters exactly.

A second thing we can do is use Eq. (135) to re-derive the asymptotic perturbation series
(107) in a different way, starting from Zn=0

SU (2)(g, h̃) as defined above. Let’s see this. We now have

Zn=0
SU (2)(g, h̃) = (1 + e−2π ih̃)2

1
2 −h̃�(3/2 − h̃)g−3/2+h̃. (145)

Applying the part of Eq. (135) with n > 0 (recalling the discussion of Sect. 5.2 as to why we
don’t include negative n), let’s see how we can get the rest of the perturbative expansion in the
deformed case. We have

2
∞∑

n=1

cosh

(
2
√

2πn

√
∂

∂g

)[
Zn=0

SU (2)(g, h̃)
]

= (1 + e−2π ih̃)2
3
2 −h̃�(3/2 − h̃)

∞∑
n=1

∞∑
j=0

(
8π2n2 ∂

∂g

) j

(2 j)!
[g−3/2+h̃]

= (1 + e−2π ih̃)2
3
2 −h̃�(3/2 − h̃)

∞∑
n=1

∞∑
j=0

(
8π2n2

) j
�(−1/2 + h̃)

(2 j)!�(−1/2 + h̃ − j)g3/2−h̃+ j

= (1 + e−2π ih̃)2
3
2 −h̃

∞∑
n=1

∞∑
j=0

(−8π2n2
) j

�(3/2 − h̃ + j)

(2 j)!g3/2−h̃+ j
. (146)

To get to the last line we have used the formula

�(z)�(1 − z) = π

sin(πz)
. (147)
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We now use the definition of the Gamma function to write the above equation in the form

= (1 + e−2π ih̃)2
3
2 −h̃

∞∑
n=1

∞∑
j=0

(−8π2n2
) j

(2 j)!

∞∫
0

dt e−gtt1/2−h̃+ j

= (1 + e−2π ih̃)2
3
2 −h̃

∞∑
n=1

∞∫
0

dt e−gtt1/2−h̃ cos
(

2
√

2πn
√

t
)

= (1 + e−2π ih̃)2
1
2 −h̃

∞∑
n=1

⎛
⎝ ∞∫

0

dt e−gtt1/2−h̃e2
√

2π in
√

t +
∞∫

0

dt e−gtt1/2−h̃e−2
√

2π in
√

t

⎞
⎠ . (148)

Note that keeping the order of the sums thus far has been very important. Doing the sum over
n before the sum over j returns a ζ ( − 2j) which is zero except for a = 0.

We can now expand the e−gt factor in each of these integrals as a Taylor series. The contour
of the first (second) integral can then be deformed to be from 0 to positive (negative) imaginary
infinity, and then the integrals performed, returning the usual Gamma function factor. Finally
the sum over n will give us the zeta function factor for each term. Putting this all together we
get

Zpert
SU (2)(g, h̃) = (1 + e−2π ih̃)21/2−2h̃�(3/2 − h̃)g−3/2+h̃

+ eπ ih̃
(

1 − e−4π ih̃
) (

i
2π

)3−2h̃

×
∞∑
j=0

(g/(8π2)) j

j!
ζ (3 + 2 j − 2h̃)�(3 + 2 j − 2h̃). (149)

Comparing this with Eq. (107) we see we have recovered the asymptotic perturbative expansion
we wanted.

A third thing we can do is low-order/low-order resurgence. The process here is almost the
same as what we did in Eq. (144), but rather than summing over n we choose a single shift
operator (142). If we apply this to the contribution from a particular saddle, we will get the
contribution from another saddle. If we apply it to only the low-order contributions to a par-
ticular saddle, we will be able to find the low-order contributions to a different saddle.

Before moving onto U(2), one final thing to note is that we can also find a formula of the
form

ZSU (2)(g, h̃) = F [ZSU (2)(g, h̃)]. (150)

That is to say, we can find a differential operator that acts on the full transseries and returns
itself. This just follows from the fact that we have found shift operators for the contributions
to the transseries. As the transseries is just a sum over all the contributions from the different
sectors, an operator that shifts the sectors, so long as it acts uniformly on all the sectors, will
leave the transseries unchanged. In other words we can write down a formula like

cosh

(
2
√

2π

√
∂

∂g

)
[ZSU (2)(g, h̃)] = ZSU (2)(g, h̃). (151)

This is a formula of the form of Eq. (150). We could indeed have written any combination of
the operators Eq. (140) and Eq. (141) here. Applications of these formulas are much the same,
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e.g. we can compute the nonperturbative data and transseries parameters from the perturbative
data by demanding that Eq. (151) hold.

7.2.2. U(2) case. Now we turn to look at various partial differential equations that the U(2)
partition function satisfies, that will similarly enable us to make sideways steps in the resurgence
triangle. It is first useful to recall Eq. (72) such that we can write the U(2) action in terms of the
SU(2) action. We write this here again for convenience.

ZU (2)(g, h, θ ) = 1
2

∑
n1,n2∈Z

∞∫
−∞

dx

∞∫
−∞

dy x2−2h̃e−π ix(n1−n2 )−π iy(n1+n2 )− g
4 (x2+y2 )−iθ (n1+n2 )

=
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2 ))2

g −iθ (n1+n2 )

∞∫
−∞

dx x2−2h̃e−π ix(n1−n2 )− g
2 x2

=
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2 ))2

g −iθ (n1+n2 )Z(n2−n1 )π

(g
2
, h̃

)
. (152)

We first want to see how we can apply our formulas for the SU(2) partition function to the
above formula. We have(

∂

∂g
− π2

g2

∂2

∂θ2
+ 1

2g

)
[ZU (2)(g, h, θ )]

=
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2 ))2

g −iθ (n1+n2 ) ∂

∂g

[
Z(n2−n1 )π

(g
2
, h̃

)]
. (153)

We thus see that by replacing ∂
∂g by the operator

(
∂
∂g − π2

g2
∂2

∂θ2 + 1
2g

)
in Eqs. (140) and (141), we

can apply all the operators in the previous subsection to the U(2) case, which will act by shifting
the (n1 − n2) in the SU(2) factor of the U(2) partition function.

Thus, in order to get any topological sector from any other topological sector in the U(2)
case, all we need to find in addition to the SU(2) case is a way of shifting (n1 + n2). But from
the above formula it is easy to see how this is done using shift operators for θ . We have

e− π2
g −2i π2

g ∂θ−iθ [ZU (2)(g, h, θ )] =
√

π

g

∑
n1,n2∈Z

e− (π (n1+n2+1))2

g −iθ (n1+n2+1)Z(n2−n1 )π

(g
2
, h̃

)
. (154)

In summary we can use the shift operators of Eqs. (140) and (141), with the above substitu-
tion for ∂

∂g , to shift the (n1 − n2) argument in the above SU(2) contribution to the U(2) partition
function. We can then use Eq. (154) to shift the (n1 + n2) argument in the pre-factor. Combining
these we can shift n1 and n2 individually, as much as we like. In this way we can write down oper-
ators to get any contribution from a particular sector of the U(2) partition function transseries
from any other, and formulas for the partition function in terms of itself etc. Application of
these formulas are much the same as discussed for SU(2) in the previous section.

7.3. U(N) in terms of U(1)
Finally for this section we will briefly look at a partial differential equation for the partition
function, but this time the formula will relate the partition function for higher N in terms of N
= 1. Whereas everything we have looked at so far only applies to N = 2, this applies to higher
N. There is one setback though, which is that this formula only applies for integer h̃.
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Consider the U(1) theory with the strong coupling representation of the partition function
given by

ZU (1)(g, h̃, θ ) =
∑

n∈Z/0

e
g(n−θ/2π )2

2 . (155)

We can use this as a building block to build partition functions for higher N. Let’s work with
h̃ = 0. For h̃ = 1 things are trivial, and for higher h̃ we would need to replace the differentials by
integrals. The formula for the U(N) partition function in terms of the N = 1 partition function
is then given by

ZU (N ) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
(
− 2π

g
∂

∂θ1
+ gθ1

2π

)
. . .

(
− 2π

g
∂

∂θ1
+ gθ1

2π

)N−1

1
(
− 2π

g
∂

∂θ2
+ gθ2

2π

)
. . .

(
− 2π

g
∂

∂θ2
+ gθ2

2π

)N−1

...
...

...
...

1
(
− 2π

g
∂

∂θN
+ gθN

2π

)
. . .

(
− 2π

g
∂

∂θN
+ gθN

2π

)N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

× (
ZU (1)(g, 0, θ1) . . . ZU (1)(g, 0, θN )

) |θ1=···=θN=θ . (156)

For example, we can write ZU(2) as

ZU (2) = det

⎛
⎝1

(
− 2π

g
∂

∂θ1
+ gθ1

2π

)
1

(
− 2π

g
∂

∂θ2
+ gθ2

2π

)
⎞
⎠

2 (
ZU (1)(g, 0, θ1)ZU (1)(g, 0, θ2)

) |θ1=θ2=θ

=
((

−2π

g
∂

∂θ2
+ gθ2

2π

)
−

(
−2π

g
∂

∂θ1
+ gθ1

2π

))2
⎛
⎝ ∑

n1,n2∈Z

e− g
2 ((n1−θ1/2π )2+(n2−θ2/2π )2 )

⎞
⎠ |θ1=θ2=θ

=
∑

n1,n2∈Z

(n1 − n2)2e− g
2 ((n1−θ/2π )2+(n2−θ/2π )2 ). (157)

We can see that this kind of formula can’t be used for noninteger h̃, without perhaps utilizing
fractional calculus or something similar. However, for the integer h̃ case, i.e. once the deforma-
tion has been returned to zero, it again gives us a structure by which we can move sideways in
the resurgence triangle.

This sideways step can be done in almost exactly the same way as in the factorization case. In
particular, we have something very similar to Eq. (130), but with a different differential operator
acting on a different ansatz. Thus, in this way we can perform a sideways step using Eq. (156).
Of course, the most obvious further application of Eq. (156) is calculating the full partition
function directly from the N = 1 theory, for higher N in the undeformed theories.

8. Conclusion
In this paper we have analyzed the partition function of 2d YM in order to explore its resurgence
structure. For the undeformed theory both a weak coupling and a strong coupling transseries
representation of the partition function for general gauge groups have been known for some
time. In this case the series in each sector is truncating, so Borel-Écalle resummation cannot be
applied to determine contributions from different sectors to the transseries from other contri-
butions. We have explained that this is due to the topology of the contributions.

We have been able to find a deformation of the UV theory where the partition function is still
calculable, and the contributions in each sector are no longer truncating but asymptotically
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divergent. In this case, this is due to appearance of new saddles. The deformation results in an
effective theory describing 2d YM on a noninteger genus surface. There are now multiple sad-
dles within each topological sector, and within a topological sector Borel-Écalle resummation
can be applied to determine contributions from different sectors to the transseries from other
contributions.

Moreover, for certain values of the deformation parameter, these new saddles still exist, but
the perturbative series associated to them truncate. The values of the deformation parameter
are the values where the effective genus is an integer, or perhaps half-integer, imitating a Wilson
loop insertion or boundary. These are Cheshire cat points of the theory. There are still multiple
saddles within a topological sector, but for a precise value of the deformation parameter there
are substantial cancellations within the transseries rendering the perturbative series associated
with the saddles no longer asymptotically divergent. There is a nice geometric reason behind
this which will be explored in more detail in Ref. [18].

A further phenomenon we have been able to study relates to what happens when we have mul-
tiple saddles in the transseries with identical action. In our case we have seen two examples, the
SU(2) and U(2) gauge groups, where we have infinite saddles with equal action all contribut-
ing to the transseries. With prior knowledge of the saddle points, calculating the transseries
via saddle decomposition, one can distinguish them in the transseries. However if one is just
handed the transseries, calculated via some other means, one can’t distinguish them. This leads
to phenomena where from one term in the transseries we can calculate the contributions in all
the other sectors, but not vice versa. The reason is that the one contribution contains contri-
butions from saddles in every topological sector, but the other contributions are from a single
saddle in a single topological sector. This is another example of an unusual phenomenon in the
transseries with a topological underlying reason, hidden if one doesn’t have knowledge of the
saddles and their topology.

An additional calculation we have managed to achieve in this work, which is not normally
possible, is to determine the transseries parameters exactly. Whilst this is normally not possi-
ble, having access to both the strong and weak coupling perturbative data makes it possible in
this case, by demanding that the strong and weak coupling transseries are describing the same
object.

In the case of 2d YM we have been able to extend the observations of Ref. [21] in finding
additional structures that allow us to calculate contributions to transseries from different topo-
logical sectors from the perturbative sector. Such structures allow us to calculate the whole
transseries from the perturbative part alone, circumventing the standard caveat that we can
only calculate terms in the transseries in the same topological sector as the perturbative data.

This work provides some evidence (but by no means conclusive evidence!) that the strong
version of the resurgence program may be right, if Cheshire cat points and topology are taken
into account. This is done by adding 2d YM to a growing list of theories that were thought
to have been counterexamples to the strong version of the resurgence program, but are in fact
examples of it.

Regarding 2d YM, one important follow-up which will be presented in Ref. [18] is the Picard–
Lefschetz decomposition of the partition function. This will give us a clear explanation for the
Stokes phenomena in terms of thimble decomposition of the path integral. We can perform
this decomposition exactly once we have integrated out certain modes that only contribute
Gaussian terms to the action, even in the deformed case, which is interesting in itself. But in
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this case, it will further allow us to provide a geometrical reason for why the series truncate at
Cheshire cat points, shining more light on the importance of imaginary quantum contributions
to saddles in transseries.

Another interesting direction for future research is whether techniques can be found that
would allow us to calculate the perturbative series in the deformed case for higher N. This
would allow us to test more carefully whether the Cheshire cat resurgence procedure can be
applied in these cases. A further direction would be to see if we can apply the procedure to
different observables in the theory.

Many other questions remain when we consider theories other than 2d YM. The most no-
table counterexample to the strong version of the resurgence program that remains is that of
4-dimensional N = 2 supersymmetric Yang–Mills. Here a Cheshire cat resurgence analysis is
technically very challenging, and has yet to be performed. There are also counterexamples stud-
ied in the works of Refs. [5–9] in the context of integrable theories. Beyond this, there is the
general question of whether Cheshire cat points are responsible for all theories where at first
sight it appears the strong version of the resurgence program cannot apply, and there is no
topological reason for the truncation. Finally, related to this, is the question of whether there
is always some additional structure that allows us to move sideways in the resurgence triangle,
thus (in cases where the strong version of the program does apply) allowing us to compute the
full transseries from the perturbative part alone.
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Appendix A. h ≥ 1
In the bulk of this work we have specialized to h < 1 for simplicity. Let us now briefly comment
on what happens when h ≥ 1. Here we need to be careful about the locations where detk(ad(�t))
= 0. First let us see one way of removing these points from the integrals. Focusing on SU(N)
we have

ZSU (N )(g, h, θ ) =
N−1∏
i=1

∑
ni∈Z

∫ ′

d�ie−2π ini�
i− g

2 �i�i
detk

(
ad(�t)

)χ (�h )/2

=
N−1∏
i=1

∑
mi∈Z

∫ ′

d�iδ(�i − mi)e− g
2 �i�i

detk
(
ad(�t)

)χ (�h )/2

=
N−1∏
i=1

⎛
⎝∑

mi∈Z

⎞
⎠

′ ∫
d�iδ(�i − mi)e− g

2 �i�i
detk

(
ad(�t)

)χ (�h )/2
. (A1)
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To get to the final line here we switched how we remove the singular points by removing them
from the sum rather than the integral. We can now write the sum as

N−1∏
i=1

⎛
⎝∑

mi∈Z

⎞
⎠

′

δ(�i − mi) =
N−1∏
i=1

∑
mi∈Z

δ(�i − mi) −
N−1∏
i=1

∑
mi∈mcr

δ(�i − mi)

for mcr = {mi : detk (ad(mt)) = 0}. (A2)

Reversing the logic, we can write the first of these sums as a sum over exponentials again. We
thus can write the partition function as

ZSU (N )(g, h, θ ) =
∫

d�ie− g
2 �i�i

detk
(
ad(�t)

)χ (�h )/2

×
⎛
⎝N−1∏

i=1

∑
ni∈Z

e−2π ini�
i −

N−1∏
i=1

∑
mi∈mcr

δ(�i − mi)

⎞
⎠ . (A3)

Importantly we have been able to remove the
′

from the integral. For h < 1 the extra delta
functions make no difference, but we need to consider it when h ≥ 1.

Let us demonstrate how we deal with this for the SU(2) case for simplicity. In this case, with
h ≥ 1, we have

ZSU (2)(g, h) =
∞∫

−∞
d� �2−2he− g

2 �2

(∑
n∈Z

e−2π in� − δ(�)

)
. (A4)

Differentiating this h − 1 times with respect to g we have

∂h−1

∂gh−1
ZSU (2)(g, h) =

(−1
2

)h−1 ∞∫
−∞

d� e− g
2 �2

(∑
n∈Z

e−2π in� − δ(�)

)

=
(−1

2

)h−1
(∑

n∈Z

√
2π√
g

e− (2πn)2

2g − 1

)
. (A5)

We can now integrate h − 1 times with respect to g to get the transseries for the partition
function. We thus get an extra h terms in the perturbative series for h ≥ 1 that are not present in
the h < 1 case. This will make no difference to the resurgence structure of the partition function.

Appendix B. Deriving transseries via Zagier’s method
In this appendix we will apply a method by Zagier, outlined in Ref. [46] in chapter 6 of Ref.
[58], to derive the perturbative part of the transseries in the N = 2 cases. We include it as the
method is very efficient. However, it doesn’t apply to higher N, and in this case somewhat hides
some of the features of the perturbative series.

B.1. The method
Zagier’s method works as follows. Suppose we are looking for an asymptotic approximation to
a function g(t) of the following form:

g(t) = f(t) + f(2t) + f(3t) + . . . . (B1)

Suppose we also have access to a series approximation of f(t) of the form

f(t) ∼
∑
λ>−1

bλtλ. (B2)
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Here the sum is over whatever the exponents of t happen to be, real or complex, and not neces-
sarily integer spaced, so long as the real parts of all the λ are greater than −1. From substituting
this series expansion into the sum (B1) and swapping the sums, we might approximate g(z) as

g(t) ∼
∑
λ>−1

bλζ (−λ)(t)λ. (B3)

But, you may also think to approximate g(t) for small t as a series approximation to the integral

If =
∞∫

0

dt f(t),

g(t) ∼ If

t
. (B4)

The correct answer is to add them:

g(t) ∼ If

t
+

∑
λ>−1

bλζ (−λ)(t)λ (t → 0). (B5)

For a formal proof of this see Ref. [46]. (Note we can adjust this formula to include terms with
the real part of λ equal to −1, but we won’t need this so we don’t include it here.) Let us now
apply this in the weak and strong cases for SU(2).

B.2. Weak coupling
For the weak coupling case, the quickest way to apply Zagier’s method is to use Eq. (28) in Eq.
(24), to get

ZSU (2)(g, h̃) =
∑
m∈Z

m2−2h̃e−gm2/2

= (1 + e−2π ih̃)
∞∑

m=1

m2−2h̃e−gm2/2

= (1 + e−2π ih̃)

g1−h̃

∞∑
m=1

(
√

gm)2−2h̃e−(
√

gm)2/2. (B6)

From the last line we see we have

f(t) = t2−2h̃e−t2/2, t = √
g. (B7)

From this expression we can calculate

If = 2
1
2 −h̃�(3/2 − h̃),

f(t) = t2−2h̃
∞∑

n=0

(−t2/2)n

n!
. (B8)

Thus we have

ZSU (2)(g, h̃) = (1 + e−2π ih̃)

g1−h̃

(
2

1
2 −h̃�(3/2 − h̃)√

g
+

∞∑
n=0

g1+n−h̃

2nn!
ζ (−2 − 2n + 2h̃)

)
. (B9)
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Using the standard reflection formula for the zeta function we arrive at the following perturba-
tive expansion for the partition function:

Zpert
SU (2)(g, h̃) = (1 + e−2π ih̃)21/2−2h̃�(3/2 − h̃)g−3/2+h̃

+
(

eπ ih̃
(

1 − e−4π ih̃
)

+ e−π ih̃
(

1 − e4π ih̃
)) (

i
2π

)3−2h̃

×
∞∑

a=0

(g/(8π2))a

a!
ζ (3 + 2a − 2h̃)�(3 + 2a − 2h̃). (B10)

This is not what we found in Eq. (107). But the reason is simple. Eq. (107) was the result of
including all the perturbative saddles with n ≥ 0. The above is the result of including the per-
turbative saddles for negative n as well, which we shouldn’t as they have transseries parameter
0. We see again that knowledge of the saddles and their intersection numbers is important. The
above method is very efficient, but the result is an infinite sum of different saddle contributions
with the wrong transseries parameters for our purposes. Of course, a resurgence analysis of the
above will produce all the correct nonperturbative data in all sectors, after which all there is to
do is fix the transseries parameters.

B.3. Strong coupling
For the strong case things are slightly more involved. Starting from the integral representation
of the partition function given in Eq. (24), we can rearrange our expression so it is in the form
of Eq. (B1):

ZSU (2)(g, h̃) =
∑
n∈Z

∞∫
−∞

d� �2−2h̃e2π in�− g
2 �2

= g−3/2+h̃
∑
n∈Z

∞∫
−∞

d� �2−2h̃e2π i n√
g�− 1

2 �2

= (1 + e−2π ih̃)2
1
2 −h̃�(3/2 − h̃)g−3/2+h̃

+ g−3/2+h̃
∞∑

n=1

∞∫
−∞

d� �2−2h̃
(

e2π i n√
g � + e−2π i n√

g �
)

e− 1
2 �2

. (B11)

We can now apply Zagier’s method to the sum in the final line of the above. This time we have

f(t) =
∞∫

−∞
d� �2−2h̃ (

e2π it� + e−2π it�)
e− 1

2 �2
, t = 1√

g
. (B12)
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The calculation of If goes as follows:

If =
∞∫

0

dt

∞∫
−∞

d� �2−2h̃ (
e2π it� + e−2π it�)

e− 1
2 �2

=
∞∫

−∞
dt

∞∫
−∞

d� �2−2h̃e2π it�− 1
2 �2

=
∞∫

−∞
d� �2−2h̃δ(�)e− 1

2 �2

= 0. (B13)

The calculation of a series expansion for f(t) goes as follows; first we rewrite the integral using
� → −� for the second term as

f(t) =
∞∫

−∞
d� �2−2h̃ (

e2π it� + e−2π it�)
e− 1

2 �2

= (1 + e−2π ih̃)

∞∫
−∞

d� �2−2h̃e2π it�− 1
2 �2

. (B14)

Then we Taylor expand e2π it� and perform the integral:

f(t) = (1 + e−2π ih̃)
∞∑

n=0

∞∫
−∞

d� �2−2h̃ (2π it�)n

n!
e− 1

2 �2

= 2
1
2 −h̃(1 + e−2π ih̃)2

∞∑
n=0

(2
√

2π it)n �(3/2 − h̃ + n/2)
n!

. (B15)

Thus we have

g(t) = 2
1
2 −h̃(1 + e−2π ih̃)2

∞∑
n=0

(2
√

2π it)n �(3/2 − h̃ + n/2)
n!

ζ (−n)

= −2
1
2 −h̃(1 + e−2π ih̃)2 1

2π it

∞∑
n=0

(−8π2t
)n �(1 + n − h̃)B2n

(2n)!
. (B16)

To get to the last line we have used that

ζ (0) = −1
2
, ζ (−2n) = 0, ζ (−2n + 1) = −B2n

2n
. (B17)

Thus we arrive at an asymptotic strong coupling perturbative expansion

ZSU (2)(g, h̃) = (1 + e−2π ih̃)
2

21/2−h̃�(3/2 − h̃)g−3/2+h̃

+ (1 − e−2π ih̃)
1

21+h̃π i

∞∑
a=0

B2a(−8π2)a

(2a)!
�(1 + a − h̃)gh̃−1−a. (B18)

This is exactly what we found in Eq. (75).
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