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A new convolutional neural 
network based on combination 
of circlets and wavelets for macular 
OCT classification
Roya Arian 1,2, Alireza Vard 1, Rahele Kafieh 3, Gerlind Plonka 4 & Hossein Rabbani 2*

Artificial intelligence (AI) algorithms, encompassing machine learning and deep learning, can 
assist ophthalmologists in early detection of various ocular abnormalities through the analysis 
of retinal optical coherence tomography (OCT) images. Despite considerable progress in these 
algorithms, several limitations persist in medical imaging fields, where a lack of data is a common 
issue. Accordingly, specific image processing techniques, such as time–frequency transforms, can be 
employed in conjunction with AI algorithms to enhance diagnostic accuracy. This research investigates 
the influence of non-data-adaptive time–frequency transforms, specifically X-lets, on the classification 
of OCT B-scans. For this purpose, each B-scan was transformed using every considered X-let 
individually, and all the sub-bands were utilized as the input for a designed 2D Convolutional Neural 
Network (CNN) to extract optimal features, which were subsequently fed to the classifiers. Evaluating 
per-class accuracy shows that the use of the 2D Discrete Wavelet Transform (2D-DWT) yields superior 
outcomes for normal cases, whereas the circlet transform outperforms other X-lets for abnormal 
cases characterized by circles in their retinal structure (due to the accumulation of fluid). As a result, 
we propose a novel transform named CircWave by concatenating all sub-bands from the 2D-DWT and 
the circlet transform. The objective is to enhance the per-class accuracy of both normal and abnormal 
cases simultaneously. Our findings show that classification results based on the CircWave transform 
outperform those derived from original images or any individual transform. Furthermore, Grad-CAM 
class activation visualization for B-scans reconstructed from CircWave sub-bands highlights a greater 
emphasis on circular formations in abnormal cases and straight lines in normal cases, in contrast to the 
focus on irrelevant regions in original B-scans. To assess the generalizability of our method, we applied 
it to another dataset obtained from a different imaging system. We achieved promising accuracies 
of 94.5% and 90% for the first and second datasets, respectively, which are comparable with results 
from previous studies. The proposed CNN based on CircWave sub-bands (i.e. CircWaveNet) not only 
produces superior outcomes but also offers more interpretable results with a heightened focus on 
features crucial for ophthalmologists.

Optical coherence tomography (OCT) is an imaging technique that provides information about the cross-sec-
tional structure of tissues. This non-invasive method has been widely utilized in ophthalmology for investigating 
retinal diseases and glaucoma, mainly due to the layered structure of the  retina1. OCT is similar to ultrasound 
imaging technique; however it uses near-infrared light instead of sound  beams2.

Identifying early symptoms of macular degeneration that affect central vision can prevent vision loss, and 
OCT images can play an important role in this identification, since they can demonstrate structural changes 
in the retina. The most common retinal diseases are age-related macular degeneration (AMD) and diabetic 
macular edema (DME)3,4. AMD is a visual disorder caused by retinal abnormalities that reduces the central 
vision. It occurs when the aging process leads to harm in the macula, which is the section of the eye responsible 
for overseeing clear, direct  vision5. DME is another retinal disease associated with diabetic retinopathy and a 
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leading cause of vision loss for people with diabetes. In this abnormality, excess blood glucose damages blood 
vessels in the retina, causing them to leak. This leakage results in an accumulation of fluid in the macula, causing 
it to  swell4,6. Figure 1 shows examples of normal, DME, and AMD eyes along with their corresponding B-scans.

Therefore, OCT can be considered a remarkable biomarker for the quantitation of AMD and DME disorders. 
Spectral Domain OCT (SD-OCT) and Swept-Source OCT (SS-OCT) represent two newer generations of OCT. 
Every element in SD-OCT is immobile, resulting in increased mechanical stability and a reduced noise ratio. 
In contrast to SD-OCT, SS-OCT employs a swept laser light source and photodetector, swiftly producing the 
interferogram.

Figure 2 illustrates the schematic diagrams of SD-OCT, SS-OCT7.
Generally, These two systems offer several advantages including a higher rate of acquisition and resolution, 

reduced light scattering, providing clearer retinal structural information, and improved speed, rendering it better 
suited for commercial  applications8,9. Notwithstanding these recent advances in OCT technology, manual analysis 
remains time-consuming and error-prone due to the similarity of different abnormalities in OCT images. To 
address these challenges, artificial intelligence (AI) algorithms, including machine learning and deep learning, 
have been widely employed in image processing for various applications such as classification, segmentation, 
denoising, and compressive  sensing10–13. However, several challenges endure in the field of medical imaging 

Figure 1.  Examples of (a) normal, (b) DME, and (c) AMD eyes along with their corresponding B-scans.

Figure 2.  The schematic diagrams of (a) SD-OCT, (b) SS-OCT.
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while using AI algorithms, often due to the scarcity of data. Thus, image modeling can be utilized alongside AI 
algorithms for medical image analysis.

Models used in in this field are often rely on appropriate transforms capable of exploiting correlations within 
the image data, therefore yielding sparse image  representations14. In other words, crucial information in the data 
can be efficiently stored using a small number coefficients in the transform domain. Consequently, the classifica-
tion of this small number of coefficients becomes much easier and faster. Depending on the characteristics of 
the data and the intended application, the appropriate transform needs to be chosen.

As mentioned  in14, transform domain approaches can be categorized into data-adaptive and non-data-
adaptive models. Regarding classification, non-data-adaptive transforms have the advantage that the informa-
tion in the transform domain remains comparable. Non-data-adaptive transforms refer to transformations that 
are obtained without considering the specific nature and structure of the data, and they are computed using 
a predetermined  equation15. Among non-data-adaptive models, X-let transforms based on multi-scale time/
space-frequency analysis are particularly powerful, as they establish connections between frequency and time 
information. In X-lets, the original image is decomposed into a set of primary components known as basis 
functions or dictionary atoms.

These days, non-data-adaptive transformation modeling based on sparse representation has played an impor-
tant role in various image processing applications. Table 1 provides an overview of recent methods that integrate 
deep learning with X-let transforms.

According to Table 1, no prior articles have presented research in the field of image classification using various 
non-data-adaptive transformations (X-lets). Only a limited number of articles have explored the performance 
of just one or two transforms in this domain. Therefore, in this study, we aim to evaluate the effectiveness of 
distinct well-known X-lets with the specific goal of classifying OCT images, intending to establish robust basis 
functions in this area. The use of a higher number of sub-bands of X-lets results in decreased speed but improved 
outcomes; hence, a tradeoff is necessary.

Given the focus of the research on OCT images, it is preferable to employ transforms that have demonstrated 
effective performance in this context. According to Khodabandeh et al.28 and taking into account the geometric 
structure of OCT images, primarily characterized by lines at zero and ± 45 angles, it appears that 2D discrete 
wavelet transform (2D-DWT), dual tree complex wavelet (DTCW) transform, and contourlet transform exhibit 
the capability to adequately decompose these images, offering desirable features. In their research, Circlet trans-
form and Ellipselet transform also demonstrated commendable performance in certain evaluation parameters. 
While Khodabandeh et al.28 offered a relatively comprehensive analysis of the effectiveness of these transforms 
in noise reduction application, it’s essential to acknowledge that the application of X-let sub-bands in image 
classification task is distinctly different. In classification, the objective is to utilize all acquired basis functions 
simultaneously, requiring the management of different sizes to be incorporated together as input for the feature 
extraction model. Khodabandeh et al.28 did not encounter this challenge as all denoising processes, such as 
thresholding on the coefficients of X-lets, were conducted separately on each basis, eliminating the necessity to 
use them concurrently in model training. Furthermore, in that study, basis functions were not utilized as features 
or inputs for the models. Consequently, there was no necessity to integrate X-lets with deep learning models. On 
the other hand, Darooei et al.16 focused on determining the most effective X-let basis for enhancing OCT cyst 
semantic segmentation within deep learning methods. They incorporated all basis functions from each X-let 
transform simultaneously into the Trans-Unet model. However, it is important to recognize that segmentation 
and classification applications vary, and the optimal X-let transform may differ significantly, given the distinct 
features and evaluation metrics involved in these two applications. Additionally, in segmentation tasks, there is 
no requirement to split the test and train data based on subjects, but in classification, any leakage between test 
and train data subjects can influence the results. Furthermore, neither of the two mentioned studies investigated 
how altering the number of stages in each transform affects image processing.

It is worth noting that the studies listed in Table 1, which concentrated on classification applications, typi-
cally employed the features extracted from X-let transforms coefficients for classification rather than utilizing 
the sub-bands directly. These aspects distinguish the current study from the aforementioned ones, highlighting 
the innovations introduced in the current research.

Subsequently, in this study, we will explore the suitability of various mentioned X-lets and their different 
stages within OCT images for the classification of AMD, DME, and normal B-scans. Moreover, we will directly 
utilize the obtained sub-bands rather than relying on features extracted from them. This atomic modeling 
approach applied to OCT images extracts specific nearly optimal basis functions from OCT data, which can be 
subsequently used for more accurate results in further similar image processing tasks. Additionally, the most 
effective non-data-adaptive atoms can be utilized as the initial dictionary for a dictionary learning method to 
closely adapt the basis functions with the data. Given the substantial input dimensions of the classifier model, 
we will implement a CNN as a dimension reduction model. Furthermore, we anticipate that certain transforms 
may perform better for classifying all classes except one (e.g., class x), while a different transform might exhibit 
optimal performance for class x. Therefore, combining these basis functions can provide advantages in achieving 
comprehensive classification results. We also consider that data splitting should be done subject-wise, where all 
images belonging to one subject are exclusively assigned to either the test or train dataset.

Therefore, in this present study, the initial step involves transforming all B-scans into various sparse multi-
scale X-let transforms. Subsequently, all the resulting sub-bands from every X-let are simultaneously employed 
as the input for a designed CNN model to extract and identify optimal features. These features are then fed 
into Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM) classifiers separately for classification 
purposes.
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Table 1.  Recent researches on using combination of deep learning and different X-lets for image processing. 
CT Computed Tomography; CNN Convolutional Neural Network; DWT Discrete Wavelet Transform; DTCW  
Dual Tree Complex Wavelet; WST Wavelet Scattering Transform; BSD Berkeley Segmentation Dataset; 
WPT Wavelet Packet Transform; MRI Magnetic Resonance Imaging; MNIST Modified National Institute of 
Standards and Technology.

References Year Application Dataset X-let Combination method X-let advantages

Darooei et al.16 2023 Segmentation OCT Contourle, DTCW, Curvelet, 
Circlet

Application of sparse basis 
functions as the input for 
an optimal deep learning 
architecture

Capturing both local and 
non-local features of an image 
simultaneously

Baharlouei et al.17 2023 Classification OCT WST

Interpreting WST as a convo-
lutional neural network, since 
it comprises a series of wavelet 
transform convolutions, along 
with nonlinear modulus and 
averaging operators within 
each layer

Overcoming several shortages 
in deep learning architectures 
such as the requirement for 
using a large training datasets, 
increasing complexity or 
processing time; and lack of 
interpretability

Nur et al.18 2023 Classification CT Contourlet

Application of Contourlet 
transform and CNN to extract 
features individually from seg-
mented images and combining 
them in one feature vector

Overcoming the limitations 
of the tensor-product DWT 
by trying to capture curves 
rather than points singulari-
ties

Tian et al.19 2023 Denoising Natural images (BSD) Wavelet

Multi-stage image denoising 
CNN with the wavelet trans-
form via three stages, i.e., a 
Dynamic Convolutional Block 
(DCB), two cascaded Wavelet 
transforms, Enhancement 
Blocks (WEBs) and a Residual 
Block (RB)

Improved results compared 
to some popular denoising 
methods

Darooei et al.20 2022 Segmentation OCT DTCW Application of DTCW sub 
bands as the input of a U-net

More robust
An improved time–frequency 
analysis of data that has been 
successfully applied to deep 
learning segmentation tasks

Wang et al.21 2022 Classification Natural images (Caltech-256) DTCW & WPT Application of a CNN model 
with wavelet domain inputs

Improvement of the network’s 
classification performance 
significantly

Sarhan et al.22 2020 Classification MRI Wavelet (Haar)

Extraction of features from 
images by utilizing the strong 
energy compactness property 
exhibited by the Discrete 
Wavelet Transform and appli-
cation in a CNN

High reduction of the dimen-
sions of the input image 
simplifies the work of the 
CNN classifier

Lakshmanaprabu et al.23 2019 Classification CT images DWT

Utilizing wavelet features 
along with histogram and 
texture features. Then, using 
the reduced features by Linear 
Discriminant Analysis (LDA) 
as the input of Optimal Deep 
Neural Network (ODNN) 
which is optimized with 
Modified Gravitational Search 
Algorithm (MGSA)

Time saving

Mohsen et al.24 2018 Classification MRI DWT (Haar)
Application of DWT to extract 
the features of the segmented 
tumors and use them as Deep 
Neural Network (DNN) input

Requires fewer hardware 
specifications
Takes a convenient time for 
processing large-size images

Khatami et al.25 2017 Classification Radiography images 2D-DWT (Haar)

Application of 2D-DWT to 
capture the highly discrimina-
tive coefficients that represent 
the complex structure of 
original data. Then, using the 
best selected coefficients by 
Kolmogorov Smirnov (KS) 
Test as the input of Deep 
Belief Network (DBN) feature 
extractor

Time-consuming reduction
Increasing accuracy

Rezaeilouyeh et al.26 2016 Classification histopathology images of 
breast & prostate tissues shearlet

Extraction of the magnitude 
and phase of shearlet coef-
ficients and feeding these 
extra features along with the 
original images to the CNN

Application of shearlet 
transform as a general math-
ematical tool and extracting 
features without any hand-
crafting

Williams et al.27 2016 Classification Natural images (MNIST & 
CIFAR-10) Wavelet

Application of preprocessed 
data in the wavelet domain as 
the input of CNN

Substantial increase in accu-
racy compared to the spatial 
domain processing
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The rest of this paper is organized as follows: Section “Materials and methods” describes the utilized data-
sets, X-let transforms, proposed CNN, and classifiers. Section “Experimental results”, and “Discussion” present 
experimental results and provide discussions, respectively. Our work is concluded in Section “Conclusion”.

Materials and methods
Databases
Both datasets used in this study are publicly available, meaning that they are not proprietary or confidential. 
Ethical considerations, including privacy and confidentiality, were diligently observed to ensure responsible 
and respectful utilization of the datasets in the research. The data gathering procedures strictly adhered to the 
principles outlined in the Declaration of Helsinki. In addition, this study was approved by the human ethics 
board of the Isfahan University of Medical Sciences (approval no. IR.MUI.REC.1400.048).

Heidelberg dataset
The first dataset (Dataset-A) used in this study was acquired and collected by Heidelberg SD-OCT imaging 
systems at Noor Eye Hospital in  Tehran29. This dataset consists of 50 normal (1535 B-scans), 48 AMD (1590 
B-scans), and 50 DME (1054 B-scans) subjects. Details regarding the data are summarized in the supplementary, 
Table 1.

Basel dataset
The second dataset (Dataset-B) utilized in this research was collected in Didavaran eye clinic in Isfahan, Iran, 
using an SS-OCT imaging system designed and built in Department of Biomedical Engineering at the University 
of  Basel30. According to the classification application that is the main goal of our investigation, we chose the 
“Aligned-Dataset QA” which has been obtained after image contrast enhancement, denoising, and alignment of 
raw data,  respectively30.

In this study, 17 cases of DME (2338 B-scans), 15 cases of Non-diabetic (2492 B-scans), and 19 cases of normal 
(2169 B-sacns) were manually selected from the available subjects (40, 50, and 34, respectively). These cases were 
chosen because their B-scans are nearly clear and suitable for the classification application.

Data preprocessing
According to Rasti et al.29, who presented a suitable preprocessing algorithm for Dataset-A, we applied the fol-
lowing steps in this study the distinction lies in the fact that our investigations are based on a B-scan rather than 
a volume. Additionally, we incorporated a denoising step into this preprocessing algorithm, as experimental 
evidence has shown that it produces better results. Figure 3a illustrates the various steps of the preprocessing 
algorithm.

Figure 3.  The framework of the proposed classification methods. Where parts (a)–(d) indicate the steps of 
preprocessing, transformation, feature extraction, and classification respectively, and part (e) represents the 
proposed transform (combination of circlet and 2D-DWT).
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(1) Normalization: Initially, all B-scans were resized to 496 × 512 × 1 pixels to make the field of view of OCT 
images unique. Subsequently, data normalization was applied by dividing each B-scan by 255, ensuring 
that all pixel intensities fall within the range [0, 1].

(2) Retinal Flattening: Subsequently, a curvature correction  algorithm31 was used, wherein the hyper-reflective-
complex (HRC) is identified as the whole retinal profile, and then localized using the graph-based geometry.

(3) Region of Interest (ROI) Selection: Then each B-scan was vertically cropped by selecting 200 pixels above 
and 200 pixels below the detected HRC. These values were manually chosen to concentrate on the region 
of the retina containing the primary morphological structures while preserving all retinal information. Fol-
lowing this, the cropped B-scans were resized to 128 × 512 pixels, and the ROI for each one was determined 
by cropping a centered 128 × 470 pixel sub-image. Finally, each selected ROI was resized to 128 × 128 pixels 
for further processes.

(4) Noise Reduction: Noise Reduction: Finally, denoising of the data was achieved using a non-local means 
algorithm with a deciding filter strength of 10.

For the “Aligned-Dataset QA” employed as Dataset-B, certain preprocessing steps such as Retinal Flattening 
and Noise Reduction had already been completed. The size of each B-scan was initially 300 × 300 pixels. Conse-
quently, each B-scan was divided by 255, followed by horizontal cropping that omitted the first 50 pixels (as they 
contained no remarkable information). Finally, every B-scan was resized to 128 × 128 pixels.

Example B-scans from each class for both datasets, before and after preprocessing, are presented in the sup-
plementary file Fig. 1.

Splitting training-set and test-set
Any correlation between test and train images can cause bias and impact the results. Therefore, to prevent this 
undesired leakage, all the images belonging to one subject should be exclusively considered either as test-data or 
training-data. Ultimately, test data and train data were divided using fivefold nested-cross-validation.

Classification strategy
X‑let transforms
The primary purpose of this study is to compare the impact of various geometrical X-let transforms, in two 
or higher dimensions, on OCT classification. These transforms, furnished by directional time–frequency 
 dictionaries15, offer valuable insight into the spatial and frequency characteristics of an image. X-lets are available 
mathematical tools that provide an intuitive framework for the representation and storage of multi-scale  images27.

Therefore, in this study, several geometrical X-let transforms, including 2D discrete wavelet transform 
(2D-DWT)14,32,33 (Note that Haar wavelet was used in the current study), dual tree complex wavelet transform 
(DTCWT)20,34 (Note that just the real parts of this transform are utilized in this research to reduce complexity 
and redundancy),  shearlets35,36,  contourlets37,  circlets38, and  ellipselets15 were applied to decompose each B-scan 
into a linear combination of basis functions or dictionary atoms. The details of this step are illustrated in Fig. 3b. 
The non-subsampled (NS)39 form of the multi-scale X-let transforms was employed to construct a multi-channel 
matrix for each B-scan using all the sub-bands in parallel. Finally, each multi-channel matrix was resized to 
(64 × 64 × number of channels) pixels to reduce computational complexity and save time. These steps for one stage 
of the 2D-DWT is shown in Fig. 4. The details of all utilized X-lets are summarized in supplementary Table 2.

Intelligent feature extraction
Using a large number of features for an extensive training-set as the input for NN-models can lead to high 
computational complexity. Therefore, using a suitable feature reduction algorithm can reduce the training time, 
enhance accuracy by eliminating redundant data, and consequently reduce over-fitting40.

Given the 2D nature of the data, it is essential to employ an algorithm capable of extracting 2D features. 
While most neural networks and deep learning algorithms transform the 2D input into a vector of neurons, 
2D-CNNs, optimized for 2D pattern recognition problems, focus on the inherent 2D nature of  images41. This 
specialization makes them particularly well-suited for image  classification27,42. 2D-CNN inherently possesses 
the ability to extract features from OCT images in all directions, but using the X-let transformed data as its input 
can effectively control feature extraction, making the process more intelligent.

Therefore, we designed a 2D-CNN, where the last convolutional layer was flattened and employed as final 
features, which were then fed into the classifiers.

As illustrated in the Fig. 3b and c, multi-channel images obtained using each X-let transform were used as 
input for the proposed CNN. The architecture of this CNN, depicted in Fig. 3c, comprises four blocks, each 
consisting of a 2D-convolution-layer (CL), Batch-Normalization (BN), and Maximum-pooling layers. The filter 
size for each CL was set to 25, 50, 100, and 200 for blocks 1–4, respectively. Additionally, the “ReLU” activation 
function (AF), zero padding, and a kernel size of 3 × 3 were utilized in each CL. The optimizer and the loss func-
tion were tuned to “Adam” and “categorical-cross-entropy”, respectively. The hyper-parameters in this model were 
manually adjusted, setting the learning-rate to  10–3, the batch-size to 8, and the maximum number of epochs to 
100, aiming to achieve the highest possible accuracy during the training phase.

Classifiers
In the next step, Multi-Class Support Vector Machine (MSVM) and MLP were applied as classifiers separately. 
MSVM was chosen because it is known as a simple classifier that allowing for the investigation of the importance 
and the direct effect of each X-let transform in the results. On the other hand, deep-learning-based architectures 
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have been successfully applied recently in the field of biomedical image  processing10,43–45. Given the use of a 
2D-CNN for feature extraction, an MLP algorithm for classifying OCT B-scans can be used, resulting in a fully 
deep-learning method.MSVM:MSVM:

• MSVM

SVM is a straightforward classifier that provides insight into the performance of different X-lets, predicting 
two classes by identifying a hyper-plane that best separates  them46,47. When the data is perfectly linearly separable, 
Linear SVM is suitable; otherwise, kernel tricks can aid in classification. Kernel functions, such as a radial-basis-
function (RBF), polynomial (poly), or sigmoid, try to transform the lower dimension space (which is not linearly 
separable) into a higher dimension, making it easier to find a decision boundary.

Although SVM was initially designed for binary classification, it can be extended to a multi-class classifier 
using various techniques. One such technique is known as the One Versus One (OVO) strategy, which was 
applied in this study. The OVO strategy divides the dataset into one dataset for each class versus every other class, 
as shown in supplementary Fig. 2. Ultimately, a voting system, determines the accurate class for each B-scan48.

The Grid Search algorithm was used to identify the optimal hyper-parameters for each kernel. This algorithm 
computes the accuracy for each combination of hyper-parameters in each kernel and selects the values that yield 
the highest accuracy. The tuned values are summarized in supplementary Table 3.

• MLP

MLP is a nonlinear multi-layer feed-forward neural network that follows the supervised learning technique 
known as the backpropagation learning  algorithm49. In this study, the output of the CNN was used as the input 
layer for the MLP. Three hidden layers (fully connected (FC)-BN) with 1000, 100, and 10 neurons, respectively, 
were used. To mitigate the risk of overfitting, optimized dropout factors of 70%, 60%, and 60% were applied to 
the respective hidden layers. “ReLU” AF was employed for the hidden layers, while for the output layer, an FC 

Figure 4.  Generating a multi-channel matrix involves concatenating all the sub-bands of the desired transform 
and preparing it for as input for the CNN.
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layer with 3 neurons and “Softmax” AF was utilized. The optimizer, loss function and hyper-parameters were 
selected similarly to those in the proposed CNN.

Figure 3d indicates the architecture of the MLP classifier.

Classification evaluation
K-fold cross-validation is a potent method for assessing the performance of machine learning  models50. A reli-
able accuracy estimation exhibits relatively small variance across  folds51. However, a drawback of this method is 
that the split in each fold is performed entirely randomly. To address this issue, Stratified-K-fold cross-validation 
can be employed, wherein instead of a random split, the division is done in such a way that the ratio between the 
target classes in each fold is the same as in the full  dataset52,53. In the current study, a nested form of Stratified-
K-fold was used in order to split test, validate and train data in each fold. We have chosen K = 5, therefore, the 
experiment was conducted five times, and evaluation parameters were calculated in each fold on the test dataset, 
and the average values across all folds were then reported as the final results.

The following evaluation parameters including accuracy (ACC), sensitivity (SE), specificity (SP), precision 
(PR),  F1-score, and area-under-the-Receiver-Operating-Characteristic (ROC) curve (known as ROAUC) were 
calculated for each X-let transform.

Here TP represents true positive, FN represents false negative, TN represents true negative, and FP represents 
false positive. TPR and FPR define the true positive rate and false positive rate respectively.

Experimental results
In the current study, MATLAB R2020a software was used to extract contourlet, circlet, and ellipselet represen-
tations. The Keras and Tensorflow platform backend in python 3.7 software environment, were employed to 
extract 2D-DWT, DTCW, and shearlet coefficients. Additionally, the classification models were implemented 
in this environment.

To determine the optimal kernel for MSVM, precision-recall (P-R) curves for all classes using different kernels 
were plotted in Fig. 5, with the original Dataset-A considered as the input for MSVM. The P–R curve shows the 
tradeoff between precision and recall for different thresholds. The average area under these curves for all classes is 
presented below the curves in each subplot. A high area under P–R curves (PRAUC) signifies both high precision 
and high recall, corresponding to a low false negative rate and a low false positive rate, respectively. As shown in 
Fig. 5, the average PRAUC of classes for sigmoid, polynomial, and linear kernels is 0.89, 0.9, and 0.9, respectively. 
In contrast, it is 0.92 for the RBF kernel, indicating superior performance of this kernel in classifying the dataset.

As the next step, we assessed the performance of different stages of each X-let transform for the classification 
of Dataset-A using the MLP. Given that RBF was identified as the best kernel for MSVM, evaluation parameters 
were also reported using the RBF-MSVM and the optimal number of stages for X-lets. This step was repeated 
using the proposed MLP and RBF classifier, considering the best number of X-let levels for Dataset-B. Table 2 
shows these results. As mentioned in Section “X-let transforms”, for the contourlet transform, the decomposition 
level were presented in a vector.

Discussion
According to Table 2, it is evident that the circlet transform outperforms other X-let transforms. The optimal 
confusion matrices, associated with the RBF-MSVM classifier and the circlet transform for both datasets, are 
shown in Fig. 6.

The accuracy achieved for each X-let transform in the classification of each class individually, is presented 
in Fig. 7, where the circlet transform demonstrates the best performance for the DME class, while the 2D-DWT 
provides better results for the normal class. It seems that the appearing circles on DME B-scans can be detected 
much more effectively using the circlet transform (Fig. 8 shows some of these appearing circles caused by the 
accumulation of fluid). Moreover, Fig. 9 shows the ROC curves of classes for the circlet transform and the 

(1)accuracy =
TP + TN

TP + TN + FP + FN

(2)sensitivity =
TP

TP + FN

(3)specificity =
TN

TN + FP

(4)precision =
TP

TP + FP

(5)F1 =
2× TP

2× TP + FP + FN

(6)AUC =
+∞

∫
−∞

TPR(t)FPR(t)dt
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2D-DWT. It is observed that the ROAUC of the DME class is better using the circlet transform, whereas the 
normal class has a superior ROAUC using the 2D-DWT because most of the B-scan layers belonging to this 
class are aligned at 0 degrees.

In order to compare the classification results achieved by employing two transforms (2D_DWT, and circlet) 
with classification using the original image, the B-scans were reconstructed using half of the sub-bands of each 
transform individually. The reconstructed B-scans were again utilized as the input of proposed models. Finally, 
the Grad-CAM class activation visualization was plotted in Fig. 10 for several B-scans using the original B-scans 
and the reconstructed ones using circlet transform bases (for DME cases) and the 2D-DWT bases (for normal 
cases), respectively. This heat map can give some perspective of the parts of an image with the most impact on the 
classification score. For the reconstructed B-scans using the circlet transform these image parts concentrate on 
appearing circles on DME B-scans, while for the reconstructed B-scans using 2D-DWT, these image parts contain 
lines in normal B-scans. Notably, these image parts in the original B-scans do not emphasize such characteristics. 

Figure 5.  P–R curves of classes for each kernel of MSVM using original Dataset-A. (a)–(d) represent the 
polynomial, linear, RBF, and sigmoid kernel respectively.
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It’s important to note that for all B-scans shown in Fig. 10, the classifier predicted the class correctly using either 
the original data or the X-let transforms, but the concentrations in the heat maps are entirely different.

Accordingly, it appears that a combination of these two transforms, as shown in Fig. 3e, can offer better per-
formance in the classification of these datasets, as it can simultaneously emphasize the nature of circles in the 
DME class and straight lines in the normal class. The results of this experiment are reported for both datasets 
in Table 3. In addition, in this table, the performance of the proposed CNN is compared to VGG16 and VGG19 

Table 2.  Evaluation criteria for different numbers of levels for each X-let transform using the MLP classifier 
and the combination of the best number of X-let levels and RBF as the best kernel for MSVM classifier. Black 
bold values show the optimal number of levels for each X-let, while italic values indicate the best values, the 
superior classifier, and the optimal X-let for OCT classification. 2D‑DWT 2D Discrete Wavelet Transform; 
DTCW  Dual Tree Complex Wavelet; MLP Multi-Layer Perceptron; MSVM Multi-Class Support Vector 
Machine; RBF Radial-Basis-Function; ACC  Accuracy; SP Specificity; SE Sensitivity; PR Precision; ROAUC  
Area-under-the-Receiver-Operating-Characteristic curve.

Dataset Input of classifier Classifier Kernel X-let levels ACC (%) SP (%) SE (%) PR (%) F1-score (%) ROAUC (%)

A

Original
MLP – – 88 91 83 85 83 94

MSVM RBF – 89 93 85 86 85 95

2D-DWT
MLP –

1 88 91 83 84 84 95

2 89 92 84 85 85 95

3 88 91 82 84 83 94

MSVM RBF 2 90 92 86 87 86 96

DTCW 
MLP –

1 88 91 83 84 83 94

2 89 92 84 85 84 95

3 87 90 81 82 81 94

MSVM RBF 2 89 91 84 85 84 95

Shearlet
MLP

– 1 86 89 80 82 79 92

2 88 91 82 83 82 94

MSVM RBF 2 88 91 82 83 83 95

Contourlet
MLP –

[0 1] 88 91 81 83 82 93

[0 1 3] 88 91 82 84 82 94

[0 1 2] 88 91 82 84 82 94

[1 2] 88 92 83 85 83 95

MSVM RBF [1 2] 89 92 84 85 85 95

Ellipselet
MLP –

1 89 92 84 86 84 95

2 87 90 82 83 82 94

3 90 92 85 86 85 95

4 91 93 86 87 86 96

MSVM RBF 4 92 94 87 88 87 97

Circlet
MLP –

3 90 92 85 86 85 96

4 88 91 83 84 83 94

5 91 93 86 86 86 96

6 92 94 87 87 87 97

7 89 92 84 85 84 94

MSVM RBF 6 93 95 88 89 88 97

B

Original
MLP – – 83 87 77 79 76 90

MSVM RBF – 84 87 78 80 77 91

2D-DWT
MLP – 2 85 89 80 82 80 93

MSVM RBF 2 86 90 81 82 79 93

DTCW 
MLP – 2 86 89 80 82 81 94

MSVM RBF 2 87 90 81 82 81 94

Shearlet
MLP – 2 81 85 73 73 72 89

MSVM RBF 2 83 87 75 80 74 91

Contourlet
MLP – [1 2] 84 88 77 80 75 92

MSVM RBF [1 2] 85 89 79 80 79 93

Ellipselet
MLP – 4 88 91 82 83 82 94

MSVM RBF 4 88 91 83 84 84 95

Circlet
MLP – 6 89 91 83 83 83 94

MSVM RBF 6 89 92 84 85 84 95
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as two state-of-the-art models. Note that, these values are obtained using MSVM with RBF kernels as the best 
proposed classifier.

According to Table 3, the proposed CNN outperforms VGG19 and VGG16 in feature extraction, despite 
utilizing significantly fewer trainable parameters. Furthermore, the combination of the circlet transform and 
2D-DWT yields better results than using only the circlet transform.

We call our proposed transform and method the “CircWave” and the “CircWaveNet”, respectively. To dem-
onstrate the advantages of CircWave compared to Circlet and 2D-DWT, three B-scans from each class were 
selected and the heat map was plotted in Fig. 11 for each one, where the reconstructed B-scans, utilizing half of 
the sub-bands of each of the three mentioned transforms separately, served as the input for the CNN. It is clearly 
evident that for the normal case, 2D-DWT provides a more accurately focused heat map, while for the DME case, 
Circlet performs better. However, the proposed CircWave transform can concentrate on the correct regions for 

Figure 6.  Confusion matrix of the MSVM classifier with RBF kernel for (a) Dataset-A and (b) Dataset-B. The 
input to the classifier consists of the circlet basis functions of B-scans.

AMD
DME

Normal

original 2D DWT DTCW Shearlet Contourlet Ellipselet Circlet

90 90 90
88

89

92
93

87 87
88

85
87

93
94

91
93

91
90 90

91 91

AMD DME Normal

Figure 7.  The accuracy of DME, AMD, and normal classes using MSVM with RBF kernel and different X-lets. 
These values are expressed as a percentage.

Figure 8.  Appearing circles on B-scans of DME subjects. Because of the fluid accumulation.
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both normal and DME cases simultaneously, and provide a more suitable heat map for AMD cases as well. Note 
that these three B-scans were classified correctly using all three mentioned transforms.

We also employed principal component analysis (PCA) in conjunction with t-distributed stochastic neigh-
bor embedding (t-SNE) techniques to visualize the high-dimensional outputs of the proposed CNN, when the 
original data, 2D-DWT transformed data, Circlet transformed data, and CircWave transformed data were used 
as inputs, respectively. The proposed CNN extracts 3200-dimensional features for each mentioned input. First, 
the PCA reduction algorithm was employed to reduce the number of dimensions and create a new dataset con-
taining fifty dimensions. Subsequently, they were further reduced to two dimensions using the t-SNE technique. 
The resulting dataset from each input was then plotted in Fig. 12.

It can be noticed that when CircWave bases are used as the CNN input, samples from all three classes are 
spaced apart and well grouped together with their respective cases. While the Circlet transform can clearly 
cluster DME cases in their own class, it struggles to separate normal and AMD cases effectively. Additionally, 
the 2D-DWT can group normal cases well but faces challenges in properly distinguishing between AMD and 
DME cases. Notably, the original data is not efficient in providing separable features for this 3-class classifica-
tion problem.

To the best of our knowledge, this is the first time that Dataset-B has been utilized for classification applica-
tion. We have demonstrated that the proposed CircWaveNet is successful in classifying this dataset, outperform-
ing results obtained using the original data and other transforms.

On the other hand, there are several research results that use Dataset-A for classification applications. In 
Table 4, we summarize these results.

According to Table 4, some of the results seem superior to those of CircWaveNet, but it is important to note 
that the first four mentioned articles worked on 3-D volumes. In their method, a specific threshold (like: τ = 15 or 
τ = 30) is utilized, and if more than τ percentages of B-scans belonging to one subject are predicted as abnormal, 
the maximum probability of B-scans’ votes (based on AMD or DME likelihood scores) determines the type of 
patient’s retinal disease. The fifth article used volume-level labels for each subject, instead of labeling each B-scan 
separately. In contrast, in this paper, parameters are determined based on the B-scan, which is inherently more 
challenging than a subject-based approach.

The other articles (no. 6–9) mentioned in Table 4, along with this paper, focused on 2D B-scan classification. 
Although these papers achieved better results than our method, it should be noted that, in these articles, the 
train and test sets are divided according to the ratio of 8:2, regardless of the potential leakage between test and 
train subjects, which can cause bias and certainly increases the results wrongly. In contrast, in this article, all the 
images belonging to one subject were considered either as test-data or training-data. This data splitting strategy 
enhances the reliability of the test results for ophthalmologists.

Additionally, many of the mentioned methods require training a large number of training parameters (more 
than 100 million), whereas CircWaveNet has approximately 3.5 million total training parameters, significantly 
reducing the computational complexity.

Figure 9.  The ROC curves of different classes for (a) 2D-DWT, and (b) circlet transform. Where the ROC 
curve of normal, DME, and AMD classes are shown in dark red, purple, and turquoise color respectively.
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As stated in the introduction, the optimal selection of an X-let transform can differ across applications, 
influenced by the utilization of distinct evaluation metrics and various image features that need to be consid-
ered. Darooei et al.16 determined that, for OCT B-scan segmentation using dice coefficient and Jaccard index, 
contourlet yields optimal results. Khodabandeh et al.28 observed diverse performance in noise reduction, where 
DTCW transform excels in Structural Similarity Index (SSIM), and 2D-DWT in Edge Preservation (EP) and 
Texture Preservation (TP). This suggests the effectiveness of different X-lets based on distinct criteria and image 
characteristics. However, our study demonstrates that CircWave transform surpasses others in both quantitative 
results and interpretability.

Figure 10.  The Grad-Cam of the proposed CNN for several test data of Dataset-A. Where part (a) compares 
the heat maps of reconstructed B-scans using circlet bases (first row) and the associated original B-scans (second 
row), while part (b) compares the heat map of reconstructed B-scans using 2D-DWT bases (first row) and the 
associated original B-scans (second row). It’s important to note that part (a) shows DME B-scans and part (b) 
shows normal B-scans.

Table 3.  Performance comparison of the proposed CNN and VGG19 and VGG16 as feature extraction 
models. These values were obtained using a combination of Circlet and 2D-DWT bases as the input to the 
models. Italic values represent the best-achieved results for each dataset. CNN Convolutional Neural Network; 
ACC  Accuracy; SP Specificity; SE Sensitivity; PR Precision; ROAUC  Area-under-the-Receiver-Operating-
Characteristic curve.

Feature extraction model Dataset ACC (%) SE (%) SP (%) PR (%) F1-score (%) ROAUC (%)

Proposed CNN
A 94.5 96 89.5 90 90 98

B 90 92 84.5 86 85 96

VGG19
A 93 94.5 88 88 88 96.5

B 88.5 91 83 84 84.5 95

VGG16
A 91.5 93 87.5 87 87 96

B 87 90 82 83 82.5 94
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Conclusion
In this paper, we proposed applying suitable X-let transforms to OCT B-scans rather than the original images 
as input for the 2D-CNN to achieve improved classification results while significantly reducing computational 
costs. This is feasible by transferring the data to a transform domain that allows a sparse image representation 
with a small number of transform coefficients. We have demonstrated that almost all X-let transforms can lead 
to more accurate classification results than the original B-scans. Among all utilized X-let transforms, the circlet 
transform performs better for both considered datasets, obtaining 93% ACC, 95% SE, 88% SP, 89% PR, 88% 
F1-score, and 97% ROAUC in Dataset-A, and 89% ACC, 84% SE, 92% SP, 85% PR, 84% F1-score, and 95% 
ROAUC in Dataset-B. Concentrating on class-accuracy, we found that the 2D-DWT can perform better for the 
classification of normal cases because most lines and boundaries in a normal B-scan almost follow a straight 
pattern with zero degrees, which can be well detected using a simple 2D wavelet transform capable of extracting 
lines with 0, 90 and ± 45 degrees. However, in the retinal structure of DME cases, some circles appear due to fluid 
accumulation and an increase in retinal thickness. This characteristic changes the pattern of B-scans of DME 
cases, which is extracted much better using the circlet transform.

Moreover, this paper demonstrates that these two transformations not only provide a significant increase in 
evaluation parameters but also focus on the characteristics of each class that are crucial for ophthalmologists. 
While it is necessary but not sufficient for them to categorize each case, X-lets make this decision more reliable 
because they concentrate on the true discriminative features of each class. Despite the classifier can predict the 
class for most B-scans using even original data, the CNN based on the considered X-let transforms precisely 
focuses on the features that make a difference in classes, a distinction not observed with original data.

As the next step, and to enhance the accuracy of the classification models, the coefficients from the 2D-DWT 
and circlet transform were concatenated and then fed into the models. This proposed algorithm increased the 
evaluation parameters by approximately 0.5 to 1.5 percent in both datasets. We named the new transformation 
"CircWave" and the novel classification model “CircWaveNet”.

This paper demonstrates that, despite the significant advancements in deep learning for image classification, 
certain limitations persist, especially in domains like medical images where there may be a scarcity of data or 
labeled data. Therefore, the utilization of image processing techniques, such as the application of time–frequency 
transforms, along with deep learning methods, can contribute to enhancing the accuracy and reliability of such 
applications, as they enable the analysis and interpretation of data, facilitating informed decision-making based 
on accurate information.

In future research, CircWave transform atoms can serve as the initial dictionary for a dictionary learning 
model, facilitating the adaptation of these atoms to the data. Conventional dictionary learning models are typi-
cally initialized with a random start dictionary, constituting an unsupervised initialization. When the goal is 
classification, there is supposed to be an advantage in applying a supervised initialization approach. Specifically, 
utilizing an initial dictionary that focuses on the distinct characteristics of various classes may potentially result 
in superior performance. This data-adaptive technique aims to provide more accurate results compared to X-let 

Figure 11.  The Grad-Cam of the proposed CNN for three test data of Dataset-A for each class, when 
reconstructed B-scans using 2D-DWT, Circlet, and CircWave transforms (in first to third rows), respectively are 
used as the input of the CNN.
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transforms, as it generates atoms based on the given data observations, making them better suited to the data. 
The adapted atoms can be subsequently employed in future image processing applications, ensuring faster and 
more accurate outcomes.

Figure 12.  Visualization of the output of the proposed CNN using PCA in conjunction with t-SNE reduction 
algorithms for (a) The original data, (b) the Circlet bases, (c) the 2D-DWT bases, and (d) the CircWave bases.

Table 4.  Results from other articles on Dataset-A. Results from the proposed CircWaveNet are shown in bold. 
CNN Convolutional Neural Network; ACC  Accuracy; SE Sensitivity; PR Precision; ROAUC  Area-under-the-
Receiver-Operating-Characteristic curve.

Number Paper Dimension Method ACC (%) SE (%) PR (%) ROAUC (%)

1 Rasti et al.29 3D Multi-scale Convolutional Mixture of 
Expert – – 99.39 99.8

2 Fang et al.54 3D Lesion-Aware CNN – 99.36 99.39 99.80

3 Das et al.55 3D B-scan Attentive CNN 93.2 – – 95

4 Rasti et al.56 3D Wavelet-based Convolutional Mixture of 
Experts – – – 99.3

5 Wang et al.57 3D Volumetric OCT-Recurrent Neural 
Network 93.8 94.0 94.4 –

6 Wang et al.44 2D CliqueNet 98.6 – – –

7 Das et al.58 2D semi-supervised Generative Adversarial 
Network 97.43 97.43 – –

8 Xu et al.59 2D Multi-branch Hybrid Attention Network 99.7 – 1 –

9 Nabijiang et al.60 2D Block Attention Mechanism 99.64 – –

10 Our Method 2D CircWaveNet 94.5 96 90 98
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Data availability
Dataset-A can be accessed via: https:// misp. mui. ac. ir/ en/ datas et- oct- class ifica tion- 50- normal- 48- amd- 50- dme-
0, while Dataset-B is accessible at: https:// misp. mui. ac. ir/ en/ oct- basel- data-0. Code and models are available at: 
https:// github. com/ royaa rian1 01/ CircW aveNet.
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