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Abstract. We consider a natural generalization of Vertex Cover:
the Subset Vertex Cover problem, which is to decide for a graph
G = (V,E), a subset T ⊆ V and integer k, if V has a subset S of size
at most k, such that S contains at least one end-vertex of every edge
incident to a vertex of T . A graph is H-free if it does not contain H as
an induced subgraph. We solve two open problems from the literature
by proving that Subset Vertex Cover is NP-complete on subcubic
(claw,diamond)-free planar graphs and on 2-unipolar graphs, a subclass
of 2P3-free weakly chordal graphs. Our results show for the first time
that Subset Vertex Cover is computationally harder than Vertex
Cover (under P ̸= NP). We also prove new polynomial time results. We
first give a dichotomy on graphs where G[T ] is H-free. Namely, we show
that Subset Vertex Cover is polynomial-time solvable on graphs G,
for which G[T ] is H-free, if H = sP1 + tP2 and NP-complete otherwise.
Moreover, we prove that Subset Vertex Cover is polynomial-time
solvable for (sP1+P2+P3)-free graphs and bounded mim-width graphs.
By combining our new results with known results we obtain a partial
complexity classification for Subset Vertex Cover on H-free graphs.

1 Introduction

We consider a natural generalization of the classical Vertex Cover problem:
the Subset Vertex Cover problem, introduced in [5]. Let G = (V,E) be a
graph and T be a subset of V . A set S ⊆ V is a T -vertex cover of G if S contains
at least one end-vertex of every edge incident to a vertex of T . We note that T
itself is a T -vertex cover. However, a graph may have much smaller T -vertex
covers. For example, if G is a star whose leaves form T , then the center of G
forms a T -vertex cover. We can now define the problem; see also Fig. 1.
⋆ Jelle Oostveen was supported by the NWO grant OCENW.KLEIN.114 (PACAN).
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Subset Vertex Cover
Instance: A graph G = (V,E), a subset T ⊆ V , and a positive integer k.
Question: Does G have a T -vertex cover ST with |ST | ≤ k?

If we set T = V , then we obtain the Vertex Cover problem. Hence, as Vertex
Cover is NP-complete, so is Subset Vertex Cover.

To obtain a better understanding of the complexity of an NP-complete graph
problem, we may restrict the input to some special graph class. In particular,
hereditary graph classes, which are the classes closed under vertex deletion, have
been studied intensively for this purpose. It is readily seen that a graph class G is
hereditary if and only if G is characterized by a unique minimal set of forbidden
induced subgraphs FG. Hence, for a systematic study, it is common to first
consider the case where FG has size 1. This is also the approach we follow in this
paper. So, for a graph H, we set FG = {H} for some graph H and consider the
class of H-free graphs (graphs that do not contain H as an induced subgraph).
We now consider the following research question:

For which graphs H is Subset Vertex Cover, restricted to H-free graphs, still
NP-complete and for which graphs H does it become polynomial-time solvable?

We will also address two open problems posed in [5] (see Section 2 for any
undefined terminology):

Q1. What is the complexity of Subset Vertex Cover for claw-free graphs?
Q2. Is Subset Vertex Cover is NP-complete for Pt-free graphs for some t?

The first question is of interest, as Vertex Cover is polynomial-time solv-
able even on rK1,3-free graphs for every r ≥ 1 [4], where rK1,3 is the dis-
joint union of r claws (previously this was known for rP3-free graphs [13] and
2P3-free graphs [14]). The second question is of interest due to some recent
quasi-polynomial-time results. Namely, Gartland and Lokshtanov [9] proved that
for every integer t, Vertex Cover can be solved in nO(log3 n)-time for Pt-free

S

T

Fig. 1. An instance (G,T, k) of Subset Vertex Cover, where T consists of the
orange vertices, together with a solution S (a T -vertex cover of size 5). Note that S
consists of four vertices of T and one vertex of T = V \ T .
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graphs. Afterwards, Pilipczuk, Pilipczuk and Rzążewski [18] improved the run-
ning time to nO(log2 n) time. Even more recently, Gartland et al. [10] extended
the results of [9,18] from Pt-free graphs to H-free graphs where every connected
component of H is a path or a subdivided claw.

Grötschel, Lovász, and Schrijver [11] proved that Vertex Cover can be
solved in polynomial time for the class of perfect graphs, which includes well-
known graph classes, such as bipartite graphs and (weakly) chordal graphs. Be-
fore we present our results, we first briefly discuss the relevant literature.

Existing Results and Related Work

Whenever Vertex Cover is NP-complete for some graph class G, then so is
the more general problem Subset Vertex Cover. Moreover, Subset Ver-
tex Cover can be polynomially reduced to Vertex Cover: given an instance
(G,T, k) of the former problem, remove all edges not incident to a vertex of T
to obtain an instance (G′, k) of the latter problem. Hence, we obtain:

Proposition 1. The problems Vertex Cover and Subset Vertex Cover
are polynomially equivalent for every graph class closed under edge deletion.

For example, the class of bipartite graphs is closed under edge deletion and Ver-
tex Cover is polynomial-time solvable on bipartite graphs. Hence, by Proposi-
tion 1, Subset Vertex Cover is polynomial-time solvable on bipartite graphs.
However, a class of H-free graphs is only closed under edge deletion if H is
a complete graph, and Vertex Cover is NP-complete even for triangle-free
graphs [19]. This means that there could still exist graphs H such that Vertex
Cover and Subset Vertex Cover behave differently if the former problem
is (quasi)polynomial-time solvable on H-free graphs. The following well-known
result of Alekseev [1] restricts the structure of such graphs H.

Theorem 1 ([1]). For every graph H that contains a cycle or a connected com-
ponent with two vertices of degree at least 3, Vertex Cover, and thus Subset
Vertex Cover, is NP-complete for H-free graphs.

Due to Theorem 1 and the aforementioned result of Gartland et al. [10], every
graph H is now either classified as a quasi-polynomial case or NP-hard case for
Vertex Cover. For Subset Vertex Cover the situation is much less clear.
So far, only one positive result is known, which is due to Brettell et al. [5].

Theorem 2 ([5]). For every s ≥ 0, Subset Vertex Cover is polynomial-
time solvable on (sP1 + P4)-free graphs.

Subset variants of classic graph problems are widely studied, also in the context
of H-free graphs. Indeed, Brettell et al. [5] needed Theorem 2 as an auxiliary
result in complexity studies for Subset Feedback Vertex Set and Subset
Odd Cycle Transversal restricted to H-free graphs. The first problem is to
decide for a graph G = (V,E), subset T ⊆ V and integer k, if G has a set S of
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size at most k such that S contains a vertex of every cycle that intersects T . The
second problem is similar but replaces “cycle” by “cycle of odd length”. Brettell
et al. [5] proved that both these subset transversal problems are polynomial-time
solvable on (sP1 + P3)-free graphs for every s ≥ 0. They also showed that Odd
Cycle Transversal is polynomial-time solvable for P4-free graphs and NP-
complete for split graphs, which form a subclass of 2P2-free graphs, whereas NP-
completeness for Subset Feedback Vertex Set on split graphs was shown by
Fomin et al. [8]. Recently, Paesani et al. [17] extended the result of [5] for Subset
Feedback Vertex Set from (sP1 + P3)-free graphs to (sP1 + P4)-free graphs
for every integer s ≥ 0. If H contains a cycle or claw, NP-completeness for both
subset transversal problems follows from corresponding results for Feedback
Vertex Set [16,19] and Odd Cycle Transversal [6].

Combining all the above results leads to the following theorems (see also [5,17]).
Here, we write F ⊆i G if F is an induced subgraph of G.

Theorem 3. For a graph H, Subset Feedback Vertex Set on H-free graphs
is polynomial-time solvable if H ⊆i sP1 + P4 for some s ≥ 0, and NP-complete
otherwise.

Theorem 4. For a graph H ̸= sP1 + P4 for some s ≥ 1, Subset Odd Cycle
Transversal on H-free graphs is polynomial-time solvable if H = P4 or H ⊆i

sP1 + P3 for some s ≥ 0, and NP-complete otherwise.

Our Results

In Section 3 we prove two new hardness results, using the same basis reduction,
which may have a wider applicability. We first answer Q1 by proving that Subset
Vertex Cover is NP-complete even for subcubic planar line graphs of triangle-
free graphs, or equivalently, subcubic planar (claw, diamond)-free graphs.

We then answer Q2 by proving that Subset Vertex Cover is NP-complete
even for a 2-unipolar graphs, which are 2P3-free (and thus P7-free).

Our hardness results show a sharp contrast with Vertex Cover, which can
be solved in polynomial time for both weakly chordal graphs [11] and rK1,3-free
graphs for every r ≥ 1 [4]. Hence, Subset Vertex Cover may be harder than
Vertex Cover for a graph class closed under vertex deletion (if P ̸= NP). This
is in contrast to graph classes closed under edge deletion (see Proposition 1).

In Section 3 we also prove that Subset Vertex Cover is NP-complete
for inputs (G,T, k) if the subgraph G[T ] of G induced by T is P3-free. On the
other hand, our first positive result, shown in Section 4, shows that the problem
is polynomial-time solvable if G[T ] is sP2-free for any s ≥ 2. In Section 4 we
also prove that Subset Vertex Cover can be solved in polynomial time for
(sP1 + P2 + P3)-free graphs for every s ≥ 1. Our positive results generalize
known results for Vertex Cover. The first result also implies that Subset
Vertex Cover is polynomial-time solvable for split graphs, contrasting our
NP-completeness result for 2-unipolar graphs, which are generalized split, 2P3-
free, and weakly chordal. Combining our new results with Theorem 2 gives us a
partial classification and a dichotomy, both of which are proven in Section 5.
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Theorem 5. For a graph H ̸= rP1+sP2+P3 for any r ≥ 0, s ≥ 2; rP1+sP2+P4

for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0, s ≥ 0, t ∈ {5, 6},
Subset Vertex Cover on H-free graphs is polynomial-time solvable if H ⊆i

sP1 + P2 + P3, sP2, or sP1 + P4 for some s ≥ 1, and NP-complete otherwise.

Theorem 6. For a graph H, Subset Vertex Cover on instances (G,T, k),
where G[T ] is H-free, is polynomial-time solvable if H ⊆i sP2 for some s ≥ 1,
and NP-complete otherwise.

Theorems 3–6 show that Subset Vertex Cover on H-free graphs can be
solved in polynomial time for infinitely more graphs H than Subset Feedback
Vertex Set and Subset Odd Cycle Transversal. This is in line with the
behaviour of the corresponding original (non-subset) problems.

In Section 6 we discuss some directions for future work, which naturally
originate from the above results and our final new result, which is proven in the
full version of our paper4, and which states that Subset Vertex Cover is
polynomial-time solvable on every graph class of bounded mim-width, such as
the class of circular-arc graphs.

2 Preliminaries

Let G = (V,E) be a graph. The degree of a vertex u ∈ V is the size of its
neighbourhood N(u) = {v | uv ∈ E}. We say that G is subcubic if every vertex
of G has degree at most 3. An independent set I in G is maximal if there exists
no independent set I ′ in G with I ⊊ I ′. Similarly, a vertex cover S of G is
minimal if there no vertex cover S′ in G with S′ ⊊ S. For a graph H we write
H ⊆i G if H is an induced subgraph of G, that is, G can be modified into H by
a sequence of vertex deletions. If G does not contain H as an induced subgraph,
G is H-free. For a set of graphs H, G is H-free if G is H-free for every H ∈ H.
If H = {H1, . . . ,Hp} for some p ≥ 1, we also write that G is (H1, . . . ,Hp)-free.

The line graph of a graph G = (V,E) is the graph L(G) that has vertex set E
and an edge between two vertices e and f if and only if e and f share a common
end-vertex in G. The complement G of a graph G = (V,E) has vertex set V and
an edge between two vertices u and v if and only if uv /∈ E.

For two vertex-disjoint graphs F and G, the disjoint union F+G is the graph
(V (F ) ∪ V (G), E(F ) ∪ E(G)). We denote the disjoint union of s copies of the
same graph G by sG. A linear forest is a disjoint union of one or more paths.

Let Cs be the cycle on s vertices; Pt the path on t vertices; Kr the complete
graph on r vertices; and K1,r the star on (r+1) vertices. The graph C3 = K3 is
the triangle; the graph K1,3 the claw, and the graph 2P1 + P2 is the diamond (so
the diamond is obtained from the K4 after deleting one edge). The subdivision
of an edge uv replaces uv with a new vertex w and edges uw, wv. A subdivided
claw is obtained from the claw by subdividing each of its edges zero or more
times.
4 The full version is available on arXiv, see https://arxiv.org/abs/2307.05701.

https://arxiv.org/abs/2307.05701
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A graph is chordal if it has no induced Cs for any s ≥ 4. A graph is weakly
chordal if it has no induced Cs and no induced Cs for any s ≥ 5. A cycle Cs

or an anti-cycle Cs is odd if it has an odd number of vertices. By the Strong
Perfect Graph Theorem [7], a graph is perfect if it has no odd induced Cs and
no odd induced Cs for any s ≥ 5. Every chordal graph is weakly chordal, and
every weakly chordal graph is perfect. A graph G = (V,E) is unipolar if V can
be partitioned into two sets V1 and V2, where G[V1] is a complete graph and
G[V2] is a disjoint union of complete graphs. If every connected component of
G[V2] has size at most 2, then G is 2-unipolar. Unipolar graphs form a subclass
of generalized split graphs, which are the graphs that are unipolar or their com-
plement is unipolar. It can also be readily checked that every 2-unipolar graph
is weakly chordal (but not necessarily chordal, as evidenced by G = C4).

For an integer r, a graph G′ is an r-subdivision of a graph G if G′ can be
obtained from G by subdividing every edge of G r times, that is, by replacing
each edge uv ∈ E(G) with a path from u to v of length r + 1.

3 NP-Hardness Results

In this section we prove our hardness results for Subset Vertex Cover, using
the following notation. Let G be a graph with an independent set I. We say that
we augment G by adding a (possibly empty) set F of edges between some pairs
of vertices of I. We call the resulting graph an I-augmentation of G.

The following lemma forms the basis for our hardness gadgets.

Lemma 1. Every vertex cover of a graph G = (V,E) with an independent set I
is a (V \ I)-vertex cover of every I-augmentation of G, and vice versa.

Proof. Let G′ be an I-augmentation of G. Consider a vertex cover S of G. For
a contradiction, assume that S is not a (V \ I)-vertex cover of G′. Then G′ − S
must contain an edge uv with at least one of u, v belonging to V \ I. As G− S
is an independent set, uv belongs to E(G′) \ E(G) implying that both u and v
belong to I, a contradiction.

Now consider a (V \ I)-vertex cover S′ of G′. For a contradiction, assume
that S′ is not a vertex cover of G. Then G − S′ must contain an edge uv (so
uv ∈ E). As G′ is a supergraph of G, we find that G′−S′ also contains the edge
uv. As S′ is a (V \ I)-vertex cover of G′, both u and v must belong to I. As
uv ∈ E, this contradicts the fact that I is an independent set. ⊓⊔

To use Lemma 1 we need one other lemma, which follows directly from an
observation due to Poljak [19].

Lemma 2 ([19]). For an integer r, a graph G with m edges has an independent
set of size k if and only if the 2r-subdivision of G has an independent set of size
k + rm.

We are now ready to prove our first two hardness results. Recall that a graph
is (claw, diamond)-free if and only if it is a line graph of a triangle-free graph.
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Hence, the result in particular implies NP-hardness of Subset Vertex Cover
for line graphs. Recall also that we denote the claw and diamond by K1,3 and
2P1 + P2, respectively.

Theorem 7. Subset Vertex Cover is NP-complete for (K1,3, 2P1 + P2)-free
subcubic planar graphs.

Proof. We reduce from Vertex Cover, which is NP-complete even for cubic
planar graphs [15]. As an n-vertex graph has a vertex cover of size at most k if
and only if it has an independent set of size at least n− k, we find that Vertex
Cover is NP-complete even for subcubic planar graphs that are 4-subdivisions
due to an application of Lemma 2 with r = 2 (note that subdividing an edge
preserves both maximum degree and planarity). So, let (G, k) be an instance
of Vertex Cover, where G = (V,E) is a subcubic planar graph that is a
4-subdivision of some cubic planar graph G∗, and k is an integer.

In G, we let U = V (G∗) and W be the subset of V (G) \ U that consists of
all neighbours of vertices of U . Note that W is an independent set in G. We
construct a W -augmentation G′ as follows.

For every vertex u ∈ U of degree 3 in G, we pick two arbitrary neighbours of
u (which both belong to W ) and add an edge between them. It is readily seen
that G′ is (K1,3, 2P1 + P2)-free, planar and subcubic. By Lemma 1, it holds that
G has a vertex cover of size at most k if and only if G′ has a (V \ W )-vertex
cover of size at most k. ⊓⊔

See the full version of our paper for the proof of our second hardness result. It can
be readily checked that 2-unipolar graphs are (2C3, C5, C6, C3+P3, 2P3, P6, C6)-
free graphs, and thus are 2P3-free weakly chordal.

Theorem 8. Subset Vertex Cover is NP-complete for instances (G,T, k),
for which G is 2-unipolar and G[T ] is a disjoint union of edges.

4 Polynomial-Time Results

In this section, we prove our polynomial-time results. We start with the case
where H = sP2 for some s ≥ 1. For this case we need the following two well-
known results. The delay of an enumeration algorithm is the maximum of the
time taken before the first output and that between any pair of consecutive
outputs.

Theorem 9 ([2]). For every constant s ≥ 1, the number of maximal indepen-
dent sets of an sP2-free graph on n vertices is at most n2s + 1.

Theorem 10 ([20]). For every constant s ≥ 1, it is possible to enumerate all
maximal independent sets of an sP2-free graph G on n vertices and m edges with
a delay of O(nm).
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S = R ∪ W

Fig. 2. An example of the 2P2-free graph G′ of the proof of Theorem 11. Here, T
consists of the orange vertices. A solution S can be split up into a minimal vertex
cover R of G′[T ] and a vertex cover W of G[V \R].

We show a slightly stronger result than proving that Subset Vertex Cover
is polynomial-time solvable for sP2-free graphs. The idea behind the algorithm
is to remove any edges between vertices in V \ T , as these edges are irrelevant.
As a consequence, we may leave the graph class, but this is not necessarily an
obstacle. For example, if G[T ] is a complete graph, or T is an independent set,
we can easily solve the problem. Both cases are generalized by the result below.

Theorem 11. For every s ≥ 1, Subset Vertex Cover can be solved in poly-
nomial time for instances (G,T, k) for which G[T ] is sP2-free.

Proof. Let s ≥ 1, and let (G,T, k) be an instance of Subset Vertex Cover
where G = (V,E) is a graph such that G[T ] is sP2-free. Let G′ = (V,E′) be
the graph obtained from G after removing every edge between two vertices of
V \T , so G′[V \T ] is edgeless. We observe that G has a T -vertex cover of size at
most k if and only if G′ has a T -vertex cover of size at most k. Moreover, G′[T ]
is sP2-free, and we can obtain G′ in O(|E(G)|) time. Hence, from now on, we
consider the instance (G′, T, k).

We first prove the following two claims, see Figure 2 for an illustration.

Claim 1. A subset S ⊆ V (G′) is a T -vertex cover of G′ if and only if S = R∪W
for a minimal vertex cover R of G′[T ] and a vertex cover W of G′[V \R].

We prove Claim 1 as follows. Let S ⊆ V (G′). First assume that S is a T -vertex
cover of G′. Let I = V \S. As S is a T -vertex cover, T ∩ I is an independent set.
Hence, S contains a minimal vertex cover R of G′[T ]. As G′[V \T ] is edgeless, S
is a vertex cover of G, or in other words, I is an independent set. In particular,
this means that W \R is a vertex cover of G′[V \R].

Now assume that S = R ∪ W for a minimal vertex cover R of G′[T ] and a
vertex cover W of G′[V \ R]. For a contradiction, suppose that S is not a T -
vertex cover of G′. Then G′ − S contains an edge uv ∈ E′, where at least one of
u, v belongs to T . First suppose that both u and v belong to T . As R is a vertex
cover of G′[T ], at least one of u, v belongs to R ⊆ S, a contradiction. Hence,
exactly one of u, v belongs to T , say u ∈ T and v ∈ V \T , so in particular, v /∈ R.
As R ⊆ S, we find that u /∈ R. Hence, both u and v belong to V \R. As W is a
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vertex cover of V \ R, this means that at least one of u, v belongs to W ⊆ S, a
contradiction. This proves the claim. ⋄

Claim 2. For every minimal vertex cover R of G′[T ], the graph G′[V \ R] is
bipartite.

We prove Claim 2 as follows. As R is a vertex cover of G′[T ], we find that T \R
is an independent set. As G′[V \T ] is edgeless by construction of G′, this means
that G′[V \R] is bipartite with partition classes T \R and V \ T . ⋄

We are now ready to give our algorithm. We enumerate the minimal vertex covers
of G′[T ]. For every minimal vertex cover R, we compute a minimum vertex cover
W of G′[V \R]. In the end, we return the smallest S = R ∪W that we found.

The correctness of our algorithm follows from Claim 1. It remains to analyse
the running time. As G′[T ] is sP2-free, we can enumerate all maximal indepen-
dent sets I of G′[T ] and thus all minimal vertex covers R = T \ I of G′[T ] in
(n2s+1) ·O(nm) time due to Theorems 9 and 10. For a minimal vertex cover R,
the graph G′[V \R] is bipartite by Claim 2. Hence, we can compute a minimum
vertex cover W of G′[V \ R] in polynomial time by applying König’s Theorem.
We conclude that the total running time is polynomial. ⊓⊔

For our next result (Theorem 12) we need two known results as lemmas.

Lemma 3 ([5]). If Subset Vertex Cover is polynomial-time solvable on H-
free graphs for some H, then it is so on (H + P1)-free graphs.

Lemma 4 ([4]). For every r ≥ 1, Vertex Cover is polynomial-time solvable
on rK1,3-free graphs.

We are now ready to prove our second polynomial-time result.

Theorem 12. For every integer s, Subset Vertex Cover is polynomial-time
solvable on (sP1 + P2 + P3)-free graphs.

Proof. Due to Lemma 3, we can take s = 0, so we only need to give a polynomial-
time algorithm for (P2 + P3)-free graphs. Hence, let (G,T, k) be an instance of
Subset Vertex Cover, where G = (V,E) is a (P2 + P3)-free graph.

First compute a minimum vertex cover of G. As G is (P2+P3)-free, and thus
2K1,3-free, this takes polynomial time by Lemma 4. Remember the solution Svc.

We now compute a minimum T -vertex cover S of G that is not a vertex
cover of G. Then G−S must contain an edge between two vertices in G−T . We
branch by considering all O(n2) options of choosing this edge. For each chosen
edge uv we do as follows. As both u and v will belong to G−S for the T -vertex
cover S of G that we are trying to construct, we first add every neighbour of u
or v that belongs to T to S.

Let T ′ consist of all vertices of T that are neither adjacent to u nor to v. As
G is (P2 +P3)-free and uv ∈ E, we find that G[T ′] is P3-free and thus a disjoint
union of complete graphs. We call a connected component of G[T ′] large if it has
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at least two vertices; else we call it small (so every small component of G[T ′] is
an isolated vertex). See also Figure 3 for an illustration.

Case 1. The graph G[T ′] has at most two large connected components.
Let D1 and D2 be the large connected components of G[T ′] (if they exist). As
V (D1) and V (D2) are cliques in G[T ], at most one vertex of D1 and at most one
vertex of D2 can belong to G− S. We branch by considering all O(n2) options
of choosing at most one vertex of D1 and at most one vertex of D2 to be these
vertices. For each choice of vertices we do as follows. We add all other vertices
of D1 and D2 to S. Let T ∗ be the set of vertices of T that we have not added to
S. Then T ∗ is an independent set.

We delete every edge between any two vertices in G− T . Now the graph G∗

induced by the vertices of T ∗ ∪ (V \ T ) is bipartite (with partition classes T ∗

and V \ T ). It remains to compute a minimum vertex cover S∗ of G∗. This can
be done in polynomial time by applying König’s Theorem. We let S consist of
S∗ together with all vertices of T that we had added in S already.

For each branch, we remember the output, and in the end we take a smallest
set S found and compare its size with the size of Svc, again taking a smallest
set as the final solution.

Case 2. The graph G[T ′] has at least three large connected components.
Let D1, . . . , Dp, for some p ≥ 3, be the large connected components of G[T ′].
Let A consists of all the vertices of the small connected components of G[T ′].

We first consider the case where G− S will contain a vertex w ∈ V \ T with
one of the following properties:

1. for some i, w has a neighbour and a non-neighbour in Di; or
2. for some i, j with i ̸= j, w has a neighbour in Di and a neighbour in Dj ; or
3. for some i, w has a neighbour in Di and a neighbour in A.

We say that a vertex w in G−S is semi-complete to some Di if w is adjacent to
all vertices of Di except at most one. We show the following claim that holds if
the solution S that we are trying to construct contains a vertex w ∈ V \ (S ∪T )
that satisfies one of the three properties above. See Figure 3 for an illustration.

Claim. Every vertex w ∈ V \ (S ∪ T ) that satisfies one of the properties 1-3 is
semi-complete to every V (Dj).

We prove the Claim as follows. Let w ∈ V \ (S ∪ T ). First assume w satisfies
Property 1. Let x and y be vertices of some Di, say D1, such that wx ∈ E and
wy /∈ E. For a contradiction, assume w is not semi-complete to some Dj . Hence,
Dj contains vertices y′ and y′′, such that wy′ /∈ E and wy′′ /∈ E. If j ≥ 2, then
{y′, y′′, w, x, y} induces a P2 + P3 (as D1 and Dj are complete graphs). This
contradicts that G is (P2 + P3)-free. Hence, w is semi-complete to every V (Dj)
with j ≥ 2. Now suppose j = 1. As p ≥ 3, the graphs D2 and D3 exist. As w
is semi-complete to every V (Dj) for j ≥ 2 and every Dj is large, there exist
vertices x′ ∈ V (D2) and x′′ ∈ V (D3) such that wx′ ∈ E and wx′′ ∈ E. However,
now {y′, y′′, x′, w, x′′} induces a P2 + P3, a contradiction.
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S

D1 D2

D3 A

u vx1 x2 x3 x4 x5

Fig. 3. An illustration of the graph G in the proof of Theorem 12, where T consists
of the orange vertices, and p = 3. Edges in G[V \ T ] are not drawn, and for x2 and
x3 some edges are partially drawn. None of x1, x4, x5 satisfy a property; x2 satisfies
Property 1 for D2 and Property 2 for D2 and D3; and x3 satisfies Property 3 for D3.

Now assume w satisfies Property 2, say w is adjacent to x1 ∈ V (D1) and
to x2 ∈ V (D2). Suppose w is not semi-complete to some V (Dj). If j ≥ 3, then
the two non-neighbours of w in Dj , together with x1, w, x2, form an induced
P2 + P3, a contradiction. Hence, w is semi-complete to every V (Dj) for j ≥ 3.
If j ∈ {1, 2}, say j = 1, then let y, y′ be two non-neighbours of w in D1 and
let x3 be a neighbour of w in D3. Now, {y, y′, x2, w, x3} induces a P2 + P3, a
contradiction. Hence, w is semi-complete to V (D1) and V (D2) as well.

Finally, assume w satisfies Property 3, say w is adjacent to z ∈ A and x1 ∈
V (D1). If w not semi-complete to V (Dj) for some j ≥ 2, then two non-neighbours
of w in Dj , with z, w, x1, form an induced P2 + P3, a contradiction. Hence, w is
semi-complete to every V (Dj) with j ≥ 2. As before, by using a neighbour of w
in D2 and one in D3, we find that w is also semi-complete to V (D1). ⋄

We now branch by considering all O(n) options for choosing a vertex w ∈ V \
(S ∪ T ) that satisfies one of the properties 1-3. For each chosen vertex w, we
do as follows. We remove all its neighbours in T , and add them to S. By the
above Claim, the remaining vertices in T form an independent set. We delete
any edge between two vertices from V \ T , so V \ T becomes an independent
set as well. It remains to compute, in polynomial time by König’s Theorem, a
minimum vertex cover in the resulting bipartite graph and add this vertex cover
to S. For each branch, we store S. After processing all of the O(n) branches, we
keep a smallest S, which we denote by S∗.

We are left to compute a smallest T -vertex cover S of G over all T -vertex
covers that contain every vertex from V \T that satisfy one of the properties 1–3.
We do this as follows. First, we put all vertices from V \T that satisfy one of the
three properties 1–3 to the solution S that we are trying to construct. Let G∗

be the remaining graph. We do not need to put any vertex from any connected
component of G∗ that contains no vertex from T in S.

Now consider the connected component D′
1 of G∗ that contains the vertices

from D1. As D′
1 contains no vertices from V \ T satisfying properties 2 or 3,

we find that D′
1 contains no vertices from A or from any Dj with j ≥ 2, so
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V (D′
1) ∩ T = V (D1). Suppose there exists a vertex v in V (D′

1) \ V (D1), which
we may assume has a neighbour in D1 (as D′

1 is connected). Then, v is complete
to D1 as it does not satisfy Property 1. Then, we must put at least |V (D1)|
vertices from D′

1 in S, so we might just as well put every vertex of D1 in S. As
V (D′

1) ∩ T = V (D1), this suffices. If D′
1 = D1, then we put all vertices of D1

except for one arbitrary vertex of D1 in S.
We do the same as we did for D1 for the connected components D′

2, . . . , D
′
p

of G∗ that contain V (D2), . . . V (Dp), respectively.
Now, it remains to consider the induced subgraph F of G∗ that consists of

connected components containing the vertices of A. Recall that A is an indepen-
dent set. We delete every edge between two vertices in V \T , resulting in another
independent set. This changes F into a bipartite graph and we can compute a
minimum vertex cover SF of F in polynomial time due to König’s Theorem. We
put SF to S and compare the size of S with the size of S∗ and Svc, and pick
the one with smallest size as our solution.

The correctness of our algorithm follows from the above description. The
number of branches is O(n4) in Case 1 and O(n3) in Case 2. As each branch
takes polynomial time to process, this means that the total running time of our
algorithm is polynomial. This completes our proof. ⊓⊔

5 The Proof of Theorems 5 and 6

We first prove Theorem 5, which we restate below.

Theorem 5 (restated). For a graph H ̸= rP1 + sP2 + P3 for any r ≥ 0,
s ≥ 2; rP1 + sP2 + P4 for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0,
s ≥ 0, t ∈ {5, 6}, Subset Vertex Cover on H-free graphs is polynomial-time
solvable if H ⊆i sP1+P2+P3, sP2, or sP1+P4 for some s ≥ 1, and NP-complete
otherwise.

Proof. Let H be a graph not equal to rP1 + sP2 + P3 for any r ≥ 0, s ≥ 2;
rP1 + sP2 + P4 for any r ≥ 0, s ≥ 1; or rP1 + sP2 + Pt for any r ≥ 0, s ≥ 0,
t ∈ {5, 6}. If H has a cycle, then we apply Theorem 1. Else, H is a forest. If H
has a vertex of degree at least 3, then the class of H-free graphs contains all K1,3-
free graphs, and we apply Theorem 7. Else, H is a linear forest. If H contains an
induced 2P3, then we apply Theorem 8. If not, then H ⊆i sP1 + P2 + P3, sP2,
or sP1 + P4 for some s ≥ 1. In the first case, apply Theorem 12; in the second
case Theorem 11; and in the third case Theorem 2. ⊓⊔

We now prove Theorem 6, which we restate below.

Theorem 6 (restated). For a graph H, Subset Vertex Cover on instances
(G,T, k), where G[T ] is H-free, is polynomial-time solvable if H ⊆i sP2 for some
s ≥ 1, and NP-complete otherwise.

Proof. First suppose P3 ⊆i H. As a graph that is a disjoint union of edges is
P3-free, we can apply Theorem 8. Now suppose H is P3-free. Then H ⊆i sP2 for
some s ≥ 1, and we apply Theorem 11. ⊓⊔
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6 Conclusions

Apart from giving a dichotomy for Subset Vertex Cover restricted to in-
stances (G,T, k) where G[T ] is H-free (Theorem 6), we gave a partial classifi-
cation of Subset Vertex Cover for H-free graphs (Theorem 5). Our partial
classification resolved two open problems from the literature and showed that
for some hereditary graph classes, Subset Vertex Cover is computationally
harder than Vertex Cover (if P ̸= NP). This is in contrast to the situation
for graph classes closed under edge deletion. Hence, Subset Vertex Cover is
worth studying on its own, instead of only as an auxiliary problem (as in [5]).

Our results raise the question whether there exist other hereditary graph
classes on which Subset Vertex Cover is computationally harder than Ver-
tex Cover. Recall that Vertex Cover is polynomial-time solvable for perfect
graphs [11], and thus for weakly chordal graphs and chordal graphs. On the other
hand, we showed that Subset Vertex Cover is NP-complete for 2-unipolar
graphs, a subclass of 2P3-free weakly chordal graphs. Hence, as the first candi-
date graph class to answer this question, we propose the class of chordal graphs.
A standard approach for Vertex Cover on chordal graphs is dynamic pro-
gramming over the clique tree of a chordal graph. However, a naive dynamic
programming algorithm over the clique tree does not work for Subset Vertex
Cover, as we may need to remember an exponential number of subsets of a
bag (clique) and the bags can have arbitrarily large size. In the full version of
our paper, we show that Subset Vertex Cover can be solved in polynomial
time on graphs of bounded mim-width. Using known results, this immediately
implies the following:

Corollary 1. Subset Vertex Cover can be solved in polynomial time on
interval and circular-arc graphs.

Corollary 1 makes the open question of the complexity of Subset Vertex
Cover on chordal graphs, a superclass of the class of interval graphs, even more
pressing. Recall that Subset Feedback Vertex Set, which is also solvable in
polynomial time for graphs of bounded mim-width [3], is NP-complete for split
graphs and thus for chordal graphs [8].

We note that our polynomial algorithms for Subset Vertex Cover for
sP2-free graphs and (P2 +P3)-free graphs can easily be adapted for Weighted
Subset Vertex Cover for sP2-free graphs and (P2 + P3)-free graphs. every
s ≥ 1 [5] (see also Theorem 4).

Finally, to complete the classification of Subset Vertex Cover for H-free
graphs we need to solve the open cases where H = sP2 + P3 for s ≥ 2; or
H = sP2 + P4 for s ≥ 1; or H = sP2 + Pt for s ≥ 0 and t ∈ {5, 6}. Brettell
et al. [5] asked what the complexity of Subset Vertex Cover is for P5-free
graphs. In contrast, Vertex Cover is polynomial-time solvable even for P6-free
graphs [12]. However, the open cases where H = sP2+Pt (s ≥ 1 and t ∈ {4, 5, 6})
are even open for Vertex Cover on H-free graphs (though a quasi-polynomial
time algorithm is known [9,18]). So for those cases we may want to first restrict
ourselves to Vertex Cover instead of Subset Vertex Cover.
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