
KA-TP-09-2023, P3H-23-035, IPPP/23/24

Numerical Scattering Amplitudes with pySecDec

G. Heinricha, S. P. Jonesb, M. Kernera, V. Mageryaa, A. Olssona,
J. Schlenkc

aInstitute for Theoretical Physics, Karlsruhe Institute of Technology (KIT),
76128 Karlsruhe, Germany

bInstitute for Particle Physics Phenomenology, Durham University,
Durham DH1 3LE, UK

cICS, University of Zurich, Winterthurerstrasse 190,
8057 Zurich, Switzerland

Abstract

We present a major update of the program pySecDec, a toolbox for the
evaluation of dimensionally regulated parameter integrals. The new ver-
sion enables the evaluation of multi-loop integrals as well as amplitudes in
a highly distributed and flexible way, optionally on GPUs. The program
has been optimised and runs up to an order of magnitude faster than the
previous release. A new integration procedure that utilises construction-free
median Quasi-Monte Carlo rules is implemented. The median lattice rules
can outperform our previous component-by-component rules by a factor of
5 and remove the limitation on the maximum number of sampling points.
The expansion by regions procedures have been extended to support Feyn-
man integrals with numerators, and functions for automatically determining
when and how analytic regulators should be introduced are now available.
The new features and performance are illustrated with several examples.

Keywords: Perturbation theory, Feynman diagrams, scattering amplitudes,
multi-loop, numerical integration

Preprint submitted to Elsevier December 21, 2023

PROGRAM SUMMARY

Manuscript Title: Numerical Scattering Amplitudes with pySecDec
Authors: G. Heinrich, S. P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk
Program Title: pySecDec
Developer’s repository: https://github.com/gudrunhe/secdec
Online documentation: https://secdec.readthedocs.io
Licensing provisions: GNU Public License v3
Programming language: Python, Form, C++, Cuda
Computer: from a single PC/Laptop to a cluster, depending on the problem; if the
optional GPU support is used, Cuda compatible hardware is required.
Operating system: Unix, Linux
RAM: hundreds of megabytes or more, depending on the complexity of the problem
Keywords: Perturbation theory, Feynman diagrams, scattering amplitudes, multi-
loop, numerical integration
Classification: 4.4 Feynman diagrams, 5 Computer Algebra, 11.1 General, High
Energy Physics and Computing.
External routines/libraries: GSL [1], NumPy [2], SymPy [3], Nauty [4], Cuba [5],
Form [6], GiNaC and CLN [7], Normaliz [8], GMP [9].
Journal reference of previous version: Comput. Phys. Commun. 273 (2022)
108267 [1].
Does the new version supersede the previous version?: yes
Nature of the problem:
Scattering amplitudes at higher orders in perturbation theory are typically repre-
sented as a linear combination of coefficients — containing the kinematic invariants
and the space-time dimension — multiplied with loop integrals which contain sin-
gularities and whose analytic representation might be unknown.
Solution method:
Extraction of singularities in the dimensional regularization parameter as well as
in analytic regulators for potential spurious singularities is done using sector de-
composition. The combined evaluation of the integrals with their coefficients is
performed in an efficient way.
Restrictions: Depending on the complexity of the problem, limited by memory and
CPU/GPU time.
Running time: Between a few seconds and several days, depending on the comp-
lexity of the problem.
References:

[1] M. Galassi et al, GNU Scientific Library Reference Manual. ISBN:0954612078,
http://www.gnu.org/software/gsl/.

[2] C. R. Harris, K. J. Millman, S. J. van der Walt, et al, Array programming with
NumPy, Nature 585 (2020) 357–362. doi:10.1038/s41586-020-2649-2, http:
//www.numpy.org/.

[3] A. Meurer, et al., SymPy: symbolic computing in Python, PeerJ Comp. Sci. 3
(2017) e103. doi:10.7717/peerj-cs.103, http://www.sympy.org/.

[4] B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symb. Com-
put. 60 (2014) 94–112. doi:10.1016/j.jsc.2013.09.003, http://pallini.di.
uniroma1.it.

[5] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput.
Phys. Commun. 168 (2005) 78. arXiv:hep-ph/0404043, http://www.feynarts.

2

https://github.com/gudrunhe/secdec
https://secdec.readthedocs.io
https://doi.org/10.1016/j.cpc.2021.108267
https://doi.org/10.1016/j.cpc.2021.108267
http://www.gnu.org/software/gsl/
https://doi.org/10.1038/s41586-020-2649-2
http://www.numpy.org/
http://www.numpy.org/
https://doi.org/10.7717/peerj-cs.103
http://www.sympy.org/
https://doi.org/10.1016/j.jsc.2013.09.003
http://pallini.di.uniroma1.it
http://pallini.di.uniroma1.it
https://arxiv.org/abs/hep-ph/0404043
http://www.feynarts.de/cuba/
http://www.feynarts.de/cuba/

de/cuba/.
[6] J. Kuipers, T. Ueda and J. A. M. Vermaseren, Code Optimization in FORM,

Comput. Phys. Commun. 189 (2015) 1. arXiv:1310.7007, http://www.nikhef.
nl/~form/.

[7] C. W. Bauer, A. Frink, and R. B. Kreckel, Introduction to the GiNaC framework
for symbolic computation within the C++ programming language, J. Symb.
Comput. 33 (2002) 1–12. arXiv:cs/0004015, https://www.ginac.de/.

[8] W. Bruns, B. Ichim, B. and T. Römer, C. Söger, Normaliz. Algorithms for
rational cones and affine monoids. http://www.math.uos.de/normaliz/.

[9] T. Granlund et al, GMP: The GNU Multiple Precision Arithmetic Library.
https://gmplib.org/.

1. Introduction

The calculation of scattering amplitudes beyond one loop is required in or-
der to provide predictions for the increasingly precise measurements at the
LHC, at B-factories and at other colliders. Furthermore, future lepton col-
liders require substantial progress in the calculation of higher order elec-
troweak corrections, which usually involve several mass scales. The latter
pose challenges for the evaluation of the corresponding integrals, in particu-
lar for analytic approaches. The program (py)SecDec [2, 3, 4, 5] offers the
possibility to calculate multi-scale integrals beyond one loop numerically.
Other public programs for the numerical evaluation of multi-loop integrals
based on sector decomposition within dimensional regularisation [6, 7] are
sector_decomposition [8] and Fiesta [9, 10, 11, 12, 13]. The program Feyn-
trop [14] provides a numerical approach for evaluating quasi-finite Feyn-
man integrals using tropical sampling [15]. Other analytic/semi-analytic ap-
proaches include DiffExp [16, 17], AMFlow [18] and SeaSyde [19] which
calculate Feynman integrals by solving differential equations using series ex-
pansions.

The program pySecDec has been upgraded recently with the ability to
perform expansions by regions [1], a method pioneered in Refs. [20, 21, 22,
23]. Ref. [1] also describes an early implementation of an algorithm for
efficiently calculating the weighted sum of integrals.

In this paper, we present pySecDec version 1.6, which is a major upgrade
in several respects. One of the main changes is the fact that much more
general coefficients of integrals than previously allowed are now supported.
This feature is important for the calculation of amplitudes in a form resulting
from IBP reduction, where the coefficients of the master integrals are usually
sums of large rational polynomials containing kinematic invariants and the
space-time dimension D. Furthermore, various changes in the code struc-
ture and numerical evaluation lead to a significant speed-up of the numerical

3

http://www.feynarts.de/cuba/
http://www.feynarts.de/cuba/
http://www.feynarts.de/cuba/
http://www.feynarts.de/cuba/
https://arxiv.org/abs/1310.7007
http://www.nikhef.nl/~form/
http://www.nikhef.nl/~form/
https://arxiv.org/abs/cs/0004015
https://www.ginac.de/
http://www.math.uos.de/normaliz/
https://gmplib.org/

evaluation. We present a new Quasi-Monte-Carlo (QMC) evaluator, called
Disteval, which is optimised for a highly distributed evaluation. Another
major improvement is achieved by the use of median generating vectors for
the rank-1 lattice rules the QMC integration is based on. In addition, the fea-
ture of expansion by regions has been upgraded. For example, the program
can automatically detect whether a regulator in addition to the dimensional
regulator is needed in certain regions. In addition, the algebraic expressions
multiplying each order of the expansion in a small parameter are provided
to the user.

This article is structured as follows. In Section 2 the new features of version
1.6 are described. In Section 3 we present examples which demonstrate the
usage of the program and the new features, as well as timings comparing pre-
vious pySecDec versions to the current version. Conclusions are presented
in Section 4.

The release version of the code is available at https://pypi.org/project/
pySecDec/ and can be obtained via pip. The development version lives at
https://github.com/gudrunhe/secdec. Online documentation can be found
at https://secdec.readthedocs.io/.

2. New features of pySecDec

The main new features of pySecDec version 1.6 are a new integrator/impor-
tance sampling procedure (Disteval), support for construction-free median
Quasi-Monte Carlo rules and improved support for expansion by regions.

The Disteval integrator is presented in Section 2.1, it implements a newly
constructed Quasi-Monte-Carlo (QMC) integrator and is significantly faster
and more configurable than our previous integrators. The Disteval inte-
grator also comes with much better support for inputting complicated coeffi-
cients of the master integrals, including sums of rational functions resulting
from the IBP reduction of amplitudes.

In Section 2.2, we describe and provide benchmarks of our implementation
of median Quasi-Monte Carlo rules, a new QMC lattice construction based
on Ref. [24]. The median QMC rules are made available in the Qmc and the
Disteval integrators.

Improvements to the expansion by regions routines are described in Sec-
tion 2.3. The new version of pySecDec supports Feynman integrals with
numerators and provides functions for determining where an additional extra
regulator, in addition to dimensional regularisation, is needed.

4

https://pypi.org/project/pySecDec/
https://pypi.org/project/pySecDec/
https://github.com/gudrunhe/secdec
https://secdec.readthedocs.io/

2.1. The new Quasi-Monte-Carlo evaluator Disteval

pySecDec traditionally comes with support for multiple integrators: Qmc
based on the Qmc library [5]; Vegas, Suave, Divonne, and Cuhre based on
the Cuba library [25]; CQuad based on the GSL library [26]. Out of these
we have recommended the usage of the Qmc integrator as the only one that
achieves super-linear scaling of the integration precision with integration
time for practical multidimensional integrals. All of these six integrators are
available through a unified integration interface we shall call “IntLib” (for
lack of a better name).

With the new version of pySecDec we introduce a new integration interface
and an integrator “Disteval”. Disteval implements a Randomized Quasi-
Monte-Carlo (RQMC) integration method based on rank-1 shifted lattice
rules [27, 28]. It is directly analogous to the IntLib Qmc integrator, but with
significantly higher performance, and the possibility of evaluation distributed
across several computers. As with Qmc, Disteval supports both CPUs and
GPUs, with the latter ones being preferred due to their speed.

In Section 3 we provide a series of benchmarks demonstrating the speedup
Disteval provides over Qmc (usually between 3x and 10x) across a variety
of integrals, on both CPUs and GPUs.

There are multiple sources of this speedup:

• While IntLib integrands are compiled separately from the integration
algorithms and are called indirectly by the integrators, Disteval in-
tegrands fully include the integration loop. This enables the hoisting
of the common code from the integration loop, the fusion of the lattice
point generation and the integrand evaluation, and multiple micro-
optimizations by the compiler. This however comes at the expense of
flexibility in choosing integrators.

• The code for GPU integrands and CPU integrands are generated sep-
arately, allowing for separate optimization to be applied for each.

• On the GPU side Disteval uses the highly optimized NVidia CUB
library1 to sum up the samples on the GPU (instead of performing
the sum on the CPU), minimizing the data transfer between CPU and
GPU.

• Modern CPUs are capable of executing multiple independent instruc-
tions in parallel. For example, an AMD Epyc 7F32 processor con-
tains four floating-point execution units: two capable of performing

1https://github.com/NVIDIA/cub

5

https://github.com/NVIDIA/cub

one 256-bit Fused Multiply-Add (FMA) operation per cycle each, and
two capable of one 256-bit addition operation per cycle each, for the
total of 16 double-precision (i.e. 64-bit) operations per cycle. Saturat-
ing these executing units with work is essential in achieving optimal
performance, and the best way to do that is to structure the code to
operate on multiple values at the same time, packing 64-bit double-
precision values into 256-bit arrays and utilizing SIMD2 instructions
that operate on the whole array at once.

The integrand kernels pySecDec generates for Disteval do exactly
this: each mathematical operation is coded to work on 4 double-
precision values simultaneously, and if the compiler is allowed to emit
256-bit SIMD instructions (i.e. via the AVX2 and FMA instructions
sets on x86 processors), each such operation becomes a single instruc-
tion.

Note that while all modern x86 processors support AVX2 and FMA,
some older ones do not, and because of this Disteval does not re-
quire their support. It is up to the user to check if all their target
machines have this support,3 and if so, to allow the compiler to use
these instruction sets by e.g. setting CXXFLAGS to -mavx2 -mfma during
compilation.4 This is highly recommended.

Users that plan to perform integration on a single machine are advised
to set CXXFLAGS to -march=native, so that the compiler would be al-
lowed to auto-detect the capabilities of the processor it is running on,
and use all the available instruction sets.

• Multiple smaller micro-optimizations on the CPU and the GPU sides
to reduce the overhead for smaller integrands, and to speed up larger
ones.

2.1.1. Using Disteval

Usage-wise, Disteval diverges from IntLib, during compilation and in-
tegration, but is similar enough that porting integration scripts should be
easy.

As an example, let us consider a massless one-loop box. To generate the
integration library for both integration interfaces, one can use the following
Python script:

2“Single Instruction Multiple Data.”
3This can be done by checking the presence of avx2 and fma flags in /proc/cpuinfo.
4See e.g. https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html for a description of

machine-specific options of GCC.

6

https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

import pySecDec as psd
if __name__ == "__main__":

li = psd.LoopIntegralFromPropagators(
loop_momenta=["l"],
external_momenta=["p1","p2","p3"],
propagators=["l**2","(l-p1)**2","(l-p1-p2)**2","(l-p1-p2-p3)**2"],
replacement_rules=[

("p1*p1","0"), ("p2*p2","0"), ("p3*p3","0"),
("p1*p2","s/2"), ("p2*p3","t/2"), ("p1*p3","-s/2-t/2")])

psd.loop_package(
name="box1L",
loop_integral=li,
real_parameters=["s","t"],
requested_orders=[0])

Then, to compile the IntLib library one can invoke make from the command
shell:

make -C box1L -j4

Similarly, to compile the Disteval library one can use:5

make -C box1L -j4 disteval

The resulting library will be fully contained in the box1L/disteval/ direc-
tory, meaning that the directory can be freely moved to a different location.
The file box1L/disteval/box1L.json will contain the full description of the
requested integral, and will work as the entry point to the library.

If one wants to use the resulting library on a GPU with “compute capabil-
ity” 8.0, one should add SECDEC_WITH_CUDA_FLAGS="-arch=sm_80" to the argu-
ments of the make call.6 For IntLib this will build a library that can only be
used on the GPU; for Disteval the resulting library will be able to work
with and without a GPU.

To integrate using IntLib one can use the Python interface:

from pySecDec.integral_interface import IntegralLibrary
lib = IntegralLibrary("box1L/box1L_pylink.so")
lib.use_Qmc()
_, _, result = lib(real_parameters=[4.0, -0.75], esprel=1e-3, epsabs=1e-8)
print(result)

Similarly, to integrate using Disteval one can use the Python interface:

5As noted earlier, adding CXXFLAGS="-mavx2 -mfma" to this make call is recommended.
6The list of NVidia “Compute Capability” codes for different GPUs is available at

https://developer.nvidia.com/cuda-gpus.

7

https://developer.nvidia.com/cuda-gpus

from pySecDec.integral_interface import DistevalLibrary
lib = DistevalLibrary("box1L/disteval/box1L.json")
result = lib(parameters={"s": 4.0, "t": -0.75}, epsrel=1e-3, epsabs=1e-8)
print(result)

Alternatively, one can also use the new command-line interface:

python3 -m pySecDec.disteval box1L/disteval/box1L.json \
s=4 t=-0.75 --epsrel=1e-3 --epsabs=1e-8

2.1.2. Distributed evaluation

The integrand evaluation under Disteval is performed by worker processes,
while the main process is responsible for distributing work among the workers
and processing the results. Communication between the main and the worker
processes is done via bidirectional bytestreams (i.e. pipes), using a custom
json-based protocol, which means that the workers do not need to be located
on the same machine as the main process.

By default, the Python interface of Disteval will launch one worker process
per locally available GPU, or one per locally available CPU. Each CPU
worker is launched with the command

python3 -m pySecDecContrib pysecdec_cpuworker

and each GPU worker is launched with the command

python3 -m pySecDecContrib pysecdec_cudaworker -d <i>

where <i> is the (zero-based) index of the GPU this worker should use.

The default worker selection however can be overridden through the workers
argument of DistevalLibrary to allow execution on different machines. For
example, suppose that the integration is to be spread across two machines:
gpu1 with a single GPU, and gpu2 with two GPUs; if both machines are
reachable via ssh, then one could setup the integration library as follows:

lib = DistevalLibrary(
"box1L/disteval/box1L.json",
workers=[

"ssh gpu1 python3 -m pySecDecContrib pysecdec_cudaworker -d 0",
"ssh gpu2 python3 -m pySecDecContrib pysecdec_cudaworker -d 0",
"ssh gpu2 python3 -m pySecDecContrib pysecdec_cudaworker -d 1"

])

8

2.1.3. Adaptive weighted sum evaluation

Since pySecDec version 1.5 IntLib supports adaptive integration of weighted
sums of integrals (e.g. amplitudes) via the sum_package() function. Addition-
ally, versions of loop_package() and make_package() implemented in terms of
sum_package() have been added. Disteval implements a very similar adap-
tive sampling algorithm.

Suppose we have a set of integrals Ii, and we want to calculate a set of their
weighted sums Ak ≡

∑
iCkiIi. When evaluated under RQMC, each Ii can

be thought of as a normally distributed random variable,

Ii ∼ N (mean(Ii), var(Ii)). (1)

Let us assume that it takes τi of time to evaluate the integrand of Ii once,
and that var(Ii) scales with the number of integrand evaluations ni (a.k.a.
the size of the lattice on which the integrand is evaluated) as

var(Ii) =
wi

nα
i

. (2)

Our objective then is to choose ni as functions of Cki, wi, τi, and α, to
minimize the total integration time

T ≡
∑
i

τini, (3)

while achieving the total variance Vk requested by the user:

var(Ak) =
∑
i

|Cji|2
wi

nα
i

= Vk (∀k) . (4)

We solve this optimization problem via the Lagrange multiplier method:

L ≡ T +
∑
k

λk (var(Ak)− Vk) , and
∂L

∂ {ni, λk}
= 0. (5)

If only one sum Ak needs to be evaluated, then these equations have a closed-
form solution:

λk =
1

α

(
1

Vk

∑
k

(
|Cjk|2wkτ

α
k

) 1
α+1

)α+1
α

,

ni =

(
αwi

τi
λk |Cji|2

) 1
α+1

.

(6)

If multiple sums are requested, Disteval uses this formula first for the first
sum, then updates ni and applies it to the next sum, and so on.

9

To make this work in practice, Disteval needs to estimate the integral eval-
uation speed τi, convergence constants wi, and the power α. The evaluation
speed τi is estimated on-line, by first benchmarking the relative performance
of each worker, and then by tracking how fast a given integral is being eval-
uated on a given worker. The convergence constants wi are first estimated
by evaluating all integrals with some preset minimum lattice size (104 by
default), and then updated each time an integration result is obtained. The
parameter α is chosen conservatively to be 2, which is the minimum asymp-
totic scaling guaranteed by the use of QMC methods (for some examples see
Figure 7 where α ≈ 3, and Figure 9 where α ≈ 2).

Here it is important to note that the scaling law of Eq. (2) is only asymptotic.
In practice the usage of rank-1 lattice rules means that for each lattice size ni

we must construct a completely new lattice, and often larger ni results in a
larger error, instead of a smaller one — a phenomenon which we call unlucky
lattices.

As an illustration, consider Figure 1: although the variance overall scales as
1/n3 (and thus the error as 1/n1.5), the progression is not monotonic, and
one particularly unlucky lattice results in an integration error more than four
orders of magnitude worse than lattices of similar size around it — but only
for one of the integrals, for the other the same lattice gives a perfectly good
result.

This scaling structure makes the integration times inherently unpredictable:
if during the integration an integral is evaluated on an unlucky lattice, then
Disteval will overestimate the integral’s wi parameter, and will assume
that many more samples of this integral are needed to achieve the requested
precision, wasting integration time. The practical impact of this is usually
low to moderate, unless one encounters a very unlucky lattice such as the
one marked with a star in Figure 1. To some extent, this effect can be tamed
by the median QMC rules, introduced in the following section.

2.2. Median Quasi-Monte Carlo rules

The Quasi-Monte Carlo integration in previous versions of pySecDec was
based on pre-computed generating vectors, provided with the Qmc library [5].
These generating vectors were constructed using the component-by-compo-
nent (CBC) method [29], minimizing the worst-case error of the QMC in-
tegration, assuming arbitrary integrands belong to a Korobov space with
smoothness α = 2 and using product weights.

However, for a given integrand, a lattice of size n based on the above
CBC construction might not be the optimal choice, resulting in the un-
lucky lattices illustrated in the previous section. Furthermore, constructing
lattices via the CBC method is computationally expensive, and the largest

10

103 104 105 106 107 108 109 1010

Lattice size

101

100

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

Re
la

tiv
e

er
ro

r

elliptic2L_physical, sector 8

103 104 105 106 107 108 109 1010

Lattice size

101

100

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

Re
la

tiv
e

er
ro

r

elliptic2L_physical, sector 9

Figure 1: The RQMC integration error (i.e.
√

var(Ii)/m) after m = 32 repetitions for
lattices of different sizes. The integrals are sectors of the elliptic2L_physical example
from Section 3.2. The lattices are taken from the Qmc library, and are the same for both
integrals. The result of one particularly unlucky lattice is marked with a star; note that
this lattice is only unlucky for one of the sectors and performs normally for the others.

11

Lattices\Accuracy 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

CBC 1.7 s 1.8 s 1.8 s 2.3 s 3.9 s 18 s 452 s 51.6 m 98.9m
Median, r = 3 1.7 s 1.7 s 1.8 s 2.2 s 3.7 s 12 s 44 s 3.3 m 13.8 m
Median, r = 5 1.7 s 1.7 s 1.8 s 2.2 s 3.7 s 12 s 44 s 2.8 m 8.0 m
Median, r = 7 1.7 s 1.8 s 1.7 s 2.1 s 4.2 s 12 s 39 s 2.8 m 9.4 m
Median, r = 11 1.7 s 1.7 s 1.8 s 2.2 s 3.7 s 12 s 37 s 2.6 m 7.5 m
Median, r = 15 1.7 s 1.8 s 1.8 s 2.2 s 3.5 s 10 s 38 s 2.8 m 8.2 m
Median, r = 23 1.7 s 1.8 s 1.9 s 2.3 s 3.9 s 12 s 39 s 2.7 m 14.8 m
Median, r = 31 1.7 s 1.9 s 2.0 s 2.4 s 4.3 s 14 s 46 s 3.5 m 11.1 m
Median, r = 63 1.8 s 2.0 s 2.2 s 2.9 s 5.8 s 21 s 66 s 4.6 m 16.7 m

Table 1: Average integration times for the elliptic2L_physical example using the Diste-
val integrator depending on the requested accuracy and the lattice construction method,
comparing lattices derived via CBC and median QMC rules. The timings were taken using
an NVidia A100 80G GPU, with the integrands compiled using Cuda 11.8.89.

such lattice currently provided by the Qmc library has ∼ 7 · 1010 sampling
points. If the requested precision of the integral can not be achieved with
the largest available lattice, the error can only be improved by repeated sam-
pling of this lattice with random shifts, resulting in a n−1/2 scaling of the
integration error, negating the benefits of QMC integration.

An alternative to the CBC construction called median QMC rules has been
proposed in [24]. This construction is based on the observation that most
generating vectors are good choices, provided the components are chosen
from the set

Un ∈ {1 ≤ z ≤ n− 1 | gcd(z, n) = 1}. (7)

For r randomly selected generating vectors z1, . . . , zr satisfying this condi-
tion, it has been shown that using the median

Mn,r(f) = median(Qn,z1(f), . . . , Qn,zr(f)) (8)

as an integral estimate results in the same convergence rate as the CBC
construction with high probability (the larger r is chosen, the higher the
probability). Here, Qn,z(f) is the estimate for the integral of f , obtained
using the rank-1 lattice rule with generating vector z.

In pySecDec we now provide the possibility for an automated construc-
tion of generating vectors following this method. It can be enabled with
the option lattice_candidates=r, which specifies the number r of randomly
chosen generating vectors. After selecting the generating vector according to
the median QMC rules, the uncertainty of the integration is then obtained
by sampling the integrand on m different random shifts of this lattice, as
in previous versions of pySecDec. Using this method, the construction of
lattices of arbitrary size n is possible, and since the generating vectors are

12

101 102 103

Integration time [seconds]

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

Re
qu

es
te

d
pr

ec
is

io
n

CBC
Median QMC, r = 7
Median QMC, r = 11
Median QMC, r = 15
Median QMC, r = 31
Median QMC, r = 63

Figure 2: Integration time of the elliptic2L_physical example from Section 3.2 using the
median QMC rules compared to the integration using CBC construction of the generating
vectors. This plot uses the same benchmarking setup as Table 1.

chosen individually for each integrand, the problems due to unlucky lattices
becomes less pronounced. With the default setting lattice_candidates=0,
only the pre-computed generating vectors based on CBC construction are
used.

As an illustration, consider the integration time of the elliptic2L_physical
example presented in Table 1 and Figure 2. With CBC lattices, two of
the most complicated sectors of the example share a particularly unlucky
lattice at n = 4.3 ·109, as depicted in Figure 1. Starting with the requested
precision of around 3 ·10−8 the evaluator consistently hits these lattices, and
the integration time goes up significantly. On the other hand, the integration
time with median QMC rules increases smoothly across the whole range.

A disadvantage of the median QMC rules is that, compared to using pregen-
erated lattices, an extra r samples of the integral are required in addition to
the m samples used to estimate the integral uncertainty. In practice we typ-
ically find that despite this overhead, the integration time using the median
QMC rules is either comparable to or improves upon that using lattices pre-
generated via the CBC construction. This of course depends on the number
of lattice candidates, r: with small r unlucky lattices are more likely, while
large r means more overhead. For the elliptic2L_physical example, this
behavior can be seen in Table 1: r = 11 and r = 15 seem to perform the best
overall, while lower and higher r result in more integration time on average.

We have tested applying the generating vectors obtained for one particular
integral using the median QMC rules to different integrals, thus lowering
the overhead by avoiding the construction of new generating vectors for each
integrand. However, we find that this typically leads to longer integration

13

times, as a median lattice selected for a given integrand often does not turn
out to be a high-quality choice for other integrands.

2.3. Extra regulators for Expansion by Regions

When expansion by regions is applied to a well-defined dimensionally regu-
lated integral, new spurious singularities may be introduced which are not
regulated by the original regulator. It is possible to detect geometrically
which integrals will become ill-defined after expansion [1].

One way to handle the new singularities is to generalise the definition of
the integral by adding new analytic regulators, δ1, . . . , δN . Commonly, this
is done for Feynman integrals by altering the power of Feynman propaga-
tors according to (ν1 → ν1 + δ1, . . . , νN → νN + δN), or, in the Feynman
parametrisation, by multiplying the integrand by xδ11 · · ·xδNN , where xi are
Feynman parameters. Introducing N independent new regulators can dra-
matically increase the complexity of the problem and is often unnecessary.
Using the algorithms described in Ref. [1], several new routines for detecting
and handling spurious divergences have been added to pySecDec, focusing
on Feynman (loop) integrals.

The loop_regions function now accepts the argument extra_regulator_name.
If a string or symbol is passed to this argument, pySecDec automatically
determines if an extra regulator is required and, if so, introduces a single new
regulator. The integrand is multiplied by xνδδ where δ is the extra regulator
and νδ is a vector of integers automatically chosen such that the integral
becomes well-defined. Alternatively, the user may pass a specific νδ as a list
of integers or sympy rationals via the argument extra_regulator_exponent.

The function suggested_extra_regulator_exponent, which the user can call
independently of loop_regions, automatically determines a vector of integers
νδ sufficient to make a loop integral well-defined. Given a loop_integral ob-
ject and the parameter in which it should be expanded, smallness_parameter,
the function returns νδ. There is considerable freedom in choosing the en-
tries of νδ. The only important property is that its entries must obey a set of
inequalities which ensure it is not tangent to any of the hyperplanes spanned
by the set of new (internal) facets, introduced by the expansion, which lead
to spurious singularities. The suggested_extra_regulator_exponent function
returns only one choice for νδ, it obeys the additional constraint

∑
i νδ,i = 0,

which ensures that the new regulator does not appear in the power of the U
or F polynomials.

The function extra_regulator_constraints provides the list of constraints
which must be obeyed by the entries of νδ for it to regulate the new singulari-
ties. The user may call this function independently, for example, if they wish
to impose additional constraints on the analytic regulators or if they want

14

to understand the regions giving rise to spurious singularities and how they
cancel. The function returns a dictionary of regions and constraints that
must be obeyed in order to obtain regulated integrals, along with a complete
list of all constraints (the all entry). Each set of constraints is provided as
an array, each row of which can be interpreted as the elements of a vector
nf normal to an internal facet, f , which gives rise to a spurious singularity.
The integral is regulated by any vector νδ which obeys ⟨nf ,νδ⟩ ≠ 0 ∀f .

The example region_tools demonstrates the use of each of the above func-
tions on a 1-loop box integral with an internal mass.

2.4. New functionalities for coefficients of master integrals

To evaluate one or several weighted sums of integrals pySecDec provides
the function sum_package() that takes a list of integrals Ii, and a matrix of
coefficients Cki (given as a list of its rows), so that in the end the weighted
sums Ak ≡

∑
iCkiIi are evaluated. In version 1.5 the coefficients were

required to be instances of the class Coefficient, and to be specified as a
product of polynomials.

The new version of pySecDec now additionally supports more flexible ways
to specify the coefficient matrix.

1. The coefficients themselves can now be arbitrary arithmetic expressions
provided as strings. pySecDec now uses GiNaC [30] to parse these
strings, so any syntax recognized by GiNaC is supported.

The coefficient strings themselves are subsequently used in two ways:
first during the integral library generation (i.e. inside sum_package())
pySecDec will try to determine the leading poles of the coefficients
in the regulators, which is needed to determine the number of orders
the integrals will need to be expanded to. Second, the strings will be
saved to files as they are, and loaded back during the evaluation, at
which point the symbolic variables will be substituted by the values
provided by the user, and the resulting expressions will be expanded
into a series in the regulators. This evaluation will be performed using
arbitrary precision rational numbers so that no precision could be lost
to numeric cancellations.

This design was chosen to support expressions that are too big to
be compiled to machine code or to be symbolically manipulated in
non-trivial ways, such as coefficients arising after integration-by-parts
reduction.

2. Each row of the coefficient matrix can be given either as a list of the
same size as the number of integrals, or as a dictionary from integral

15

indices to coefficients. For example, ["a","0","b"] and {0:"a",2:"b"}
are now both valid ways to specify the same coefficient matrix row;
the second way makes it easier to supply sparse matrices because zero
coefficients can be omitted.

3. Each weighted sum can now be given a name. To this end, the coef-
ficient matrix can be specified not as a list of rows, but rather as a
dictionary from sum names (i.e. strings) to coefficient matrix rows.
The supplied names are then used by Disteval in the integration log,
and in its results, which can optionally be structured as dictionaries
from the sum name to their values.

The goal is making it easier to work with multiple sums at the same
time.

3. Usage examples and comparison to the previous version

The examples described below can be found in the folder examples/ of the
pySecDec distribution. Unless stated otherwise, the default settings are
used.

3.1. New and featured examples

We begin by describing the new examples introduced for the current re-
lease. These examples are primarily designed to demonstrate some of the
new features. In Section 3.1.2 we demonstrate the flexible input syntax
for amplitudes and in Section 3.1.3 we show how individual coefficients of
the smallness parameter can be accessed when using expansion by regions.
The remaining examples demonstrate the performance of the Disteval and
IntLib integrators.

3.1.1. Simple jupyter notebook examples

The folder examples/jupyter/ contains three examples in the form of a
jupyter notebook where the whole workflow is demonstrated. These ex-
amples are

easy.ipynb: an easy function depending on two parameters;

box.ipynb: a one-loop box diagram with massive propagators;

muon_production.ipynb: the one-loop amplitude for e+e− → µ+µ− in mass-
less QED.

Two of the examples are also available without jupyter format, in the folders
examples/easy/ and examples/muon_production/, respectively.

16

3.1.2. One-loop amplitude for e+e− → µ+µ−

The example muon_production calculates the one-loop amplitude for muon
production in electron-positron annihilation, e+e− → µ+µ−, with massless
leptons in QED. It evaluates a set of scalar master integrals and combines the
results with the corresponding integral coefficients. The generation of the
amplitude and the Passarino-Veltman reduction of the contributing integrals
was done with FeynCalc [31]. This example is meant to highlight the
improved handling of integral coefficients that increases the practicality of
using pySecDec for full amplitude calculations.

The pySecDec result for the Born-virtual interference, proportional to α3,
where α is the QED fine structure constant, at s = 3.0, t = −1.0, u = −2.0
(subject to the physical constraint s+ t+ u = 0) reads7

A(1)A(0)∗ =+ (−8.704559922781777(7) · 104 + 7(5) · 10−11 i) · ε−2

+ (+6.1407633077(4) · 104 − 2.73461815073(4) · 105 i) · ε−1

+ (+3.45368951804(8) · 105 + 3.98348633939(8) · 105 i)
+Nf

[
− 2.9015199742604458(3) · 104 · ε−1

+ 3.574514829439898(2) · 104

− 9.1153938353806605(8) · 104 i
]
+O(ε) ,

(9)

where Nf is the number of lepton flavours. The result for the full amplitude
has been validated with FeynCalc [31]. Since the building blocks of this
reduced amplitude are only massless integrals, the integration time for one
phase space point at the accuracy seen above is in the order of seconds.

3.1.3. Example from 2-loop muon decay with asymptotic expansion

mτ

MW

MZ

s

Figure 3: A 2-loop three point integral with three mass scales.

The example muon_decay2L demonstrates the possibility to produce Python
output for each coefficient of an expansion in the smallness parameter within
expansion by regions. The diagram in Figure 3 is expanded in the limit of

7Here and throughout the paper the numbers in the parentheses indicate the uncer-
tainty of the final digits. For example, 1.2345(67) means 1.2345± 0.0067.

17

small τ -mass up to order 1, which generates terms with four different powers
of m2

τ : 0, 1, 1− ε and 1− 2ε. The result for this diagram reads

+(m2
τ)

0
[
+ (−3.5410(2) + 3.0610(3) i)

]
+(m2

τ)
1
[
+ (−4.93694(1) · 10−2 + 2.237604(1) · 10−1 i) · ε−2

+ (−5.0283(3) · 10−1 − 8.7873(3) · 10−1 i) · ε−1

+ (+2.6476(2)− 1.2090(2) i)
]

+(m2
τ)

1−ε
[
+ (+9.873890(5) · 10−2 − 4.4752040(5) · 10−1 i) · ε−2

+ (+2.14024(8) · 10−1 + 1.97848(7) · 10−1 i) · ε−1

+ (−7.9370(4) · 10−1 + 4.6869(5) · 10−1 i)
]

+(m2
τ)

1−2ε
[
+ (−4.93694(1) · 10−2 + 2.237604(1) · 10−1 i) · ε−2

+ (+2.8875(3) · 10−1 + 6.8082(4) · 10−1 i) · ε−1

+ (+9.855(1) · 10−1 + 2.5875(2) i)
]
.

(10)

To obtain the result in this form — mixing the symbolic prefactors of the
form (m2

τ)
k with numeric coefficients — one can generate the integration

libraries as in Figure 4 and use them for integration as in Figure 5. The
generation script here is similar to code example 2 in [1]. Note that the
individual regions in Eq. (10) are divergent, however the sum is finite.

On line 4 of Figure 4, LoopIntegralFromGraph() is used to define a loop inte-
gral. On line 20 this integral is asymptotically expanded in the smallness
parameter mtsq ≡ m2

τ via the loop_regions() function up to order 1. Then, on
line 28 the powers of m2

τ are extracted from the prefactors of the terms of the
expansion, and each term has its prefactor modified to no longer include mτ .
On line 31 a mapping between each unique power of the smallness parameter
and the corresponding modified terms is added to a dictionary. Note that
several terms may be attributed to the same smallness parameter power. The
final part of the generation script creates the integral libraries correspond-
ing to each unique power of the smallness parameter via the sum_package()
call on line 36. On line 42 the dictionary mapping powers of the smallness
parameter to names of the corresponding integration libraries is saved in a
JSON file; this file will later be used by the integration script.

The integration script of Figure 4 demonstrates how the Disteval integrator
can be called to produce a result of the form given in Eq. (10). On lines 10
and 11 respectively, each integration library is loaded and called with the
kinematic variables s = 3.0, M2

W = 0.78, M2
Z = 1.0. Some commonly

configured parameters are set explicitly in the library call: epsrel is the
relative accuracy, points is the initial QMC lattice size, format is the output
format of the result ("sympy", "mathematica", or "json"), number_of_presamples
is the number of samples used for the initial contour deformation parameter
selection, and timeout is the maximal allowed integration time in seconds.

18

1 import pySecDec as psd, sympy as sp, json
2
3 if __name__ == "__main__":
4 li = psd.LoopIntegralFromGraph(
5 internal_lines = [['mt',[1,4]], ['mw',[4,2]], ['0',[2,3]],
6 ['0',[4,5]], ['0',[1,5]], ['mz',[5,3]]],
7 external_lines = [['p1',1], ['p2',2], ['p3',3]],
8 regulators = ['eps'],
9 replacement_rules = [

10 ('p1', '-p2-p3'),
11 ('p2*p2', '0'),
12 ('p3*p3', '0'),
13 ('p2*p3', 's/2'),
14 ('mw**2', 'mwsq'),
15 ('mz**2', 'mzsq'),
16 ('mt**2', 'mtsq')])
17
18 terms = psd.loop_regions(name = 'muon_decay2L',
19 loop_integral = li,
20 smallness_parameter = 'mtsq',
21 decomposition_method = 'geometric',
22 expansion_by_regions_order = 1)
23
24 term_by_prefactor_exponent = {}
25 for term in terms:
26 coefficient, exponent = sp.sympify(str(term.prefactor)).

as_coeff_exponent(sp.sympify('mtsq'))
27 term = term._replace(prefactor = coefficient)
28 term_by_prefactor_exponent.setdefault(str(exponent), [])
29 term_by_prefactor_exponent[str(exponent)].append(term)
30
31 prefactor_exponent_by_name = {}
32 for i, (exponent, term) in enumerate(sorted(

term_by_prefactor_exponent.items())):
33 prefactor_exponent_by_name[f'prefactor_{i+1}'] = exponent
34 psd.sum_package(f'prefactor_{i+1}',
35 term,
36 regulators = ['eps'],
37 requested_orders = [0],
38 real_parameters = ['s', 'mwsq', 'mzsq'])
39
40 with open('prefactor_exponent_by_name.json', 'w') as f:
41 json.dump(prefactor_exponent_by_name, f)

Figure 4: Generation script for the two-loop muon decay example.

19

1 from pySecDec.integral_interface import DistevalLibrary
2 import json
3 import sympy as sp
4
5 with open('prefactor_exponent_by_name.json') as f:
6 prefactor_exponent_by_name = json.load(f)
7
8 result_by_prefactor_exponent = {}
9 for name, exponent in prefactor_exponent_by_name.items():

10 loop_integral = DistevalLibrary(f'{name}/disteval/{name}.json')
11 result_by_prefactor_exponent[exponent] = loop_integral(
12 parameters = {'s': 3, 'mwsq': 0.78, 'mzsq': 1.0},
13 epsrel = 1e-4, points = 1e4, format = 'sympy',
14 number_of_presamples = 1e4, timeout = None)
15
16 print('Result:')
17 for exponent, str_result in result_by_prefactor_exponent.items():
18 result = sp.sympify(str_result)
19 val = result[0].subs({"plusminus": 0})
20 err = result[0].coeff("plusminus")
21 print(f'''\
22 +mtsq^({exponent})*(
23 +1/eps^2*(({val.coeff("eps",-2)}) +/- ({err.coeff("eps",-2)}))
24 +1/eps^1*(({val.coeff("eps",-1)}) +/- ({err.coeff("eps",-1)}))
25 + eps^0*(({val.coeff("eps",0)}) +/- ({err.coeff("eps",0)}))
26)''')

Figure 5: Integration script for the two-loop muon decay example.

20

The full list of parameters is available in the pySecDec documentation
on the DistevalLibrary class. The integration script keeps track of which
integration library corresponds to which smallness parameter power via the
dictionary previously created by the generation script.

3.1.4. 2-loop 5-point hexatriangle example with several mass scales

p3
p4

p5
m

m

p1 p2

Figure 6: A 2-loop 5-point integral with massive propagators and massive legs. The
integral is evaluated in 6 − 2ε space-time dimensions. The configuration being tested is
p21 = p22 = 0, p23 = p24 = m2 = 1, p25 = 12/23, (p1 + p2)

2 = 262/35, (p2 + p3)
2 = −92/53,

(p3 + p5)
2 = 491/164, (p5 + p4)

2 = 373/124, (p4 + p1)
2 = −65/36.

The example hexatriangle is a 2-loop 5-point integral depicted in Figure 6.
This is a master integral for the amplitude of qq̄ → tt̄H production at two
loops. The integral is dimensionally shifted to 6−2ε space-time dimensions;
the dimensional shift and additional dots were chosen to make it finite in ε
and fast to evaluate.

The value of the integral at the point specified in Figure 6 is

1.454919812(7) · 10−7 − 1.069797219(8) · 10−7 i+O(ε). (11)

The convergence rate of the integral is depicted in Figure 7. Overall the
obtained precision scales with the integration time t approximately as 1/t1.6.
We want to emphasise that such scaling is made possible by the use of the
QMC integration methods; traditional Monte Carlo methods only scale as
fast as 1/t0.5.

A more detailed list of integration timings is given in Table 2.

3.1.5. 2-loop 5-point offshell pentabox example

The example pentabox_offshell is an integral depicted in Figure 8. It is
a 2-loop pentabox with an internal mass, massive legs, and the total of 7
scales. The integral is evaluated in 6 − 2ε space-time dimensions (where it
is finite in ε) up to O(ε4); a prefactor of Γ(2 + 2ε) is divided out to match
the configuration of Section 6.4 of [14], where the same integral is calculated
numerically via tropical integration.

21

101 102 103 104

Integration time [seconds]

10 8

10 7

10 6

10 5

10 4

10 3

10 2

Re
qu

es
te

d
pr

ec
is

io
n

Disteval Qmc, GPU
IntLib Qmc, GPU

Figure 7: The obtained precision by integration time for the hexatriangle example. This
plot is based on the data from Table 2.

Integrator\Accuracy 10−2 10−3 10−4 10−5 10−6 10−7 10−8

GPU Disteval 2.2 s 4.2 s 6.3 s 27 s 1.5 m 17 m 54 m
IntLib 12.3 s 22.0 s 32.6 s 110 s 6.7m 50 m 263 m
Ratio 5.6 5.2 5.2 4.1 5.6 3.0 4.9

CPU Disteval 3.5 s 5.1 s 14 s 1.6 m 8.3 m 57m 4.7 h
IntLib 8.5 s 20.8 s 86 s 14.2 m 62.2 m 480 m 43.1 h
Ratio 2.4 4.1 6.1 8.7 7.5 8.4 9.2

Table 2: Integration timings for the hexatriangle example (Figure 6) depending on the
requested accuracy using two integrators: Disteval and IntLib Qmc. The GPU timings
were taken using an NVidia A100 80G, with the integrands compiled using Cuda 11.8.89.
The CPU timings are for an AMD Epyc 7F32 processor with 16 cores (32 threads), with
the integrands compiled using GCC 12.2.1 with CXXFLAGS set to -O3 -mavx2 -mfma.

22

m

p0

p1

p2 p3

p4

m

Figure 8: A 2-loop 5-point pentabox integral with massive propagators and massive legs.
The configuration being tested is p20 = 0, p21 = p22 = p23 = m2 = 1/2, (p0 + p1)

2 = 2.2,
(p0 + p2)

2 = 2.3, (p0 + p3)
2 = 2.4, (p1 + p2)

2 = 2.5, (p1 + p3)
2 = 2.6, (p2 + p3)

2 = 2.7.

102 103 104 105

Integration time [seconds]

10 6

10 5

10 4

10 3

10 2

Re
qu

es
te

d
pr

ec
is

io
n

Disteval Qmc, GPU
IntLib Qmc, GPU

Figure 9: The obtained precision by integration time for the pentabox_offshell example.
This plot is based on the data from Table 3.

The value of the integral at the point specified in Figure 8 is

+ (+6.443869(7) · 10−2 − 8.267759(7) · 10−2 i) ε0

+ (+4.043397(2) · 10−1 + 3.189607(2) · 10−1 i) ε1

+ (−7.771389(2) · 10−1 + 9.370171(2) · 10−1 i) ε2

+ (−1.3220709(6) · 100 − 1.2139678(6) · 100 i) ε3

+ (+1.3789155(10) · 100 − 1.2118956(10) · 100 i) ε4

+O(ε5)

(12)

These values match the ones given in [14] within the uncertainty limits.

The convergence rate of the integral is depicted in Figure 9. Overall the
obtained precision scales with the integration time t approximately as 1/t.

A more detailed list of integration timings is given in Table 3.

3.1.6. 4-loop triangle diagram

The example gminus2_4L is a four-loop diagram contributing to the electron
or muon anomalous magnetic moment. The diagram is depicted in Figure 10.

23

Integrator\Accuracy 10−2 10−3 10−4 10−5 10−6

GPU Disteval 38 s 1.1m 7.9 m 1.7 h 22 h
Intlib 366 s 9.3m 48.9 m 9.1 h 85 h
Ratio 9.6 8.3 6.2 5.3 3.8

CPU Disteval 13 s 2.4m 43m 7.9 h —
Intlib 67 s 18.9 m 299 m 65.0 h —
Ratio 5.0 7.8 7.0 8.2 —

Table 3: Integration timings for the pentabox_offshell example (Figure 8) depending on
the requested accuracy using two integrators: Disteval and IntLib Qmc. Same bench-
marking conditions as in Table 2.

Figure 10: A 4-loop diagram with kinematics inspired by contributions to the electron or
muon anomalous magnetic moment.

The massive lines (coloured in red) denote on-shell massive fermion lines,
p2 = m2. For the grey external line with momentum q, the limit q → 0
needs to be taken, such that the diagram is characterised by q2 = 0, q · p =
0, p2 = m2. Therefore the corresponding integral becomes a single scale
integral, depending only on m2.

The pySecDec result for gminus2_4L reads

+ 2.60420(2) · 10−3 · ε−4

+ 2.5237(2) · 10−2 · ε−3

+ 3.8721(4) · 10−1 · ε−2

+ 3.9116(4) · ε−1

+ 39.256(4) +O(ε).

(13)

3.1.7. 6-loop two-point function

Figure 11: A 6-loop two-point integral.

24

m1

m1

m2

m3

p

(a) banana_3mass (b) pentabox_fin (c) formfactor4L

p21 = m2
1

p22 = m2
2

m

(d) hz2L_nonplanar

m

(e) elliptic2L_physical

m

m

(f) Nbox2L_split_b

Figure 12: All diagrams of Table 4 except for bubble6L, which is described in detail in
Section 3.1.7.

The bubble6L example consists of the 6-loop 2-point integral shown in Fig-
ure 11. The pole coefficients are given analytically in Eq. (A3) of Ref. [32] (at
p2 = −p2E = −1, where pE is the external momentum in Euclidean space).
The decomposition method ‘geometric’ is the default and recommended
decomposition method in version 1.6. In this example it is mandatory to
use a geometric decomposition because ‘iterative’ leads to an infinite re-
cursion. Usually the geometric decomposition method produces the fewest
sectors. However, for graphs with very high symmetry, the iterative method
can occasionally produce fewer sectors than the geometric method as it does
not destroy symmetries when one of the Feynman parameters is eliminated
using the δ-constraint. More information about the various decomposition
methods can be found in Refs. [3, 4, 33] and in the code documentation.

The analytic result is given by

Banalyt.
6L =

1

ε2
147

16
ζ7 −

1

ε

(
147

16
ζ7 +

27

2
ζ3ζ5 +

27

10
ζ3,5 −

2063

504000
π8

)
+ O(ε0)

=
9.264208985946416

ε2
+

91.73175282208716

ε
+ O(ε0) . (14)

The pySecDec result at p2 = −1 obtained with the Disteval integrator
reads

Bnum.
6L =+ 9.26420902(3) · ε−2

+ 9.17317528(8) · 101 · ε−1

+ 1.11860698(1) · 103 +O(ε) .

(15)

3.2. Previously existing examples

Several previously existing pySecDec examples, shown in Figure 12, have
been benchmarked in [5]. In Table 4 and Figure 13 we provide a comparison
of the integration time of those examples using the Disteval integrator

25

Integrator\Accuracy 10−2 10−3 10−4 10−5 10−6 10−7 10−8

banana_3mass Disteval 2.1 s 2.1 s 2.4 s 2.6 s 2.6 s 2.9 s 3.6 s
IntLib 5.0 s 4.9 s 6.4 s 7.2 s 8.5 s 8.5 s 13.8 s
Ratio 2.3 2.3 2.7 2.7 3.2 3.0 3.9

bubble6L Disteval 1.8 m 1.8m 1.8 m 2.1 m 3.8m 10.2 m 1.2 h
IntLib 39.5 m 38.8 m 39.6 m 43.8 m 85.1m 170.7 m 11.6 h
Ratio 22 22 22 21 22 17 10

formfactor4L Disteval 4.1 m 4.1m 4.1 m 4.4 m 7.7m 14.6 m 0.96 h
IntLib 74 m 73 m 73 m 74 m 136 m 246 m 10.9 h
Ratio 18 18 18 17 18 17 11

elliptic2L_physical Disteval 1.6 s 1.5 s 1.7 s 1.9 s 4.0 s 19 s 7.6 m
IntLib 3.1 s 4.8 s 4.9 s 7.3 s 13.8 s 53 s 4.3 m
Ratio 1.9 3.1 2.8 3.9 3.4 2.9 0.6

hz2L_nonplanar Disteval 2.1 s 2.6 s 4.6 s 30.4 s 2.2m 5.1m 27.1 m
IntLib 9 s 17 s 41 s 163 s 9.6 m 16.0m 27.3 m
Ratio 1.8 3.4 4.6 4.4 4.2 3.0 1.0

Nbox2L_split_b Disteval 2.7 s 9.8 s 16.8 s 0.58m 2.4 m 9.1 m 20 m
IntLib 24 s 73 s 223 s 6.6m 26 m 43 m 93 m
Ratio 3.0 4.6 9.7 9.9 10.5 4.8 4.7

pentabox_fin Disteval 5 s 8 s 11 s 0.71 m 3.7m 18.5 m 1.1 h
IntLib 45 s 65 s 88 s 3.2 m 11.3 m 74.8 m 4.6 h
Ratio 8.6 7.9 7.7 4.5 3.1 4.0 4.2

Table 4: Integration timings on a GPU for different examples using the IntLib Qmc inte-
grator and the new Disteval integrator. All timings are using the CBC generating vectors
from the previous release, meaning the ratios between IntLib and Disteval are purely
due to the improvements described in Section 2.1. The significantly improved timings
achieved by using the new median generating vectors are shown in Table 1.

101 102 103

Integration time [seconds]

10 8

10 7

10 6

10 5

10 4

10 3

Re
qu

es
te

d
pr

ec
is

io
n

banana_3mass
bubble6L
elliptic2L_physical
formfactor4L
hz2L_nonplanar
Nbox2L_split_b
pentabox_fin

Figure 13: Convergence rates of the Disteval timings from Table 4

26

(new in v1.6) and the IntLib Qmc integrator (the default of v1.5.6), all on
an NVidia A100 80G GPU (using Cuda version 11.8).

The reported integration times correspond to the wall clock times for run-
ning the integration via the Python interface of pySecDec. In particular,
the numerical integration of all orders in ε up to the finite order is included
in the timings. The precision refers to the relative error which in this case is
defined as ϵrel =

√
(∆R)2+(∆I)2

R2+I2
, R and I are the real and imaginary parts of

a coefficient in the ε-expansion, and ∆R and ∆I are the corresponding un-
certainties. The examples formfactor4L and bubble6L have been calculated
using the baker integral transformation, for the other examples the default
transformation korobov3 has been used.

The overall conclusion is that Disteval is 3×-5× faster than IntLib Qmc
with equivalent settings on a GPU at higher accuracies, with the exception
of the Euclidean integrals bubble6L and formfactor4L. They contain a large
number of sectors, each very simple, so that the execution time is mostly
dominated by overhead. Disteval has up to 20× less overhead.

Of particular note is the benchmark of the elliptic2L_physical example:
at the requested precision of 10−8, the speedup of Disteval is 0.6, so it is
slower than IntLib Qmc. The reason for this is exactly the unlucky lattice at
n = 4.3 ·109 depicted in Figure 1: Disteval reaches it first at this requested
precision, while IntLib does not hit this particular lattice because its algo-
rithm of selecting ni differs just slightly enough to land on a nearby lattice
instead. In any case, this problem is circumvented by the use of median
QMC rules, and we have investigated the elliptic2L_physical example in
detail in Section 2.2.

4. Conclusions

We have presented version 1.6 of pySecDec, featuring a major upgrade
targeted at the evaluation of loop amplitudes through a novel, highly dis-
tributed Quasi-Monte-Carlo (QMC) evaluation method. Compared to the
previous version, the virtues of the new method applied to individual multi-
loop integrals are particularly manifest for multi-scale integrals and when
high precision is requested. Very importantly, the calculation of amplitudes
rather than individual integrals is facilitated. This is achieved through sev-
eral improvements, for instance, new functionalities to treat the coefficients
of master integrals, which are typically large expressions after IBP reduc-
tion. Furthermore, amplitudes are calculated as weighted sums of integrals
with coefficients, with an overall precision goal that can be specified by the
user. A new integrator based on median QMC rules avoids the limitations of
the component-by-component construction of generating vectors for lattice

27

rules. It also remedies the intermediate loss of QMC-typical scaling that has
been observed for some fixed individual lattices.

The release contains improvements to the expansion by regions functional-
ity, including the treatment of integrals with numerators within expansion
by regions and the automated detection of whether and where additional reg-
ulators are needed, making this information completely transparent to the
user. The coefficients of each order of the expansion in the small parameter
are now also easily accessible to the user.

With these new features pySecDec is significantly faster, more flexible, and
easier to use than previous versions. It is better equipped to analyse and
tackle a wide range of problems including previously intractable multi-loop
amplitudes needed for precision phenomenology, problems requiring multi-
ple dimensional regulators, and integrals/amplitudes where higher numerical
precision than previously possible is required.

Acknowledgements

We would like to thank Goutam Das, Joshua Davies, Christoph Greub, An-
drey Pikelner, Vladyslav Shtabovenko and Yannick Ulrich for discussions and
raising issues that helped to improve the program. This research was sup-
ported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grant 396021762 - TRR 257. SJ is supported by a Royal
Society University Research Fellowship (Grant URF/R1/201268).

References

[1] G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V. Magerya
et al., Expansion by regions with pySecDec, Comput. Phys. Commun.
273 (2022) 108267, [2108.10807].

[2] S. Borowka, J. Carter and G. Heinrich, Numerical Evaluation of Multi-
Loop Integrals for Arbitrary Kinematics with SecDec 2.0, Comput. Phys.
Commun. 184 (2013) 396–408, [1204.4152].

[3] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke,
SecDec-3.0: numerical evaluation of multi-scale integrals beyond one
loop, Comput. Phys. Commun. 196 (2015) 470–491, [1502.06595].

[4] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk
et al., pySecDec: a toolbox for the numerical evaluation of multi-scale
integrals, Comput. Phys. Commun. 222 (2018) 313–326, [1703.09692].

28

http://dx.doi.org/10.1016/j.cpc.2021.108267
http://dx.doi.org/10.1016/j.cpc.2021.108267
https://arxiv.org/abs/2108.10807
http://dx.doi.org/10.1016/j.cpc.2012.09.020
http://dx.doi.org/10.1016/j.cpc.2012.09.020
https://arxiv.org/abs/1204.4152
http://dx.doi.org/10.1016/j.cpc.2015.05.022
https://arxiv.org/abs/1502.06595
http://dx.doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692

[5] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner and J. Schlenk,
A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec,
Comput. Phys. Commun. 240 (2019) 120–137, [1811.11720], https://
github.com/mppmu/qmc.

[6] T. Binoth and G. Heinrich, An automatized algorithm to compute in-
frared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741–759,
[hep-ph/0004013].

[7] G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008)
1457–1486, [0803.4177].

[8] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop
integrals, Comput. Phys. Commun. 178 (2008) 596–610, [0709.4092].

[9] A. V. Smirnov and M. N. Tentyukov, Feynman Integral Evaluation by
a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun.
180 (2009) 735–746, [0807.4129].

[10] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, FIESTA 2: Par-
allelizeable multiloop numerical calculations, Comput. Phys. Commun.
182 (2011) 790–803, [0912.0158].

[11] A. V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical
calculations in physical regions, Comput. Phys. Commun. 185 (2014)
2090–2100, [1312.3186].

[12] A. V. Smirnov, FIESTA4: Optimized Feynman integral calculations
with GPU support, Comput. Phys. Commun. 204 (2016) 189–199,
[1511.03614].

[13] A. V. Smirnov, N. D. Shapurov and L. I. Vysotsky, FIESTA5: Nu-
merical high-performance Feynman integral evaluation, Comput. Phys.
Commun. 277 (2022) 108386, [2110.11660].

[14] M. Borinsky, H. J. Munch and F. Tellander, Tropical Feynman integra-
tion in the Minkowski regime, 2302.08955.

[15] M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals,
2008.12310.

[16] M. Hidding, DiffExp, a Mathematica package for computing Feynman
integrals in terms of one-dimensional series expansions, Comput. Phys.
Commun. 269 (2021) 108125, [2006.05510].

[17] F. Moriello, Generalised power series expansions for the elliptic planar
families of Higgs + jet production at two loops, JHEP 01 (2020) 150,
[1907.13234].

29

http://dx.doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://github.com/mppmu/qmc
https://github.com/mppmu/qmc
http://dx.doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
http://dx.doi.org/10.1142/S0217751X08040263
http://dx.doi.org/10.1142/S0217751X08040263
https://arxiv.org/abs/0803.4177
http://dx.doi.org/10.1016/j.cpc.2007.11.012
https://arxiv.org/abs/0709.4092
http://dx.doi.org/10.1016/j.cpc.2008.11.006
http://dx.doi.org/10.1016/j.cpc.2008.11.006
https://arxiv.org/abs/0807.4129
http://dx.doi.org/10.1016/j.cpc.2010.11.025
http://dx.doi.org/10.1016/j.cpc.2010.11.025
https://arxiv.org/abs/0912.0158
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://dx.doi.org/10.1016/j.cpc.2014.03.015
https://arxiv.org/abs/1312.3186
http://dx.doi.org/10.1016/j.cpc.2016.03.013
https://arxiv.org/abs/1511.03614
http://dx.doi.org/10.1016/j.cpc.2022.108386
http://dx.doi.org/10.1016/j.cpc.2022.108386
https://arxiv.org/abs/2110.11660
https://arxiv.org/abs/2302.08955
https://arxiv.org/abs/2008.12310
http://dx.doi.org/10.1016/j.cpc.2021.108125
http://dx.doi.org/10.1016/j.cpc.2021.108125
https://arxiv.org/abs/2006.05510
http://dx.doi.org/10.1007/JHEP01(2020)150
https://arxiv.org/abs/1907.13234

[18] X. Liu and Y.-Q. Ma, AMFlow: A Mathematica package for Feynman
integrals computation via auxiliary mass flow, Comput. Phys. Commun.
283 (2023) 108565, [2201.11669].

[19] T. Armadillo, R. Bonciani, S. Devoto, N. Rana and A. Vicini, Eval-
uation of Feynman integrals with arbitrary complex masses via series
expansions, Comput. Phys. Commun. 282 (2023) 108545, [2205.03345].

[20] V. Smirnov, Renormalization and asymptotic expansions, vol. 14.
Birkhäuser, 1991.

[21] M. Beneke and V. A. Smirnov, Asymptotic expansion of Feyn-
man integrals near threshold, Nucl. Phys. B 522 (1998) 321–344,
[hep-ph/9711391].

[22] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion
of Feynman integrals, Eur. Phys. J. C 71 (2011) 1626, [1011.4863].

[23] B. Jantzen, Foundation and generalization of the expansion by regions,
JHEP 12 (2011) 076, [1111.2589].

[24] T. Goda and P. L’Ecuyer, Construction-free median quasi-monte carlo
rules for function spaces with unspecified smoothness and general
weights, SIAM Journal on Scientific Computing 44 (2022) A2765–
A2788, [2201.09413].

[25] T. Hahn, Concurrent Cuba, Comput. Phys. Commun. 207 (2016) 341–
349.

[26] M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.).
Network Theory Ltd, Bristol, England, 2009, http://www.gnu.org/
software/gsl/.

[27] J. Dick, F. Y. Kuo and I. H. Sloan, High-dimensional integration: The
quasi-monte carlo way, Acta Numerica 22 (2013) 133–288.

[28] Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient Numerical Evaluation
of Feynman Integral, Chinese Physics C 40, No. 3 (2016) 033103,
[1508.02512].

[29] D. Nuyens and R. Cools, Fast algorithms for component-by-component
construction of rank-1 lattice rules in shift-invariant reproducing kernel
hilbert spaces, Mathematics of Computation 75 (2006) 903–920, http:
//www.jstor.org/stable/4100318.

[30] C. W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC
framework for symbolic computation within the C++ programming lan-
guage, J. Symb. Comput. 33 (2002) 1–12, [cs/0004015].

30

http://dx.doi.org/10.1016/j.cpc.2022.108565
http://dx.doi.org/10.1016/j.cpc.2022.108565
https://arxiv.org/abs/2201.11669
http://dx.doi.org/10.1016/j.cpc.2022.108545
https://arxiv.org/abs/2205.03345
http://dx.doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
http://dx.doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
http://dx.doi.org/10.1007/JHEP12(2011)076
https://arxiv.org/abs/1111.2589
http://dx.doi.org/10.1137/22M1473625
http://dx.doi.org/10.1137/22M1473625
https://arxiv.org/abs/2201.09413
http://dx.doi.org/10.1016/j.cpc.2016.05.012
http://dx.doi.org/10.1016/j.cpc.2016.05.012
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://dx.doi.org/10.1088/1674-1137/40/3/033103
https://arxiv.org/abs/1508.02512
http://www.jstor.org/stable/4100318
http://www.jstor.org/stable/4100318
http://dx.doi.org/10.1006/jsco.2001.0494
https://arxiv.org/abs/cs/0004015

[31] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New fea-
tures and improvements, Comput. Phys. Commun. 256 (2020) 107478,
[2001.04407].

[32] M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renor-
malization of O(n)-symmetric ϕ4 theory and critical exponents, Phys.
Rev. D 96 (2017) 036016, [1705.06483].

[33] J. Schlenk and T. Zirke, Calculation of Multi-Loop Integrals with
SecDec-3.0, PoS RADCOR2015 (2016) 106, [1601.03982].

31

http://dx.doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
http://dx.doi.org/10.1103/PhysRevD.96.036016
http://dx.doi.org/10.1103/PhysRevD.96.036016
https://arxiv.org/abs/1705.06483
http://dx.doi.org/10.22323/1.235.0106
https://arxiv.org/abs/1601.03982

Citation on deposit:

Heinrich, G., Jones, S., Kerner, M., Magerya, V.,
Olsson, A., & Schlenk, J. (2024). Numerical
scattering amplitudes with pySecDec. Computer
Physics Communications, 295, Article 108956.

https://doi.org/10.1016/j.cpc.2023.108956

For final citation and metadata, visit Durham Research Online URL:
https://durham-repository.worktribe.com/output/1898597

Copyright statement:

This accepted manuscript is licensed under the Creative Commons Attribution
4.0 licence. https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.cpc.2023.108956
https://durham-repository.worktribe.com/output/1898597

	1898597AAM
	Introduction
	New features of pySecDec
	The new Quasi-Monte-Carlo evaluator Disteval
	Using Disteval
	Distributed evaluation
	Adaptive weighted sum evaluation

	Median Quasi-Monte Carlo rules
	Extra regulators for Expansion by Regions
	New functionalities for coefficients of master integrals

	Usage examples and comparison to the previous version
	New and featured examples
	Simple jupyter notebook examples
	One-loop amplitude for e+e- to mu+mu-
	Example from 2-loop muon decay with asymptotic expansion
	2-loop 5-point hexatriangle example with several mass scales
	2-loop 5-point offshell pentabox example
	4-loop triangle diagram
	6-loop two-point function

	Previously existing examples

	Conclusions

	Citation page-V1-2023

