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Abstract Studying potential BSM effects at the precision
frontier requires accurate transfer of information from low-
energy measurements to high-energy BSM models. We pro-
pose to use normalising flows to construct likelihood func-
tions that achieve this transfer. Likelihood functions con-
structed in this way provide the means to generate additional
samples and admit a “trivial” goodness-of-fit test in form of
a χ2 test statistic. Here, we study a particular form of nor-
malising flow, apply it to a multi-modal and non-Gaussian
example, and quantify the accuracy of the likelihood function
and its test statistic.

1 Introduction

Contemporary experimental analyses at the Large Hadron
Collider have, so far, not been able to discover particles
beyond the Standard Model (BSM) at energy scales below
� 1 TeV. As a consequence, model building has increas-
ingly turned toward using effective field theories (EFT) to
describe any potential BSM effects below these scales. The
Standard Model Effective Field Theory (SMEFT) [1] is one
of the main choices, as is the Higgs effective field theory
(HEFT) [2]. Constraining the EFT parameters is a challenge,
due the large dimensionality of the parameter space. Taking
the SMEFT as an example, the basis of operators in the lead-
ing mass-dimension six Lagrangian amounts to 2499 inde-
pendent EFT Wilson coefficients [3]. The observed hierar-
chies among masses and mixing of quark flavours at low-
energies has inspired systematic approaches like minimal
flavour violation to reduce the number of free parameters [4].

Low-energy phenomena beside quark mixing have long
been used to further our understanding of BSM physics at
large scales; flavour-changing processes and anomalous elec-
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tric dipole moments are excellent examples therof, which
contribute substantial statistical power to constrain BSM
effects [5]. Flavour-changing processes in particular are com-
monly interpreted in a “model-independent” fashion by infer-
ring their relevant parameters within another EFT, the Weak
Effective Theory (WET) [6–8]. However, including low-
energy constraints in this way provides for a challenge: the
interpretation of a majority of the low-energy constraints
relies on our understanding of hadronic physics in some
capacity. This leads to a proliferation of hadronic nuisance
parameters, which renders a global interpretation of all WET
parameters impractical if not practically impossible. Exam-
ples for this proliferation are plentiful in b-quark decay and
include analyses of exclusive b → s�+�− processes with
113 hadronic nuisance parameters and only 2 parameters
of interest [9] as well as analyses of exclusive b → u�−ν̄

processes with 50 hadronic nuisance parameters and only 5
parameters of interest [10]. To overcome this problem, the
following strategy has been devised [11]:

• divide the free parameters of the WET into so-called “sec-
tors“, which are mutually independent to leading power
in GF ;

• identify sets of observables that constrain a single sector
of the WET and infer that sectors parameters;

• repeat for as many sectors as possible.

In this way, statistical constraints on the parameters in the
individual WET sectors in form of posterior densities can be
obtained, providing a local picture of the low-energy effects
of BSM physics.

To gain a global picture of the BSM landscape, either in
terms of the parameters of the SMEFT, the HEFT, or a UV-
complete BSM model, the previously obtained local con-
straints for individual WET sectors can, in principle, be used
as a likelihood function. On the physics side, this requires
matching between the WET and the genuine parameters of
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interest, i.e, the parameters of a UV-complete model, the
SMEFT, or the HEFT. In the case of the SMEFT, a complete
matching of all dimension-6 operators to the full dimension-6
wet has been achieved at the one-loop level [12].

To date, the strategy outlined above has not yet been imple-
mented: no library of statistical WET constraints is available.
The key obstacles in the implementation are not specific to
the underlying physics. Instead, they are the accurate transfer
of the statistical results for even a single sector; the potential
to test a likelihood’s goodness of fit through a suitable test
statistic; and the ease of use by providing a reference code
that exemplifies the approach.1

Here, we present a small piece to solving the overall puzzle
of how to efficiently and accurately include the low-energy
likelihoods in BSM fits: the construction of a likelihood func-
tion that encodes the WET constraints and that admits a test
statistic. Our approach uses methods from the field of autom-
atized learning and generational models. We illustrate the
approach at the hand of a concrete example likelihood, for
which we use posterior samples for the WET parameters
obtained in the course of a previous analysis [10]; cf. also
a direct determination of SMEFT parameters in a similar
setup [14]. Our example likelihood is multi-modal, and the
shape of each mode is distinctly non-Gaussian. This renders
the objective of providing a testable likelihood function in
terms of the BSM parameters quite challenging.

The possible applications for obtaining such a likelihood
function are two-fold: first, it permits to generate additional
samples that are (ideally) identically distributed as the train-
ing samples. Second, it provides a test statistic to use in a sub-
sequent EFT fit. We illustrate how normalising flows make
both applications possible, by translating our example pos-
terior “target” density to a unimodal multivariate Gaussian
“base” density. We propose a number of tests to check the
quality of this translation, gauging the validity of both appli-
cations.

2 Preliminaries

2.1 Notation and objective

We begin by introducing our notation for the physics
parameters and their associated statistical quantities. Let

1 An alternative to this strategy is to use the most constraining observ-
ables for each WET sector as low-energy likelihoods and use the latter
directly within a global (SMEFT) likelihood. Despite the large number
of nuisance parameters, this approach has been shown to be very useful
and has been implemented as part of the smelli software [13]. How-
ever, it currently comes with the drawback of repeating the low-energy
analyses for every point in the global (here: SMEFT) parameter space,
leading to a waste of computational resources compared to the strategy
proposed above. Improvements to smelli overcoming this issue are
presently under development.

P∗
T (�ϑ | WET) be the “true” posterior density for the low-

energy WET parameters �ϑ ∈ T ≡ R
D , also known as the

WET Wilson coefficients. We refer to the vector space T as
the target space of dimension D. In our later example, we will
consider T to be the space of WET Wilson coefficients in the
ub�ν sector as studied in Ref. [10]. We assume that we can
access P∗

T numerically by means of Monte Carlo importance
samples. Our intent is to construct a likelihood

L( �ϕ) ≡ PT (�ϑ( �ϕ) | WET) (1)

where PT is a model of P∗
T and �ϕ ∈ F represents some set of

BSM physics parameters within some vector space F . In an
envisaged SMEFT application, F would represent the vector
space of SMEFT Wilson coefficients. We stress at this point
that, although P(∗)

T is a probability density, L is in general
not a probability density and is hence labelled a likelihood
function.

Next, we introduce a bijective mapping f between our
target space T and some base space B

B � �β = f (�ϑ) . (2)

Our objective is to find a mapping f and its associated Jaco-
bian J f ≡ ∂ f/∂ �ϑ
�β ∼ PB( �β) = J f (PT ◦ f −1)( �β) (3)

that ensures that PB( �β) is multivariate standard Gaussian
density: PB( �β) = N (D)( �β| �μ = �0, 	 = 1). As a conse-
quence, one finds immediately that the two-norm in base
space follows a χ2 distribution:

|| �β||2 ≡ || f (�ϑ)||2 ∼ χ2(ν = D) . (4)

The likelihood function is thus fully defined by the mapping
f . A natural test statistic is provided by the χ2 statistic for
the squared 2-norm in base space.

2.2 A normalising flow for a real-valued non-volume
preserving model

The framework of normalising flows [15] has been developed
with the explicit intent to transform an existing probability
density to a (standard)normal density, i.e., to “normalise“ the
density. To this end, f is constructed as a composition of K
individual bijective mapping layers f (k),

f = f (1) ◦ f (2) ◦ · · · ◦ f (K ) . (5)

Here, we restrict ourselves to a particular class of mapping
layer, following the real non-volume preserving (RealNVP)
model [16]: the affine coupling layers. This class of layers are

123



Eur. Phys. J. C          (2023) 83:1115 Page 3 of 9  1115 

chosen here for their proven ability to map multi-modal den-
sities of real-valued parameters to a standard normal through
non-volume-preserving transformations [16]. Each of these
layers has the structure

f (k) : �x ∈ R
D �→ f (k)(�x) ∈ R

D (6)

f (k)(�x) = (p ◦ a(k))(�x) . (7)

In the above, �x = (x1, x2, . . . , xD)T , and p is a permutation
operation

p(�x) = (x2, . . . , xD, x1)
T (8)

with a trivial Jacobian |Jp| = 1. The power of the RealNVP
model lays in the use of affine coupling layers a(k) [16].
Each of these layers splits its input vector into two parts
�x = (�xTlo, �xThi)

T , where dlo ≡ dim �xlo = �D/2 and dhi ≡
dim �xhi = �D/2�. The affine coupling layers then map their
inputs to

a(k)(�x) =
( �xlo

�xhi � exp(s(k)(�xlo)) ⊕ t (k)(�xlo)

)
, (9)

where s(k) and t (k) are real-valued functions R
dlo �→ R

dhi ,
and � and ⊕ indicates element-wise multiplication and addi-
tion. Since both s(k) and t (k) are independent of �xhi, the Jaco-
bian for each affine coupling layer a(k) takes the simple form:

Ja(k) ≡ exp

[∑
i

s(k)
i (�xlo)

]
. (10)

There are no further restrictions on the functions s(k) and
t (k) and they are commonly learned from data using a neural
network [17].

3 Physics case: semileptonic B decays

To illustrate the viability of our approach, we carry out a
proof-of-concept (POC) study using existing posterior sam-
ples [18] from a previous BSM analysis [10]. This anal-
ysis investigates the BSM reach in exclusive semileptonic
b → u�ν̄ processes within the framework of the ub�ν sector
of the WET:

Hub�ν = −4GF√
2
Ṽub

∑
i

C�
i O�

i + h.c. . (11)

Here C�
i represents a WET Wilson coefficient (i.e., a free

parameter in the fit to data) while O�
i represents a local

dimension-six effective field operator (i.e., the source of
the 50 hadronic nuisance parameters in the original analy-
sis [10]). The assumptions inherent to that analysis lead to a

basis composed of five WET operators:

O�
V,L = [

ūγ μPLb
] [

�̄γμPLν
]
, O�

V,R = [
ūγ μPRb

] [
�̄γμPLν

]
,

O�
S,L = [

ū PLb
] [

�̄PLν
]
, O�

S,R = [
ū PRb

] [
�̄PLν

]
,

O�
T = [

ūσμνb
] [

�̄σμν PLν
]
.

(12)

For the purpose of a BSM study, only the marginal poste-
rior of the WET parameters is of interest. One readily obtains
this marginal posterior by discarding the sample columns cor-
responding to any (hadronic) nuisance parameters. A cor-
ner plot of this marginal posterior originally published in
Ref. [10] is shown in Fig. 1. As illustrated, the 5D marginal
posterior is very obviously non-Gaussian with a substantial
number of isolated modes. The samples obtained in this anal-
ysis are overlaid with a kernel-density estimate (KDE) of the
marginalised posterior. Although estimating the density is
one of our main goals, the use of a KDE is neither sufficient
nor advisable for the purpose we pursue. First, KDEs are
notorious for their computational costs. Second, KDEs are
sensitive to misestimation of densities close to the bound-
aries of the parameter space. Last but not least, KDEs do not
provide a test statistic.

The objective of the POC study is now to determine
whether a generative and testable likelihood can be con-
structed from the available posterior samples by employing
normalising flows. To achieve this objective, we investigate
a two-dimensional subset of our posterior samples before we
progress to the full five-dimensional problem. For both cases,
we use normalising flows f of the form shown in Eq. (5), i.e.,
a sequence of K individual mapping layers Eq. (6), each con-
sisting of a composition of an affine coupling layer [16] and
a permutation. This class of mapping layer is implemented
as part of the normflows software package [17], which we
use to carry out our analysis. The normflows software is
based on pytorch [19], which is used in the training of the
underlying neutral networks.

We train the normalising flow on a total of 144k posterior
samples using a total of K = 32 mapping layers. Each map-
ping layer is associated with a 4-layer perceptron, consisting
of the input layer with �D/2 nodes, two hidden layers with
64 nodes each, and the output layer with 2 × �D/2� nodes.
The outputs correspond to the vector-valued functions s(k)

and t (k) as used in Eq. (6). We use the default choice of loss
function provided bynormflows, the “forward” Kullback–
Leibler divergence [20]

KL(�α) = −EP∗
T (�ϑ)

[
log PT (�ϑ | �α)

]
+ const

= −EP∗
T (�ϑ)

[
log PB( f (�ϑ | �α) + log

∣∣∣det J f (�ϑ | �α)

∣∣∣]

+ const. (13)
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Fig. 1 Marginalized 5D posterior for the parameters of interest �ϑ in
the ub�ν example. The black dots indicate the distribution of the poste-
rior samples in form of a scatter plot. The blue-tinted areas correspond

to the 68, 95, and 99% probability regions as obtained from a smooth
histogram based on kernel-density estimation

The loss function is minimised with respect to the neural
network parameters �α using the “Adam” algorithm [21] as
implemented in pytorch. Although we use a total of 10k
optimisation iterations, we find that a close-to-optimal solu-
tion is found around the 2k iterations mark in both cases.
We show the evolution of the loss functions in terms of the
number of optimisation steps in Fig. 2.

3.1 Application to a two-dimensional subset of samples

In a first step, we perform a POC study at the hand of a subset
of WET Wilson coefficients. The target space only consists
of the two parameters:

�ϑ = (ϑ1, ϑ2)
T ≡ (Re C�

VL
, Re C�

SL )
T . (14)

Our choice of 2D example exhibits two difficult features in
target space as illustrated in Fig. 1. First, the 2D marginal pos-
terior is multi-modal. Second, each mode is distinctly non-
Gaussian and its isoprobability contours resemble a bean-like
shape. In the following discussion, we will frequently refer
to these shapes simply as “beans”. The central objective of
this 2D POC study is to train a normalising flow f such that
the base space variables

�β ≡ f (�ϑ) . (15)

123



Eur. Phys. J. C          (2023) 83:1115 Page 5 of 9  1115 

Fig. 2 Evolution of the loss function for the two- and five-dimensional
case as the blue solid and red dashed lines, respectively. The loss values
have been scaled so that all values are confined to the interval [0, 1]

have a bivariate standard normal distribution: �β ∼ N2(�0,1).

3.1.1 Distribution of the parameters in target and base
space

In Fig. 3 we show the result of the training in the target and
base spaces. The top plots contain the model in the target
space after training and the base distribution used as start-
ing point for the transformation. The bottom plots show the
distribution of the posterior samples in the target space, used
in the training, and after transformation to the base space.
Visually, the trained model in the target space (top left) cap-
tures the main features of the training sample (bottom left).
Nevertheless, the model contains a faint filament connecting
the left and right beans (top left), which is not present in
the true posterior samples (bottom left). Although this addi-
tional structure becomes less prominent as the value of the
loss function decreases, it never fully disappears using our
analysis setup. This additional feature translates to a less pop-
ulated line across the sample distribution in the base space
(bottom right). This line however becomes invisible after a
sufficient number of training iterations as is shown in Fig. 4,
where we juxtapose two transformation of the samples of P∗

T
from T space to B space using the normalising flows trained
with 2000 and trained with 10,000 iterations. We conclude
that the presence of the filament requires careful diagnosis if
the RealNVP model can be used to achieve our stated objec-
tive: to obtain a generative and testable likelihood function.

3.1.2 Comparison of the modelled and true distributions

We investigate the quality of our trained normalising flows
with a comparison of the modelled and true distributions.
The comparison is first performed using histograms of the

distributions in both the base and the target space. The value
ni of the true distribution in bin xi is obtained by dividing the
number of samples in the bin by the total number of samples
N . The value of the modelled distribution is represented by
the value of the modelled density at the bin centre, PX (xi ),
multiplied with the area of the bin, Ai ≡ A(xi ). Our measure
for the comparison is the deviation defined as

deviation = ni − PX (xi )Ai

σi
, (16)

where the uncertainty on the true distribution in bin xi is
assumed to be

σi =
√

max(1, Nni )

N
(17)

The deviation is shown in Fig. 5. As expected, the deviation
is close to zero in highly populated regions and the connect-
ing filament between the beans in the target space is clearly
visible. The larger deviations in sparsely populated regions
are a result of the limited size of the data sample, where the
red bins contain a single data point and the blue regions are
empty bins.

3.1.3 Sample classification with a BDT

The next step is to quantify the quality of the normalising
flows in regard to the two primary purposes, generating sam-
ples from the posterior and determining the test statistic for
the actual distribution. To this end, we train classifiers to dis-
tinguish samples generated from the true and modelled pos-
terior distributions on the sample position in the base space,
the position in target space, and the density in target space
together with ‖ �β‖2. In all three cases, the classification is
carried out with a Boosted Decision Tree (BDT) [22] with
the default settings of the XGBClassifier class provided
by the python library xgboost [23].

The data generated from the true posterior is split into two
equal parts, which are then only used for training and testing
respectively. A sample of the same statistical power is gen-
erated from the modelled distribution and also split into two
equal parts. The receiver-operator statistic is the dependence
of the true positive rate on the false positive rate on the testing
sample. The area under its curve (AUC), for a set of features
x used in the classification, is a measure for the quality of the
classification. Perfect classification results in AUC(x) = 1,
while random classification results in AUC(x) = 0.5.

123



 1115 Page 6 of 9 Eur. Phys. J. C          (2023) 83:1115 

Fig. 3 Modelled (top) and
empirical (bottom) distributions
in the target (left) and base
(right) space. Top: model in the
target space after training (left)
and base space (right). Bottom:
distributions of the samples of
the true posterior used for
training the normalising flows in
the target space (left) and after
transformation to the base space
using the trained flow (right).
The circles in the base space
serve only to guide the eye and
show the contours || �β||2 = 1
and || �β||2 = 9

Fig. 4 Data distributions in the
base space after 2000 (left) and
10,000 (right) training
iterations. The circles in the
base space serve only to guide
the eye and show the contours
|| �β||2 = 1 and || �β||2 = 9

Fig. 5 Selected diagnostic
plots for the proof of concept
with the 2D subset of samples in
the target (left) and base (right)
space. Deviation of the model
from the sample distribution in
units of the uncertainty due to
the finite size of the data sample.
The circles in the base space
serve only to guide the eye and
show the contours || �β||2 = 1
and || �β||2 = 9
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Fig. 6 Empirical distribution of || �β||2 for the ub�ν example using only
two dimensions, see Eq. (15). The colour of the bars representing the
residuals, r , correspond to the magnitude, where grey, yellow, and red
represent a residual with absolute value |r | < 1, 1 < |r | < 3, and
3 < |r | respectively. The dashed vertical lines indicate the positions
where the cumulative distribution function of χ2(ν = 2) equals 68, 95,
and 99%

3.1.4 Differences between the modelled and the true
posterior density

Training and testing the BDT on the position in target and
base space, results in

AUC(�ϑ) = 0.577±0.002 and AUC( �β) = 0.549±0.003,

(18)

respectively. These low AUC values indicate that the true
and modelled density are very similar. However, they are
significantly larger than 0.5 showing that the BDT can find
exploitable differences. The smaller AUC score in the base
space compared to the target space is in line with the obser-
vation of a small connecting artefact in target space and the
resulting diagonal gap in the base space, as discussed in rela-
tion to Figs. 4 and 5. As a sanity check, the BDT is also trained
on two samples which are both generated from the model
resulting in AUC values compatible with 0.5 as expected for
two indistinguishable samples.

3.1.5 Testing the modelled test statistic

Finally, Fig. 6 shows the distribution of the 2-norm of the
data samples in the base space. They appear to follow a two-
dimensional χ2 distribution as anticipated in Eq. (4).

We determine the reliability of the test statistic by investi-
gating the ability of a BDT to distinguish the true and mod-
elled posterior densities. This BDT is trained on two vari-
ables: the posterior density in the target space and the 2-norm
in the base space, ‖ �β‖2, which resembles a χ2 distribution.

The posterior density is not available as a function. We
are therefore forced to use an empirical estimation. Because
the value of the density relies on the data itself, the AUC
value for classification of two samples generated from the
same model is larger than 0.5 and depends on the estimation
method used; we investigate KDEs with different kernels as
well as nearest neighbours density estimation.

The AUC scores for classification of samples generated
from the true and modelled posterior density are always larger
than the corresponding value for classification of two model-
based samples. The AUC value, obtained from estimating
the density from the number of points with a distance below
0.015 around a given point, is AUC(density) = 0.614±0.006
which is an increase of 0.039 with respect to the baseline
value calculated when classifying two model-based samples.

3.1.6 Conclusion of the two-dimensional study

Our conclusion for this 2D POC study is that our approach
is a viable one and provides both an evaluatable likelihood
and a reliable test statistic. Publishing 2D WET posteriors
in form of a normalising flow therefore clearly beats current
best practices such as Gaussian approximations or Gaussian
mixtures models (as for example used in Ref. [10]) in terms
of both usefulness and reliability. We find that the presence
of the filament does not adversely affect achieving our stated
objectives at the current level of precision. We leave an inves-
tigation as to other choices of mapping layers, in particular
autoregressive rational quadratic splines as used in Ref. [24],
to future work. Instead, we move on to apply our approach
to the full five-dimensional POC.

3.2 Application to the full five-dimensional samples

We carry out the same analysis on the full five-dimensional
posterior of Fig. 1. This is a much more complicated case
in terms of possible artefacts between beans. Since this POC
study is only illustrative, we do not try to optimise the training
of the normalising flows and keep the same setup as for the
two-dimensional case. As visual comparisons of the distri-
butions suffer from loss of information due to the projection
from five to two dimension, we rely on the BDT tests that we
introduced for the two-dimensional case.

Figure 7 shows the distribution of the 2-norm of the sam-
ples transformed to the five-dimensional base space. The dis-
tribution is overall consistent with a χ2 distribution with five
dimensions. the residuals reveal small systematic differences
between the shape of the distribution of the data points and
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Fig. 7 Empirical distribution of || �β||2 for the ub�ν example using all
five dimensions. The colour of the bars representing the residuals, r ,
correspond to the magnitude, where grey, yellow, and red represent
a residual with absolute value |r | < 1, 1 < |r | < 3, and 3 < |r |
respectively. The dashed vertical lines indicate the positions where the
cumulative distribution function of χ2(ν = 5) equals 68, 95, and 99%

the expected PDF. In particular, the residuals tend to aggre-
gate positive values at small χ2 < 5 and negative values at
large 10 < χ2 < 20. This conclusions are confirmed by the
BDT classification in the base space which reaches an AUC
score of

AUC( �β) = 0.5708 ± 0.0005 . (19)

This value is slightly larger than the value obtained in
Sect. 3.1 but corroborates that the data sampled from the true
posterior distribution resembles a five-dimensional Gaussian
distribution after transformation with the trained normalising
flow.

On the other hand, the closeness of the true and modelled
distributions in the target space is much less convincing. The
BDT classification in the target space reaches AUC values
close to one. Similarly, training and testing the BDT on the
value of the posterior density in target space and the 2-norm
in base space gives AUC(density) = 0.9150±0.0005 which
confirms a poor modelling of the true distribution.

We conclude that the full five-dimensional variable space
presents a more complex challenge compared to the two-
dimensional POC. The basic normalising flow training as
pursued in this work does not provide a satisfactory model
for the multi-modal distribution in target space. This is not
surprising since we use the same setup for the two- and five-
dimensional tests. The small number of iterations needed to
train the five-dimensional normalising flow, visible in Fig. 2,

indicates that more complicated models can be trained to
achieve better performances. The tuning of the model and
the training procedure are however beyond the scope of this
paper.

4 Summary

We show that normalising flows can overcome two major
hurdles to the full exploitation of statistical constraints on
EFT parameters stemming from phenomenological analy-
ses of low-energy processes. On the one hand, they enable
sampling from a previous analysis’ posterior distribution by
converting it into a simple multivariate Gaussian density. On
the other hand, they provide a simple test statistics for the
distribution.

We investigate this procedure by training a RealNVP nor-
malising flow to a physics case that exhibits multi-modal pos-
terior densities in two and five dimensions. The compatibility
of the modelled and the empirical posterior distributions are
examined using different statistical tools.

Our conclusions are as follows. When facing multi-modal
distributions, the modelling of the true posterior densities
leads to the presence of artefacts as observed here. Never-
theless, these artefacts do not prevent the successful usage
of normalising flows as proposed here. Instead, they require
careful (supervised) learning of the features of the true pos-
terior density. In the two-dimensional case, we have illus-
trated that both of our objectives, the sampling and the pres-
ence of a test statistics, are achieved. However, applying our
approach to the five-dimensional case without modification
leads to less satisfactory performances. Improvements to per-
formance through detailed modelling, at the cost of more
computationally-intensive training, are left for future work.

We are currently modifying the EOS software [25] to pro-
vide users with an interface that transparently makes use
of our proposed method of constructing low-energy likeli-
hoods for existing and future analyses of flavour-changing
processes.
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