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1 Introduction

Quantum field theories (QFTs), fundamental or emergent, are important in modern physics.
They are the cornerstone of the Standard Model of particles. In statistical mechanics, they
are an efficient way to capture universal features of phase transitions. At the same time,
in condensed matter, they are useful to parametrize the important, low-energy features of
various materials.

Non-abelian gauge theories are the most infamous of QFTs. They describe Quantum
Chromodynamics (QCD). Quarks, labeled by 3 colors, interact with non-abelian gauge
fields to produce a theory that makes sense as a genuine quantum field theory (i.e., has a
continuum limit) and, in addition, has highly nontrivial features in the infrared, such as
chiral symmetry breaking and confinement which have yet to have a complete theoretical
understanding.

This is why understanding QCD-like theories has a special place in theoretical physics.
Most recently, a popular method of analyzing such theories was pioneered by the discovery
of novel generalized global symmetries and ’t Hooft anomalies [1–3], leading to an avalanche
of discoveries (see, e.g., [4–17] for an incomplete list). In this paper, we will be concerned
with one such theory, namely the SU(N) gauge theory with either fermionic or bosonic
quarks (i.e., matter in the fundamental representation), supplemented by a single Weyl
fermion in the adjoint representation of the SU(N) gauge group. In some sense, the theory
in question is halfway between QCD (the version of our theory without the adjoint Weyl
fermion) and N = 1 Super Yang-Mills theory (SYM) (our theory without fundamental
matter).

We will mostly be concerned with a massless adjoint Weyl fermion so that there is
always a Zχ2N discrete chiral symmetry.1 The fundamental matter (bosonic or fermionic)
can be massless or massive. Let us send the mass of the fundamental matter to infinity. The
theory becomes super Yang-Mills, for which many things are known. The theory breaks
its chiral Zχ2N symmetry down to Z2 fermion number symmetry, leading to N degenerate
supersymmetric vacua separated by domain walls that support a topological quantum field
theory (TQFT). In this paper, we use the existence of a novel anomaly involving the baryon
symmetry and the methods of effective field theory to show that such a phase persists in
the bulk at any finite fundamental mass.

In particular, consider the simplest case of one adjoint Weyl fermion and one mas-
sive fundamental Dirac fermion. The global symmetries are only the Zχ2N chiral symmetry,
acting on the adjoint Weyl fermions, and the U(1)B baryon symmetry, acting on the funda-
mental fermion. We will show that there is a mixed anomaly between the two symmetries
for any mass of the fundamentals, indicating that either U(1)B or Zχ2N is spontaneously
broken.2 The Euclidean path integral measure of this system is positive definite, and one
can apply the Vafa-Witten theorem [19] to conclude that U(1)B cannot be spontaneously

1We use the superscript χ in Zχ
2N to distinguish the discrete chiral symmetry from other discrete groups

that appear in the text. As we shall discuss, if the fundamental matter is fermionic and massless, the
discrete chiral symmetry enhances to U(1)χ chiral symmetry.

2The anomaly manifests itself as follows. An insertion of the minimal U(1)B flux will activate the color
‘t Hooft fluxes. This happens because U(1)B is the quotient of the U(1)q quark symmetry by the center of
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broken. Hence, anomaly matching conditions demand that Zχ2N be spontaneously broken.
In addition, Zχ2N has a mixed anomaly with gravity; thus, even if the Vafa-Witten theorem
did not hold (e.g., Vafa-Witten is applied to a fermionic fundamental matter, but as we
will see, the same anomalies apply to bosonic fundamental matter) the breaking of U(1)B
would not saturate all the anomalies. Therefore, introducing massive fundamental fermions
does not change the bulk phase of SYM: the theory still has N vacua connected via domain
walls. While there is no phase transition in bulk as we vary the mass of the fundamentals,
we shall argue that phase transitions will occur on the domain walls. At m = 0, the Zχ2N
symmetry enhances to U(1)χ, and the domain walls melt away, leaving a Goldstone boson
for the spontaneously broken U(1)χ.

If we replace a fundamental fermion with a fundamental scalar, a similar conclusion can
be drawn:3 no phase transition in the bulk takes place as the fundamental mass squared is
driven from large and positive (where the boson decouples) to large and negative (where
the boson condenses). Yet, a transition on the domain wall is expected to occur.

We also discuss theories with more fundamental flavors and establish analogous anoma-
lies. For Nf fundamental fermions, matching the anomalies in the IR happen via one of
two channels depending on the number of flavors: either the theory breaks its symmetries
spontaneously, or it flows to a conform field theory (CFT). These scenarios are summarized
in figures 1 and 14 for the single flavor and multi flavors, respectively.

We briefly give an incomplete review of the literature on the mixed representation
QCD. Of course, 4d super QCD is the most well-known mixed-representation QCD-like
theory. Thanks to holomorphy, a lot is known about the IR phases of these theories,
which, by now, is textbook material. The recent work [20] is relevant to our studies, which
analyzed domain walls in super QCD. The mixed fundamental/adjoint representation was
also analyzed in the context of the weakly coupled R3 × S1 and adiabatic continuity [21].
In [22], theories with adjoint and higher mixed-representations were studied on R3 × S1,
and in [14], SU(6) with fermions in the adjoint and the 3-index antisymmetric mixed
representations were studied in 4d and on R3 × S1. In [23], a systematic analysis of chiral
perturbation theory was done for arbitrarily mixed representations, while in [24, 25] lattice
simulations with fermion fundamental and anti-symmetric sextet representation of SU(4)
gauge theory was done. More relevant for our work is [26], where the mixed representation
of fundamental/adjoint fermions was simulated.

1.1 A warmup: Higgs phase of SU(2) gauge theory with a single scalar

The various anomalies involving the chiral symmetry Zχ2N , like the mixed Zχ2N -gravitational
anomaly, or the pure Zχ2N anomaly, are purely due to the adjoint fermions. But there exists
an anomaly involving Zχ2N and U(1)B — the baryon symmetry carried by the fundamental
matter. Such an anomaly exists regardless of whether the fundamental matter is bosonic

the gauge group ZN , i.e., U(1)B
∼= U(1)q/ZN . Consistency of the cocycle condition in the presence of the

U(1)B background requires we also activate the ’t Hooft flux of the center of SU(N). When this happens,
however, the instanton number becomes fractionally quantized, and Zχ

2N is explicitly broken to Z2 by the
presence of the U(1)B flux. This is similar to [4, 18].

3There is a slight caveat to this statement.
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Zχ4 U(1)B
ξ1 1 0
ξ2 1 1
ξ3 1 -1

Table 1. The charges of the three fermions (1.2) of the IR phase.

or fermionic. This seems surprising at first, as even if the fundamental matter is fermionic,
there are no triangles involving U(1)B and the chiral symmetry. When the fundamental
matter is bosonic, the anomaly seems even stranger still. We will illustrate this anomaly
by a simple example of an SU(2) gauge theory with one fundamental scalar Φ and one
adjoint Weyl fermion λ. The theory has a Zχ4 discrete chiral symmetry, whose Z2 subgroup
is the fermion number. It acts on λ as

λ→ iλ . (1.1)

There is also a U(1) symmetry acting on the scalar ϕ → eiαϕ. The Z2 subgroup of U(1)
is, however, the center of the SU(2) gauge group, so one can view the global symmetry as
U(1)/Z2 ∼= U(1). We distinguish between two normalizations. First, we define U(1)B as the
baryon symmetry, i.e., a symmetry under which the smallest charge of the baryon is unity.
This symmetry group is related to the quark symmetry U(1)q, under which the quark has
the unit charge, as follows U(1)B = U(1)q/Z2 (or for general SU(N) as U(1)B = U(1)q/ZN ).
The scalar then transforms as ϕ→ eiα/2ϕ under U(1)B, where now α ∼ α+ 2π.

If we condense the scalars, they fully Higgs the SU(2) gauge group, leaving only three
ungapped free adjoint Weyl fermions associated with the algebra of SU(2). We can write
the Weyl fermion as λ = λa τ

a

2 , where summation over a = 1, 2, 3 is implied and where τa

are the Pauli matrices. The fermions λa are, however, not gauge invariant, and the correct
gauge invariant operators corresponding to the three Weyl fermions are

ξ1 = ϕ∗Aλ
A
Bϕ

B ,

ξ2 = ϕAϵABλ
B
Cϕ

C , (1.2)
ξ3 = ϕ∗Aλ

A
Bϵ

BCϕ∗C ,

where we explicitly wrote out fundamental indices A,B,C = 1, 2 of SU(2) (ϵAB being the
totally anti-symmetric tensor). We enumerate the charges of the three Weyl fermions under
the Z4 chiral symmetry and U(1)B symmetry4 in table 1.

The effective theory is hence a theory of three Weyl fermions ξ1,2,3 with a given charge
assignment under the global symmetries given in table 1. It is now straightforward to see
that there is a standard triangle U(1)B−Zχ4 anomaly. Here we found an anomaly using the

4The model enjoys an enhanced flavor symmetry, called custodial symmetry, because of the pseudo-
reality of the gauge group. The true flavor symmetry is actually SO(3) with U(1)B as its subgroup. Since
we have a triplet of Weyl fermions, two of which are charged as ±1 under the U(1)B , the three naturally
fit into the triplet of SO(3) flavor group.
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U(1)χ/Zχ4 U(1)B
λ 1 0
ϕ −1 1

2

ψ −2 1
2

ψ̃ −2 −1
2

U(1)χ/Zχ4 U(1)B
χ0 −1 1
χ1 −1 −1
χ2 −3 0

Table 2. Left: the charges of the fundamental fields in the fermion-Higgs SU(2) model. Right: the
charges of the composite fermions in the Higgs phase.

IR theory,5 but since the anomaly is RG invariant, it implies the same anomaly exists in
the UV theory. Later, we will see more formally how this occurs in a more general setting.

At first, this anomaly sounds odd, as the baryon-number carrying fundamental scalar
Φ naively has nothing to do with the chirally charged λ. Further, it generalizes to any
fundamental matter charged under the baryon number in the presence of a massless adjoint
Weyl fermion. In addition the scalar charged under the baryon number can be made
arbitrarily massive, which goes against the traditional lore that such fields can participate
in the anomaly. However in recent years there are many examples of this type. In [5, 6] a
mixed anomaly between U(1)-topological symmetry and SO(3) (or more generally PSU(N))
flavor symmetry was utilized in Abelian-Higgs models. The scalars can be massive, and
the anomaly persists. In [4] an anomaly between T and vector-like flavor symmetries was
also used in QCD in 4d, again for any mass of the flavor multiplet. In all these cases
(including the one we discuss here) the decoupling limit results in a theory with a 1-form
symmetry, while the anomaly involving flavor transmutes to an anomaly involving the
1-form symmetry.

In our theory, a way to understand this anomaly from the UV point of view is to start
with a massless adjoint fermion and a fundamental scalar coupled to the SU(N) gauge
fields. Let the scalar have a very large positive mass. Then, the theory has a mixed
anomaly between the discrete Zχ2N chiral symmetry and an emergent Z[1]

N 1-form center
symmetry (the 1-form symmetry becomes exact in the infinite mass limit) [2] (see also [3]).
Now, lower the mass of the scalar or even take it to be negative. The presence of the scalar
breaks the 1-form symmetry explicitly, but it introduces a U(1)B 0-form symmetry. As
we will see the anomaly involving the Z[1]

N 1-form symmetry transmutes into the anomaly
involving the U(1)B baryon symmetry. Roughly speaking the background gauge fields for
both the U(1)B as well as the 1-form Z[1]

N symmetry activates ’t Hooft fluxes, which causes
the anomaly to manifest itself. We shall see the details of this anomaly in the bulk of the
paper using different methods.

To see that the anomaly is there also for the theory with fermions, we can introduce a
fundamental Dirac fermion Ψ consisting of two Weyl fermions ψ and ψ̃ in the fundamental
and the anti-fundamental representation respectively. Further we postulate a Yukawa

5Note however that the Zχ
4 enhances to U(1)χ symmetry because all mass terms involving ξ1,2,3 either

preserve all of U(1)χ or keep only Z2 ⊂ Zχ
4 .
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coupling
LYukawa = ϕ†λψ + c.c. . (1.3)

If we add a mass to the scalars, we decouple them and the model reduces to an SU(2)
gauge theory with a single fundamental Dirac fermion. On the other hand condensing the
scalar and Higgsing the theory will reveal a composite fermion phase with the required
mixed Zχ4 -U(1)B anomaly, as we will see in a moment. Since the symmetries in these two
limits are unchanged, the anomaly structure has to be the same.

We can also add a mass term mψ̃ψ + c.c.. The symmetries of the model involve the
U(1)B symmetry and, if m = 0, the U(1)χ chiral symmetry. When the mass m ̸= 0 the
chiral symmetry reduces back to Zχ4 . Table 2 on the left summarizes the charges of the
fundamental fields under these symmetries.6

Now let us condense the scalar ϕ like before, higgsing the gauge fields entirely. In

the gauge where ϕ =

v
0

, the fermions ψA and vλ1
A + mψ̃A, while fermions λ2

1 and

mλ1
A − vψ̃A remain massless, 3 fermions in total. The massless fermions can be written

in a gauge invariant form as

χ0 = ϕAϵABλ
B
Cϕ

C

χ1 = mϕ∗Aλ
A
Cϵ

CDϕ∗D − |ϕ|2ψ̃AϵABϕ∗B (1.4)
χ2 = mϕ∗Aλ

A
Bϕ

B − |ϕ|2ψ̃AϕA

We summarize the charges under the global symmetries of these fields in the right of table 2.
As we will see these composite fermions precisely correspond to the proposal. Further we
can send m → ∞, and then we restore the single Higgs model where η0,1,2 → ξ2,3,1.7 We
will have more to say about this model in section 2.3.

Finally let us briefly add that we could also see the anomaly in SU(N) gauge theory
with fermionic flavors. One would then couple N − 1 fundamental Higgs fields, with ap-
propriate Yukawas designed to preserve the global symmetries of the theory, and condense
them in such a way to Higgs the gauge fields completely. The resulting phase is always
a phase of free fermions, and the anomalies become manifest. We will not pursue this in
details

1.2 Outline

The rest of the paper is organized as follows. In section 2, we study in detail the theory
with a single fundamental Dirac fermion in the presence of a massless adjoint Weyl. We

6Note that since there is no Yukawa coupling for ψ̃, it seems that there is an additional baryon symmetry
rotating ψ̃ only. This symmetry however is anomalous. To make it anomaly-free we must either rotate the
adjoint λ by an appropriate phase, or ψ by an appropriate phase or a combination of both. It is easy to see
that this results in two U(1) symmetries, which we choose to label as U(1)B and U(1)χ with fields charged
as in table 2.

7Note that in the model without the (anti-)fundamental fermions we defined the scalar field not to
transform under the chiral symmetry U(1)χ, so the identification of charges of table 1 and 2 should be
made up to this redefinition.

– 6 –



J
H
E
P
1
2
(
2
0
2
3
)
0
6
3

identify the faithful global symmetry and the associated ’t Hooft anomalies constraining
the IR phase and its domain wall theory. In section 3, we repeat the analysis with a
single fundamental scalar that replaces the single fundamental fermion. We generalize the
story in section 4 to several fundamental Dirac fermions and a single adjoint Weyl fermion
and elaborate on their anomalies. We generalize the analysis to multi-fundamental scalars
in section 5. We conclude and outline some possible future directions in section 6. The
appendices summarize some points used in different parts of the paper. In appendix A, we
show that the fermionic measure is positive definite. In appendix B, we review the relation
between spectral flow and the index theorem. Finally, the 3-loop β-function used in some
of our analyses in section 4 is displayed in appendix C.

2 Theory with one fundamental fermion: symmetries, anomalies, and
the phase diagram

In this section, we study the symmetries and anomalies of 4d SU(N) gauge theory coupled
to one Dirac fermion in the fundamental representation and one Majorana fermion in the
adjoint representation. Note that we can alternatively view the Majorana fermion in the
adjoint representation as a Weyl fermion, but not both simultaneously. In the rest of the
paper, we will take the adjoint fermion to be Weyl for convenience of the analysis.

2.1 The massive case

Denote the SU(N) gauge field that couples to the fundamental fermions by a and its
counterpart for the adjoint fermions by aadj. Then the action of the fermionic sector is
given by

S =
∫

d4x
(
iλ̄(/∂ − i/aadj)λ+ iΨ̄(/∂ − i/a−m)Ψ

)
. (2.1)

Here, λ is a left-handed Weyl fermion in the adjoint representation of SU(N). Ψ is a Dirac
fermion in the fundamental representation of SU(N). In the chiral basis, we decompose Ψ as

Ψ =

 ψ

ψ̃†

 ,

where we use the notation that both ψ and ψ̃ are left-handed Weyl fermions in the funda-
mental and anti-fundamental representations of the gauge group.

The theory has a classical U(1)χ chiral symmetry acting on the adjoint:

λ→ eiαλ , (2.2)

which reduces to Zχ2N discrete chiral symmetry by the ABJ anomaly. Further, there is a
U(1) symmetry acting on the fundamental quark:

Ψ → eiβΨ . (2.3)

We will call this symmetry U(1)q, where q stands for quark. Note that if β ∈ 2π
N Z, we can

absorb the symmetry in the SU(N) gauge transformation so that the true global symmetry
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SU(N) U(1)q Zχ2N
ψ +1 0
ψ̃ −1 0
λ adj 0 +1

Table 3. Representations of the fermions under various symmetry groups in the massive case.

group is U(1)B ∼= U(1)q/ZN — the Baryon number symmetry. Under U(1)B, the smallest
charge of the baryon is unity. Thus, the faithful global symmetry is8

GGlobal = U(1)q
ZN

× Zχ2N . (2.4)

The fermion content is summarized in terms of their representations under various sym-
metries in table 3 below.

Finally, the action of the Z2 subgroup of the symmetry U(1)B × Zχ2N :

Z2 : (λ,Ψ) → (−λ,−Ψ) , (2.5)

coincides with the action of the ZF2 fermion number. Thus, there is a mixing between the
Spin spacetime symmetry and the Zχ2N into a Spin-Zχ2N := (Spin×Zχ2N )/ZF2 structure. We
can then use this structure to define the theory on some orientable manifolds that are non-
spin by turning on a non-trivial ZN ∼= Zχ2N/ZF2 bundle on such a manifold whose obstruction
to lifting to a Zχ2N bundle is precisely the second Stiefel-Whitney class of the manifold.9

To study the anomalies, let us couple a background gauge field Aq to the U(1)q sym-
metry by promoting

/∂ − i/a→ /∂ − i/a− i /Aq1N = /∂ − i /A ,

where A is a U(N) gauge field whose traceless part is dynamical. We write F for the field
strength of A and Fq for the field strength of Aq. Note that trF = tr(Fq1N ) = NFq is
quantized in integer units of 2π. Hence it follows Fq can be fractionally quantized in units
2π/N . This is because U(1)q is not the proper global symmetry (i.e. there are no gauge
invariant operators with the unit charge under U(1)q) but U(1)B is. We will also make use
of the properly quantized baryon gauge field AB = NAq, and its curvature FB = NFq.

Now, applying the Zχ2N : λ→ ei
πk
N λ symmetry transformation, the action changes as

∆S = i
k

4π

∫
tr
[(
F − trF

N

)
∧
(
F − trF

N

)]
, (2.6)

where the trace is taken in the fundamental representation. In the above result the traceless
part is subtracted, because the adjoint field λ cannot see the trace of F . Now we write

k

4π

∫
tr
[(
F − trF

N

)
∧
(
F − trF

N

)]
= k

4π

∫
trF ∧ F − k

4πN

∫
FB ∧ FB . (2.7)

8We can also use the cocycle conditions as a systematic way to find the faithful symmetries. See section 4.
9Note that this only works for orientable manifolds M with non-vanishing H1(M ;ZN ) because otherwise,

there can be no non-trivial ZN bundle in the first place.
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The first term on the r.h.s. is integer-quantized on a spin manifold. So the partition function
changes under the Zχ2N transformation as

Z → Z exp
[ −ik
4πN

∫
FB ∧ FB

]
. (2.8)

Recall that FB is a properly quantized U(1) field strength; on a closed spin manifold, we
have

1
2

∫
FB
2π ∧ FB

2π ∈ Z . (2.9)

We can then see that the above phase is nontrivial for k = 1, 2, . . . , N − 1. Thus, there
is a mixed anomaly between the Zχ2N discrete chiral symmetry and the U(1)B baryon
symmetry.10 As we mentioned in section 1.1, the reader might not feel at ease about a
mixed anomaly between Zχ2N and U(1)B since none of the two symmetries couples to the
two fermion species simultaneously, i.e., one does not see such an anomaly from triangle
diagrams.11 Another equivalent way to obtain the anomaly is to realize that a minimal flux
for AB field induces a ’t Hooft flux for the color fields, which makes the color topological
charge fractional, Qc ∈ Z/N , and thus leads to a reduction of the chiral symmetry to Zχ2 .
Such anomaly mechanism, where putting background fields for a global flavor symmetry
forces the instanton number to be fractional, has been observed before in [4, 10, 27], or more
closely related to our setup, in [18, 28] where they were dubbed baryon-color-flavor (BCF)
and color-flavor-U(1) (CFU) anomalies. We will discuss this point of view in section 4 in
more detail.

The theory also exhibits a mixed Zχ2N -gravitational anomaly. Under a Zχ2N rotation,
the partition function transforms as

Z → Z exp
[
−iπk(N

2 − 1)
N

∫
M

p1
24

]
, (2.10)

where p1 ≡ − 1
8π2 trR ∧ R is the first Pontryagin class of the tangent bundle, R is the

curvature 2-form, and the integral is taken on a closed 4-manifold M . Notice that on a
spin manifold

∫
M p1 ∈ 48Z.

Finally, there is a nonperturbative discrete anomaly arising from the symmetry group
Zχ2N . Recall that, because of the quotient ZF2 between the spin group and the Zχ2N sym-
metry group, we can define a theory on a non-spin manifold as long as the manifold ad-
mits a Spin-Zχ2N structure. The anomalies in this structure is classified by the cobordism
group [29, 30]

℧6
Spin-Zχ

2N

∼= Hom
(
ΩSpin-Zχ

2N
5 ,U(1)

)
∼= Za × Zb , (2.11)

10Notice that when k = N , the phase is trivial, meaning that the fermion number symmetry is not
anomalous with the U(1)B baryon symmetry.

11However, recall that this is precisely how we observed the anomaly in section 1.1, by going to a Higgs
phase and establishing the fermion content in the IR.
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where

a =



24N, N = 0 mod 6,
8N, N = 0 mod 2 and N ̸= 0 mod 3,
3N, N = 0 mod 3 and N ̸= 0 mod 2,
N, else

,

b =



N/6, N = 0 mod 6,
N/2, N = 0 mod 2 and N ̸= 0 mod 3,
N/3, N = 0 mod 3 and N ̸= 0 mod 2,
N, else

.

(2.12)

For a Weyl fermion of charge q mod 2N under Zχ2N , the anomaly is given by a pair of
indices (νa, νb) ∈ Za × Zb where νa and νb are explicitly given by [29, 31]12

νa =
a

48N
((

2N2 +N + 1
)
q3 − (N + 3)q

)
mod a, (2.13)

νb =



b
4N
(
(N + 1) (2N + 1) q3 − (N + 1)q

)
mod b, N = 0 mod 6, N/6 ∈ 2Z,

b
4N
((
10N2 + 3N + 5

)
q3 − (5N + 17) q

)
mod b, N = 0 mod 6, N/6 ∈ 2Z+ 1,

b
4N
((
2N2 −N + 1

)
q3 − (N + 5)q

)
, N = 2 mod 4, N ̸= 0 mod 3,

b
4N
(
(N + 1) (2N + 1) q3 − (N + 1)q

)
mod b, N = 0 mod 4, N ̸= 0 mod 3,

or N = 0 mod 3, N ̸= 0 mod 2
b

2N
(
Nq3 + q

)
mod b, else

For instance, when N = 3, ℧6
SpinZχ

6
∼= Za=9. The anomaly from our adjoint fermion is then

ν9 = −1 mod 9 ∈ Z9 .

As we shall see this anomaly can be saturated by Zχ2N symmetry breaking (see sec-
tion 2.3).

How are all these anomalies matched in the IR? The most natural way is to spon-
taneously break the Zχ2N symmetry for any mass of the fundamental matter. We know
this is the right answer when the mass of the fundamentals is large enough, but one could
speculate some sort of bulk transition for small enough fundamental fermion mass. What
could this phase be? In [32, 33], it was shown that unitary and symmetry-preserving
TQFTs are excluded in 4d. Another option is to have massless composite fermions. We
will in fact propose such fermions for massless fundamental matter which will match all
the anomalies. However one can use the argument of Weingarten13 [34] to show that the
meson mass is always smaller than the baryon. Since massless composites must necessarily
include baryons to saturate the mixed Zχ2N − U(1)B anomaly, it follows that the meson

12We thank Joe Davighi for working out the general expression for νb with one of the authors.
13Weingarten considered QCD — i.e. a theory fundamental fermions only. However the argument is

unchanged as the adjoint fermion does not invalidate the positivity of the measure as we show in the
appendix A.

– 10 –



J
H
E
P
1
2
(
2
0
2
3
)
0
6
3

SU(N) U(1)B U(1)χ
ψ +1 −N
ψ̃ −1 −N
λ adj 0 +1

Table 4. Representations of the fermions under various symmetry groups in the massless case.

must also be massless, which is not natural unless it is a Goldstone boson. So it seems that
Zχ2N chiral symmetry must be spontaneously broken. The order parameter of this breaking
is the bilinear condensate Trλλ. A non-vanishing expectation value of Trλλ breaks Zχ2N
down to the fermion number Z2 and results in N distinct vacua connected via domain walls.
Finally let us briefly consider a scenario where Zχ2N is broken, but U(1)B is spontaneously
broken as well. However this is prohibited by the Vafa-Witten [19] argument.

2.2 The massless case

When the mass of the fundamental Dirac fermion goes to zero, i.e., m = 0, the U(1)B
baryon symmetry remains unchanged, and the theory has an enhanced chiral (axial) U(1)χ
symmetry.14 To see this, note that there are more classical chiral symmetries in the massless
case, which now acts on the fundamental Dirac fermion. The chiral transformation

λ→ eiαλ, ψ → eiβψ, ψ̃ → eiβψ̃ (2.14)

produces a change in the action

∆S = iα
2N
8π2

∫
tr f ∧ f + i2β 1

8π2

∫
tr f ∧ f

= 2i(Nα+ β)
8π2

∫
tr f ∧ f ,

(2.15)

where f is the SU(N) 2-form field strength. If we set β = −Nα the action is obviously
invariant, hence the transformation

U(1)χ : λ→ eiαλ ,

ψ → e−iNαψ, ψ̃ → e−iNαψ̃ ,
(2.16)

is a good symmetry even at the quantum level. Thus, the faithful global symmetry is

GGlobal = U(1)q
ZN

× U(1)χ , (2.17)

The fermions transform under GGlobal in the representations given by table 4.
14The adjoint/fundamental mixed representation was also studied on M4 = R3 × S1 in [21], which

was shown to have a massless goldstone boson associated with the U(1)χ symmetry. Therefore, it was
conjectured that the theory with a single fundamental flavor is continuously connected to the theory on R4

as we decompactify S1.
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The U(1)χ symmetry carries a ’t Hooft anomaly. Indeed, the anomaly is a consequence
of the triangle diagrams containing λ and Ψ. The anomaly coefficient is given by

CA3 = N(−N)3 +N(−N)3 + (N2 − 1)13 = −2N4 +N2 − 1 , (2.18)

where the first two factors come from the fundamental fermions ψ, ψ̃, and the third one
comes from the adjoint fermion λ. Note that the fundamentals carry charge −N under the
chiral symmetry, and there are N colors, while the adjoint carries a charge 1 and there are
N2 − 1 colors.

In addition to this cubic anomaly of U(1)χ, we also have a mixed anomaly between
U(1)χ and U(1)B. If we were not careful about the modding by ZN in (2.17), we would
find that the coefficient of this anomaly comes from the triangle diagrams U(1)χ [U(1)q]2,
which yield −2N2. This is the traditional ’t Hooft anomaly. However, the modding by
ZN in (2.17) refines this anomaly. To compute it, we put background fields for the U(1)B
symmetry and perform the chiral transformation (2.16). We then have

∆S = i
2Nα
8π2

∫
tr
[(
F − trF

N

)
∧
(
F − trF

N

)]
− i

2Nα
8π2

∫
tr [F ∧ F ]

= −iα
4π2

∫
FB ∧ FB ,

(2.19)

where FB = NFq is the properly normalized baryon background field. Notice that this
is the same as (2.7) and (2.8) we found previously for Zχ2N chiral symmetry, which is just
α = πk

N , k ∈ Z. The theory also has a mixed U(1)χ-gravitational anomaly. All these are
captured by a 5d action15

S5d = i
−2N4 +N2 − 1

24π2

∫
Aχ ∧ Fχ ∧ Fχ + i

−2
8π2

∫
Aχ ∧ FB ∧ FB

+ i
N2 + 1

24

∫
Aχ ∧ p1 , (2.20)

where Aχ and Fχ are the background gauge field and its field strength for the U(1)χ chiral
symmetry, and where integral over the first Pontryagin class obeys

∫
M p1 ∈ 48Z.

2.3 The IR phases

In the infinite mass limit, the Dirac fermion completely decouples, leaving us with a pure
N = 1 SYM with gauge group SU(N). The discrete chiral symmetry remains. Moreover,
there is now an emergent Z[1]

N 1-form global symmetry. Therefore, the global symmetry is
given by

GGlobal
m→∞ = Zχ2N × Z[1]

N . (2.21)

Of course, the super Yang-Mills and the above symmetry will emerge as long as m ≫ Λ,
where Λ is the strong scale.

15From the descent formulas, we have that 1
3!(2π)3

∫
6d
Fχ ∧ Fχ ∧ Fχ ∈ Z, so that the 5d CS theory is

k
24π2

∫
Aχ ∧Fχ ∧Fχ with k ∈ Z. On the other hand 1

2!(2π)3

∫
6d
Fχ ∧FB ∧FB ∈ Z implies that the 5d mixed

CS theory is given by the action k
4π2

∫
Aχ ∧ FB ∧ FB .
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In this case, there is a mixed anomaly between the 0-form and 1-form symmetries in
GGlobal
m→∞ [3, 6].16 In addition, there is, of course, the mixed gravitational anomaly with Zχ2N

and the nonperturbative [Zχ2N ]3 anomaly we discussed in section 2.1.
All the anomalies are saturated in the IR by the spontaneous symmetry breaking of

Zχ2N down to ZF2 via the formation of the bilinear condensate

⟨Tr λλ⟩ = Λ3 exp
(2πik

N

)
, k = 0, 1, . . . , N − 1 , (2.22)

where the N vacua are labelled by k = 0, 1, . . . , N − 1.
In the opposite limit, when m → 0, a priori, we can saturate the anomalies in two

ways. One can spontaneously break U(1)χ symmetry or have massless composite fermions.
Weingarten’s identities exclude the latter whenever the Euclidean action is positive definite.
The fact that our action is positive definite is demonstrated in appendix A. So the only
alternative is that U(1)χ is spontaneously broken. The IR theory contains a Goldstone
boson: a compact scalar φ ∼ φ+ 2π whose effective action is given by

SGoldstone ∝
∫
d4x Λ2(∂φ)2 , (2.23)

up to an overall multiplicative constant that scales as N3 in the large-N limit (see sec-
tion 2.4). The scalar φ is associated with the trλλ ∼ eiφ, and therefore, the operator eiφ

carries a charge 2 under U(1)χ.
The above IR action, however, does not reproduce the UV anomalies, in particular the

[U(1)χ]3, the [U(1)χ][U(1)B]2 and the U(1)χ-gravitational anomalies. To fix this problem,
we find a set of composite fermions that match anomalies. We assume that we have K
massless fermions with charges qχ1 , q

χ
2 , . . . , q

χ
K under U(1)χ and charges qB1 , qB2 , . . . , qBK under

U(1)B. Then they match the [U(1)χ]3, mixed U(1)B and U(1)χ, and the U(1)χ-gravitational

16To see this, couple a background gauge field to Z[1]
N . This is a closed 2-cochain B2 with ZN coefficient

satisfying the 1-form gauge transformation (the δ)

B2 7→ B2 + dλ(1)

with λ(1) a 1-cochain. It, therefore, defines a class B ∈ H2(M4;ZN ), where M4 is the 4-dimensional spin
manifold on which our theory lives. The theory now admits a non-trivial PSU(N) gauge bundles that are
not SU(N) gauge bundles, with the obstruction given by w2(PSU(N)) = B. Consequently, the instanton
number can now be fractional and quantized in units of 1/N . The theta angle is now 2πN -periodic. As the
classical U(1)χ chiral transformation with parameter α shifts θ 7→ θ − 2Nα, the non-anomalous subgroup
is generated by α = π, instead of α = π/N as we had before when the periodicity was 2π. It is also
simple to see that any local counter terms cannot restore this periodicity. Thus, the Zχ

2N chiral symmetry
is anomalous, but its ZF

2 subgroup remains anomaly-free. We interpret this as a ’t Hooft anomaly between
the 1-form symmetry and the chiral symmetry.
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anomalies if and only if17

K∑
k=1

(
qχk
)3 = −2N4 +N2 − 1 ,

K∑
k=1

qχk (q
B
k )2 = −2 , (2.24)

K∑
k=1

qχk = −(N2 + 1) ,

and qχk need not be distinct. In general, there are multiple ways of satisfying the above
conditions for particular N . Here, we find a solution that works on all N , so it is a natural
large N candidate.

First, note the identity

−2N4 +N2 =
N∑
i=1

(−2i+ 1)3 . (2.25)

Thus, we satisfy the [U(1)χ]3 anomaly by taking qχ0 = −1 and qχi = −2i+1 for i = 1, . . . , N .
On the other hand, if we take qB0 = 1 = −qB1 , with all other qBi = 0, ∀ 2 ≤ i ≤ N , we satisfy
the mixed U(1)χ[U(1)B]2 anomaly. Finally we also look at the mixed U(1)χ-gravitational
anomaly, which is given by −1+

∑N
i=0(−2i+1) = −(N2 +1) as it should be. Note that for

particular values of N , we can match the anomaly with other choices, so the above formula
should be interpreted as a natural choice reproducing the smooth large-N limit.

But we do not want the fermions to be gapless; as we pointed out, the Weingarten
theorem [34] excludes this scenario. Instead, we want to supplement the Goldstone ac-
tion (2.23) with fermions that are gapped in the bulk, but otherwise become massless on
the vortex worldsheet. To this end, we write bulk fermion mass terms. Such mass terms
must respect U(1)B and can be made U(1)χ invariant by decorating them with the ap-
propriate power of the operator eiφ. With the charges qχi and qBi we chose above, we can
supplement the Goldstone action with

Lf =
N∑
k=0

χ̄kiσ
µ∂µχk +m01χ0χ1e

−iφ
q

χ
0 +q

χ
1

2 +
N∑

i,j ̸=0,1
mijχiχje

−iφ
q

χ
i

+q
χ
j

2 + c.c. . (2.26)

We note that qχi are odd, so qχi + qχj is even for any pair i, j. The above action should not
be viewed as an effective theory of the bulk. Indeed the masses of the fermions above are
expected to be of order Λ, which is the UV cutoff of the would-be effective theory. Instead
the purpose of including these fermions is four-fold.

17In fact, we could replace the second condition
∑K

k=1 q
χ
k (qB

k )2 = −2 with the traditional ’t Hooft anomaly
U(1)χ [U(1)B ]2, which gives

∑K

k=1 q
χ
k (qB

k )2 = −2N2, without affecting any of our conclusions. It was proven
in [18] that if a vector-like theory does not possess a genuine discrete chiral symmetry, massless composites
that saturate the traditional ’t Hooft anomalies will also match the CFU anomalies. This is easily seen
by observing that the only difference between the traditional U(1)χ [U(1)B ]2 and the anomaly (2.19) is the
different normalizations of the U(1)B charges, which account for the multiplicative N2 factor that appears
in the traditional anomaly.
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1. The construction explicitly shows that the anomaly can be saturated by the Goldstone
boson18 and shows that the massless composite regime is in the same deformation
class as the Goldstone boson.

2. In a moment we will introduce a mass term for the fundamental fermion breaking
the U(1)χ symmetry to Z2N explicitly. The Z2N will be spontaneously broken, and
the discrete vacua will support domain walls. One may wonder whether the inclusion
of massive fermions in the bulk would result in light fermions on some domain walls.
Indeed since the mass term couples to φ, this remains an a priori possibility. This is
especially important for T -preserving domain walls which have ’t Hooft anomalies,
and it was proposed in [36] that massless fermions do saturate such theories. We will
however see that this does not happen in the regime we discuss here (see the next
section titled Domain Walls). However the bulk fermions will allow us to speculate
about this possibility in the regime inaccessible by our analysis.

3. The vortex of the Goldstone theory carries an anomaly, which is naturally saturated
by massless fermions. Inclusion of the massive bulk fermion contains a proposal for
this vortex. Indeed the bulk fermion are arbitrarily light near the vortex, and in that
sense they are distinguished from other excitations whose mass is of order ∼ Λ,

4. Finally, the fermions in question can be made arbitrarily light by coupling the theory
to fundamental Higgs fields in such a way so that the Higgs regime fully breaks the
SU(N) gauge group to nothing. We will explicitly demonstrate this for SU(2) where
only one scalar Higgs is sufficient (see discussion preceding (2.35)). The Higgs regime
in this case is characterized by massless composites. Assuming that the transition is
2nd order, the massless fermion phase will transition into a Goldstone phase, with
a low energy effective theory given by the Goldstone coupled to light, but massive
fermions, of the type we discussed above.

Next, let us discuss the IR phase when we introduce a small mass of the fundamental
fermion. This explicitly breaks U(1)χ → Zχ2N . The most relevant term that achieves the
breaking is cos(Nφ), and thus, the Goldstone action needs to be modified to

SGoldstone =
∫

d4xΛ2g (m/Λ, N)
[
(∂φ)2 −mΛf (m/Λ, N) (cosNφ− 1) + . . .

]
, (2.27)

where g(0, N) and f(0, N) are finite numbers scaling as ∼ N3 and ∼ 1 respectively in the
large-N limit (see section 2.4). This gives mass to the Goldstone, as well as lifting the S1

vacuum manifold to N vacua. We hence again have N vacua for small m. The domain
walls have width ∼ 1√

mΛ , and thus, they are thick compared to the strong scale.
We conclude that in both the limit of small and large m, the discrete chiral symmetry

Zχ2N is spontaneously broken to Z2. The simplest assumption is that the intermediate
regime has no phase transition.

18Another way to argue is to write a WZW-like term (dφ + A) ∧ F ∧ F in the auxiliary 5d bulk. One
can think of this term as stemming from gauging the “WZW term” dφ ∧ d2φ ∧ d2φ. Of course d2 = 0 on
smooth fields φ, however it does not vanish on singular vortex configurations of φ, and the anomaly can be
interpreted as being saturated by vortex configurations. See also [35] for a related discussion.
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Figure 1. The phase diagram of the SU(N) QCD(f/adj) with one fundamental Dirac fermion and
one massless adjoint Weyl fermion as we vary the mass m of the Dirac fermion. For any non-zero
m, the discrete chiral symmetry Zχ

2N is spontaneously broken to Z2, leaving us with N vacua.
At m = 0, Zχ

2N is enhanced to U(1)χ, which also breaks spontaneously, giving rise to a massless
Goldstone boson.

One wonders if there could be a different phase opening in the intermediate regime.
Symmetry-preserving TQFTs are excluded in 4d [32]. Spontaneous breaking of U(1)B
neither saturates the nonperturbative Zχ2N anomaly, nor the mixed Zχ2N -gravity anomaly.
Further U(1)B cannot break by the Vafa-Witten theorem, which holds because of the
positivity of the fermionic weight (see appendix A). The massless composites are also
excluded by the (Vafa-Witten-)Weingarten theorem [34]. Therefore any intermediate bulk
transition seems inconsistent with the anomalies and Vafa-Witten-Weingarten theorems.
We conclude there is no bulk phase transition as we decrease m all the way down to m = 0,
at which point N vacua melt away and turn into a (pseudo-scalar) Goldstone boson. This
behavior is summarized in figure 1.

Finally, we introduce the adjoint fermion mass madj. In this case, the theory has a
physical θ parameter that can be removed by shifting the phases of madj and m. Further,
recall that there is a combined shift of the adjoint and fundamental phases, which does
not affect the θ term. This means we can always make the fundamental mass m real
and positive, putting all the θ dependence into the madj phase. In the following, we use
a normalization where the bare θ parameter is zero and madj is taken to be complex
madj = ei

θ
N |madj|. Since the theory is invariant under θ → θ + 2π, the phase diagram in

the space of the real m and complex madj will be symmetric up to a ei
2π
N phase shift of

madj. When |madj| is large, the theory is 1-flavor QCD at θ angle given by the phase of
(madj)N . At θ = π, the theory was shown to have a massless η′ particle at some particular
m = m0 ∼ Λ/N in the large-N limit [4]. The argument for this is as follows. The mass
m of a single fundamental flavor is complex, and its phase is associated with the θ term.
Restricting to T -invariant theories, we set θ = 0 and take m real, but it can be both
positive and negative. The negative mass theory is equivalent to the θ = π theory with
a positive mass term. If |m| is large, the theory is pure Yang-Mills which is believed to
break T -symmetry spontaneously at θ = π (large negative mass) [3], but is trivial at θ = 0.
Hence, there should be a phase transition restoring the T symmetry at some finite m = m0,
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Figure 2. The T -invariant slice of the phase diagram of the SU(N) QCD(f/adj) with one Dirac-
fermion fundamental flavor with mass m which can be taken as real and positive, and one Weyl-
fermion adjoint flavor with mass madj which is taken as complex. When madj = 0, the phase
diagram reduces to that of figure 1, which we already discussed. The theory is still QCD(f/adj) at
small values of m and m adj with a θ angle (given by the phase of mN

adj). Then, in the m → ∞
limit, it reduces to SYM with madj and θ. The same can be said for the other limit. When θ = π,
such a theory is expected to have T -broken vacuum. This phase is labeled by blue sheets. When m
becomes small enough, however, the vacuum undergoes a phase transition into the trivially gapped
phase. The line on which this happens contains a massless pseudo-scalar. The massless pseudo-
scalar phase connects continuously to the massless Goldstone boson phase of (2.23).

with a corresponding massless pseudo-scalar particle at that point. In [3], it was argued
that this m0 is negative, but this is not crucial. Since we have adjoint and fundamental
fermion masses, we made m real and positive by a non-anomalous chiral transformation
and put all the phases in madj. Hence, when the modulus of madj is large and the effective
θ = π, we should have a massless pseudo-scalar at m = |m0|.

What happens as we reduce madj from infinity to small values? As madj becomes
comparable to Λ, it is natural to assume that the value of m0 will change. However, the
massless phase cannot just disappear as long as we pick madj in such a way to preserve the
T -symmetry,19 and instead, all that will happen is that m0 — the fundamental mass at
which the massless pseudo-scalar exists — will start moving as a function of |madj|/Λ until
at madj = 0 it becomes m0 = 0 where this massless pseudo-scalar phase fuses with that of
the Goldstone pseudo-scalar of the spontaneous U(1)χ symmetry breaking. All of this is
summarized in figure 2.

19Naively, any choice of madj which is not real breaks T symmetry, mapping madj → m∗
adj. However,

recall that we can always perform a Zχ
2N rotation, which will not induce a θ-term, to remove the ZN phase

from madj. The point is that the theory where the phase of madj is the (2N)-th root of unity is T -symmetric.
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This picture is analytically controlled for |madj| ≪ Λ at any20 N . If a nonzero madj is
introduced, it will induce the following term in the Lagrangian

Lmadj ∝ −Λ3|madj| cos(φ+ θ/N) . (2.28)

so that the potential for φ is approximately

V = −a cos(φN)− b cos(φ+ θ/N) . (2.29)

with some positive constants a ∝ m and b ∝ |madj| which scale as N and N2 respectively
in the large N limit. We can redefine φ+ θ/N → φ and obtain.

V = −a cos(φN − θ)− b cosφ . (2.30)

Now, restricting to θ = 0, π, we can capture both by setting θ = 0 and extending a to be
also negative. So positive a corresponds to the θ = 0 regime, and negative a corresponds
to the θ = π regime.

Now notice that if a is positive, the global minimum of φ is at 0 mod 2π. When
aN2 = −b, the mass of φ vanishes. Taking into account the large N -scaling, we have that
a ∼ mΛ3N and b ∼ |madj|Λ3N2, so that at m = m0 ∼ − |madj|

N we have a massless pseudo-
scalar. If a is dialed to be even smaller, then two vacua emerge, breaking T -symmetry
(because φ is a pseudo-scalar).

Domain walls. We have seen that the theory with massless adjoint Weyl fermion and
one fundamental Dirac fermion with mass m has no phase transition all the way to m = 0.
For every finite m, it supports N discrete vacua and therefore has domain walls. Could
there be a phase transition on the domain wall? In the limit of m → ∞, the domain
wall has a non-trivial inflow due to the mixed anomaly between the Zχ2N chiral symmetry
and Z[1]

N 1-form symmetry, which is saturated by a TQFT [37]. When a single fundamental
fermion is introduced, the only remaining anomaly is the mixed U(1)B–Zχ2N , and the inflow
on the n-domain wall we denote as Dn

21 is

e
ik

4πN

∫
4 FB∧FB , (2.31)

where FB is the field strength of the U(1)B symmetry. Note that the 4d space over which
the above integral runs is not the physical 4d space but the domain-wall world volume
extension into a 5th-dimensional bulk. The above anomaly polynomial has no inflow and
corresponds to some anomalous conductivities on the domain-wall theory [38]. In other
words, the domain wall theory has fractional Hall conductivity but can otherwise be gapped.

Indeed, we know that in the limit m→ ∞, the theory is N = 1 super Yang-Mills, and
we understand the domain wall theory well. The N = 1 SYM has N vacua vi, labeled by i =

20This differs from the opposite limit, |madj| ≫ Λ, where one needs to invoke the large-N limit to carry
out the analysis, as was done in [3].

21Here integer n signifies whether the domain wall connects neighboring vacua, with n = 1, or next-
neighboring vacua n = 2, or next-to-next neighboring vacua.
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1, 2, . . . , N . Domain walls Dn that interpolate vi → vi+n mod N are all stable. The Dn do-
main wall theory is conjectured to be the 3d SYM theory with Chern-Simons level n, where
we will take n to have values n = ±1,±2, . . . ,±⌊N/2⌋. Such a theory breaks the supersym-
metry spontaneously, resulting in a Majorana Goldstino and a TQFT [39–41] U(n)N−n,N .

Since a generic domain wall will not enjoy a time-reversal symmetry, the presence
of fundamental matter is expected to induce a time-reversal non-invariant 3d mass term
for a Goldstino, but a TQFT must remain robust as long as the fundamental matter is
heavy enough. The exception to this is a time-reversal-invariant domain wall which exists
whenever N is even and is given by n = N/2, where the TQFT U(N/2)N/2,N is non-
trivially time-reversal invariant due to the level/rank duality [42, 43]. In this case, there
is a non-vanishing mod 16 pure T -anomaly [44, 45], which descends from the mod 16
anomaly of the Spin-Z4 symmetry in the bulk [46]. Both the Goldstino and the TQFT
contribute nontrivially to this anomaly [37, 40, 47], and hence a Goldstino is prohibited
from acquiring a mass unless the TQFT is destroyed. Does this happen on the domain
walls as the fundamental mass is reduced?

The effective theory is given by a pseudo-Goldstone boson φ and the domain walls
are just kinks of (2.27). Kinks carry tension ∼

√
mΛΛ2 which makes them light and

within the realm of the effective theory. But one may worry that there are extra light
degrees of freedom on the kinks from the anomaly-saturating massive fermions (2.26).
That kinks do not have fermionic zero modes case is seen as follows. Consider the domain
wall that takes φ0 → φ1 = φ0 + 2π/N , assuming a profile of φ(x3) in the 3-direction
which interpolates between two vacua. We first “diagonalize” the symmetric mass matrix22

Mij = mije
i(qχ

i +qχ
j )φ/2 to MD = UMUT , where U is a unitary transformation.23 Once

diagonalized, the system becomes a set of N +1 4d Majorana fermions, with masses given
by the diagonal entries of MD. We now want to check whether the Dirac operator

i /Di = iγ3∂3 +

(MD)iiI2 0
0 (MD)∗iiI2

 , (2.32)

for each i = 0, 1, . . . , N , has a zero mode. If it does, it will be the same as for

γ3 /Di = ∂3 +Ai , (2.33)

where

Ai = −iγ3

(MD)iiI2 0
0 (MD)∗iiI2

 , (2.34)

which is a Hermitian matrix by construction. It is well known that the zero modes of the
above operators are in one-to-one correspondence with the spectral flow of the matrix A

(see appendix B). Now, MD cannot depend on the constant piece of φ, as a U(1)χ rotation
22This is an abuse of terminology, as the “diagonalization” is not performed by a matrix P and its

inverse P−1 but by a unitary matrix U and its transpose UT which is not necessarily its inverse. The
“diagonalization” we refer to here is more properly called singular value decomposition.

23Note that the kinetic term is precisely invariant under χ→ Uχ.
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Figure 3. The same as figure 2 except that the phase transition on the domain wall is indicated.

can remove the constant. Hence, the fermion mass spectrum does not change as a function
of slowly varying φ. We can conclude that no fermion zero modes exist on the domain walls.

Further, in super Yang-Mills, the n-domain walls Dn are stable and do not decay into
n ×D1 domain walls. This is not the case for the domain walls of (2.27), as the domain
walls are the usual sine-Gordon kinks that repel each other. The massive fermions cannot
induce attraction between the domain walls as they do not have any zero modes and can
be integrated out. A sine-Gordon kink, e.g., varying in the x3 direction, will have φ vary
slowly so that its derivative ∂3φ ∼

√
mΛ. Since we assume m ≪ Λ we can integrate out

the massive fermions and write an expansion in powers of the derivatives, i.e., in ∂µ(. . .)/Λ.
Since the derivatives of the kink vary as

√
mΛ, and since no zero modes exist by the above

reasoning, such a gradient expansion is valid, and the effective domain wall theory is empty.
The above makes it clear that while the domain walls support a TQFT for large

fundamental mass m, no trace of a TQFT remains at small m, and Dn domain walls
disintegrate into D1 domain walls. So while there is no phase transition in the bulk, a
phase transition on the domain wall must occur at m/Λ ∼ 1. The conservative scenario is
that of a single transition, although we cannot exclude multiple transitions on the domain
wall. Below, we elaborate on some possible scenarios of this sort. This discussion is
continuously connected to that of a single-flavor QCD in [4] (see also a related discussion
in [48]), which is the limiting case |madj| ≫ Λ and the adjoint fermions decouple. We
illustrate the phase diagram in figure 3.

Note that this behavior is also expected from the general lore of the effective field
theory (EFT). The potential of (2.27) is V (φ) = mΛ3(cosNφ − 1). EFT description is
robust as long as ∆V (φ) ≪ Λ4. This is always true for small fluctuations in any of the
vacua, which can be trivially checked by expanding about φ = 2π

N to find ∆V ∼ mΛ3(∆φ)2,
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where ∆φ are the fluctuations near the vacuum. Any fluctuations are small, i.e., ∆φ≪ 1.
Thus, we trivially find ∆V ≪ Λ4, even in the limit m ∼ Λ. Now, consider large-field
excursions as we traverse a domain wall and go from one vacuum to another. In this case
∆φ ∼ 1, and thus, we find ∆V ∼ mΛ3. Then, for m≪ Λ, we still find ∆V ≪ Λ4, and the
effective field theory description is still robust; no rearrangement of degrees of freedom is
needed on the wall to correct for anything. On the other hand, taking m ∼ Λ, we find that
a large-field excursion causes ∆V ∼ Λ4. Now, the EFT description fails, and one expects
some additional degrees of freedom on the domain walls to correct for the failure of the
potential. Presumably, these degrees of freedom give rise to the TQFT or perhaps massless
fermions in some intermediate phase (see below).

We can apply our general analysis above to the particular case of N even, where
there is a time-reversal preserving domain wall DN/2, as Dn → DN−n under time-reversal.
In the limit of the large mass of the fundamental matter, the domain wall theory was
conjectured to be the T -preserving N = 1 3d Super Yang-Mills [41]. When the mass of the
fundamental matter is reduced in the bulk, it is natural to assume that the domain wall
theory will be deformed by a massive fundamental multiplet. Such theories were discussed
in [36], where different scenarios of IR phases were considered. In particular, in the large-N
limit, it was argued that these 3d theories break the T -symmetry spontaneously. This is
precisely what happens to the T -preserving domain wall DN/2 of the effective Goldstone
theory (2.27). Such a domain wall would correspond to a shift φ → φ + π as the domain
wall is traversed. The domain wall DN/2 breaks time-reversal invariance spontaneously, as
φ can wind forward or backwards.24 Now for N > 2 and even, the n = N/2 domain wall is
unstable for small m. Still, one could make it stable by explicitly breaking the Zχ2N chiral
symmetry down to Z4 by, for example, adding a term trλ4 term,25 and conclude that such
a domain wall breaks time-reversal symmetry spontaneously.

As our analysis was done for small fundamental fermion masses, it does not a priori
exclude an intermediate domain-wall phase. To gain insight, let us replace the model given
by (2.26) and (2.27) with a model that incorporates a full order parameter of the U(1)χ
breaking, namely a complex scalar ϕ. The complex phase of ϕ can be identified with φ

in (2.26) and (2.27). To reproduce the anomaly, we must again couple fermions with terms
like26 ∼ χiχj(ϕ∗)qi+qj where qi is the U(1)χ charge of the fermion χi, and with some sort
of a Mexican hat potential V (|ϕ|), roughly of height Λ4 and width Λ. For the finite mass
of the fundamental fermion m, we must deform the model with a term ∼ mϕN + c.c.. The
potential of the scalar for m = 0 looks approximately as figure 4 (a), while a small mass
theory m≪ Λ looks like figure 4 (b).

24Recall that φ is a pseudo-scalar so it reverses sign mod 2π under T .
25This operator is irrelevant. However, the fact that this deformation is relevant in the IR effective theory

means that such a deformation is actually dangerously irrelevant in the UV. However, we cannot take the
continuum limit with this term. Alternatively, we can consider a deformation by adding a real scalar ϕ and
coupling it to the adjoint fermion as follows iϕ(trλλ+ c.c.). Such a theory will retain the Zχ

4 ⊂ Zχ
2N chiral

symmetry.
26We assume that qi + qj > 0. If this is not the case, the coupling can instead be written as

∼ χiχj(ϕ)−qi−qj .
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a) b)

c) d)

massless 
fermions

Figure 4. Cartoons of vacua of the U(1)χ order parameter ϕ. (a) depicts the scenario of m = 0,
(b) depicts the scenario of m ≪ Λ with N = 6, c) depicts a scenario with m ∼ Λ for N = 6 and
d) depicts a scenario with m ∼ Λ for N = 2. Only (a) and (b) scenarios are under theoretical
control, where (c) and (d) are speculative, intermediate phase descriptions of the theory where the
hierarchy of scales is lost and reasoning is weak.

At the origin ϕ = 0, there are massless fermions, which are gapped everywhere else.
Importantly the N vacua are separated by a very shallow barrier, controlled by the dimen-
sionless parameter m/Λ. This parameter controls the tension of the elementary domain
wall and can be made arbitrarily small. Further, the domain-wall Dn with n > 1 will not
be stable, as the minimum energy configuration would prefer to go through elementary do-
main walls rather than through the high peak of order Λ4 in the middle. In particular, the
T -preserving domain wall of even N theory will always prefer to surf through the shallow
rim of the potential in this regime, thereby breaking T -symmetry. However, for m ∼ Λ
one can imagine a potential like in figure 4c) where the neighboring vacua are separated by
the barrier of height Λ4, which is of the same order as the barrier in the middle. Hence, it
becomes a subtle issue whether the T -preserving domain wall prefers a direct, T -preserving
route, where the mass of the fermions becomes zero, or the T -breaking route where the
massless fermion point ϕ = 0 is avoided. The case N = 2, however, is different as a natural
domain wall would go through the ϕ = 0 point as depicted in figure 4 (d).

Nonetheless, it is important to note that when m ∼ Λ, we have no reason to believe
the effective description in terms of the would-be U(1)χ order parameter, as this is reliable
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T-broken  
domain wall

domain wall 
transition

composites 
on domain wall

Massless  
fermions

DW

DW

DW

Figure 5. The transition of the SU(2) fundamental Dirac/Higgs model. The plots show qualita-
tively the potential for the complex scalar ϕ order parameter of the U(1)χ symmetry. The potential
is depicted for three different regimes as the mass of the fundamental fermions is increased from
m ≪ −t to m ≫ −t, where t is a reduces mass-squared of the scalars. Increasing m indicates a
transition on the domain wall from a 2-vacuum, T -broken domain wall, to the unique domain wall
with composite fermions.

only for m ≪ Λ. In other words, it could be that before the scenario of figure 4 (c) and
(d), the composite fermions on the domain-wall restructure into quarks, as expected for
m ≫ Λ. Still, it is interesting to question whether there is an intermediate, massless
composite phase for the domain wall theory.

Before we conclude this section, let us consider a model which indeed has a scenario
described by figure 4d) and is under full analytical control. To do this we will deform
the SU(2) model with an adjoint Weyl and a fundamental Dirac fermion, by adding to
it a scalar and introducing the Yukawa coupling exactly like we did in the second model
described in section 1.1.

Let us label the bare mass of the scalar as ms in this model. Then as scalars are
condensed we saw in section 1.1 that three free fermion phase develops χ0, χ1 and χ2,
with charges exactly consistent with our proposed all-N formulas in the m → 0 limit (see
discussion below (2.24)). When m = 0 the transition from m2

s ≫ Λ2 to m2
s ≪ −Λ2 is

changing from a U(1)χ broken to a composite fermion phase. We can hence study the
theory around m2

s = M2
c — the critical mass-squared. Introducing the parameter of mass

dimension one t = M2
c −m2

s
Λ , the effective theory for t,m ≪ Λ is described by a complex

scalar ϕ and three fermions χ0, χ1, χ2 with the following interactions

∆Leff ∼ (g1ϕχ0χ1 + g2
ϕ3

Λ2χ2χ2 + c.c.) + tΛ|ϕ|2 + λ|ϕ|4 + (mΛϕ2 + c.c.) . (2.35)

with some couplings g1 and g2. The above Lagrangian is valid for small |t| and m. As t is in-
creased from negative to positive values a restoration of the U(1)χ symmetry ensues. How-
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composites

2 - gapped vacua

composites

DW TQFTDW  
T-broken

massless pseudoscalar

DW composite 
fermions

???

Figure 6. The phase diagram of the one flavor of the fundamental Dirac fermion and one flavor
of the fundamental scalar discussed at the end of section 1.1. The horizontal axis depicts the
mass m of the fundamental Dirac fermion, while the vertical axis is the mass-squared m2

s of the
fundamental scalar. The bulk transition is from a 2-vacuum chirally broken phase when m2

s is large
and positive, to the composite fermion phase discussed in section 1.1. Near this transition and near
the point m = 0, where the chiral symmetry enhances to U(1)χ the theory can be studied using
the effective theory of the complex scalar field order parameter ϕ of U(1)χ breaking, coupled to
the composite fermions χ0, χ1, χ2 as in (2.35), which reveals two domain wall phases in the chiral
symmetry broken bulk phase — the T-broken phase and the composite fermion phase on the domain
wall. An interesting question which we cannot answer is whether the fermionic domain wall phase
persists as an intermediate phase as the scalars are decoupled.

ever if t is negative, depending on whether the |t| ≫ m or |t| ≪ m the effective potential for
the complex scalar m can look as in figure 5. So as m is increased for fixed t, the domain wall
undergoes a transition from a twice degenerate, T -broken phase to the composite fermion
phase. Moreover, the effective theory still remains valid when m is large27 in the sense that
the order parameter becomes a real scalar ϕ with the Z2 symmetry ϕ → −ϕ, which is a
subgroup of Zχ4 . Since there are still many residual ’t Hooft anomalies involving this chiral
symmetry, one expects that the qualitative effective model remains, allowing us to study
the transition in the bulk by demoting the field ϕ to a real scalar and dropping the last term
of (2.35). However here it is easy to see that the chiral-broken phase supports domain-wall
fermions.28 This is nicely consistent with the study of an analogous 3d theory in [36]. We
summarize this model’s bulk phase diagram and the domain wall phase diagram in figure 6.
We are unable to determine whether, in the scalar decoupling limit, the composite fermion
phase on the domain wall persists. This is indicated by the question marks in the figure.

27This reduces the model to the first model of section 1.1, and the transition in question is the Higgsing
transition.

28This follows immediately from the reality of the order parameter ϕ. In the phase where ϕ develops a
vev, there are two vacua. The fermions therefore must become massless on the domain wall.
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2.4 Comments on the large-N scaling

We will here briefly comment on the large N scaling of the effective Goldstone theory (2.27).
To take the large N limit, we normalize the UV Lagrangian in a standard way

L = N

λt

(1
2 tr

{
|F |2

}
+ i tr λ̄Dλ+ iψ̄Dψ + i ¯̃ψDψ̃

)
(2.36)

where λt is the ’t Hooft coupling. The current associated with the chiral symmetry is given
by

jµχ ∝ N tr λ̄σ̄µλ−N2ψ̄σ̄µψ −N2 ¯̃ψσµψ̃ (2.37)

where the extra factor of N in the last two terms are because the fields ψ and ψ̃ are
charged with charge N under the U(1)χ. The current-current correlator then has three
pieces, which are schematically given by

⟨jµjν⟩ ∝ AN4
〈
JµψJ

ν
ψ

〉
+BN3

〈
JµψJ

ν
λ

〉
+ CN2 〈JµλJνλ〉 . (2.38)

where Jµλ = tr λ̄σ̄µλ, Jµψ = ψ̄σ̄µψ + ¯̃ψσ̄µψ̃ and A,B,C are some order one coefficients.
We have that

〈
JµψJ

ν
ψ

〉
,
〈
JµψJ

ν
λ

〉
∼ 1/N ,

〈
JµλJ

ν
λ

〉
∼ 1. So despite the correlator in the first

term above being suppressed by 1/N , the enhancing factor of N4 causes the first term to
dominate, so

⟨jµjν⟩ ∼ N3 . (2.39)

To reproduce this, we have to take that in the large N limit the coefficient of the kinetic
term (∂µφ)2 of the effective Goldstone theory needs to scale as N3.

Let us give another, more heuristic, way to understand this result. Namely if we note
that there are two fermion-bilinear order parameters of U(1)χ symmetry breaking trλλ ∼
eiφ = Uλ and ψψ̃ ∼ eiNφ = Uψ, we then expect that the effective Lagrangian is given by

N2|∂µUλ|2 +N |∂µUψ|2 . (2.40)

In other words, the order parameter Uλ will have an a priori dominant kinetic terms, while
the Uψ is expected to be 1/N suppressed because it couples to fundamental matter. The
second term however is not sub-leading and is of order N3 because the order parameter
Uψ carries charge N , i.e. |∂µUψ|2 = N2(∂µφ)2. So the second term above is dominant and
is given by ∼ N3(∂µφ)2 in the large N limit.

It is perhaps not surprising that the fundamental contribution is important even at
leading order, because the U(1)χ symmetry crucially depends on the presence of massless
fundamentals. Indeed the way that importance shows up in the large N limit is through
the dominance of the charge of the fundamentals under the U(1)χ.

Now if one inserts the mass terms for the adjoint fields and the fundamental fields,
we expect them to scale as N2 and N respectively, i.e. the effective theory schematically
becomes

L ∝ N3(∂µφ)2 −madjΛN2 cosφ−mΛN cos(Nφ) . (2.41)

Notice that if we set the fundamental mass to zero, i.e. m = 0, then the pseudo-Goldstone
has a mass 1/N allowing an analysis to be carried out for large N at any madj. This is
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SU(N) U(1)q Zχ2N
ϕ +1 0
λ adj 0 +1

Table 5. Representations of the scalar field and the adjoint fermion under the gauge and global
symmetry groups.

exactly what one expects when the adjoint fermion decouples. On the other hand setting
madj = 0, the pseudo-Goldstone mode gets an order one mass in the large N limit, and the
analysis breaks down when m is of order Λ — the strong scale.

3 Theory with one fundamental scalar

Now we replace the fundamental fermion with a fundamental scalar ϕ. The action for the
matter content is given by

Smatter =
∫

d4x
(
iλ̄
(
/∂ − i/aadj

)
λ+ |(∂ − ia)ϕ|2 + V (ϕ)

)
, (3.1)

where V (ϕ) is the potential for the scalar field, which we can take to be of the form

V (ϕ) = m2|ϕ|2 +O(|ϕ|4) . (3.2)

where we will not be concerned with interaction terms much, as long as they are there to
stabilize the potential when m2 < 0.

3.1 Symmetry and anomalies

Similar to the massive fundamental fermion case, the faithful global symmetry group is

GGlobal = U(1)q
ZN

× Zχ2N ,

= U(1)B × Zχ2N .

(3.3)

where the representation of each field under GGlobal is given in table 5. Here, we again
denote the global baryon symmetry as U(1)B ∼= U(1)q/ZN , in terms of the quark symmetry
U(1)q. The lowest charge of a gauge invariant operator under U(1)B is unity, while under
U(1)q it is necessarily a multiple of N so that U(1)B is the faithful global symmetry. The
(gauge non-invariant) field ϕ, however, is fractionally charged under U(1)B.

Just like in the fermionic case, there is a mixed anomaly between Zχ2N and U(1)B such
that the Z2 subgroup of Zχ2N remains anomaly-free. This anomaly can also be seen as
follows. We turn on a fractional instanton color flux Qc ∈ Z/N . One also must turn on the
fractional baryon-number flux to render the theory well-defined in the presence of scalars,
which see both the color and baryon-number fluxes. The adjoint fermions, however, are
uncharged under U(1)B. Thus, in the background of the fractional color flux, the partition
function transforms as

Z
Zdχ

2N−−→ Z exp
[
i2π
2N (2NQc)

]
= Z exp

[
i
2π
N

]
(3.4)

under a discrete chiral rotation. The phase is the above-mentioned mixed anomaly.
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The theory also exhibits a mixed Zχ2N -gravitational anomaly. Both Zχ2N -U(1)B and
Zχ2N -gravitational anomalies are identical to the anomalies of the theory with a massive
fundamental fermion. This is expected since massive fermions and scalars carry the same
global charges under U(1)B.

3.2 The IR phases

We already discussed the phase structure of the N = 2 case in section 1.1, so here we
restrict ourselves to N > 2.

(I) When m2 is positive and much larger than Λ2, the scalar decouples, and the theory
is pure super Yang-Mills with N degenerate vacua.

(II) When m2 is negative and large, ϕ will condense and acquire a vacuum expectation
value.29 Assuming that this happens at a scale above the strong scale of SU(N), the
condensation will higgs the gauge group SU(N) down to SU(N − 1), under which the
adjoint fermion of SU(N) decomposes as

adjSU(N) = adjSU(N−1) ⊕ N-1 ⊕ N-1 ⊕ 1 . (3.5)

In other words, the Higgs regime is effectively described by an SU(N−1) gauge theory with
one Weyl fermion λ̃ in the adjoint of SU(N−1), two Weyl fermions ψ, ψ̃ in the fundamental
and anti-fundamental of SU(N − 1), and one neutral Weyl fermion ν.

It will be beneficial to discuss the deep Higgs regime m2 → −∞ separately from the
Higgs regime where m2 is merely large and negative. We will see that finite Higgs VEV
will induce dangerously irrelevant terms, which will change the IR physics.

In the deep Higgs regime with m2 → −∞, the Higgs field fluctuation is suppressed
together with the massive gauge bosons which now have infinite masses. Concretely, by
gauge-fixing so that the VEV of ϕ takes the form

⟨ϕ⟩ =


v

0
...
0

 , (3.6)

the decomposition of the adjoint fermion λ is given by

λ =

ν ψ̃

ψ λ̃− ν
N−1IN−1

 , (3.7)

where IN−1 is an (N − 1) × (N − 1) identity matrix. Note that mass terms λ̃λ̃, ψ̃ψ, and
νν are forbidden as λ̃, ψ, ψ̃ and ν are charged under the original global Zχ2N symmetry.
Thus, the IR theory is fully equivalent to the SU(N − 1) gauge theory with a massless

29This is an abuse of notation since this consideration is not gauge invariant. Instead, one should talk
about fixing a gauge to be more precise.
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U(1)′q U(1)χ U(1)ν
ψ 1 1−N 0
ψ̃ −1 1−N 0
λ̃ 0 1 0
ν 0 0 1

Table 6. The assignment of charges to the degrees of freedom between the Higgs v scale and the
strong scale Λ.

a) b) c)

Figure 7. a) The leading tree-level diagram generating the Nψ̃(λ̃λ̃)†ψ vertex. b) The large N
scaling of the term Nψ̃(λ̃λ̃)†ψ ∼ NeiNφ. The 4-fermi vertex scales as N , while the adjoint and
fundamental propagators are 1/N suppressed, whose contribution is cancelled by the 2 color loops.
c) The leading tree-level diagram contributing to the mass of ν.

fundamental Dirac fermion and a massless adjoint Weyl fermion discussed in section 2.2,
together with a decoupled Weyl fermion ν. The global symmetry enhances in the IR to

GGlobal
IR =

U(1)′q
ZN−1

× U(1)χ × U(1)ν

= U(1)′B × U(1)χ × U(1)ν
(3.8)

where U(1)′B is also identified with a combination of U(1)B and SU(N) that leaves the Higgs
VEV invariant. The charge assignment is given in table 6. There are many anomalies as
discussed in section 2.2. Thus, the effective theory of the deep Higgs regime is just a
Goldstone theory of a spontaneously broken U(1)χ, along with a decoupled ν, i.e.

Leff = N3Λ2(∂φ)2 +Nν̄iσ̄µ∂µν . (3.9)

Now, let us discuss the theory when m2 is large and negative but finite.
When −∞ < m2 < −Λ2 so that the scalar VEV is v ≫ Λ. Naively not much changes,

as the masses for ψ, ψ̃, ν and λ̃ are still forbidden because mass terms are not invariant
under the ZN subgroup of the global Zχ2N . However, higher fermi interactions will generally
be induced, although suppressed by powers of 1/v. Since higher fermion terms are naively
irrelevant, one may erroneously conclude that they can be neglected. But such terms are
symmetry breaking terms reducing U(1)χ × U(1)ν → Z2N , they will be relevant in the IR
regime of the Goldstone boson. Such perturbations are called dangerously irrelevant. In
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Figure 8. The phase diagram of SU(N) QCD (f/adj) with one fundamental scalar flavor as m2 is
varied from −∞ to +∞. The IR phase consists of N degenerate vacua at all m2 except in the deep
Higgs regime where there is a massless Goldstone boson and a massless Weyl fermion ν.

particular the lowest fermion operator which does this is ψ̃λ̃†λ̃†ψ ∼ eiNφ. Such a term
is invariant under the Zχ2N symmetry and is therefore allowed. The term is generated
with a factor of N in the large-N limit. This scaling comes from considering the single
W -boson exchange shown in figure 7a), where the two vertices contribute N2 and the W -
boson propagator contributes 1/N . Further a vertex Nνν(ψ̃ψ)† is generated through the
diagram of figure 7c). Since (ψ̃ψ)† ∼ ei(N−1)φ is also generated, and it induces a mass term
for ν:30 Nννei(N−1)φ, so the effective theory becomes

Leff = N3Λ2(∂φ)2 −ANΛ4
(Λ
v

)2
cos(Nφ) +Nν̄i/∂ν +BNΛ

(Λ
v

)2
(ννei(N−1)φ + c.c.) .

(3.10)
The constants A and B are dimensionless numbers of order 1. The suppression by 1/v2 of
the cos(Nφ) term and the νν term comes from the fact that these descend from the 4-fermi
vertices generated at the Higgs scale, which must be suppressed by 1/v2 on dimensional
grounds. We plot the phase diagram in figure 8.

Let’s now give a non-zero mass madj to the adjoint fermion λ. The now-physical θ-angle
can be absorbed as a phase of the Majorana mass: madj = |madj|eiθ/N . For |madj| ≫ Λ at
a generic θ, there is no T -symmetry and after we integrate out the massive adjoint fermion
the theory is an SU(N) gauge theory with the fundamental Higgs field and a θ-angle. When
m2 ≫ Λ2, we can also integrate out the Higgs, landing on a pure SU(N) Yang-Mills with
the θ-angle. Instead, if we tune m2 ≪ −Λ2 so that the Higgs condenses, the theory flows to
a pure SU(N − 1) gauge theory with the θ-angle. Since both SU(N) and SU(N − 1) gauge
theories are believed to be in the same phase for any θ-angle,31 it is natural to assume that
there is no bulk phase transition as the Higgs condenses.

In the opposite limit when |madj| ≪ Λ, we can analyze the theory around the massless
adjoint regime (3.10). The adjoint mass term madj trλλ + c.c. descends to madj tr λ̃λ̃ +

30The large N scaling can be deduced from the figure 7b) which, before contracting ψ̃ and ψ, is of order ∼
N . Contracting ψ̃ and ψ is order ∼ 1 because the 1/N from the propagator will cancel N from the color loop.

31There is a proposal, however that SU(2) gauge theory may be massless at θ = π. See [3] and [49].
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madjψ̃ψ +madjνν + c.c., which induce the term proportional to

madjλλ+ c.c. ∼ −N2|madj|Λ3(cos (φ+ θ/N) + C/N cos(φ(1−N) + θ/N))

+ND|madj|ei
θ
N νν + c.c. (3.11)

in the effective action (3.10), where C,D are order 1 dimensionless numbers. Shifting
φ→ φ− θ/N , the potential for φ takes the form

V (φ) ∼ Λ4N2
[
−|madj|

Λ

(
cosφ+ C

N
cos((1−N)φ+ θ)

)
− D

N

(Λ
v

)2
cos (Nφ− θ)

]
(3.12)

while mass term for ν takes on the form

Lmν = Nνν

(
E|madj|+ Λ

(Λ
v

)2
ei(N−1)φ−iθ

)
+ c.c. (3.13)

for some positive numerical constants C and D. The relative signs between the three terms
in V (φ) is fixed by the expectation that the decoupling limit of the adjoint fermions results
in a trivially gapped phase if θ = 0.

At θ = π, however, the local minima of V (φ) for madj = 0 are instead at φ = ±(2k +
1)π/N for k = 0, 1, 2, . . . , N − 1. As we turn on a non-vanishing |madj| ≪ Λ, most of
the degeneracy is lifted except two minima near φ ± π/N , which generically break the T
symmetry. This is what we expect in the decoupling limit of the adjoint fermion at θ = π,
as the Higgs regime in that case is a pure SU(N − 1) gauge theory at θ = π.

Assembling the IR phases from different corners of the parameter space results in a
phase diagram that likely looks like the one shown in figure 9. Observe the similarities
and differences to the phase diagram of SU(N) QCD (f/adj) with one fundamental Dirac
fermion in figure 2: here, unlike in the fundamental Dirac version, the IR is always in the T -
broken phase as |madj| → ∞ at θ = π regardless of m2. Moreover, the massless Goldstone
boson phase in the deep Higgs regime is always accompanied by a massless Weyl fermion
ν, unlike in figure 2 at m = 0 where there is no additional massless particle.

Like what we found in the fundamental fermion case, even though there is no phase
transition in the bulk over a range of parameters where domain walls exist, there can be a
phase transition on the domain walls themselves. When the adjoint mass vanishes, there is
a phase transition on the domain wall joining adjacent Z2N → Z2 vacua. As m2 → ∞, we
again recover the N = 1 SYM, and the domain wall must also be decorated with a TQFT.
On the other hand, as m2 ≪ −Λ2, we see that the domain wall can be effectively described
by a chiral Lagrangian, indicating that the domain wall theory is trivial. Thus, there must
be a phase transition somewhere in the middle as we vary the parameter m2 between the
two extremes.

Now, take the adjoint fermion to be so massive it decouples from the theory at θ = π,
where T -symmetry is spontaneously broken. As m2 → ∞, the theory becomes pure SU(N)
Yang-Mills at θ = π, whose T -breaking domain wall is equipped with the SU(N)1 Chern-
Simons TQFT [3]. In the opposite limit, the scalar field condenses and higgses the gauge
group down to the pure SU(N − 1) Yang-Mills at θ = π, whose domain wall theory is now
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Figure 9. The T -symmetric slice of the phase diagram of SU(N) QCD (f/adj) with one fundamental
scalar as both the scalar mass squared m2 and the adjoint fermion mass madj are varied. When
madj = 0, the diagram reduces to figure 8. When madj ̸= 0, the theory is mostly in the trivially
gapped phase, except at θ = argmN

adj = π, where it can be in a T -broken phase shown as a blue
sheet in the diagram.

the SU(N − 1)1 Chern-Simons TQFT, which is different from the SU(N)1 theory. Again,
we have an indication that there must be a phase transition between these two limits.
Together with the trivial domain wall phase close to the madj = 0 axis, these 3 possible
phases are shown tentatively in figure 10.

4 Theory with multiple fundamental fermions

We consider SU(N) Yang-Mills theory endowed with a single adjoint Weyl λ and Nf

fundamental Dirac fermions Ψi, i = 1, . . . , Nf , all with the same mass m. The Lagrangian
for the matter sector is given by

S =
∫

d4x

iλ̄(/∂ − i/aadj)λ+ i

Nf∑
i=1

Ψ̄i(/∂ − i/a−m)Ψi

 (4.1)

4.1 Symmetry and anomalies

The massive case. When m ̸= 0, the faithfully acting symmetry group is

GGlobal = SU(Nf )× U(1)q
ZNf

× ZN
× Zχ2N

∼=
U(Nf )
ZN

× Zχ2N ,

(4.2)
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Figure 10. The same as figure 9, but also showing tentative phase transitions on the domain walls.
Intermediate regions cannot be reliably analyzed and we indicate this by a question mark.

SU(N) SU(Nf ) U(1)q Zχ2N
ψ +1 0
ψ̃ −1 0
λ adj 1 0 1

Table 7. Action of gauge and global symmetries in the multi-flavor massive SU(N) QCD(f/adj)
theory.

The only addition here compared to the symmetry group of section 2.1 is the SU(Nf ) factor.
The matter fields transform under GGlobal in the representations given in table 7, where we
decompose the Dirac fermion into 2 left-handed Weyl fermions ψ and ψ̃ in the fundamental
and anti-fundamental representations of SU(N), respectively. The extra quotient by ZNf

arises because U = e2πik/Nf 1Nf
, k = 0, 1, . . . , Nf − 1, in the center of SU(Nf ) is the same

as transforming Ψi by e2πik/Nf ∈ U(1)B. It is also worth pointing out that, just like in the
one-flavor case, the Z2 subgroup of Zχ2N acts identically as ZF2 , allowing us to define the
theory on a non-spin manifold that admits a Spin-Zχ2N structure.

To analyze the anomalies, we first turn on background gauge fields Af for SU(Nf )
and Aq for U(1)q. However, since the background field must be in a U(Nf )/ZN bundle
and not SU(Nf )× U(1), these fields do not have their proper normalization. To specify a
U(Nf )/ZN = (SU(Nf )× U(1)q)/(ZNf

× ZN ) bundle, we specify a PSU(Nf ) bundle and a
U(1)q/ZD bundle (with D = lcm(N,Nf )) on the underlying manifold M in terms of the
obstructions to lifting them to SU(Nf ) and U(1)q bundles which are related in a certain
way by the quotient structure. The obstruction to lifting a PSU(Nf ) bundle to an SU(Nf )
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bundle is the mod Nf second Stiefel-Whitney class w(Nf )
2 ∈ H2(M ;ZNf

), while that of
U(1)q/ZD is DFq/2π mod D. They are related by

D
Fq
2π = D

N
w

(N)
2 + D

Nf
w

(Nf )
2 mod D , (4.3)

where w(N)
2 ∈ H2(M ;ZN ), the obstruction to lifting a PSU(N) gauge bundle to an SU(N)

gauge bundle is involved because the quotient ZN is between U(1)q and SU(N) gauge
group. Then, the fractional parts of the SU(N) and SU(Nf ) instanton numbers are given
in terms of w(N)

2 and w
(Nf )
2 by [50]

∫
M

Tr f ∧ f
8π2 = − 1

N

∫
M

P(w(N)
2 )
2 mod 1 ,

∫
M

Tr Ff ∧ Ff
8π2 = − 1

Nf

∫
M

P(w(Nf )
2 )
2 mod 1 .

(4.4)

where f is the SU(N) gauge field strength and P the Pontryagin square operation. For
the mod N cohomology classes, when N is even, it is defined to be the cohomology opera-
tion [51] P : H2(M ;ZN ) → H4(M ;Z2N ). The image is even when M is spin, so P(w(N)

2 )/2
is a well-defined cohomology class in H4(M ;ZN ). When N is odd, we define P to be simply
the cup product, following ref. [52]. Division by 2 makes sense because it is invertible in
ZN when N is odd. The same definition goes for the mod Nf classes. We can then clearly
see that the SU(N) and SU(Nf ) instanton numbers are fractions in the units of 1/N and
1/Nf , respectively.

It turns out that the anomaly structure is very similar to that described in section 2:
there is again a mixed anomaly between Zχ2N and the flavor symmetry U(Nf )/ZN (the CFU
anomaly). Under a Zχ2N transformation λ→ e2πik/2Nλ, in the non-trivial background field
for U(Nf )/ZN , the action effectively shifts by

∆S = 2πik 1
8π2

∫
Tr f ∧ f

= −2πik
N

∫ P(w(N)
2 )
2 ,

(4.5)

Since
∫
P(w(N)

2 )/2 is an integer modulo N on a spin manifold, such a Zχ2N transformation
is anomalous unless k = N mod 2N , signifying that the Z2 subgroup is non-anomalous.

The massless case. Without the mass term, the theory now possesses SU(Nf )L ×
SU(Nf )R flavor as well as U(1)q quark and U(1)χ axial symmetries (with appropriately
modded common discrete centers). The action of the gauge and global symmetries on
the fermion content is displayed in the following table. We choose the minimal charge
assignments for U(1)q and U(1)χ.

This section explains the origin behind the mixed anomalies discussed in the previous
sections. In doing so, we give the details that link the above derivations to the CFU
anomaly computations of [18].
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SU(N) SU(Nf )L SU(Nf )R U(1)q U(1)χ
ψ 1 +1 −q := − N

gcd(N,Nf )

ψ̃ 1 −1 −q
λ adj 1 1 0 Q := Nf

gcd(N,Nf )

Table 8. Action of gauge and global symmetries in the multi-flavor massless SU(N) QCD(f/adj)
theory.

The theory possesses the following traditional ’t Hooft anomalies:

[SU(Nf )L]3 = − [SU(Nf )R]3 : CL3 = − CR3 = N ,

[U(1)χ]3 : CA3 =
−2N4Nf +N3

f (N2 − 1)
gcd(N,Nf )3 ,

[U(1)χ] [SU(Nf )L]2 = [U(1)χ] [SU(Nf )R]2 : CAL2 = CAR2 = − N2

gcd(N,Nf )
,

[U(1)χ] [U(1)q]2 : CAB2 = − 2N2Nf

gcd(N,Nf )
,

[U(1)q] [SU(Nf )L]2 = − [U(1)q] [SU(Nf )R]2 : CBL2 = −CBR2 = N ,

[U(1)χ] [gravity] : CA-grav = −Nf

(
1 +N2)

gcd(N,Nf )
.

(4.6)

More constraining anomalies can be found by utilizing the faithful global group. To
find the latter, one first needs to determine a subgroup in the center of

G = SU(N)× SU(Nf )L × SU(Nf )R × U(1)q × U(1)χ (4.7)

that acts trivially on all the fields. Consider the transformation(
e

2πinc
N 1N , e

2πinL
Nf 1Nf

, e
2πinR

Nf 1Nf
, e2πiβ , e2πiα

)
∈ G

The condition that it acts trivially on all the fields ψ, ψ̃, and λ are:

ψ : e
i2πnc

N︸ ︷︷ ︸
SU(N)

e
i2πnL

Nf︸ ︷︷ ︸
SU(Nf )L

ei2πβ︸ ︷︷ ︸
U(1)B

e−i2παN︸ ︷︷ ︸
U(1)χ

= 1 ,

ψ̃ : e
−i2πnc

N︸ ︷︷ ︸
SU(N)

e
−i2πnR

Nf︸ ︷︷ ︸
SU(Nf )R

e−i2πβ︸ ︷︷ ︸
U(1)B

e−i2παN︸ ︷︷ ︸
U(1)χ

= 1 ,

λ : ei2παNf︸ ︷︷ ︸
U(1)χ

= 1 ,

(4.8)

where nc are integers modN , nL,R are integers modNf , and α, β are U(1) phases. The
conditions (4.8) ensure that the transition functions of the gauge and global symmetry
bundles satisfy the cocycle conditions. The set of solutions to these conditions forms
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a subgroup of G that must be quotiented out from G to determine the faithful global
symmetry group. We find that this subgroup is ZN × ZNf

× ZQ, where Q = Nf

gcd(N,Nf ) is
the charge of λ under the global U(1)χ. This subgroup is generated by

ZN :
(
e

2πi
N 1N ,1Nf

,1Nf
, e−

2πi
N , 1

)
,

ZNf
:
(

1N , e
2πi
Nf 1Nf

, e
2πi
Nf 1Nf

, e
− 2πi

Nf , 1
)
,

ZQ :
(

1N , e
2πiN

Nf 1Nf
, e

− 2πiN
Nf 1Nf

, 1, e
2πi
Q

)
, Q = Nf

gcd(N,Nf )

(4.9)

Thus, the faithful global symmetry of the theory is

GGlobal = SU(Nf )L × SU(Nf )R × U(1)q × U(1)χ
ZN × ZNf

× ZQ
. (4.10)

To fully study the anomalies we note that the symmetries allow us to define a Spin-
GGlobal :=

(
Spin ×GGlobal

)
/ZF2 structure on our manifold and not just a Spin structure.

This is possible when there is a Z2 subgroup of GGlobal that acts identically to ZF2 ⊂ Spin(4).
Indeed, there is such a subgroup. An element(

e
2πinL

Nf 1Nf
, e

2πinR
Nf 1Nf

, eiβ , eiα
)

∈ SU(Nf )L × SU(Nf )R × U(1)B × U(1)χ (4.11)

acts identically to (−1)F if the following conditions are satisfied:

ψ : e
2πinL

Nf eiβe−iqα = −1 ,

ψ̃ : e
−2πinR

Nf e−iβe−iqα = −1 ,
λ : eiQα = −1 .

(4.12)

When both q and Q are odd, we can take α = π, β = nL = nR = 0 as a solution. When Q is
odd and q is even, we can take α = β = π and nL = nR = 0 as a solution. Lastly, when Q is
even and q is odd, we can take nL = 0, α = π/Q, β = π+qπ/Q, and nR = N as a solution.
Thus, it is possible to put the theory on a non-spin manifold that admits a Spin-GGlobal

structure. Since the quotient ZF2 only involves U(1) symmetries (either U(1)q × U(1)χ or
with a Cartan of SU(Nf )R), we can always turn on only the Spinc structure. Since all
orientable manifolds admit a Spinc structure, we can define our theory on all orientable
manifolds, including e.g., CP2 (unlike in the massive case).

Let us now analyze the anomalies in more detail. For this purpose, we turn on the
background field strengths FL, FR, Fq, Fχ, for SU(Nf )L, SU(Nf )R, U(1)q, and U(1)χ,
respectively. Then, the 6d anomaly polynomial for our theory is given by

Φ = 1
3!

1
(2π)3

[
N
(

Tr F 3
L − Tr F 3

R

)
+ 3N

(
Tr F 3

L − Tr F 3
R

)
Fq (4.13)

− 3N2

gcd(N,Nf )
(

Tr F 2
L + Tr F 2

R

)
Fχ −

6N2Nf

gcd(N,Nf )
F2
qFχ

+ 1
gcd(N,Nf )3

(
N3
f (N2 − 1)− 2N4Nf

)
F3
χ

]
+ Nf (N2 + 1)

gcd(N,Nf )
p1
24

Fχ
2π ,
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and p1 ≡ − 1
8π trR ∧ R is the first Pontryagin class and R is the curvature 2-form. The

terms inside the square bracket capture ’t Hooft anomalies of GGlobal while the last term
is the mixed [U(1)χ]-gravitational anomaly. Through the anomaly descent equations, we
can see that, under a transformation eiα ∈ U(1)χ, the partition function changes as

Z 7→ Z exp
[
iα

(
− N2

gcd(N,Nf )

∫ Tr F 2
L + Tr F 2

R

8π2 − 2N2Nf

gcd(N,Nf )

∫ F2
q

8π2

+ 1
3
N3
f (N2 − 1)− 2N4Nf

gcd(N,Nf )3

∫ F2
χ

8π2 + Nf (N2 + 1)
gcd(N,Nf )

∫
p1
24

)]
. (4.14)

Note that, because of the discrete quotient in Gglobal, various instanton numbers that
appear above can be fractional. These are dubbed the color-flavor-U(1) (CFU) fluxes
in [18, 28]. More precisely, one can give the fractional parts of these instantons in terms
of the obstruction to lifting a GGlobal bundle to a SU(Nf )L × SU(Nf )R × U(1)B × U(1)χ
bundle, which we will call the product bundle. One specifies GGlobal bundle by specifying
PSU(Nf )L, PSU(Nf )R, U(1)B/ZqQ, and U(1)χ/ZQ bundles. The obstructions to lifting
these bundles to the product bundle are given by the second “Stiefel-Whitney classes”

w
(L)
2 , w

(R)
2 ∈ H2(M ;ZNf

), w
(N)
2 ∈ H2(M ;ZN ), w

(Q)
2 ∈ H2(M ;ZQ) . (4.15)

w
(N)
2 , w(Nf )

2 , and w
(Q)
2 are directly related to the U(1) fluxes by

Q
Fχ
2π = w

(Q)
2 mod Q , qQ

Fq
2π = Qw

(N)
2 + qw

(Nf )
2 mod qQ . (4.16)

Again, since the quotient ZN involves the dynamical SU(N), the dynamical gauge field is
in a PSU(N) bundle whose obstruction to lifting to an SU(N) bundle is given precisely by
w

(N)
2 . Just like in (4.4), the fractional SU(N) instanton number is given in terms of w(N)

2 by

N

∫ Tr f ∧ f
8π2 = −

∫ P(w(N)
2 )
2 mod N . (4.17)

Similarly, w(L)
2 and w(R)

2 , which obstruct lifting PSU(Nf )L,R bundles to SU(Nf )L,R bundles
are related to the fractional instanton numbers by

Nf

∫ Tr F 2
L,R

8π2 = −
∫ P

(
w

(L,R)
2

)
2 mod Nf . (4.18)

The structure of the quotient given by the generators in (4.9) relates w(L,R)
2 to the other

Stiefel-Whitney classes by

w
(L)
2 = w

(Nf )
2 +Nw

(Q)
2 mod Nf , w

(R)
2 = w

(Nf )
2 −Nw

(Q)
2 mod Nf . (4.19)

These are well-defined modulo Nf : as w(Q)
2 ∼ w

(Q)
2 + Nf/gcd(N,Nf ), we have Nw(Q)

2 ∼
Nw

(Q)
2 + qNf = Nw

(Q)
2 mod Nf .
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To understand how these fractional instanton numbers could alter our anomalies, it is
instructive to consider concrete examples. Let us define the topological charges associated
with SU(N), SU(Nf )L,R, U(1)B, and U(1)χ, respectively, by

Qc :=
∫ Tr f ∧ f

8π2 , QL,R :=
∫ Tr FL,R ∧ FL,R

8π2 ,

QB :=
∫ Fq ∧ Fq

8π2 , Qχ :=
∫ Fχ ∧ Fχ

8π2 ,

QAB :=
∫ Fχ ∧ Fq

4π2 .

(4.20)

One can also calculate the Dirac indices in these center fluxes:

Iψ = NfQc +NQL +NNf

(
QB + q2Qχ

)
− qNNfQAB ,

Iψ̃ = NfQc +NQR +NNf

(
QB + q2Qχ

)
+ qNNfQAB ,

Iλ = 2NQc + (N2 − 1)Q2Qχ ,

(4.21)

which are always integers in a consistent background: there is a one-to-one correspondence
between the solutions of (4.8) and the integrality of the Dirac indices. The finest fractional
charges are reached when we put on the background fields with lowest, non-trivial Stiefel-
Whitney classes w(N)

2 , w(Nf )
2 , and w

(Q)
2 . To achieve this, let’s consider the theory on the

product manifold S2×S2. Then, we can take w(N)
2 , w(Nf )

2 , and w(Q)
2 to have the form α+β

modulo N , Nf , and Q, respectively, where α, β are the two generators of H2(S2 × S2;Z).
In this configuration, the various topological charges (CFU fluxes) are given by

Qχ =
( 1
Q

+ n1

)2
, QB =

(
1
N

+ 1
Nf

+ n2

)2

, Qc = kc −
1
N
,

QL = kL − 1
Nf

(1 +N)2 , QR = kR − 1
Nf

(1−N)2 , (4.22)

QAB = 2
( 1
Q

+ n1

)( 1
N

+ 1
Nf

+ n2

)
,

where n1, n2, kc, kL,R are integers.
Let Z[Âf ] be the partition function in the background of the vector-like flavor symme-

try U(Nf )/ZN , which in general activates the CFU fluxes. Then, under a U(1)χ rotation
we have that

Z[Âf ]
U(1)χ−−−→ Z[Âf ] exp

[
iα
(
−q(Iψ + Iψ̃) +QIλ

)]
, (4.23)

and it is easy to see that the part that multiplies Qc cancels out. This should be expected
since the theory is not endowed with a genuine Z[1]

N 1-form symmetry, thanks to the fun-
damentals. Thus, what we find is an anomaly of mixed type between U(1)χ, U(1)B, and
SU(Nf ). The anomaly is exactly the same one we obtain from (4.14). As a special case,
we can consider fractional fluxes of Fχ turned off and set n1 = n2 = 0:

Qc = kc −
1
N
, QL = kL − 1

Nf
, QR = kR − 1

Nf
, QB =

(
1
N

+ 1
Nf

)2

. (4.24)
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The corresponding Dirac indices are

Iψ = 2 +NkL +Nfkc, Iψ̃ = 2 +NkR +Nfkc, Iλ = 2(Nkc − 1) . (4.25)

Then, under a U(1)χ rotation we find

Z[Âf ]
U(1)χ−−−→ Z[Âf ] exp

[
iα
(
−q(Iψ + Iψ̃) +QIλ

)]
= Z[Âf ] exp [−iα(2Q+ q(4 + (kL + kR)N))] .

(4.26)

If we further turn off the SU(Nf ) fluxes, with only Qc = kc − 1/N and QB = 1/N2

non-trivial, the Dirac indices become

Iψ = Iψ̃ = Nfkc, Iλ = 2(Nkc − 1) , (4.27)

and CFU anomaly is

Z[Âf ]
U(1)χ−−−→ Z[Âf ] exp

[
−2iα Nf

gcd(N,Nf )

]
. (4.28)

This is exactly the A ∧ FB ∧ FB (the mixed U(1)χ-U(1)B) anomaly in (2.19) when we set
Nf = 1.

Finally, we briefly discuss the anomalies when we put the theory on a non-spin mani-
fold. For concreteness, we consider the theory on CP2 and assume both q and Q are odd.
In this case, the topological charges are given by [53]

Qχ = 1
2

(1
2 + n

)2
, n ∈ Z, QG =

∫
CP2

p1
24 = −1

8 . (4.29)

While the Dirac indices are

Iλ = (N2 − 1)
[
Q2Qχ +QG

]
,

Iψ = Iψ̃ = NfN
[
q2Qχ +QG

]
,

(4.30)

which are always integers when both q and Q are odd. Then, the anomaly on CP2 reads

Z[CP2] U(1)χ−−−→ Z[CP2] exp [iα (QIλ − 2qIψ)] . (4.31)

Similarly, one can work out the anomalies when q and Q are even or mixed even/odd.

4.2 The IR phases

In the infinite mass limit, we can again integrate out the Dirac fermions, leaving us with
N = 1 SYM with gauge group SU(N). As discussed in section 2.3, there are N degenerate
vacua and domain walls connecting them.

At the massless point, the Zχ2N discrete chiral symmetry enhances to U(1)χ. All anoma-
lies are now given in terms of the anomaly polynomial. Saturating the anomalies can be
achieved in the IR in one of three ways:
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1. Composite massless fermions charged under the global symmetry.

2. Spontaneous symmetry breaking (SSB).

3. Interacting conformal field theory.

The first choice can be ruled out by Weingarten’s theorem [34] because the measure of the
theory is positive definite (see appendix A). Let’s now discuss the second option, where
anomalies are saturated by breaking the global symmetries SU(Nf )L×SU(Nf )R×U(1)χ×
U(1)B down to SU(Nf )V × U(1)B, giving rise to N2

f − 1 Goldstones and a U(1) vortex.
The condensate ψ̃ψ is charged under the full SU(Nf )L×SU(Nf )R×U(1)χ, and breaks the
group down to SU(Nf )V × Z2q. The Z2q phase is the unbroken subgroup of U(1)χ under
ψ̃ψ. However, the unbroken phase is anomalous, as can be checked using [U(1)χ] [gravity]
and the CFU anomalies given by (4.26) by setting α = 2π

2q . To avoid this problem, another
condensate has to form in order to break U(1)χ to a non-anomalous group. The minimal
choice is λλ, which transforms under U(1)χ as: λλ U(1)χ−−−→ e−i2Qαλλ, and thus, the formation
of λλ breaks U(1)χ down to Z2Q. The combined condensates λλ and ψ̃ψ break U(1)χ down
to Z2gcd(q,Q) = Z2. it is easy to see that this Z2 has no mixed anomaly with SU(Nf )V nor
U(1)B by setting α = π and kL = kR in (4.26). Moreover, since ΩSpin

5 (BZ2) = 0 [54], there
are no global anomalies in Z2 itself. So for sufficiently small number or flavors Nf < N∗

f we
expect that the theory flows to a Goldstone phase corresponding to Nf Goldstone bosons.

Another scenario is that the theory flows to a phase that preserves all the global symme-
tries, e.g., a conformal window. One may wonder which scenario is preferred. The answer
to this question comes from comparing the number of effective massless degrees of freedom
(DOF) between the UV theory and the SSB scenario [55]. The, effective degrees of freedom
A of nB massless real scalars and nf massless Weyl fermions are given in terms of the free
energy density F as (we turn on a small temperature T ≪ Λ, where Λ is the strong scale)

A = 90
π2T 4F = nB + 7nf

4 . (4.32)

The effective degrees of freedom defined via the free energy is not guaranteed to decrease
along RG flows. Yet, as we shall see, the outcomes of this method are consistent with
the findings via renormalization group analysis. It is expected that the phase with lower
free energy, i.e., a smaller number of DOF, is preferred. Define the difference between the
number of DOF in the UV and the SSB scenario by

∆A := AGoldstones −AUV = (N2
f − 1)−

2(N2 − 1)︸ ︷︷ ︸
gluons DOF

+7
4
(
N2 − 1 + 2NNf

)
= −7NNf

2 − 15
4 N

2 +N2
f + 11

4 .

(4.33)

If ∆A > 0, the SSB phase is disfavored, and the theory should flow to the conformal phase
in the IR, provided that it is asymptotically free. In figure 11, we plot both ∆A and
the β-function versus (N,Nf ). The phase with ∆A > 0 is displayed in green, while the
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Figure 11. The horizontal axis is the number of colors N , while the vertical axis is the number
of flavors Nf . Here, we prefer not to use the ’t Hooft coupling λ = Ng2 since we are not in the
regime of strict large-N limit. We display the asymptotically free region, β0 > 0 in blue, while
the region that supports a Banks-Zack fixed point, with α∗ ≡ g2

∗
4π < 0.01 at the fixed point, is

displayed in orange. This coupling constant value is taken for convenience. Increasing the value
of α∗ will increase the Banks-Zack region. The phase with ∆A > 0 is displayed in green. Most of
this region lies outside the asymptotically free region. There is a small window where the regions
with ∆A > 0 and α∗ < 0.01 intersection As can be easily seen, the intersection region happens
very close to the boundary of the asymptotically free region. Thus, the ∆A analysis aligns with
the β-function calculations of the fixed point, provided the latter remains perturbative within the
ϵ-expansion framework. See the bulk of the paper for more details.

asymptotically free region is in blue. There is only a small intersection window between
the two regions. The intersection window, however, lies completely inside the conformal
window, as is evident from computing the 2-loop Bank-Zacks fixed point. The latter region
is displayed in orange.

In order to make the last point more quantitative, we study the theory in the Veneziano
limit. Thus, we take both N and Nf infinite, keeping the ratio R = Nf/N finite. The
2-loop β-function is given by (see appendix C)

g−1β(g) = −β0
g2

(4π)2 − β1
g4

(4π)4 + 3-loop correction , (4.34)
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and in the Veneziano limit, we have

β0 = N

(
3− 2

3R
)
, β1 = N2

(
6− 13

3 R
)
. (4.35)

The theory is asymptotically free for R < 4.5, while it develops a Banks-Zaks fixed point
at (writing the RG equation using the ’t Hooft coupling λt ≡ g2N)

λt =
8π2(9− 2R)
(13R− 18) , (4.36)

provided that R > 1.38. Notice that the fixed point is well under control in the limit
N → ∞, provided that we stay close to the boundary of the asymptotically free region
so that higher-order loops are parametrically small compared to the first two terms in the
loop expansion. We lose asymptotic freedom when Nf ≥ 4.5N . Thus, by taking Nf/N =
4.5(1 − ϵ) and ϵ ≪ 1, the first 2 terms in (4.34) are of the same order ∼ Nϵ, while the
third term is ∼ Nϵ2 and can be safely neglected. The β-function analysis of (4.34), (4.36)
predicts that the conformal window lies in the range 1.38 ≲ R ≲ 4.5, with less control on
the lower value of the window as we depart from the well-controlled ϵ-expansion. At finite
but large N , we should expect the conformal window to be in the range

R∗ ≤ R ≤ 4.5 , (4.37)

where the lower bound R∗ is harder to compute.
Let us compare this result with what we get from the constraint ∆A > 0. In the

Veneziano limit, the conformal behavior is favored when

∆A = N2
(
R2 − 7

2R− 15
4

)
> 0 , (4.38)

which is solved by requiring R ≳ 4.36. This implies that the theory is in the conformal
window when R is in the range 4.36 ≲ R ≲ 4.5. This result is consistent with the β-
function analysis in the ϵ-expansion. On the other hand, when ∆A < 0, the inequality
only tells us that the SSB phase is favored compared to the weakly coupled conformal
phase (whose DOF are the same as the UV theory), but it does not exclude the strongly
interacting conformal phase, whose DOF are not as easily computed. When N is large,
R∗ should still remain close to the value computed using the β-function in the Veneziano
limit, and so should be lower than 4.36. Thus, when R is in the range R∗ ≤ R ≤ 4.36, the
IR phase could be an interacting CFT.

Also, our investigation included identifying theories with IR fixed points at finite N
and Nf using ∆A > 0, but otherwise lacking such fixed point from the β-function analysis.
We found no evidence of such fixed points in the N -Nf plane.

To summarize, the ∆A calculations put a stringent constraint on the conformal win-
dow, consistent with the β-function analysis calculations in the ϵ expansion. This is sum-
marized in figure 11.
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4.3 Fermion masses and the phase diagrams

When Nf is low enough that chiral symmetry breaking occurs, we can broaden the scope of
our analysis by turning on the mass of the adjoint fermion in addition to the fundamental
fermions’ mass. When madj ≫ Λ, it can be integrated out so that we are left with SU(N)
QCD with Nf fundamental Dirac fermions. The IR phase structure of this theory has
been analyzed in ref. [4], which we briefly recount here. At non-zero m, the theory has
no time-reversal symmetry at all theta-angle except at θ = 0, π and flows to the trivially
gapped phase in the IR. At θ = 0, the T -symmetry is unbroken and the theory is still in
the trivially gapped phase. On the other hand, the T -symmetry is spontaneously broken
at θ = π, resulting in a phase with 2 inequivalent vacua. This persists for all value of |m|
down to m = 0 where the flavor symmetry SU(Nf )V enhances to SU(Nf )L × SU(Nf )R.
This enhanced chiral symmetry breaks spontaneously down to SU(Nf ), leaving us with
non-Abelian Nambu-Goldstone bosons as the theory flows to the IR.

Nothing much can be said quantitatively in the intermediate regime, except when the
masses are small, m,madj ≪ Λ, where we can analyze the IR theory in more detail through
the chiral Lagrangian. We start by writing down the chiral Lagrangian at the massless
point. As previously discussed, both trλλ and ψψ̃ condense, inducing the spontaneous
symmetry breaking pattern32

SU(Nf )L × SU(Nf )R × U(1)q × U(1)χ
ZN × ZNf

× ZQ
→ SU(Nf )V × U(1)q

ZN × ZNf

× ZF2 .

The target space of the chiral Lagrangian is then the coset space

M0 = U(1)χ/Z2 × SU(Nf )
ZQ

(4.39)

which we parametrize by the pair(
eiφ, U

)
∈ U(1)χ/Z2 × SU(Nf ) (4.40)

with the identification (
eiφ, U

)
∼
(
e2πi/Qeiφ, e2πiN/NfU

)
(4.41)

enforcing the ZQ discrete quotient. Another way to see that we need this ZQ identification
is by noting that such a ZQ transformation leaves the condensates

⟨trλλ⟩ ∼ eiQφ,
〈
ψψ̃
〉
∼ e−iqφU (4.42)

invariant. Note also that our parametrization implies that φ has charge 2 under the original
chiral symmetry U(1)χ like the one-flavor case. The lowest derivative terms are given by

L0 =
f̃2
φ

2 (∂φ)2 + f2
π

2 tr
(
∂µ(e−iqφU)∂µ(e−iqφU)†

)
=
f2
φ

2 (∂φ)2 + f2
π

2 tr
(
∂µU∂

µU †
)
+ iqf2

π

2 ∂µφ tr
(
U †∂µU − U∂µU †

) (4.43)

32Recall that Q := Nf/ gcd(N,Nf ) and q := N/ gcd(N,Nf ).
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where f2
π and f2

φ := f̃2
φ+Nfq

2f2
π are two different ‘pion decay constants’, scaling with N as

f2
π ∼ N2 and f2

φ ∼ N3. Additional terms (including the WZW term) are needed to match
the ’t Hooft anomalies of the UV theory.

Turning on the positive masses madj for the adjoint fermion λ and m for the funda-
mental fermions ψ, ψ̃, as well as the SU(N) theta-angle θ, induces a potential on M0:

V = −Λ3
[
(N2 − 1)madj cos (Qφ) +

m

2 tr
(
e−i(qφ−θ/Nf )U + ei(qφ−θ/Nf )U †

)]
(4.44)

For the purpose of finding the vacua, we can focus on U of the form U = e2πik/Nf 1Nf
so

that the symmetry SU(Nf )V is preserved. The potential now reads

V (φ, k) = −Λ3
[
(N2 − 1)madj cos(Qφ) +mNNf cos

(
qφ− 2πk + θ

Nf

)]
. (4.45)

To complete the chiral Lagrangian, additional terms (including the WZW term) are needed
to match the ’t Hooft anomalies of the UV theory, but these will not be necessary for what
we want to discuss next.

madj = 0. When we tune the adjoint mass to zero, the theta angle becomes unphysical as
it can be rotated away by an anomalous chiral rotation. The potential for φ thus reduces to

V (φ, k) = −mNNfΛ3 cos
(
qφ− 2πk

Nf

)
, (4.46)

with obvious minima at φ = 2πk/QN . However, the number of distinct vacua are smaller
than QN due to the ZQ quotient. Denote the kth vacuum by

|k⟩ :=
(

e
2πik
QN , e

2πik
Nf 1Nf

)
. (4.47)

Then the equivalence (4.41) implies that

|N⟩ =
(
e2πi/Q, e2πiN/Nf 1Nf

)
∼
(
1,1Nf

)
= |0⟩ . (4.48)

Thus, there are only N distinct vacua. See figure 12 for the visualization of a specific case.
There are domain walls connecting neighboring vacua |k⟩ and |k + 1⟩. The domain

wall configurations cannot preserve the full global symmetry
SU(Nf )V × U(1)q × Z2

ZNf
× ZN

of each vacuum. Following [4], one can show that the non-Abelian symmetry SU(Nf )V is
necessarily broken down to S[U(1) × U(Nf − 1)] by domain wall configurations, resulting
in a non-linear σ-model on the domain wall with the target space

SU(Nf )V
S[U(1)× U(Nf − 1)]

∼= CPNf−1 (4.49)

coupled to a topological term induced by the WZW term in the bulk. We can also conclude
that there must be a phase transition on the domain wall as we crank up the fundamental
mass m, just like in the one-flavor case, because in the large mass limit, the domain-wall
theory is a TQFT with no massless degrees of freedom.
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Figure 12. V (φ, k) for the case N = 4, Nf = 6. The ZQ quotient means we should identify π/Q

and −π/Q. It is clear there are N = 4 vacua here.

m = 0. When we set m = 0 instead of madj, the potential becomes

V (φ) = −Λ3madj(N2 − 1) cos (Qφ) , (4.50)

independent of U . The potential has its minima at φ = 2πk/Q for any integer k, and any
U ∈ SU(Nf ). The vacuum manifold M0 = (U(1)χ

Z2
× SU(Nf ))/ZQ is reduced to

ZQ × SU(Nf )
ZQ

∼= SU(Nf ).

Therefore, when m = 0 and 0 < madj ≪ Λ, only the non-Abelian NGBs remain massless.
The Abelian NGB φ becomes massive.

m, madj > 0. When both masses are non-zero, we need to look at the full poten-
tial (4.45):

V (φ, k) = −Λ3
[
(N2 − 1)madj cos(Qφ) +mNNf cos

(
qφ− 2πk + θ

Nf

)]
.

There is a Z2 time-reversal symmetry at θ = 0, π, which is broken explicitly at other values
of θ. The symmetry transformation is given by

φ 7→ −φ, k 7→ −k,

at θ = 0, and by
φ 7→ −φ, k 7→ −k − 1,

at θ = π. Most of the vacuum degeneracy is lifted by the non-zero M term in the potential,
due to the fact that Q and q are coprime. The new vacua are those closest to φ = 0. At
θ = 0, there is a single vacuum at φ = 0, k = 0, invariant under the Z2 time-reversal
symmetry. At θ = π, however, there are two degenerate vacua related to each other by the
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(a) (b)

Figure 13. The potential V (φ, k) for N = 4, Nf = 6 when m,madj ̸= 0 at (a) θ = 0 and (b)
θ = π.

Figure 14. Phase diagram for the SU(N) QCD (f/adj) with fundamental Dirac fermions. It is
color-coded as follows. Purple means it is conformal; red means it is in a Goldstone phase; green
means there is a broken discrete symmetry with domain walls joining different vacua, called the
domain wall (DW) phase. The theory loses asymptotic freedom and is not well-defined in the UV
when Nf/N > 4.5.

time-reversal symmetry (see figure 13). It is clear that there can be no second order phase
transition to the trivially gapped phase, unlike what we saw earlier in the one-flavor cases
for both the Dirac fermion and the scalar fields. There is a CPNf−1 non-linear sigma-model
on the domain wall connecting the two vacua just like in the case with madj = 0 consistent
with the proposal [4] for QCD.

To summarize, when the adjoint fermion is massless, we can combine our results from
section 2, 4 together to obtain a phase diagram in terms of the fundamental fermions’ mass
m and, the ratio of the number of flavors to the number of colors R = Nf/N . The phase
diagram is shown in figure 14.
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Figure 15. The T -invariant slice of the phase diagram for QCD (f/adj) with multiple fundamental
fermion flavors. Note that when the fundamental fermions’ mass vanishes, the theta-angle is not
physical. We choose to represent the adjoint mass along the negative mass axis to emphasize that
it is the end point of the Z2 broken phase.

On the other hand, when Nf is fixed such that there is chiral symmetry breaking,
we can vary the adjoint mass madj and obtain the phase diagram shown in as shown in
figure 15 by piecing together various limits explored earlier. When all masses vanish,
there are both a massless Abelian Nambu-Goldstone boson as well as non-Abelian Nambu-
Goldstone bosons; only the non-Abelian ones remain when we turn on the adjoint mass.
Contrast this with the single fundamental fermion case in figure 2. There, the existence
of an Abelian Nambu-Goldstone boson persists for all value of the adjoint fermion mass,
whereas in the multi-flavor case, it only appears when all fermions are massless. There are
no phase transition in the bulk as we dial the mass m down to zero, but there are phase
transitions on the domain walls, just like in the one-flavor case, from a TQFT to a CPNf−1

non-linear sigma-model (NLSM) as shown in figure 16.

5 Theory with multiple fundamental scalars

To cap off our analysis, let us turn to multiple scalar flavors scenario in this section. Even
though the anomaly story goes much the same way as before, we will see that the IR
behaves qualitatively differently as we increase the number of the scalar fields.

The action for the matter fields reads

Smatter =
∫

d4x

iλ̄ (/∂ − i/aadj

)
λ+

Nb∑
i=1

|(∂ − ia)ϕi|2 − V (ϕi)

 , (5.1)
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Figure 16. The same as figure 15, but showing the phases on the domain walls instead of the bulk
phase.

with the potential

V (ϕi) =
Nb∑
i=1

m2|ϕi|2 +O(|ϕ|4) . (5.2)

We give the same mass to all Nb scalar fields, just like what we did in section 4, to preserve
as much global symmetry as possible. Terms with larger power in ϕ are also assumed to
preserve the maximal symmetry.

5.1 Symmetry and anomalies

The global symmetry group is

GGlobal = SU(Nb)× U(1)B
ZN × ZNb

× Zχ2N

= U(Nb)
ZN

× Zχ2N ,

(5.3)

under which the matter content transforms in the representations given by table 9. There
is a mixed anomaly between U(Nf )/ZN and Zχ2N , exactly as explained in section 4.1.

5.2 The IR phases

When the mass parameter m2 > 0, the scalar fields do not condense. At the scale below
the mass scale, we can integrate them out and again obtain the same phase as the N = 1
SU(N) SYM: there are N distinct vacua and there are domain walls connecting them.

When m2 < 0, we need to include the quartic terms in the potential for stability. Let
us combine the scalar fields into an N ×Nb matrix Φ, which transform under the SU(N)
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SU(N) SU(Nb) U(1)B Zχ2N
ϕ +1 0
λ adj 1 0 +1

Table 9. Representations of the matter content under the gauge and the global symmetry groups
in the multiple scalar flavors case.

gauge group and the SU(Nb) global symmetry group as

Φ 7→ UΦV, U ∈ SU(N), V ∈ SU(Nb) .

Then the most general potential invariant under the gauge and the global symmetry group is

V (Φ) = −|m|2 Tr Φ†Φ+ κ1 Tr
(
Φ†ΦΦ†Φ

)
+ κ2

(
Tr Φ†Φ

)2
+ . . . (5.4)

and we require κ1 +Nbκ2 > 0 for stability. By adding appropriate constant terms to this
potential, we can complete the square and write the potential as

V (Φ) = κ1 Tr
(
Φ†Φ− v21Nb

)2
+ κ2

[
Tr

(
Φ†Φ− v21Nb

)]2
(5.5)

with v2 = |m|2/(κ1 +Nbκ2). Φ must now acquire a vacuum expectation value to minimize
the potential, which is achieved by the configuration Φ†Φ = v21Nb

. In this Higgs regime,
the IR phases are sensitive to the number of scalar flavors Nb. We will now consider each
different scenario in turn.

Nb < N . When Nb < N , ⟨Φ⟩ ̸= 0 partially higgses the gauge group down to SU(N−Nb)
without spontaneous breaking of the global symmetry, similar to the one flavor case. To
see this, let us first rotate ⟨Φ⟩ by SU(N) and SU(Nb) transformations to be of the diagonal
form33

⟨Φ⟩ =



v1 0 · · · 0 0
0 v2 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 vNb

0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0


. (5.6)

This configuration minimizes the potential if and only if vi = v for all i. To see what
symmetry is left unbroken by such a VEV, let’s act on ⟨Φ⟩ by a combined SU(N)×U(Nb)
transformation of the form

⟨Φ⟩ → U ⟨Φ⟩V, U =

U1

U2

 ∈ SU(N), V ∈ U(Nb), (5.7)

33This is none other than the singular value decomposition (SVD). We can always write any N × Nb

complex matrix Φ as Φ = UΦDV
† where ΦD is diagonal, and U, V are SU(N) and SU(Nb) matrices.
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SU(N −Nb) SU(Nb) U(1)′B Zχ2N
λ̃ adj 1 0 1
ψ 1 1
ψ̃ −1 1
η 1 adj 0 1
ν 1 1 0 1

Table 10. Representations of the fermions in the Higgs regime when Nb < N .

where U1 and U2 are Nb×Nb and (N −Nb)× (N −Nb) unitary matrices, respectively. The
transformed VEV is

U ⟨Φ⟩V =


vU1V

0T
...

0T

 . (5.8)

We see that the transformation leaves the VEV invariant if and only if we take U1 = V †,
and U2 = eiθŨ , where the phase θ is determined by V (because we need detU1 detU2 = 1),
but are free to choose Ũ to be any SU(N − Nb) matrix. We can clearly see that the
gauge group SU(N) is higgsed down to SU(N −Nb), while the rest of the gauge group is
locked with the flavor symmetry U(Nb), resulting in the color-flavor locked U(Nb)cf global
symmetry that survives in the Higgs regime. The discrete chiral symmetry Zχ2N does not
act on the scalar fields, so it remains intact in this phase.

The SU(N) adjoint fermion λ decomposes into an SU(N −Nb) adjoint fermion λ̃, Nb

Weyl fermions in the fundamental representation of SU(N −Nb), ψ, Nb Weyl fermions in
the anti-fundamental representation, ψ̃, a neutral fermions in the adjoint representation
of U(Nb), η, and one neutral Weyl fermion ν. The matter fields transform under the IR
gauge group SU(N −Nb) and the IR global symmetry

GGlobal
IR = SU(Nb)× U(1)′B

ZNb
× ZN−Nb

× Zχ2N (5.9)

in the representations given in table 10. Again, even though the free massless fermion
matter content has an enhanced global symmetry, as discussed in section 3.1, there are
irrelevant terms in the Lagrangian that reduce the symmetry down to the one we have in
the UV. The enhancement that lifts Zχ2N to a continuous chiral symmetry happens only
at v = ∞. The difference in the discrete quotient between GGlobal

IR in eq. (5.9) and GGlobal

in the UV is not a cause for concern. It simply reflects the fact that we assign the U(1)′B
charge ±1 to the fundamental and anti-fundamental fermions ψ, ψ̃. Note that the flavor
symmetry that acts on the scalar fields in the UV now acts on the fermions in the IR
through color-flavor locking, as we have already seen in the one-flavor scalar case.

When Nb/N > 9/11, the resulting gauge theory is IR-free, leading to the free fermion
CFT phase. When Nb/N < 9/11, this SU(N−Nb) gauge theory is asymptotically free. We
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learn about its IR dynamics by looking back at the dynamics of the fermionic theory that
we studied in section 4, because it is the theory that emerges in the intermediate region,
barring a few extra Weyl fermions neutral under the gauge group that only couple to the rest
via higher-order terms. Thus, for any finite v, we expect to have domain walls connecting
N vacua in the IR. The fermions that transform non-trivially under the SU(N −Nb) gauge
group are gapped out by the gauge dynamics, while the neutral fermions are gapped out
by the interaction with the would-be Goldstone boson for the U(1) chiral symmetry.

In the deep Higgs regime where v ≫ Λ, still assuming asymptotic freedom, there are
two options for the IR phases, depending on the ratio between the number of flavors and
the number of colors. There exists a critical point Nb/N = Rb∗, below which we have
chiral symmetry breaking, and above which the phase enters a conformal window. The
value of Rb∗ cannot be ascertained in the generic case due to the strong dynamics involved.
In the Veneziano limit, however, the Banks-Zaks computation can be trusted, and we can
estimate Rb∗ to be

Rb∗ =
18
31 ≈ 0.58 , (5.10)

up to corrections in 1/N .

Nb = N − 1. When Nb = N − 1, the gauge group is completely higgsed. The global
symmetry is still not spontaneously broken. The IR dynamics is that of free fermions in
multiplets of the global symmetry Gglobal. The massless composite fermions η, ψ, and ψ̃,
now transform under the global symmetry group

GGlobal
IR = U(1)′B × SU(Nb)

ZNb

× Zχ2N ∼= U(Nb)× Zχ2N (5.11)

in the adjoint representation, the fundamental representation, and the anti-fundamental
representation of U(Nb), respectively. All of them have unit charge under the discrete
chiral symmetry Zχ2N . We can dress these fermions with scalars to form gauge-invariant
composites, as we did in (1.2). The special case N = 2 was considered as a warmup exercise
in section 1.1. Here, the global symmetry U(1)B is enhanced to SO(3) custodial symmetry;
see footnote 4.

Nb = N . When the number of flavors Nb is equal to the number of colors N , the gauge
group is completely higgsed just like in the case when Nb is one less than N . However,
there is not enough room in the gauge group SU(N) to fully preserve U(Nb) = U(N)
global symmetry through color-flavor locking when ⟨Φ⟩ ̸= 0. The U(1) baryon symmetry
must now be broken spontaneously by the VEV scalar fields, while the non-abelian flavor
symmetry SU(Nb) remains unbroken. The IR phase consists of one U(1) Goldstone boson,
as well as a massless composite Weyl fermion in the adjoint representation of the global
symmetry SU(Nb).

Nb > N . Things get more complicated when Nb > N . We see from the SVD that the
equation Φ†Φ = v21Nb

has no solutions. Nonetheless, the diagonal form

⟨Φ⟩ =
(
v1N 0 . . . 0

)
(5.12)
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still minimizes the potential. The gauge group is still fully higssed. Moreover, the global
symmetry now breaks spontaneously to SU(N)cf × U(Nb − N), which can be shown by
the same argument around eq. (5.8) but in the opposite direction. In the IR, there are
Goldstone bosons described by the coset space

M = U(Nb)
SU(N)× U(Nb −N) (5.13)

apart from the composite fermions that we have previously. The ’t Hooft anomalies in
the UV can be matched by the composite fermions and the WZW term in the effective
Lagrangian.

To summarize, there are many IR phases of the theory as the number Nb of the funda-
mental scalars and the mass squared m2 of the scalars varies. The ultraviolet (UV) theory
has Zχ2N symmetry that acts on the massless adjoint. In addition, baryon-number U(1)B
and flavor SU(Nb) symmetries34 act on the scalars. The theory admits mixed anomalies
between Zχ2N and U(1)B as well as between Zχ2N and gravity. For m2 > 0, we can integrate
out the scalars ending up with N = 1 super Yang-Mills theory. When m2 < 0, we need
to distinguish between different scenarios depending on N and Nb. (A) Nb < 9N/11, the
gauge group is higgsed down to SU(N −Nb) that is still strongly-coupled. In the IR, the
theory enjoys emergent continuous symmetries. Assuming that the Higgs vev is not much
larger than Λ, the continuous symmetries are explicitly broken down to Zχ2N by danger-
ously irrelevant operators. The IR theory breaks the Zχ2N chiral symmetry spontaneously,
leading to N vacua and domain walls. (B) 9N/11 < Nb < N − 1, the gauge group is again
higgsed down to SU(N −Nb). However, the new gauge coupling becomes weaker under the
RG flow. The composite fermions, i.e., the UV fermions dressed by scalars that transform
covariantly under SU(N −Nb), decouples from the gauge fields in the IR. The theory then
thus flows to the composite free fermion phase. (C) Nb = N − 1, the gauge group is fully
higgsed, in which case composite free fermions match the anomalies. These are the UV
fermions dressed by scalars in a fashion that preserves gauge invariance. (D) Nb = N ,
the gauge group is fully higgsed, the flavor SU(Nb) is intact, and U(1)B is spontaneously
broken. The IR phase contains one massless adjoint fermion in the global flavor group
and one Goldstone boson. (E) Nb > N , the gauge group is fully higgsed, and the con-
tinuous symmetry is broken, leading to many Goldstones. These various cases are neatly
summarized in a phase diagram, shown in figure 17 below.

6 Conclusions and future prospects

In this work, we analyzed the SU(N) gauge theory with one massless adjoint fermion and
massive matter, either bosonic or fermionic. The special case of one fundamental flavor of
varying mass was analyzed in detail. The abundance of ’t Hooft anomalies involving discrete
chiral symmetry Zχ2N , combined with Vafa-Witten-Weingarten theorems, restricts the bulk
phase quite strongly, which results in spontaneously broken discrete chiral symmetry for any

34The global symmetry is actually SU(Nb)/ZGCD(Nb,N), because the would-be global SU(Nb) and the
SU(N) may have a common center.
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Figure 17. Phase diagram for the SU(N) QCD (f/adj) with fundamental scalars. “Composite
fermions” here means the UV adjoint fermion dressed with the scalar fields in a gauge-covariant
way under the gauge group SU(N −Nb) after higgsing. The theory loses asymptotic freedom and
is not well-defined in the UV when Nb/N > 18.

mass of the fundamental fermion or boson, leaving N degenerate vacua in the bulk. Further,
the bosonic theory is related to fermionic theory in the sense that when the boson condenses,
the theory is higgsed down to SU(N−1) with one fundamental fermion. So most conclusions
about the theory with fundamental bosons can be drawn by studying the fermionic theory.

The massless fundamental fermion limit is particularly interesting, where the discrete
chiral symmetry enhances to U(1)χ, and the domain walls melt into Goldstone bosons.
Studying the small fundamental mass regime can be done systematically by perturbing
the Goldstone theory. In particular, we studied the domain walls between the N vacua
and, with the exception of the one T -preserving domain wall, found them all to be trivial.
On the other hand, in the opposite limit of infinite fundamental fermion mass, the theory
becomes Super Yang-Mills, of which many things are known. The domain walls of Super
Yang-Mills are conjectured to hold a TQFT. As the fundamental fermion mass is dialed
from small to large, no bulk phase transition occurs, but our analysis shows that a transition
must occur on the domain wall. Further, we conjectured that the domain wall theory is
IR dual to the corresponding SU(N) gauge theory with both fundamental and adjoint
matter in 3d. Of particular interest is the T -preserving domain wall, which exists if N is
even. This domain wall cannot be made trivial as it carries a U(1)B − T mixed anomaly.
The corresponding 3d theories were studied in [36], where it was proposed that anomalies
can be saturated either by composite fermions or spontaneous T -breaking, with large N
arguments favoring the latter. The 4d domain wall analysis indicates that T breaking is
preferred, at least for a small enough mass of the fundamentals. We, however, speculate
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that there may be a composite fermion phase on the domain wall for some intermediate
mass of the fundamentals for N = 2. We also discuss the decoupling limit of adjoints which
results in the usual QCD.

We generalized the one fundamental flavor case to multi-flavors and discussed the
bounds on the conformal window from the a-theorem and the Banks-Zacks 2-loop fixed
point. For a sufficiently low number of flavors, we analyze the chiral Lagrangian and map
out the phase diagram in the bulk and on the domain wall. As with one flavor, we discuss
the decoupling limit of adjoints.

We end this section by discussing some future prospects. The conjectures about the
bulk phase analyticity can be tested on the lattice. More interesting would be to study
domain walls on the lattice, or the corresponding 3d gauge theories. The lattice studies of
domain walls would require using twisted boundary conditions or spatially varying θ-term,
which generically introduce a complex action problem that hinders numerical simulations.
Studies of corresponding 3d theories directly also generically require bare Chern-Simons
terms and complex fermionic measures, which again hinders lattice studies. Another inter-
esting approach is to study soft SUSY deformations of super QCD setup, and see carefully
what happens on the domain walls as supersymmetry is broken.
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A Majorana and Weyl fermions in the real gauge group representation

A.1 Converting to the Majorana in 4d

Consider a Weyl fermion in 4d Lorentz space given by the action

λ̄iDλ , (A.1)

where D = σµDµ with
σµ = (I, τ1, τ2, τ3) , (A.2)

and τ i are the Pauli matrices. We will take Dµ to be the covariant derivative in a real
representation of some gauge group, so that D∗

µ = Dµ.
We can write the complex Weyl fermion as a real fermion by writing λ = λ1 + iλ2.

Then we have that

λ̄iDλ = λT1 iσ
µDµλ1 + iλT2 σ

µDµλ2 − λT1 σ
µDµλ2 + λT2 σ

µDµλ1 . (A.3)

Then we have that λ1iσ
µDµλ1 and λ2iσ

µDµλ2 do not get a contribution from the anti-
symmetric σ2 matrix, while −λ1σ

µDµλ2 and λ2σ
µDµλ1 do not get a contribution from the
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symmetric matrices I, σ1, σ3. Now organize λ1 and λ2 into a column vector Ψ =

λ1

λ2

.

We can write the above action as
ΨT iΓµDµΨ , (A.4)

where

Γ0 =

I 0
0 I

 Γ1 =

σ1 0
0 σ1

 (A.5)

Γ2 =

 0 iσ2

−iσ2 0

 Γ3 =

σ3 0
0 σ3

 (A.6)

Now let us set

C =

 0 iσ2

iσ2 0

 . (A.7)

Notice that the matrix is real and anti-symmetric. It is also unitary because C† = C−1.
We want to set Γµ = Cγµ, so that γµ = C−1Γµ. We then have that

λ̄iDλ = iΨTCγµDµΨ , (A.8)

with

γ0 =

 0 −iσ2

−iσ2 0

 γ1 =

 0 −σ3

−σ3 0

 (A.9)

γ2 =

−I 0
0 I

 γ3 =

 0 σ1

σ1 0

 , (A.10)

Note that all the Gamma-matrices are purely real. One can also check that γµ as defined
above satisfy the Clifford algebra

{γµ, γν} = 2 diag(−1, 1, 1, 1)µν (A.11)

A.2 The weight of the Dirac and Majorana fermion in 4d, with real gauge
representation

If we have a Dirac fermion in 4d spacetime, we can write its Euclidean action as

S =
∫
d4x Ψ̄i /DΨ , (A.12)

where /D = γµDµ is the Dirac operator, and Dµ is a covariant derivative Dµ = ∂µ + Aµ,
where Aµ is the gauge field in the real representation of some group G, i.e. A∗

µ = Aµ.
In Euclidean space i /D is Hermitian, and so its eigenvalues are real. Let ψn be the

eigenfunctions of i /D with eigenvalues λn. Then we can decompose

Ψ =
∑
n

αnψn , (A.13)

Ψ̄ =
∑
n

ᾱnψ
†
n , (A.14)
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where αn and ᾱn are independent Grassmann numbers, and where35 ∫ d4x ψ†
nψm = δnm.

We have that the action is given by

S =
∑
n

λnᾱnαn , (A.15)

so if we define the measure of the Grassmann integral as36 ∏
n(idᾱndαn) we have that the

path-integral weight is ∏
n

(iλn) = det /D . (A.16)

Notice that because { /D, γ5} = 0 we have that for every eigenstate ψn with eigenvalue λn
there exists an eigenstate γ5ψn with the eigenvalue −λn. So we can rewrite (assuming no
λn = 0) ∏

n

(iλn) =
∏

n|λn>0
λ2
n . (A.17)

so that the weight is positive definite. In addition we will see that each eigenvalue λn is
twice degenerate because it forms a Kramers doublet.

Now let us move to Majorana fermions. In this case Ψ̄ = ψTC where C is a unitary,
anti-symmetric matrix with the property

CγµC−1 = −(γµ)T . (A.18)

Now notice that the Dirac operator i /D has a degeneracy, because if ψn has an eigenvalue
λn, then C−1ψ∗

n has the same eigenvalue. Indeed, since (γµ)† = γµ, we have

i /DC−1ψ∗
n = −C−1i /D

T
ψ∗
n = C−1(i /D†

ψn)∗ = C−1(i /D†
ψn)∗ = λnC

−1ψ∗
n . (A.19)

Moreover C−1ψ∗
n is orthogonal to ψn by the anti-symmetry of C, i.e.

(C−1ψ∗
n)†ψn = ψTnCψn = 0 . (A.20)

So i /D has at least a double degeneracy of the spectrum.
One can also see this as a Kramers degeneracy [44]. Indeed if K is a complex con-

jugation operator, we define T = C−1K an operator which commutes with i /D. Now
T 2 = C−1KC−1K = −C−1C = −1, where we used the unitarity and anti-symmetry of C.

Let us hence label ψin with i = 1, 2 labels the Kramers doublet. Now we expand the
Majorana fermion fields as

Ψ =
∑
n,i

αinψ
i
n , (A.21)

Ψ̄ =
∑
n,i

αin(ψin)TC . (A.22)

35If there are degeneracies λn = λm for n ̸= m we can still choose that degenerate eigenstates are
orthogonal.

36The factor of i is there by convention, and is just an overall normalization. In this convention the
weight is always positive.
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Now notice that ∫
d4x (ψin)TCi /Dψjm = λm

∫
(ψin)TCψm (A.23)

On the other hand we have that, by partially integrating,∫
d4x (ψin)TCi /Dψjm =

∫
d4x( /Dγµψin)TCψjm = λn

∫
d4x(ψin)TCψjm . (A.24)

Combining the two expressions we have that37

∫
d4x(ψin)TCψjm = 0 if n ̸= m . (A.25)

On the other hand if n = m then we see that the expression
∫
d4x(ψin)TCψjn is anti-

symmetric in i and j. We use a natural normalization∫
d4x(ψin)TCψjn = ϵij . (A.26)

Then the action becomes
S =

∑
n

λnα
i
nα

j
nϵij . (A.27)

Now we define the measure to be ∏
n

(idα1
ndα

2
n) , (A.28)

so that the weight is ∏
n

(iλn) =
∏

n|λn>0
λ2
n . (A.29)

where the product over λn is only over one of the Kramers doublet eigenvalue. The above
is manifestly positive.

B Spectral flow

Consider a first-order differential operator

D = I∂τ +A(τ) . (B.1)

where A(τ) and I are an N ×N Hermitian and identity matrices respectively. We want to
look for the zero modes of the above operator. We solve the differential equation

Dψ = 0 . (B.2)

Now let us decompose ψ =
∑N
n=1 cn(τ)χn(τ) into the instantaneous eigenvectors χn(τ) of

A(τ), i.e.
A(τ)χn(τ) = λn(τ)χn(τ) . (B.3)

37We will assume that the only degeneracy in the spectrum is the Kramers degeneracy so that λn = λm

implies n = m.
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We have that the zero-mode equation becomes equivalent to

∂τ cn + λncn +
N∑
m=1

Mnmcm = 0 (B.4)

where the matrix Mnm is an anti-Hermitian matrix given by

Mnm = χ†
m∂τχn . (B.5)

Let us put the coefficients cn into a complex vector c, and λn into a diagonal matrix AD.
Then we have that

c(τ) = Pe−
∫ τ

0 dτ̃(AD(τ̃)+M(τ̃))c(0) . (B.6)

Now let us discuss this solution in the adiabatic approximation limit. Namely if we differ-
entiate the equation (B.3), ignoring the derivative of A and the derivative of λn as small,
we have that (sum over m implied)

λmMmn −Mmnλn = 0 ⇔ ΛM −MAD = 0 , (B.7)

so Mmn, commuting with AD must be diagonal unless AD has exact degeneracies. Let us
assume that this is the case. Then the equation (B.6) implies that if we start with cn(0) not
equal to zero for only some n and zero for others, it will stay that way. The diagonal matrix
M is just the Barry phase of individual eigenstates. Now notice that only cn(τ) for which
λn is positive for τ → ∞ and negative for τ → −∞ can be kept if we want normalizable
ψ(τ). Hence we conclude that the operator D has as many zero modes as the net spectral
flow. If operator A(τ) still has some degeneracies, the story is similar because we can
always diagonalize M in the subspace of the degeneracies without affecting the discussion.

C β-function

The 3-loop β function for nR Weyl fermions in representation R of SU(N) Yang-Mills
theory is given by (see [56, 57])

β(g) = −β0
g3

(4π)2 − β1
g5

(4π)4 − β2
g7

(4π)6 ,

β0 = 11
6 C2(G)−

∑
R

1
3TRnR ,

β1 = 34
12C

2
2 (G)−

∑
R

nR

{5
6C2(G)TR + 1

2C2(R)TR
}
,

β2 = 2857
432 C

3
2 (G)−

∑
R

nRTR
4

[
−C

2
2 (R)
2 + 205C2(G)C2(R)

36 + 1415C2
2 (G)

108

]

+
∑
R,R′

nRnR′TRTR′

16

[44C2(R)
18 + 158C2(G)

54

]
,

(C.1)

where G denotes the adjoint representation. The quadratic Casimir of representation R,
C2(R), is

taRt
a
R = C2(R)1R , (C.2)
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and C2(G) is the quadratic Casimir of the adjoint representation. TR is the Dynkin index,
which is defined via

tr
[
taRt

b
R

]
= TRδ

ab . (C.3)

From eqs. (C.2) and (C.3), we obtain the relation

TRdimG = C2(R)dimR , (C.4)

where dimR is the dimension of R. In particular, using the convention TR = 1 for the
fundamental representation R = , we have C2(G) = 2N , dimG = N2 − 1.
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any medium, provided the original author(s) and source are credited.
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