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Abstract—The sixth generation (6G) network is envisioned to
cover remote areas, with the help of satellites and unmanned
aerial vehicles (UAVs). Considering the vastness of remote areas
and the sparsity of users therein, we investigate a cognitive
satellite-UAV network, where satellites and UAVs coordinately
share spectrum to provide low-rate and high-rate services in
a complementary manner. Multiple UAVs form a virtual an-
tenna array to serve unevenly distributed users via multiple-
input-multiple-output (MIMO) non-orthogonal multiple access
(NOMA). An on-demand coverage framework is proposed so
as to dynamically focus the communication resources on target
users. In the framework, a radio map recording the slowly-
varying large-scale channel state information (CSI) is utilized.
Different from traditional pilot-based approaches, the large-scale
CSI is obtained by a lookup in the radio map per the position
information of users and UAVs, during the online optimization of
the network. In this way, the system overhead could be largely
reduced. To explore the potential gain of such a framework,
we formulate a joint power allocation problem to maximize the
minimum user rate, which is not only non-convex but also with
implicit expressions. We recast the problem after uncovering
its mathematical characteristics, and derive its locally-optimal
solution in an iterative manner. Simulation results corroborate
that the proposed framework can significantly improve the
coverage performance at a low cost.

Index Terms—Cognitive satellite-UAV network, large-scale
channel state information (CSI), non-orthogonal multiple access
(NOMA), on-demand coverage, unmanned aerial vehicle (UAV).
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I. INTRODUCTION

Although the deployment of current fifth generation (5G)
networks is globally well underway, the remote areas are still
largely unconnected [1], [2]. This leads to the increasingly
crucial digital divide problem [3]. In remote areas, we can
hardly establish terrestrial communication infrastructures, due
to harsh geographical environments and insufficient power
supply. Even if we could, a high cost is often incurred. Non-
terrestrial communication infrastructures, e.g., satellites [4],
[5] and unmanned aerial vehicles (UAVs) [6], thereby become
indispensable to tackle this problem. Due to the vastness of
remote areas and the typical sparsity of users therein, one
may utilize satellites and UAVs in a cognitive and synergistic
manner, and design on-demand coverage strategies to focus
communication resources on target users. This leads to a
cognitive satellite-UAV network (CSUN) with ‘oasis’-oriented
coverage, which would be more agile and more efficient than
conventional ‘blanket’-coverage-oriented approaches.

Key practical concerns for designing such a CSUN lie in the
following aspects. Firstly, spectrum sharing between satellites
and UAVs is necessary to alleviate the spectrum scarcity
problem. However, the footprint of satellite is usually large,
and the UAV is sometimes dynamically moving. This leads to
more dynamic and more complex co-channel interference than
conventional cognitive radio within terrestrial communication
infrastructures. Secondly, a UAV swarm is often required, as a
single UAV is insufficient for covering vast areas sometimes,
due to its limited payload. However, more UAVs generally lead
to more complexity. Thirdly, the access distance of different
remote-area users varies a lot, which requires agile multiple
access technologies. This further complicates the on-demand
coverage design.

The aforementioned concerns motivate a CSUN consisting
of satellites and multiple UAVs, working in a shared spectrum.
The UAVs coordinately form a virtual antenna array to serve
unevenly distributed users via multiple-input-multiple-output
(MIMO) non-orthogonal multiple access (NOMA). In this
particular CSUN, channel state information (CSI) is crucial for
satellite-UAV interference mitigation, multi-UAV coordinated
transmission, and NOMA design, all of which are vital to
achieve on-demand coverage. However, instantaneous CSI
acquisition in such CSUNs will render a large amount of
system overhead, and is therefore challenging in practice,
especially when the channel varies quickly. To tackle this
problem, a pre-established radio map recording the large-scale
CSI from historical and/or specially measured channel data can
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be used. During the online optimization of the network, one
may obtain large-scale CSI via simply looking up the radio
map, according to the position information of target users and
UAVs. In this vision, we need a new optimization framework
to exploit the large-scale CSI, paving the way for utilizing
radio maps for on-demand coverage.

A. Related Works

1) Satellite-UAV Integration: Using current technologies,
neither satellites nor UAVs are capable of providing on-
demand coverage in remote areas on their own. As shown
in [2], satellites are good at wide-area coverage, but their
communication rate is relatively low. UAVs may provide high-
rate transmissions if they fly to users as closely as required,
but the size of the coverage area is usually limited. Some re-
searchers have thus focused on satellite-UAV coordination [7],
while skillfully exploiting the unique features of dedicated
Internet-of-Things applications [8]. For instance, Zhang et al.
[9] considered a hybrid satellite-UAV network where UAVs
receive signals from the satellite and relay them to ground
users based on the decode-and-forward protocol. Kong et al.
[10] further adopted a selective decode-and-forward protocol
in a downlink UAV relay system, where the satellite signals
with low signal-to-noise ratio are removed at the UAV. Yao
et al. [11] used the UAV to relay delay-sensitive data, e.g.,
the disaster warning information, to the satellite for realtime
applications. In similar scenarios, Lee et al. [12] leveraged
the multi-agent Reinforcement Learning approach to reduce
energy consumption. Li et al. [13] optimized the trajectory
and power allocation of UAV to enable secure communications
between the satellite and ground users in the presence of eaves-
droppers. UAV selection was considered for better relaying in
the multi-UAV case [14].

In addition to the aforementioned works where UAVs are
used as relays, some recent research efforts have been devoted
to satellite-UAV spectrum sharing [15]. Li et al. [16] improved
the coverage performance of a CSUN under the constraint of
average interference temperature for spectrum sharing. Luo
et al. [17] investigated opportunistic spectrum access for
UAVs, which share spectrum with both satellites and terrestrial
cellular networks. Hua et al. [18] optimized the satellite-UAV
network with spectrum sharing by cognitive radio techniques.
These studies imply that satellite-UAV integration is important,
and spectrum sharing between satellites and UAVs is promis-
ing to solve the spectrum scarcity problem. In all these works,
CSI is indispensable to mitigate the co-channel interference
due to spectrum sharing. However, most existing studies have
assumed full instantaneous CSI [17], [18], which usually lead
to an overwhelming system cost in practice.

2) Multi-UAV Coordination: While most earlier studies
have focused on the use of a single UAV [19]–[21], recent
research attention has turned to multi-UAV coordination. Wu
et al. [22] pointed out that the coverage of a single UAV would
be limited by its practical payload, size, and power constraints.
This problem would become more severe in remote areas,
where UAVs may play a critical role in coverage enhancement.
For the multi-UAV case, UAVs can work independently to

serve different users. For example, Bejaoui et al. [23] consid-
ered a UAV-user pairing scheme, where in each time slot one
UAV pairs with a single user for transmission. Furthermore,
Valiulahi et al. [24] and Li et al. [25] proposed enhanced user
association schemes, where each UAV was assigned to cover a
group of neighboring users. To avoid inter-UAV interference,
Chen et al. [26] allocated orthogonal radio resources to UAVs
with overlapped coverage.

In addition to user association, multiple UAVs can also
coordinately perform signal transmissions. Liu et al. [27] pre-
sented a coordinated transmission architecture, where multiple
UAVs form a virtual antenna array to leverage MIMO tech-
nologies for coverage enhancement [28]. Nevertheless, MIMO
transmission designs need CSI and most existing studies have
assumed full CSI, which may lead to an overwhelming system
cost for channel estimation and CSI feedback. Moreover, in
remote areas, the CSI exchange among different communica-
tion infrastructures become more challenging, due to large-
span network topology and spatiotemporal system dynamics.
How to perform efficient multi-UAV coordination for CSUNs
with limited CSI, is still an open problem.

3) NOMA-Based UAV Communications: In remote areas,
users are usually sparsely and unevenly distributed, so that
their channel conditions are usually largely different. For
such scenarios, traditional orthogonal multiple access (OMA)
schemes would inevitably result in a performance loss [29],
and NOMA-based communications become promising. For the
single-UAV NOMA case, Nasir et al. [30] jointly optimized
the UAV altitude, the transmit beam-width and radio resource
allocation to improve user fairness. Also for better user fair-
ness, Cui et al. [31] jointly optimized the UAV trajectory and
power allocation. Liu et al. [32] maximized the sum rate by
jointly optimizing the placement and power allocation of the
UAV. Considering the Quality-of-Service (QoS) requirement,
Tang et al. [33] maximized the number of users with satisfied
QoS for NOMA-based UAV communications. Hu et al. [34]
minimized the total transmit power of a NOMA-based UAV
communication system.

In the more practical multi-UAV case, very few works have
considered the utilization of NOMA in CSUNs. By assuming
that each user is served by at most one UAV, the authors of [35]
have investigated the corresponding user-association strategies.
Besides, most existing studies [30]–[34] have adopted the free
space path loss as the simplified channel model, which cannot
precisely characterize the usually-harsh propagation conditions
in remote areas.

4) Radio Map: In traditional cognitive radio networks,
the radio map was designed for agile spectrum access [36].
It typically stored multi-domain information abstracted from
geolocation database, spectrum occupation, propagation en-
vironment, and so on. Another typical application of the
radio map is fingerprint-based localization [37]. For this
purpose, both crowdsourced received signal strength (RSS)
measurements and sophisticated updating schemes would be
crucial to tackle the environmental dynamics. To reduce the
cost for establishing a radio map, some researchers have
devoted to radio map interpolation by using, e.g., tailored ray-
tracing acceleration [38]. These studies have corroborated the
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promising benefits of using radio map in indoor [39] and urban
environments [40]. They also shed lights on the utilization
of radio maps in remote areas. However, in remote areas,
maintaining an update-to-date fine-grained radio map would
become more challenging, due to the much larger spatial-
temporal dynamics [41]. For example, the building map can
be used to improve the construction accuracy of radio map for
urban environments [42]. Contrarily, the accurate geographic
information for an open and vast remote area is usually hard
to acquire.

In light of the aforementioned studies and the unique charac-
teristics of remote areas, we use a coarse-grained radio map in
this work, which records the large-scale CSI only, rather than
the RSS data [36], [37], [39], [40]. The large-scale CSI varies
slowly and usually is easy to obtain in practice. Inevitably,
without the small-scale CSI, there would be a performance
loss. The goal of this paper is to explore the potential gain
by using the large-scale CSI only, and show the pathway of
obtaining this gain. Note that, how to construct an accurate
radio map for the considered scenario still remains open and
is out of the scope of this paper. Both geographic information
and machine learning methods could be utilized towards this
end in the future work. Since the remote area is usually vast,
radio map interpolation should also be considered so as to
maintain the updating under the dynamic movement of both
satellites and UAVs.

B. Main Contributions
This work investigates a more general CSUN towards on-

demand coverage. Unlike [17], [18], [27] that relied on full
CSI, we only assume the availability of large-scale CSI at the
transmitters. Also, unlike [30]–[34] that focused on a single
UAV, the utilization of NOMA is considered in the more
powerful multi-UAV case. Besides, a composite channel model
consisting of both large-scale and small-scale channel fading
is adopted, which is more practical than the free space path
loss model [30]–[34]. The main contributions of this paper are
summarized as follows.

1) A practical and general model for CSUNs is proposed,
where satellites and UAVs coordinately share spectrum
to cover low-rate and high-rate users, respectively. Mul-
tiple UAVs form a virtual antenna array to serve un-
evenly distributed users via MIMO-NOMA. Motivated
by practical applications, a composite channel model
consisting of both large-scale and small-scale channel
fading is considered. We use a pre-established radio
map, which records the large-scale CSI from historical
and/or specially measured channel data. Only the large-
scale CSI, obtained via looking up the radio map, is used
for on-demand coverage optimization.

2) A joint power allocation problem is formulated to max-
imize the minimum user rate for on-demand coverage
optimization. The problem is proved to be non-convex
with intractable implicit expressions. By leveraging the
random matrix theory and the successive convex op-
timization tools, we propose an iterative algorithm to
solve the problem. Further, the convergence of the
algorithm is proved.

3) Based on the solution to the optimization problem, a
power allocation scheme is derived, which can focus
communication energy on target users at a largely-
reduced system cost. It is observed that although the
radio map established based on large-scale CSI only fails
to characterize some detailed channel dynamics, it could
still be used to achieve a significant improvement in the
on-demand coverage framework.

The rest of this paper is organized as follows. We introduce
the system model and problem formulation in Section II. In
Section III, we solve the problem in an iterative way and
accordingly derive a power allocation scheme for radio-map-
based on-demand coverage optimization. Then, in Section IV,
We provide simulation results and discussions. Conclusions
will finally be given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a practical and general
CSUN, where a satellite and N UAVs coordinately share
spectrum to cover low-rate and high-rate users, respectively.
All UAVs form a virtual antenna array to serve unevenly
distributed users via MIMO-NOMA. The high-rate users are
grouped into pairs of two users for NOMA transmission.
Different pairs are served by orthogonal resource blocks.

Without loss of generality, we focus on an arbitrary pair of
users, namely U (1) and U (2). We assume that U (1) directly
decodes its own message, while U (2) performs successive
interference cancellation (SIC) before decoding its message.
The number of antennas equipped at each high-rate user is
assumed as N , which is the same as the number of UAVs.
Due to spectrum sharing, signals from the UAV swarm will
possibly interfere satellite users, i.e., the low-rate users, which
are denoted as U

(j)
S , j = 1, ..., J . Note that the interference

from satellite to high-rate users also exist, which however is
relatively weak and can be ignored. A radio map is established
in advance, we obtain the large-scale CSI by looking up the
radio map according to the position of target users, i.e., U (1),
U (2), and U

(j)
S , j = 1, ..., J .

The received signal at U (k), k = 1, 2, can be expressed as

y(k) = H(k)
2∑

m=1

x(m) + n(k), (1)

where H(k) ∈ CN×N represents the channel matrix between
the UAV swarm and user U (k), and x(m) ∈ CN×1 denotes
the transmitted signal of user U (m), and n(k) ∈ CN×1 is
the additive white Gaussian noise with independently and
identically distributed (i.i.d.) entries according to CN (0, σ2).
We define

P(k) = E
[
x(k)x(k)H

]
= diag

{
P

(k)
1 , ..., P

(k)
N

}
, (2)

where P
(k)
n represents the transmit power of the n-th UAV to

U (k). We have

P (k)
n ≥ 0, k = 1, 2, n = 1, ..., N, (3)

P (1)
n + P (2)

n ≤ Pmax, n = 1, ..., N, (4)

where Pmax is the maximum transmit power of each UAV.
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Fig. 1. Illustration of a general CSUN, where satellites and UAVs coordinately
share spectrum to cover low-rate and high-rate users, respectively. Multiple
UAVs form a virtual antenna array and serve unevenly distributed users via
MIMO-NOMA. A radio map is established in advance, which records the
per-position large-scale CSI for on-demand coverage optimization.

The channel from the UAV swarm to U (k) is modeled as

H(k) = S(k)L(k), (5)

where S(k) ∈ CN×N denotes the Rayleigh small-scale fad-
ing with i.i.d. entries according to CN (0, 1), and L(k) =

diag{l(k)1 , ..., l
(k)
N } denotes the slowly-varying large-scale

channel fading. l(k)n can be modeled as [43]

l(k)n = 10
− 1

20

(
A

1+a·e−b(θ
(k)
n −a)

+B(k)
n

)
, (6)

where

A = ηLoS − ηNLoS , (7)

B(k)
n = ηNLoS + 20 log10

(
4πfd

(k)
n

c

)
. (8)

ηLoS , ηNLoS , a and b are constant parameters per propagation
environments. d(k)n and θ

(k)
n denote the distance and elevation

angle between the n-th UAV and U (k), respectively. f denotes
the carrier frequency and c is the speed of light.

Likewise, we express the channel from the UAV swarm to
U

(j)
S , j = 1, ..., J , as

H
(j)
S = s

(j)
S L

(j)
S , (9)

L
(j)
S = diag{l(j)S,1, ..., l

(j)
S,N}. (10)

Since we can only obtain the large-scale CSI from the radio
map, we have to carefully handle the unknown small-scale
fading. In practice, the leakage interference from UAV swarm
to satellite users would act as extra ‘background noise’. To

derive the total ‘noise’ power, we can calculate the average
power of interference by taking the expectation operation over
the unknown small-scale fading as

I
(j)
S = E

s
(j)
S

[
H

(j)
S

(
P(1) +P(2)

)(
H

(j)
S

)H]
=

N∑
n=1

(
P (1)
n + P (2)

n

)(
l
(j)
S,n

)2
. (11)

Under the spectrum-sharing regime, the satellite users have
a maximum tolerable average power of leakage interference,
which is determined by their capability of fighting noise, and
is called interference temperature in this work. We denote it
as I0. Then, we have

I
(j)
S =

N∑
n=1

(
P (1)
n + P (2)

n

)(
l
(j)
S,n

)2
≤ I0, j = 1, ...J. (12)

According to the principle of MIMO-NOMA, the achievable
ergodic rate of U (1) should be

R(1) = min
(
R(1→1), R(2→1)

)
, (13)

where R(1→1)(P(1),P(2)) and R(2→1)(P(1),P(2)) are shown
in (14) and (15), respectively (on the top of the next page).
With perfect SIC, the achievable ergodic rate of U (2) should
be

R(2) = R(2→2)(P(2))

= EH(2)

[
log2 det

(
IN +

1

σ2
H(2)P(2)H(2)H

)]
. (16)

We compare on-demand coverage with conventional blanket
coverage in Fig. 2. For on-demand coverage, the focus of cov-
erage dynamically changes with the position of target users.
This is quite different from conventional blanket coverage, by
which the network statically covers all areas, regardless of the
user’s positions. Due to the vastness of remote areas, one has to
focus limited communication resources, e.g., transmit power,
on target users, so as to achieve desirable high-rate services.
This relies on the on-demand coverage strategy, under which
the covered area is just like the oasis of desert. Thus, we call
also on-demand coverage as oasis-oriented coverage. Toward
realizing this vision, to focus communication energy on target
users, we maximize the minimum achievable ergodic rate of
high-rate users, under transmit power constraints and leakage
interference constraints, as

max
P(1),P(2)

min
(
R(1), R(2)

)
(17a)

s.t. P (k)
n ≥ 0, k = 1, 2, n = 1, ..., N, (17b)

P (1)
n + P (2)

n ≤ Pmax, n = 1, ..., N, (17c)
N∑

n=1

(
P (1)
n + P (2)

n

)(
l
(j)
S,n

)2
≤ I0, j = 1 ∼ J, (17d)

which is challenging due to its non-convexity and the implicit
expressions of R(1→1)(P(1),P(2)), R(2→1)(P(1),P(2)) and
R(2→2)(P(2)). In the following, we will tackle these difficul-
ties in a divide-and-conquer manner.
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On-demand coverage the focus of coverage 

dynamically changes with the position of target users.

Blanket coverage statically covers all area, 

regardless of the user's positions.

1
t

2
t

k
t

Fig. 2. On-demand coverage versus conventional blanket coverage.

R(1→1)(P(1),P(2)) = EH(1)

[
log2 det

(
IN +

(
σ2IN +H(1)P(2)H(1)H

)−1

H(1)P(1)H(1)H
)]

. (14)

R(2→1)(P(1),P(2)) = EH(2)

[
log2 det

(
IN +

(
σ2IN +H(2)P(2)H(2)H

)−1

H(2)P(1)H(2)H
)]

. (15)

III. POWER ALLOCATION FOR ON-DEMAND COVERAGE

We introduce a slack variable r and recast the problem as

max
r,P(1),P(2)

r (18a)

s.t. r ≤ R(1→1)(P(1),P(2)), (18b)

r ≤ R(2→1)(P(1),P(2)), (18c)

r ≤ R(2→2)(P(2)), (18d)
(17b), (17c), (17d),

which turns to be more tractable, as the remaining difficulties
all lie in the right-side of (18b)-(18d), i.e., R(1→1)(P(1),P(2)),
R(2→1)(P(1),P(2)) and R(2→2)(P(2)). We observe that
R(1→1)(P(1),P(2)), R(2→1)(P(1),P(2)) and R(2→2)(P(2))
have similar substructures, on which we can further regularize
the optimization problem. Thus, in the following, we will first
unify the forms of R(1→1)(P(1),P(2)), R(2→1)(P(1),P(2))
and R(2→2)(P(2)) as simple combinations of a general func-
tion R(P,L). Then, in Subsection A, we will introduce an
accurate approximation of R(P,L) to simplify its expression.
A new function transformation will be proposed in Subsec-
tion B, which brings about desirable monotonic functions
that can help to handle the non-convexity of (18b)-(18d).
Meanwhile, we also introduce a slack variable t, which
although increases the dimension of optimization variables, but
successfully makes the problem easy to optimize. Accordingly,
in Subsection C, we resort to the first-order Taylor expansion
to solve the problem in an iterative way.

Define

R
(1→1)
1 (P(1),P(2))

= E

[
log2 det

(
IN +

1

σ2
H(1)

(
P(1) +P(2)

)
H(1)H

)]
,

(19)

R
(1→1)
2 (P(2))

= E

[
log2 det

(
IN +

1

σ2
H(1)P(2)H(1)H

)]
. (20)

Then, from (14), we have

R(1→1)(P(1),P(2))

= R
(1→1)
1 (P(1),P(2))−R

(1→1)
2 (P(2)). (21)

Likewise, we rewrite R(2→1) as

R(2→1)(P(1),P(2))

= R
(2→1)
1 (P(1),P(2))−R

(2→1)
2 (P(2)), (22)

where

R
(2→1)
1 (P(1),P(2))

= E

[
log2 det

(
IN +

1

σ2
H(2)

(
P(1) +P(2)

)
H(2)H

)]
,

(23)

R
(2→1)
2 (P(2))

= E

[
log2 det

(
IN +

1

σ2
H(2)P(2)H(2)H

)]
. (24)

We unify the forms of (16), (19), (20), (23), and (24) as

R(P,L) = EH

[
log2 det

(
IN +

1

σ2
HPHH

)]
= ES

[
log2 det

(
IN +

1

σ2
SLPLSH

)]
, (25)

where P = diag{P1, ..., PN}, L = diag{l1, ..., lN}, and
S ∈ CN×N is with i.i.d. entries according to CN (0, 1). It
is obvious that

R(1→1) = R(P(1) +P(2),L(1))−R(P(2),L(1)), (26)

R(2→1) = R(P(1) +P(2),L(2))−R(P(2),L(2)), (27)

R(2→2) = R(P(2),L(2)). (28)

We consequently recast (18) as

max
r,P(1),P(2)

r (29a)

s.t. r ≤ R(P(1) +P(2),L(1))−R(P(2),L(1)), (29b)

r ≤ R(P(1) +P(2),L(2))−R(P(2),L(2)), (29c)

r ≤ R(P(2),L(2)), (29d)
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(17b), (17c), (17d).

A. Approximation of R(P,L)

To remove the expectation operator in R(P,L), we approx-
imate it by using the random matrix theory as [44]

R(P,L) ≈ R̃(P, u,L) =

N∑
n=1

log2

(
1 +

NPnl
2
n

uσ2

)
+N

[
log2 u− log2 e

(
1− 1

u

)]
, (30)

where u satisfies

u ≥ 1, (31)

1− 1

u
=

N∑
n=1

Pnl
2
n

σ2u+NPnl2n
. (32)

(30)-(32) can be derived directly according to the Theorem 1
in [45].

We define g(P, u,L) as

g(P, u,L) = 1− 1

u
−

N∑
n=1

Pnln
2

σ2u+NPnln
2 , (33)

and one has
g(P, u,L) = 0, (34)

which is equivalent to (32). Because this approximation is
quite accurate (as shown in Appendix A), we substitute
R̃(P, u,L) for R(P,L), and accordingly recast (29) as

max
r,P(1),P(2),u

r (35a)

s.t. r ≤ R̃(P(1) +P(2), u
(1→1)
1 ,L(1))

− R̃(P(2), u
(1→1)
2 ,L(1)), (35b)

r ≤ R̃(P(1) +P(2), u
(2→1)
1 ,L(2))

− R̃(P(2), u
(2→1)
2 ,L(2)), (35c)

r ≤ R̃(P(2), u(2→2),L(2)), (35d)

g(P(1) +P(2), u
(1→1)
1 ,L(1)) = 0, (35e)

g(P(2), u
(1→1)
2 ,L(1)) = 0, (35f)

g(P(1) +P(2), u
(2→1)
1 ,L(2)) = 0, (35g)

g(P(2), u
(2→1)
2 ,L(2)) = 0, (35h)

g(P(2), u(2→2),L(2)) = 0, (35i)
u ≥ 1, (35j)
(17b), (17c), (17d),

where u = [u
(1→1)
1 , u

(1→1)
2 , u

(2→1)
1 , u

(2→1)
2 , u(2→2)]T is an

introduced slack vector. Because we have replaced five terms
in (29), i.e., R(P(1) + P(2),L(1)), R(P(2),L(1)), R(P(1) +
P(2),L(2)), R(P(2),L(2)) in the right side of (29c), and
R(P(2),L(2)) in the right side of (29d), u has five entries.
(35e)-(35i) are accordingly derived from (34), while (35j) is
obtained from (31). Note that in the following subsection, we
will further slack (35e)-(35i) by using the monotonicity of
g(P, u,L). The R(P(2),L(2)) in the right side of (29c) and

(29d) will be slacked differently due to the minus operator be-
fore the R(P(2),L(2)) in the right side of (29c). Consequently,
we use different approximations to substituting them in (35).
Till now, the expectation operators have been eliminated.
However, the problem in (35) remains challenging, due to
the non-convexity of R̃(P, u,L), and the implicit constraints
related to u.

B. Problem Transformation

We define

f(P, u,L) = log2 e ·
N∑

n=1

[
log

(
1 +

NPnln
2

σ2u

)
− NPnln

2

σ2u+NPnln
2

]
+N log2 u. (36)

From (30) and (33), we observe that when g(P, u,L) = 0,

f(P, u,L) = R̃(P, u,L). (37)

Thus, (35) can be recast as

max
r,P(1),P(2),u

r (38a)

s.t. r ≤ f(P(1) +P(2), u
(1→1)
1 ,L(1))

− f(P(2), u
(1→1)
2 ,L(1)), (38b)

r ≤ f(P(1) +P(2), u
(2→1)
1 ,L(2))

− f(P(2), u
(2→1)
2 ,L(2)), (38c)

r ≤ f(P(2), u(2→2),L(2)), (38d)
(35e)− (35j), (17b), (17c), (17d).

We further give the following Theorem 1.

Theorem 1: When u > 1, f(P, u,L) is monotonically in-
creasing with respect to u.

Proof: See Appendix B. □

From (33), one also observes that g(P, u,L) is also mono-
tonically increasing with respect to u when u > 1. Conse-
quently, we can further transform the problem as

max
r,P(1),P(2),u

r (39a)

s.t. r ≤ f(P(1) +P(2), u
(1→1)
1 ,L(1))

− f(P(2), u
(1→1)
2 ,L(1)), (39b)

r ≤ f(P(1) +P(2), u
(2→1)
1 ,L(2))

− f(P(2), u
(2→1)
2 ,L(2)), (39c)

r ≤ f(P(2), u(2→2),L(2)), (39d)

g(P(1) +P(2), u
(1→1)
1 ,L(1)) ≤ 0, (39e)

g(P(2), u
(1→1)
2 ,L(1)) ≥ 0, (39f)

g(P(1) +P(2), u
(2→1)
1 ,L(2)) ≤ 0, (39g)

g(P(2), u
(2→1)
2 ,L(2)) ≥ 0, (39h)

g(P(2), u(2→2),L(2)) ≤ 0, (39i)
(35j), (17b), (17c), (17d).
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Equivalence between the problem in (39) and that in (38)
is shown in the following Proposition 1.

Proposition 1: The problem in (38) and that in (39) are
equivalent.

Proof: The difference between (38) and (39) lies in constraints
(39e)-(39i). If equality holds in (39e)-(39i) when (39) is
optimized, then the two problems are equivalent. In following,
we use the method of proof by contradiction to verify this
assumption.

We assume that (39) is optimized at xA =

[rA,P(1),A,P(2),A, u
(1→1),A
1 , u

(1→1),A
2 , u

(2→1),A
1 , u

(2→1),A
2 ,

u(2→2),A]. If the equality does not hold in (39e), i.e.,

g(P(1),A +P(2),A, u
(1→1),A
1 ,L(1)) < 0, (40)

then, there must exist a u
(1→1),B
1 > u

(1→1),A
1 which satisfies

g(P(1),A+P(2),A, u
(1→1),A
1 ,L(1))

< g(P(1),A +P(2),A, u
(1→1),B
1 ,L(1)) = 0. (41)

This is because of two facts. One is that g is continuous, and
is monotonically increasing with respect to u

(1→1)
1 . The other

is that g → 1 when u
(1→1)
1 → ∞.

Further from Theorem 1, we know that f is monotonically
increasing with u

(1→1)
1 , which derives

f(P(1),A+P(2),A, u
(1→1),A
1 ,L(1))

< f(P(1),A +P(2),A, u
(1→1),B
1 ,L(1)). (42)

Thus, there must exist a rB ≥ rA that satisfies (39c)-(39d),
and

rB ≤ f(P(1),A+P(2),A, u
(1→1),B
1 ,L(1))

− f(P(2),A, u
(1→1),A
2 ,L(1)). (43)

rB > rA holds if equality does not hold in (39c)-(39d).
From the above analysis, we find that xB =

[rB ,P(1),A,P(2),A, u
(1→1),B
1 , u

(1→1),A
2 , u

(2→1),A
1 , u

(2→1),A
2 ,

u(2→2),A] also lies in the feasible region of (39), and follows
a larger r. This contradicts the hypothesis that xA is optimal.
Accordingly, we conclude the all equality should hold in
(39e)-(39i) when (39) is optimized, and the proposition is
therefore proved. □

The problem in (39) is still non-convex. From (36), we
obtain

f(P, u,L) = log2 e·
N∑

n=1

[
− log

(
1− NPnln

2

σ2u+NPnln
2

)
− NPnln

2

σ2u+NPnln
2

]
+N log2 u. (44)

Let

F (t, u) = log2 e ·
N∑

n=1

[− log(1− tn)− tn] +N log2 u. (45)

Obviously, when tn = NPnln
2

σ2u+NPnln2 , n = 1, ..., N , F (t, u) =
f(P, u). The monotonic property of F with respect to t is
shown in the following Theorem 2.

Theorem 2: when 0 < tn < 1, F (t, u) is monotonically
increasing with respect to tn, n = 1, ..., N .

Proof: See Appendix C. □

Let t = [t
(1→1)
1 , t

(1→1)
2 , t

(2→1)
1 , t

(2→1)
2 , t(2→2)]. We trans-

form the problem as

max
r,P(1),P(2),u,t

r (46a)

s.t. r ≤ F (t
(1→1)
1 , u

(1→1)
1 )− F (t

(1→1)
2 , u

(1→1)
2 ), (46b)

r ≤ F (t
(2→1)
1 , u

(2→1)
1 )− F (t

(2→1)
2 , u

(2→1)
2 ), (46c)

r ≤ F (t(2→2), u(2→2)), (46d)

1− 1

u
(1→1)
1

≤ 1

N

N∑
n=1

t
(1→1)
1,n , (46e)

1− 1

u
(1→1)
2

≥ 1

N

N∑
n=1

t
(1→1)
2,n , (46f)

1− 1

u
(2→1)
1

≤ 1

N

N∑
n=1

t
(2→1)
1,n , (46g)

1− 1

u
(2→1)
2

≥ 1

N

N∑
n=1

t
(2→1)
2,n , (46h)

1− 1

u(2→2)
≤ 1

N

N∑
n=1

t(2→2)
n , (46i)

t
(1→1)
1,n ≤ N(P

(1)
n + P

(2)
n )(l

(1)
n )2

σ2u
(1→1)
1 +N(P

(1)
n + P

(2)
n )(l

(1)
n )2

, (46j)

t
(1→1)
2,n ≥ NP

(2)
n (l

(1)
n )2

σ2u
(1→1)
2 +NP

(2)
n (l

(1)
n )2

, (46k)

t
(2→1)
1,n ≤ N(P

(1)
n + P

(2)
n )(l

(2)
n )2

σ2u
(2→1)
1 +N(P

(1)
n + P

(2)
n )(l

(2)
n )2

, (46l)

t
(2→1)
2,n ≥ NP

(2)
n (l

(2)
n )2

σ2u
(2→1)
2 +NP

(2)
n (l

(2)
n )2

, (46m)

t(2→2)
n ≤ NP

(2)
n (l

(2)
n )2

σ2u(2→2) +NP
(2)
n (l

(2)
n )2

, (46n)

0 < t < 1, (46o)
(35j), (17b), (17c), (17d), (46p)

where t
(1→1)
1 , t

(1→1)
2 , t

(2→1)
1 , t

(2→1)
2 , t(2→2) are all N × N

vectors, and (46o) assures that the condition of Theorem 2
holds.

The equivalence between (39) and (46) can be proved using
the same method for Proposition 1. In short, since F is
monotonically increasing with respect to tn, (46) will max-
imize t

(1→1)
1,n , t

(2→1)
1,n , t

(2→2)
n while minimize t

(1→1)
2,n , t

(2→1)
2,n .

Therefore, the equality in all constraints (46j)-(46n) will hold,
and the problem is equivalent to that in (39).

C. Iterative Solution
We solve (46) in an iterative manner via resorting to

the successive convex optimization approach. All non-convex
terms in each constraint are substituted with their first-order
Taylor expansions.
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From (45), we observe that function F is concave with
respect to u, and is convex to tn, n = 1, ..., N . Thus,
constraints (46b)-(46d) are non-convex. The first-order Taylor
expansion of F at a certain ũ can be derived as

Fu(t, u|ũ) = log2 e ·
N∑

n=1

[− log(1− tn)− tn]

+N log2 e ·
[
log (ũ) +

(u− ũ)

ũ

]
. (47)

The first-order Taylor expansion of F at a certain t̃ can be
derived as

Ft(t, u|t̃) = log2 e ·
N∑

n=1

[
− log

(
1− t̃n

)
+

t̃n

1− t̃n
(tn − 1)

]
+N log2 u. (48)

Consequently, the constraints (46b)-(46d) can be replaced
by

r ≤ Ft(t
(1→1)
1 , u

(1→1)
1 | t̃(1→1)

1 )

− Fu(t
(1→1)
2 , u

(1→1)
2 | ũ(1→1)

2 ), (49)

r ≤ Ft(t
(2→1)
1 , u

(2→1)
1 | t̃(2→1)

1 )

− Fu(t
(2→1)
2 , u

(2→1)
2 | ũ(2→1)

2 ), (50)

r ≤ Ft(t
(2→2), u(2→2)| t̃(2→2)). (51)

The constraints (46e), (46g), and (46i) can be replaced by

1−

 1

ũ
(1→1)
1

− u
(1→1)
1 − ũ

(1→1)
1(

ũ
(1→1)
1

)2
 ≤ 1

N

N∑
n=1

t
(1→1)
1,n , (52)

1−

 1

ũ
(2→1)
1

− u
(2→1)
1 − ũ

(2→1)
1(

ũ
(2→1)
1

)2
 ≤ 1

N

N∑
n=1

t
(2→1)
1,n , (53)

1−

(
1

ũ(2→2)
− u(2→2) − ũ(2→2)(

ũ(2→2)
)2

)
≤ 1

N

N∑
n=1

t(2→2)
n . (54)

The constraints (46j)-(46n) are non-convex. Take (46j) and
(46k) as examples. (46j) can be equivalently transformed as

log(N(l(1)n )2) + log(P (1)
n + P (2)

n ) + log(1− t
(1→1)
1,n )

≥ log(u
(1→1)
1 ) + log(t

(1→1)
1,n ) + log(σ2), (55)

where log(u
(1→1)
1 ) and log(t

(1→1)
1,n ) are non-convex terms.

Similarly, (46k) becomes

log(N(l(1)n )2) + log(P (2)
n ) + log(1− t

(1→1)
2,n )

≤ log(u
(1→1)
2 ) + log(t

(1→1)
2,n ) + log(σ2), (56)

where log(P
(2)
n ) and log(1− t

(1→1)
2,n ) are non-convex terms.

After performing Taylor expansion, (55)-(56) can be re-
placed by (57)-(58) (shown on the top of the next page).

Likewise, we derive the convex approximations for con-
straints (46l)-(46n), by replacing all non-convex terms with
their Taylor expansions, as shown in (59)-(61) (on the top of
the next page).

Algorithm 1 Iterative power allocation algorithm for on-
demand coverage.

Input: N , L(1), L(2), Pmax, σ2, ϵ
1: Initialization: P

(1),0
n = 1

2Pmax, P
(2),0
n = 1

2Pmax, n =

1, ..., N , u(1→1),0
1 = 1, u(2→1),0

1 = 1, u(2→2),0 = 1,

u
(1→1),0
2 = 1

2 + 1
2

√
1 + 2NPmax

σ2 ·max1≤n≤N

(
l
(1)
n

)2
,

u
(2→1),0
2 = 1

2 + 1
2

√
1 + 2NPmax

σ2 ·max1≤n≤N

(
l
(2)
n

)2
,

t
(1→1),0
1,n =

NPmax(l(1)n )
2

σ2u
(1→1),0
1 +NPmax

(
l
(1)
n

)2 , n = 1, ..., N

t
(1→1),0
2,n =

NPmax(l(1)n )
2

2σ2u
(1→1),0
2 +NPmax

(
l
(1)
n

)2 , n = 1, ..., N

t
(2→1),0
1,n =

NPmax(l(2)n )
2

σ2u
(2→1),0
1 +NPmax

(
l
(2)
n

)2 , n = 1, ..., N

t
(2→1),0
2,n =

NPmax(l(2)n )
2

2σ2u
(2→1),0
2 +NPmax

(
l
(2)
n

)2 , n = 1, ..., N

t
(2→2),0
n =

NPmax(l(2)n )
2

σ2u(2→2),0+NPmax

(
l
(2)
n

)2 , n = 1, ..., N .

2: Iterations: s = 1, 2, ...,
3: repeat
4: Calculate rs,P(1),s,P(2),s via solving problem (62),
5: until |rs−rs−1|

rs−1 < ϵ.
Output: P(1),s,P(2),s

The above Taylor expansion operations lead to
an iterative process to solve the problem. If the
locally-optimal solution in the (s − 1)-th iteration is
[rs−1,P(1),s−1,P(2),s−1,us−1, ts−1], we then solve the
following optimization problem in the s-th iteration

max
r,P(1),P(2),u,t

r (62a)

s.t. (35j), (46f), (46h)

(17b), (17c), (17d), (49)− (54), (57)− (61). (62b)

This iterative algorithm is summarized in Algorithm 1. Its
convergence is shown in the following Theorem 3.

Theorem 3: In Algorithm 1, the optimization objective r is
non-decreasing with the iteration, and thus the algorithm is
assured to converge.

Proof: See Appendix D. □

IV. SIMULATION RESULTS AND DISCUSSION

We consider a CSUN consisting of a satellite and N = 5
UAVs. Without loss of generality, we assume that the UAVs are
uniformly deployed in a three-dimensional cylindrical area, de-
noted as C1 with {[x, y, z]T |

√
x2 + y2 ≤ 4000 m, 700 ≤ z ≤

1300 m}. U (1) is placed at c(1) = [10000, 0, 0]Tm, and U (2)

is placed at c(2) = [0, 0, 0]Tm. A total of J = 5 satellite users,
which encounter the leakage interference from UAVs, are
uniformly dropped in the area CS = {[x, y, 0]T |

√
x2 + y2 ≤

20000 m}. The interference temperature limitation is set to
be I0 = −88 dBm. Channel parameters (ηLoS , ηNLoS , a, b)
are set as (0.1, 21, 4.8860, 0.4290) [43]. Simulation results are
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log

(
N
(
l(1)n

)2)
+ log

(
P (1)
n + P (2)

n

)
+ log

(
1− t

(1→1)
1,n

)
≥

[
log
(
ũ
(1→1)
1

)
+

u
(1→1)
1 − ũ

(1→1)
1

ũ
(1→1)
1

]
+

[
log
(
t̃
(1→1)
1,n

)
+

t
(1→1)
1,n − t̃

(1→1)
1,n

t̃
(1→1)
1,n

]
+ log(σ2). (57)

log

(
N
(
l(1)n

)2)
+

[
log
(
P̃ (2)
n

)
+

P
(2)
n − P̃

(2)
n

P̃
(2)
n

]
+

[
log
(
1− t̃

(1→1)
2,n

)
−

t
(1→1)
2,n − t̃

(1→1)
2,n

1− t̃
(1→1)
2,n

]
≤ log

(
u
(1→1)
2

)
+ log

(
t
(1→1)
2,n

)
+ log(σ2). (58)

log

(
N
(
l(2)n

)2)
+ log

(
P (1)
n + P (2)

n

)
+ log

(
1− t

(2→1)
1,n

)
≥

[
log
(
ũ
(2→1)
1

)
+

u
(2→1)
1 − ũ

(2→1)
1

ũ
(2→1)
1

]
+

[
log
(
t̃
(2→1)
1,n

)
+

t
(2→1)
1,n − t̃

(2→1)
1,n

t̃
(2→1)
1,n

]
+ log(σ2). (59)

log

(
N
(
l(2)n

)2)
+

[
log
(
P̃ (2)
n

)
+

P
(2)
n − P̃

(2)
n

P̃
(2)
n

]
+

[
log
(
1− t̃

(2→1)
2,n

)
−

t
(2→1)
2,n − t̃

(2→1)
2,n

1− t̃
(2→1)
2,n

]
≤ log

(
u
(2→1)
2

)
+ log

(
t
(2→1)
2,n

)
+ log(σ2). (60)

log

(
N
(
l(2)n

)2)
+ log

(
P (2)
n

)
+ log

(
1− t(2→2)

n

)
≥
[
log
(
ũ(2→2)

)
+

u(2→2) − ũ(2→2)

ũ(2→2)

]
+

[
log
(
t̃(2→2)
n

)
+

t
(2→2)
n − t̃

(2→2)
n

t̃
(2→2)
n

]
+ log(σ2). (61)
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Fig. 3. Convergence performance of the proposed algorithm.

averaged over 50 snapshots. In each snapshot, the positions of
UAVs and satellite users are independently generated. By such
setup, we might average the influence of UAV topology, and
show that our method applies to any logical UAV topology.

In Fig. 3, we evaluate the convergence performance of
the proposed algorithm. The number of iterations required is
shown for the randomly-selected 50 snapshots. For all cases,
the proposed algorithm converges within 12 iterations. This
verifies Theorem 3, and also shows the practical value of the
proposed algorithm in resource-limited applications.

In Fig. 4, we depict the minimum ergodic rate achieved by
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Fig. 4. Minimum ergodic rate of users, changing with the maximum transmit
power for each UAV, achieved by different schemes.

different algorithms. The compared methods include
• NOMA optimized with full CSI: The algorithm proposed

in [30], which was designed with full CSI.
• NOMA with equal power allocation: NOMA transmis-

sion, and equal power allocation between U (1) and U (2).
• OMA with equal channel allocation: OMA transmission,

and equal channel allocation between U (1) and U (2).
From Fig. 4, one observes that the proposed algorithm and
the algorithm proposed in [30] outperform the other two
schemes. Intuitively, with equal power/channel allocation, the
user with worse channel condition is allocated with inadequate
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Fig. 5. Minimum ergodic rate of users, changing with the interference
temperature limitation, achieved by different schemes.
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Fig. 6. Minimum ergodic rate of users, changing with the number of UAVs,
achieved by different schemes.
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Fig. 7. Minimum ergodic rate of users achieved by different UAV deployment.

resources, which leads to poor user fairness. This runs counter
to the goal of on-demand coverage. It can also be observed
that the proposed scheme achieves higher minimum ergodic
rate than the scheme proposed in [30]. The reason is that the
scheme proposed in [30] requires full CSI for optimization,
and the CSI imperfectness would bring about performance
loss given only the coarse-grained radio map. On the other
hand, this corroborates the significance of redesigning power
allocation scheme for CSUNs with large-scale CSI only.

We further compare these four schemes in Fig. 5 and
Fig. 6. In Fig. 5, we set Pmax = 6 dBW. Similar to Fig. 4,
one may observe that the proposed scheme always offers
the best performance with different interference temperature
limitations. When the limitation goes larger than -88 dBm, the
minimum ergodic rate of users would stop growing. Intuitively,
for these regions, the maximum transmit power for each UAV
becomes the bottleneck factor. In Fig. 6, we also set Pmax = 6
dBW. We can see the superiority of the proposed scheme with
different number of UAVs. The always-increasing curves also
indicate that more UAVs more performance gains. Besides,
the performance gap becomes larger with the increase of UAV
number, which confirms that the proposed scheme adapts to
large UAV swarms.

We further evaluate the influence of UAV deployment on
coverage performance, by comparing three different cylin-
drical areas, as shown in Table I, in which the UAVs are
uniformly distributed. For C1, the UAVs are close to U (2),
which results in distinct channel conditions between U (1) and
U (2). For C3, the access distance from U (1) to UAVs is
comparable to that from U (2). C2 lies in the middle of C1

and C3. The minimum ergodic rate are shown in Fig. 7, by
setting the maximum transmit power to be 6 dBW. From the
figure, we observe that our proposed scheme always achieves
the best coverage performance in all of the three cases. This
verifies the superiority of our proposed scheme in coverage
efficiency. Besides, we observe that the performance gain over
the equal power/channel allocation methods for C1 and C2

is much more remarkable than that for C3. This is because
when U (1) and U (2) have similar channel conditions, equal
channel/power allocation could already achieve a satisfactory
coverage performance. Thus, in practice, we should choose
appropriate methods according to both system parameters, e.g.,
network topology, and affordable cost.

In Fig. 8, we evaluate the influence of the number of UAVs
on coverage performance. The minimum ergodic rate of users
under different number of UAVs is shown in the figure. It
is clear that more UAVs yields larger coverage performance
gain. This is intuitively reasonable as more UAVs would
provide more multiplexing and diversity gain for MIMO-
NOMA transmissions. More importantly, this corroborates the
promising benefit of leveraging multi-UAV coordination.

We finally show the relationship between the minimum
ergodic rate and the interference temperature limitation in
Fig. 9. It can be seen that when I0 is relatively small, different
maximum transmit power constraints would lead to similar
spectrum sharing performance. In this condition, the leakage
interference dominates the co-existence of satellites and UAVs.
When the interference temperature limitation becomes large
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TABLE I
DIFFERENT CYLINDRICAL AREAS FOR DEPLOYING UAVS.

Label Cylindrical Area
C1 {[x, y, z]T |

√
x2 + y2 ≤ 4000 m, 700 ≤ z ≤ 1300 m}

C2 {[x, y, z]T |
√
(x− 5000)2 + y2 ≤ 4000 m, 700 ≤ z ≤ 1300 m}

C3 {[x, y, z]T |
√
(x− 10000)2 + y2 ≤ 4000 m, 700 ≤ z ≤ 1300 m}
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Fig. 8. Minimum ergodic rate of users under different number of UAVs, i.e.,
N .
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Fig. 9. Minimum ergodic rate of users under different interference temperature
limitation, i.e., I0.

enough, the transmit power would turn to the main bottleneck,
and larger transmit power leads to better coverage perfor-
mance.

V. CONCLUSIONS

This paper has proposed a practical framework for covering
remote areas in an on-demand manner. In this framework,
satellites and UAVs coordinately share spectrum to provide
low-rate and high-rate services in a complementary manner.
Multiple UAVs form a virtual antenna array to serve unevenly
distributed users via MIMO-NOMA. To reduce system cost,

we have suggested to look up the large-scale CSI in the pre-
established radio map per the position information of users
and UAVs, during the online optimization of the network. A
joint power allocation scheme has been proposed to maximize
the minimum user rate. It used the large-scale CSI only, and
was derived with the help of random matrix theory and the
successive convex optimization tool. Simulation results have
corroborated that the proposed scheme could improve the
coverage performance at a low cost. With the proposed frame-
work, a systematic design can be realized to comprehensively
consider the UAV deployment, the size of UAV swarm, and
the interference temperature limitation in practice.

APPENDIX A
VERIFICATION OF THE ACCURACY OF (30)

Using the approximation of R(P,L) in (30), we can cal-
culate the achievable ergodic rate of U (1) and U (2) according
to (13), (26), (27), and (28). We can also adopt Monte Carlo
simulations to mimic the expectation operator in the original
expression of the achievable ergodic rate according to (14),
(15), and (16).

With the same simulation parameters as Section IV, we
obtain Fig. 10 and Fig. 11 for comparison. It can be observed
that the error of approximation over Monte Carlo simulation
results is almost negligible, for all randomly-selected snap-
shots, for all simulated transmit powers, and for both U (1) and
U (2). Thus, the approximation is accurate enough for sequel
optimizations.

APPENDIX B
PROOF OF THEOREM 1

We take the partial derivative of f with respect to u as

∂f(P, u,L)

∂u
= log2 e ·

N∑
n=1

[
−NPnl

2
n

σ2u2

1 +
NPnl2n
σ2u

+
NPnl

2
nσ

2

(σ2u+NPnl2n)
2

]
+N log2 e ·

1

u

= log2 e ·
N∑

n=1

[
−NPnl

2
n(σ

2u+NPnl
2
n)

u · (σ2u+NPnl2n)
2

+
NPnl

2
nσ

2u

u · (σ2u+NPnl2n)
2
+

1

u

]
= log2 e ·

N∑
n=1

σ2 · (σ2u+ 2NPnl
2
n)

(σ2u+NPnl2n)
2

> 0.

(B.1)

Thus, f(P, u,L) is monotonically increasing with u.



12

1 3 5 7 9
0

5

10

1 3 5 7 9
0

4

8

1 3 5 7 9
0

4

8

Monte Carlo simulation

Approximation

Monte Carlo simulation

Approximation

Monte Carlo simulation

Approximation

Monte Carlo simulation

Approximation

Monte Carlo simulation

Approximation

Monte Carlo simulation

Approximation

Maximum transmit power for each UAV (W)

 A
c
h
ie

v
a
b

le
 e

rg
o
d
ic

 r
a

te
 (

b
it
s
/s

/H
z
)

Randomly-selected snapshot 3

Randomly-selected snapshot 2

Randomly-selected snapshot 1

Fig. 10. Achievable ergodic rate of U(1) calculated using Monte Carlo
simulation and the proposed approximation.

APPENDIX C
PROOF OF THEOREM 2

We take the partial derivative of F with respect to tn as

∂F (t, u)

∂tn
= log2 e ·

(
1

1− tn
− 1

)
= log2 e ·

tn
1− tn

. (C.1)

When 0 < tn < 1, it is clear that F is monotonically
increasing with respect to tn, n = 1, ..., N , which proves the
theorem.

APPENDIX D
PROOF OF THEOREM 3

We denote the optimal variables in the (s−1)-th and the s-
th iterations as xs−1 = [rs−1,P(1),s−1,P(2),s−1,us−1, ts−1]
and xs = [rs,P(1),s,P(2),s,us, ts], respectively. xs is ob-
tained through solving (62) based on xs−1.

The most convenient method to prove the theorem is
through induction. Given that xs−1 is in the feasible region of
(46), if we corroborate that xs also lies in the feasible region
of (46), while rs ≥ rs−1 holds, the theorem is then proved.

We first prove that xs lies in the feasible region of (46).
Since xs is obtained via solving (62), it is in the feasible
region of (62). From (49), one has

rs ≤ Ft(t
(1→1),s
1 , u

(1→1),s
1 | t(1→1),s−1

1 )

− Fu(t
(1→1),s
2 , u

(1→1),s
2 | u(1→1),s−1

2 ). (D.1)

Since log(u) ≤ log(ũ) + u−ũ
ũ , F (t, u) ≤ Fu(t, u|ũ) holds.

Since − log(1−tn) is convex, − log(1−tn) ≥ − log(1− t̃n)+
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Fig. 11. Achievable ergodic rate of U(2) calculated using Monte Carlo
simulation and the proposed approximation.

tn−t̃n
1−t̃n

holds, which further derives that F (t, u) ≥ Ft(t, u|t̃).
Therefore, from (D.1), one has

rs ≤ F (t
(1→1),s
1 , u

(1→1),s
1 )− F (t

(1→1),s
2 , u

(1→1),s
2 ), (D.2)

which confirms that xs satisfies (46b). Likewise, it can be
proved that xs also satisfies (46c)-(46d).

From (52), we have

1−

(
1

u
(1→1),s−1
1

− u
(1→1),s
1 − u

(1→1),s−1
1

(u
(1→1),s−1
1 )2

)

≤ 1

N

N∑
n=1

t
(1→1),s
1,n . (D.3)

Since 1
u is convex, 1

u ≥
(

1
ũ − u−ũ

(ũ)2

)
holds, and

1− 1

u
(1→1),s
1

≤ 1

N

N∑
n=1

t
(1→1),s
1,n , (D.4)

and thus constraint (46e) is satisfied. Likewise, (46g) and (46i)
are also satisfied.

From (57), we have (D.5) (shown on the top of the next
page), and from (D.5) it can be deduced that (D.6) (shown on
the top of the next page) also holds. Therefore, (55) and (46j)
are satisfied. Similar process can be carried out to prove that
xs satisfies (46k)-(46n).

In a nutshell, xs lies in the feasible region of (46). Moreover,
since the Taylor expansion is conducted at xs−1, which
belongs to the feasible region of (62), and rs ≥ rs−1 holds.
The theorem can be thus proved.
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