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Abstract—With the high penetration of distributed energy
resources (DERs), distribution networks have become more prone
to uncertainties associated with renewable energy sources (RESs).
If not handled judiciously, these uncertainties may lead to in-
terruption in power supply and even failure of the entire power
system in the long run. In this paper, a Bayesian Network (BN)
approach is used to find the hidden inter-dependencies among
the various weather parameters and how these affect renewable
energy generation. A heuristic algorithm is then proposed to
identify the root-cause of the uncertainty which increases the
overall grid dependency and thereby, tackling its associated carbon
emissions. To check the efficacy of the proposed approach, the
effect of data uncertainty in the distribution network with DERs
penetration in nine different regions of England is discussed.
Furthermore, a case-study of a residential area of Newcastle upon
Tyne is discussed in detail to back-trace the root-cause of the fault
that occurred in one of the DERs.

Index Terms—Bayesian network, root-cause analysis, DERs,
data uncertainty, carbon emissions, energy bills

I. INTRODUCTION

Now-a-days, distributed energy resources (DERs) are gaining

importance due to their affordability and reliability to meet the

energy demand. DERs facilitate the use of energy efficiently

by generating it on-site and storing it for the use during peak-

operating times [1], [2]. However, the inherent uncertainties

involved with renewable energy sources (RESs), such as power

fluctuations and intermittence, may deteriorate the stability

and security of power grids [3]. Various techniques to model

these uncertainties in energy systems including the probabilistic

method, fuzzy variable approach, hybrid optimization, and non-

linear programming are discussed in [3]–[5]. Nevertheless,

increased deployment of DERs may still result in congestion

within the distribution grid, which would require their active

management and control. This situation necessitates a reevalu-

ation of the role of distribution system operators (DSOs) who

have traditionally been responsible for planning, maintaining,

and managing networks, including handling of outages [6], [7].

DSOs have the potential to act as a central platform for

overseeing consumer data concerning electricity usage, gen-

eration, billing, location, and the types of DERs involved. By

adhering to regulatory standards, DSOs can effectively collect

and store this data while upholding consumer rights, including

privacy protection [7]. By utilizing this data, DSOs can enhance

their ability to forecast demand, resulting in improved planning

and operation of the system. This data can facilitate increased

adoption of RESs by empowering consumers to gain insights

into their energy consumption and/or production patterns.

Furthermore, as the optimal and reliable operation of DERs

based distribution network has become dependent on the data

inflows, any fiddling with the data has the capability to make

the entire energy network unstable. Therefore, it is crucial

that DSOs get the correct data information at each time step.

In [8], the concept of geosensors was introduced to model

and predict the sensor data uncertainty for the environmental

monitoring applications. In [9], authors proposed the guide

to the expression of measurement uncertainty and Adaptive

Monte Carlo method, to analyze the measurement uncertainty

in underwater positioning systems. However, the uncertainty

evaluation in DERs requires higher data granularity to identify

the real-time data variations, in which the existing methods

would fail [3]–[5], [8], [9].

Bayesian Networks (BNs) are being used in various appli-

cations due to their ability to provide reliability in uncertainty

estimations. Many researchers have used BNs in the energy

sector for various applications including energy forecasting,

optimization risk assessment, O&M planning, etc. [10], [11].

However, modeling the data uncertainty using BNs in DERs

is still an unexplored research area. Motivated by this, in this

paper, we would be focusing on the impact of data uncertainty

in the DERs that could affect the operation of the distribution

network. The major contributions of this paper are:

• Bayesian Network based approach is used to analyze the

correlation among various weather parameters and fit their

probability distribution using metalog distribution.

• Root-cause of increasing grid dependency and carbon

emissions is analyzed using a heuristic approach.

The rest of the paper is organized as follows. Section II presents

the system modeling and Section III describes the proposed

methodology. Results are discussed in Section IV while the

paper is concluded in Section V.

II. SYSTEM MODELING

A. Power system model with DER Integration

With the emergence of DERs such as rooftop solar panels,

battery storage, electric vehicles, and wind turbines, the end-

users are participating in the energy market by selling and



Fig. 1: Power system model with DERs integrated distribution network

purchasing energy from the power grid, allowing two-way

flow of power. Figure 1 shows the power system that has

a power generating station, and the power is transmitted via

the transmission network to the distribution network. The

distribution network is integrated with DERs and is connected

with the end-users with DERs. For the sake of simplicity, we

have considered only four areas (with DERs) in each of the

considered nine regions of England. Each area is equipped with

DERs to meet its load demand. DSO-Local controller (LC)

is responsible to manage and control the incoming requests

from all the areas. DSO-central controller (CC) continuously

run checks on all the data sent by all the LCs and saves that in

the cloud server to compute the day-ahead energy scheduling

for the entire distribution network.

The solar power (Ppv(t)) of each solar panel of an area at

time t is calculated as [12]:

Ppv(t) = βPpeakDpv

[

GT (t)

GSTC

]

[1− αp(TC − TC,STC)] (1)

where Ppeak is the peak PV module output power, Dpv is the

derating factor (%), αp is the power temperature coefficient,

GT (t) and GSTC are solar radiance incident on PV module

at time t (kW/m2) and under standard testing conditions re-

spectively, TC and TC,STC are PV panel temperature and PV

cell temperature under standard testing conditions respectively,

β = Ns × Np, i.e., number of panels connected in series and

parallel respectively.

The real-time wind power (Pw) of each wind turbine of an

area at time t is expressed as [13]:

Pw(t) =







0 ; V (t) ≤ Vi or V (t) ≥ Vo

γP r
w(

V (t)−Vi

Vr−Vi

) ; Vi ≤ V (t) ≤ Vr

γP r
w ; Vr ≤ V (t) ≤ Vo

(2)

where V (t) is wind speed at time t, Vi & Vo are cut-in & cut-

off wind speeds, Vr is rated wind speed, and P r
w is rated wind

turbine power. γ is the number of wind turbines installed.

B. Data Model

To simulate the energy model, data from the selected areas

of England is gathered and then processed as follows:
1) Site selection: In this paper, to illustrate the impact of

data uncertainty, the map of England is divided into nine

different geographical locations (based on distinct weather

conditions) as shown in Fig. 2. The locations are selected

prudently to analyze and simulate the effect of uncertain and

complex weather conditions on England’s energy network.

Fig. 2: Nine regions in the map of England

2) Data Collection: The data is collected for 1 year (15-

May-2022 to 15-May-2023) [14] for nine locations in CSV

format. Each location data is saved in a different file which has

14 different weather parameters. Furthermore, the load demand

data of each location is generated synthetically using HOMER

software. It is assumed that the sensors installed at each DER

are giving the generation data estimated using Eq. (1) and Eq.

(2) (solar and wind).
3) Data discretization: The data is then discretized based on

a hierarchical method to convert the huge amount of data into

finite states to increase its intractability. Discretization makes

it easy to interpret real-world examples without having expert

knowledge. For instance, solar irradiance is discretized into

three states, i.e., low, medium, and high, which gives a clear

idea to the reader to interpret the results.



III. PROPOSED METHODOLOGY

In this section, the basics of BNs to estimate the conditional

probabilities of random (uncertain) variables is discussed. Fur-

ther, the PDFs of these uncertain variables are estimated using

metalog distribution, to estimate their probabilities that are used

to find out the correlations among different uncertain variables

using Tree-augmented naive Bayes.

A. Fundamentals of Bayesian Networks

BNs are directed acyclic graphs (DAGs) that generate cor-

relations amongst random variables in the form of nodes and

links. Bayes Theorem forms the basis of BNs, which can update

the probability of a random variable based on its existing

evidence [10]. Graphically, these scenarios are represented in

the form of directed graphs, wherein uncertain parameters form

the nodes and the edges describe the correlation between two

nodes. Mathematically, according to Bayes theorem, posterior

probability or the conditional probability of occurrence of an

event A given the probability of event B (Pr(B)) is [11]:

Pr(A|B) =
Pr(B|A).P r(A)

Pr(B)
(3)

where, Pr(B|A) is the conditional probability of event B given

the probability of an event A (Pr(A)).

B. Fitting Metalog Distributions using Bayesian Networks

Some commonly used continuous probability distributions

include the normal, lognormal, Weibull, gamma, and beta distri-

butions, (often referred to as named distributions) are employed

to represent univariate data [15]. An expert knowledge is

required to select the PDF to fit a data set generated from

an unknown or uncertain process. Therefore, in this paper, we

have used metalog distributions to fit the data. The metalog

distribution offers shape-flexibility, i.e., it best matches the

data from any unknown source as compared to the traditional

distributions [15]. The following steps are followed to fit the

metalog distribution of the considered dataset:

• Determine the upper and lower bounds of the parameter

whose distribution is to be fitted.

• Select the number of terms (k), that determines the shape

of the distribution. If k< 6, the PDF would be smooth as

compared to larger values of k, which could fit the data

with multiple peaks.

• Finally, the data is fitted according to the metalog quantile

function.

The metalog distributions of solar irradiance and wind speed

with k = 2 are shown in Fig. 3a and Fig. 3b respectively.

C. Tree Augmented Naive Bayes Algorithm

Once the PDFs of uncertain variables are estimated, their

conditional probabilities are calculated to find the inter-

dependencies among them using the Tree-Augmented Naive

Bayes algorithm, which is a form of semi-naive Bayesian

Learning. In this method, each node is associated with the

class (parent node) and among each other, allowing correlations

(a) solar radiation (b) wind speed

Fig. 3: Metalog probability distribution

among the nodes to be captured [16]. Figure 4 shows an im-

plementation of the Tree-augmented naive Bayes algorithm, in

which each weather parameter is directly correlated with solar

radiation (class variable) and other parameters. The correlation

among the different nodes is essential in this study, as the nodes

with similar relationships with solar radiation or wind speed can

be eliminated, to simplify the system calculations.

Fig. 4: Dependency graph of weather parameters

D. Root cause analysis using Bayesian Networks

A heuristic algorithm (algorithm 1) is proposed in this paper

to determine the root cause of the increase in energy bills and

carbon emissions at the distribution end. The problem is framed

as:

• Effect: Unexpected incoming request at LC

• Consequence: Imbalance in expected energy delivered.

• Cause: Uncertainty detected at LC end

Local Controller (LC) at the regional level checks the real-

time power sold (P rt
sold) and purchased (P rt

pur) from the grid of

each of its areas. When LC encounters a mismatch between the

real-time and expected power values, it runs a check on real-

time power flows in each area. The real-time powers generated

from solar and wind (can be calculated using Eq. (1) and Eq. (2)

respectively) are compared with expected solar (P exp
pv (t)) and

wind (P exp
w (t)) power. The expected values are the forecasted

values obtained from the optimal energy scheduling of the

DERs at time t.

If the power generation values match, then the expected and

real-time power demand is checked. If both matches, then LC

sends an okay signal to the CC (central controller), stating

that there is no issue at the local server. However, if the

expected power demand ((P
exp
load)) does not match with the real-

time power demand (P rt
load), then this scenario comes under

behavioral uncertainty, i.e., there is an unexpected change in

the load demand based on the occupant’s behavior.



Algorithm 1 Root-cause analysis of uncertainty using BNs

Input: Weather parameters, real-time data, energy scheduling data
Output: Uncertainty detected
1: Check power purchased and sold to the grid at each time-step for all areas

At
i ∈ i = 1, ..., n and t = 1, ..., h

2: while ∀ At
i do

3: if (P
exp
pur(t) = Prt

pur(t)) then ⊲ Check total power

4: Run normal operation
5: else if (P exp

solar
(t) 6= P rt

solar
(t)) then

6: for ∀DERj do ⊲ Check solar for j=1 to M

7: Calculate conditional probabilities of weather parameters using
Eq. (3) and compute (Gmin, Gmax)

8: Compute Ppv(t) for (Gmin, Gmax) using Eq. (1) and return
(Pmin

pv (t), Pmax
pv (t))

9: if (P rt
pv /∈ (Pmin

pv (t), Pmax
pv (t))) then

10: Data uncertainty in DERj

11: end if
12: end for
13: else if (P exp

wind
(t) 6= P rt

wind
(t)) then

14: for ∀DERj do ⊲ Check wind for j=1 to N

15: Calculate conditional probabilities of weather parameters using
Eq. (3) and compute (Vmin, Vmax)

16: Compute Pw(t) for (Vmin, Vmax) using Eq. (2) and return
(Pmin

w (t), Pmax
w (t))

17: if (P rt
w /∈ (Pmin

w (t), Pmax
w (t)) then

18: Data uncertainty in DERj

19: end if

20: end for
21: else if (P exp

load
(t) 6= P rt

load
(t)) then

22: Behavioural uncertainty
23: else

24: Send an okay signal to the central controller
25: end if
26: end while

In contrast, if either real-time solar or wind power generation

does not match with their respective expected value (with a pre-

determined tolerance limit), then LC would run the Bayesian

analysis. The Bayesian analysis would give a probability of

solar or wind power generation to be in a certain range. If the

real-time values lie under that range, then there are high chances

of weather uncertainty. Otherwise, the mismatch is due to faulty

data. The reasons for faulty data are:

• Faulty sensor: When the sensor of an area gives random

or same values for every time step.

• Dead Sensor: When the sensor is giving zero value, even

if there is some expected value.

• Data Manipulation: When someone deliberately manip-

ulates the data to make money.

IV. RESULTS AND DISCUSSION

The BN analysis was carried out individually for the 4 areas

in the nine regions in England. In this paper, the simulation

results for one area in Newcastle upon Tyne have been dis-

cussed in detail and the same methodology can be applied to

determine the erroneous data for the other regions. The results

obtained were categorized into 3 phases which are discussed

as follows:

A. Phase A: Correlation among different weather parameters

In this phase, the simulation was run to find the inter-

dependency graph for different weather parameters (as de-

scribed in section III). Furthermore, assigning solar radiation

as the decision node, its correlation with other parameters was

analyzed under two conditions, i.e., 1) low solar radiation, and

2) high solar radiation. Out of the 13 other weather parameters,

only 4 parameters (cloud cover, wind gust, temperature, and

wind direction) showed major variations with the change in

solar radiation. Similarly, with wind speed as the decision

variable, the 4 parameters that showed high correlation were

sea level pressure, cloud cover, temperature, and humidity. The

inferences from this phase were:

• Fig. 5b depicts that when solar radiation was low, the

probability that wind gust, cloud cover, temperature, and

wind direction were low was 97%, 42%, 55%, and 50%

respectively. Whereas when the solar radiation was in the

medium range (as shown in Fig. 5a); cloud cover, temper-

ature, and wind direction changed to the moderate range

(a) Moderate solar radiance (b) Low solar radiance

(c) High wind speed (d) Low wind speed

Fig. 5: Bayesian analysis results showing correlation of weather parameters



(a) Wind generation under normal conditions (b) No wind generation during uncertainty

(c) No grid purchase in normal condition (d) Grid purchase during uncertainty

Fig. 6: Energy profiles under different conditions

with the probabilities of 40%, 78%, and 50% respectively,

and chances of wind gust in the high value was 93%.

• There were 88%, 58%, and 77% chances that sea level

pressure, cloud cover, and temperature respectively were

low when wind speed was low (as depicted in Fig. 5d).

However, humidity was high with a probability of 88%. In

contrast in Fig. 5c, when wind speed was high, the values

of cloud cover, temperature, and humidity were in the

moderate range with the probabilities of 62%, 94%, and

52%. The sea level pressure was high with a probability

of 81% when the wind speed was high.

B. Phase B: Power generation under data uncertainty

The effect of uncertainty on the power flows (i.e., renewable

energy generation, energy sold and purchased from the grid)

in one of the residential complexes in Newcastle upon Tyne,

was determined in this phase. Erroneous data was synthetically

injected (wind speed from t = 80 h to t = 90 h is made

zero) in the energy model to analyze and validate the impact

of data uncertainty at the consumer end and how it could

propagate to affect the entire distribution network. A PSO-based

optimization algorithm [17] was used to simulate the system

parameters and to calculate the renewable energy generation,

load demand, grid sales, and purchase at each time step (equals

to 1 hour). The inferences from this phase were:

• Fig. 6 shows the solar and wind generation for 7 days and

the corresponding energy sold to the grid and purchased

from the grid, under normal conditions, i.e., when no

uncertainty was injected in the system. During t = 80

h to t = 90 h, wind energy generation itself was sufficient

to meet the load demand and the surplus energy was sold

to the grid.

• When wind energy generation was zero (t = 80 h to

t = 90 h) as shown in Fig. 6b, there was no sufficient

renewable generation and the area gets dependent on grid

to meet its load demand. Fig. 6d depicts an increase in grid

purchases during uncertainty as compared to the normal

case.

C. Phase C: Root-cause determination

The results from the above two phases were combined to

find out the DER in a particular area with the faulty sensor

contributing to data uncertainty. From algorithm 1 discussed in

section III, when there was an energy purchase request from

area 1 of Newcastle, LC would check the energy scheduling

data at that time interval and perform the following tasks:

• Using the results in Phase B, LC analyzed that there must

be energy sold to the grid rather than purchased from the

grid under normal conditions.

• Next, it checks the Bayesian results discussed in phase A,

which showed the inter-dependencies among the weather

parameters, based on which the wind speed (during t = 80
h to t = 90 h) must be in the high range.

• Using Eq. (2), the wind energy generation was calculated

for each DER based on the current wind speed value,

which was in the range as per the Bayesian equation.

• LC then finds the DER that is giving zero value due to

the damaged sensor.



To validate the precision of the proposed method, 10% of

the data was altered to inject different types of data uncertainty

across 9 cities as shown in Table I. In the case of a dead

sensor, these data values were made zero, and the simulations

were reciprocated for repeatability of results. It was observed

that the proposed method was able to detect the dead sensor

uncertainty in all the cases. Further, the method successfully

identified the error due to a faulty sensor (in which the data

was giving the same value). The method worked well in cases

when the injected data values were increased by 20% and 50%

respectively, however, failed to identify the fault when increased

by just 5%. This failure might be due to the reason that BNs

work with a range of values, and 5% increase in the data was

within the tolerance limit of the method.

TABLE I: Evidence table for proposed method

Place Type of erroneous
data

Injected
uncertainty

Detected

Newcastle Dead sensor Zero value X

York Faulty sensor Same value X

Manchester Data Manipulation 20% ↑ in value X

Birmingham Dead sensor Zero value X

Norwich Faulty sensor Same value X

Bristol Data Manipulation 5% ↑ in value ×

London Dead sensor Zero value X

Southampton Faulty sensor Same value X

Plymouth Data Manipulation 50% ↑ in value X

Overall, the results in this paper highlight the impact of data

uncertainty at the local end. If this is not evaluated at the local

server, this uncertainty could propagate to the central level. This

tiny faulty sensor could impact each level in the distribution

network as:

• Impact on End-User: As the grid purchase increase, energy

bills will increase. During peak demand hours, the data

uncertainty could further increase the bills, which results

in hefty bills to the consumer.

• Impact on Distribution level: Due to power imbalance

at the faulty node, energy scheduling needs to be re-

calculated, increasing the computational burden on CC.

• Impact on Environment: More the dependency on the

grid, the more would be the emissions. Hence, failure to

scrutinize data uncertainty pollutes the environment and

hinders our target to achieve net-zero emissions.

V. CONCLUSION

The penetration of DERs in the distribution network trans-

forms the conventional distribution grid and enhances its

flexibility to integrate intermittent RESs. In this paper, we

have discussed the impact of data uncertainty in the DERs

installed in the areas of England and how the root-cause

analysis can be performed using BNs. BN analysis performed

in this paper utilized the inter-dependencies of various weather

parameters among each other to perform the root-cause analysis

for detecting which DER is sending the erroneous data. By

implementing this work in real-time, one could detect faults in

smart energy systems due to malfunctioning IoT devices, which

would reduce emissions and costs.

In the future, this work can be extended to mitigate data

uncertainty in the distribution and transmission network. More-

over, the applicability of BNs to identify the instances of cyber-

attacks on the power system would be analyzed.
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