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ABSTRACT
A glance at recent research on magnetism turns up a curious set of articles dis-
cussing, or claiming evidence for, a state of matter called a quantum spin liquid
(QSL). These articles are notable in their invocation of exotic notions of topolog-
ical physics, quantum entanglement, fractional quantum numbers, anyon statistics
and gauge field theories. So what is a QSL and why do we need this complicated
technical vocabulary to describe it? Our aim in this article is to introduce some of
these concepts and provide a discussion of what a QSL is, where it might occur in
Nature and why it is of interest. As we’ll see, this is a rich subject which is still in
development, and unambiguous evidence for the realisation of the QSL state in a
magnetic material remains hotly debated. However, the payoff in terms of the special
nature of quantum entanglement in the QSL, and its diverse spectrum of unusual
excitations and topological status will (at least to some extent) justify the need to
engage with some powerful, occasionally abstract, technical material.
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1. Introduction

We start with an attempt at a working definition of a quantum spin liquid (QSL) taken
from Ref. [1]: a quantum spin liquid ground state is an electronic insulator with spin-
rotation symmetry and an odd number of electrons per unit cell. Although there’s quite
a lot going on here, one key feature is that we have an interacting electronic system
comprising localised electrons whose spin moments do not align into a magnetically-
ordered configuration, even down to T = 0. Although this notion of a lack of spin order
will provide a jumping-off point, we’ll see that the picture of a disordered magnetic
state fails to capture much of the rich physics that underlies the QSL. However, the
general principle of order will underlie our discussion. Specifically, we shall start from
Lev Landau’s description of the order that follows from a symmetry-breaking phase
transition [2], and the subsequently development of this subject by Philip Anderson [3],
since these concepts have provided a means of classifying and understanding ordered
phases of condensed matter.

The discovery and elucidation of the fractional quantum Hall (FQH) fluid funda-
mentally challenged this pervasive notion of order [1,4]. The FQH fluid is a state of
matter realised in a two-dimensional electron system in high magnetic fields [5]. The
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fluid has a gap in energy between the ground state and the lowest-lying excited states
of the system.1 If we put enough energy into the system to excite excitations over the
energy gap, the resulting particle-like states do not carry integer numbers of elemen-
tary electronic charges, but rather fractions of an electron charge. We say that they
are fractionalised. Moreover, they are neither bosons nor fermions, but are known as
anyons, and have their own, unique, quantum statistics. There is not one FQH fluid,
but many, each realised in practice by applying a magnetic field of a different mag-
nitude. Moreover, we cannot distinguish or classify the different FQH states by their
symmetries, as we can with other ordered states of matter. Instead, topology, the study
of the shapes of objects and spaces, is invoked, and we treat the FQH fluid as being
topologically ordered (TO). Relative to conventionally-ordered states, TO states are
typified by (i) a ground-state degeneracy that depends on the topology of the system,
(ii) a gap against excitations and (iii) a high degree of quantum entanglement.

Here is where the concept of a QSL fits into condensed matter. Like the FQH fluids,
there is not one QSL state, but many that can’t be distinguished by symmetry. All
QSLs have fractionalised excitations. Some QSLs show topological order and have
gapped excitations; some do not. QSLs feature an unusually-high degree of (long-
range) quantum entanglement in their ground states. We will take the view that it
is the nature of the quantum entanglement that characterises the QSL and explains
its properties, rather than its magnetic disorder. Following X.-G. Wen [1], we call
the special entanglement quantum order as a shorthand,2 because the unique pattern
of entanglements characterises each QSL. Topological order is then a special case of
quantum order in which all excitations have finite energy gaps between the ground
state and the excited states.3

This paper is structured as follows: we start with an introduction to the treatment
of order and its absence in magnets, followed in Section 3 by a survey of the conceptual
ingredients required to understand this field. Two of these: anyons and gauge theory
are introduced in more detail in Sections 4 and 5. We then discuss the toric code, which
is the simplest model of a QSL. Fractionalised spinons are described in Section 7 as
a route to finding more model QSLs, before the exactly solvable Kitaev model is
introduced in Section 8. Finally we briefly assess some examples in the search for a
realisation of the QSL state.

2. Background: magnetic order, disorder and the RVB

A simple picture of a magnetically disordered system is shown in Fig. 1(a). The ar-
rows represent spins arranged on an ordered lattice. (This structural order is always
assumed, the disorder refers only to the arrangement of magnetic moment directions.)
The system can be understood [2,3,7] via its symmetry: the magnetisation M (that
is, the average magnetic moment) is zero, since as many arrows point up as down.
If we turn each of the moments through 180◦ then we obtain the situation shown in

1The existence or absence of such energy gaps will turn out to be a useful notion in classifying states of

matter.
2The entanglement partially explains the Q in QSL. The other feature is that we are dealing with T = 0,

where fluctuations are purely quantum mechanical rather than thermal. In contrast, a classical spin liquid has

T = 0 order destroyed by T > 0 thermal fluctuations owing to high ground-state degeneracy.
3To close the loop on our technical definition above, with its specification of odd numbers of electrons, we

note that the Lieb-Schultz-Mattis theorem [6] says that a system with a half-odd integer spin per unit cell, and
without symmetry breaking order, has either (i) a unique ground state with gapless excitations (e.g. a gapless

QSL) or (ii) a degenerate ground state with a gap (e.g. a topologically ordered QSL).
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(a) (b) (c) (d) (e)

Figure 1. (a) A disordered (paramagnetic) magnetic state. This configuration has magnetisation M = 0 and

so does (b), which is produced by turning all of the spins through 180◦. (c) An ordered (ferro)magnetic phase
with M = M0. Turning the spins through 180◦ results in (d) which has M = −M0. (e) The (classical) Néel

antiferromagnet, with ordered, alternating spins. This can be decomposed into two antiparallel, interpenetrat-

ing, aligned magnetic sublattices.

Fig. 1(b), which also has M = 0. We therefore cannot tell from the magnetisation that
we have transformed the system. This inability to tell that a change has been made is
a symmetry. An ordered magnet is shown in Fig. 1(c). This has magnetisation M0 6= 0
and has lost its previous symmetry: turning the arrows through 180◦ [Fig. 1(d)] makes
a measurable difference in that it reverses the magnetisation M0 → −M0. The symme-
try has been broken on magnetic ordering. In Nature, this sort of ordering is observed
to take place via a magnetic phase transition at a temperature Tc.

Philip Anderson notes some key points here [3] that apply in general to broken-
symmetry states. (We assume the spins can point in any direction in what follows.)
(i) Once the rotational symmetry of the spin system is broken, the ordered magnetic
state becomes rigid, such that it costs energy to deform the spin structure. (ii) A new
sort of excitation emerges on symmetry breaking: the magnon. This can be thought
of as a particle-like excitation formed from a single, smeared out, flipped spin. (For a
system composed of s = 1/2 spins, a flip represents a s = 1 excitation.) Owing to the
possibility of exciting magnons with arbitrarily long wavelength, for a rotationally-
invariant Hamiltonian it costs a vanishing amount of energy to create one, and so,
formally, we say that the excitation is gapless. One way to think about the gaplessness
is that it is “protected” by symmetry and the ordering.

A a magnet has a microscopic description using the Heisenberg model with Hamilto-
nian [7] Ĥ = −∑〈ij〉 JijŜi ·Ŝj . We will consider only s = 1/2 spin operators Ŝ and the

sum will be taken only over nearest-neighbour spins, denoted 〈ij〉. The ferromagnet
(FM) [Fig. 1(c)] is the ground state for constant exchange J > 0. However, instead of
the ferromagnet, more commonly realised in materials is the antiferromagnet (AFM)
(where J < 0). Here two interpenetrating magnetic sublattices break symmetry, with
the spins arranged into an alternating Néel state [shown (classically) in Fig. 1(e)].
Antiferromagnets have several differences compared to ferromagnets, especially when
quantum mechanics is taken into account [3,7]. The crux is that the Néel state is not
an eigenstate of the Heisenberg Hamiltonian.

It’s useful at this stage to take a brief step back and consider the quantum-
mechanical fate of a model two-level system such as the benzene molecule [8]. Benzene
has two energetically-degenerate configurations of alternating double and single co-
valent bonds, as shown in Fig. 2(a) (states we shall call φ1 and φ2). Neither is an
eigenstate of the system, and there is a matrix element for a transition between them.
It is straightforward to show [8] that the ground state is the symmetric superposition
of the states [(φ1 + φ2)/

√
2], and the antisymmetric combination [(φ1 − φ2)/

√
2] is an

excited state. The ground state superposition gives rise to the notion of a delocalised π
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Figure 2. (a) Benzene has bonds that we picture in the φ1 (left) or φ2 (middle) states. The superposition of

these leads to the π orbital picture (right). (b) A triangular arrangement of three spins with exchange inter-

actions between them. (c,d) Two possible RVB configurations of singlet bonds linking spins on the triangular
lattice.

orbital [Fig 2(a, right)] that represents the system fluctuating, or resonating, between
the two alternating-bond configurations. Specifically, if we start the system in state
φ1, then the probability of finding the system in this same state some time t later
oscillates as a function of t, at a frequency ω = 2V/~, determined by the energy gap
2V between the eigenstates. These fluctuations have nothing to do with temperature,
but are purely quantum-mechanical in nature. The point here is that since the initial
state φ1 is not an eigenstate of the system, probability sloshes around at a rate de-
termined by the energy-level separation. If V is small, the resulting small energy-level
separation means that the oscillations have correspondingly low frequency.

Since the Néel state is not an eigenstate of the AFM Hamiltonian, it was suggested
that quantum fluctuations (generalising the sloshing of the time-dependence of the
probability density in the previous example) would break up an antiferromagnetically-
ordered configuration of spins. However, the Néel state is stable. This is because, for
the large systems that comprise condensed matter, there are lots of eigenstates arbi-
trarily close in energy, out of which a stable Néel-like wavepacket can be constructed.
The closeness of eigenstates in energy means that the oscillation frequency is therefore
very small. One way to think about this feature in an extended system is by analogy
with picking up a rock, where we might suspect that position-momentum uncertainty
would prevent a solid object from being localised [3,9]. The reason why the rock is
stable is that we seek to localise it within, say, a lattice spacing a, so the uncertainty
in momentum is of order ~/a and the uncertainty in energy for an atom of mass m is
then ∆E = ~2/2ma2. However, the key is that the solid is made of N atoms, rigidly
stuck together, so ∆E = ~2/2Nma2 and, since N is a macroscopic number, the en-
ergy uncertainty is very small. This implies that the frequency of oscillation between
closely-spaced position states is vanishingly small for a macroscopic piece of matter.
The analogous argument can be made in the case of an antiferromagnet (given in the
slightly more complicated terms of a rigid rotor), and it turns out that the closely-
spaced energy levels in a macroscopic system similarly allow a very stable wavepacket
to be constructed giving a stable Néel AFM [9,10]. The smoking-gun experimental ver-
ification of its existence came from magnetic neutron diffraction where the periodicity
of the magnetic sublattices can be directly seen from the measured Bragg peaks [7].

Although the AFM survives the strictures of quantum mechanics, it’s possible to
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postulate a state that shouldn’t. 1973 saw Philip Anderson’s suggestion of a resonating
valence bond (RVB) state [11]. This is based on the notion of frustration, where it is
impossible to satisfy all of the interactions for a particular geometry.
Example: consider a triangle decorated with Ising spins as shown in Fig. 2(b) with
Hamiltonian H = −∑ Jijσ

z
i σ

z
j , where all bonds favour antiferromagnetism (Jij =

−J < 0). This state is frustrated as there is no single state that satisfies all of the
interactions. In this case the frustration gives rise to six lowest-energy spin configura-
tions (with energy E = −J) and two excited states (with E = 3J). By contrast, an
unfrustrated model where all Jij = J > 0 has a ferromagnetic, two-fold degenerate
ground state with energy E = −3J . (The degeneracy here simply reflects the fact that
all spins can align either up or down.) We see how frustration increases not only the
relative energy of the ground state but, more crucially, the entropy through the large
number of degenerate ground states that result. The degeneracy becomes macroscopic
in the thermodynamic limit and has a destabilising effect on symmetry-breaking order.

To form Anderson’s RVB state [11–14] we extend the triangle to a spin-1/2 Heisen-
berg model on an infinite two-dimensional triangular lattice with purely antiferromag-
netic interactions on all bonds.4 Note first that, quantum mechanically, the ground
state of a single antiferromagnetic bond is represented by an entangled spin singlet
(| ↑↓〉 − | ↓↑〉) /

√
2. We therefore form a typical state by decorating the lattice with

singlets coupling nearest neighbours [Fig 2(c)]. We then repeat with a different choice
of singlet bonds to form another state with the same energy [Fig 2(d)]. We continue
this process until we have all possible coverings, (we can include coupling beyond
nearest neighbours) and then form our final trial wavefunction by adding together all
of these states to form the RVB state. Notice how the RVB bears a resemblance to
the benzene example, albeit in an infinite system: in both we can think of the choice
of bonds resonating between different degenerate configurations. Ultimately, the RVB
state did not turn out to describe a s = 1/2 Heisenberg antiferromagnet on a tri-
angular lattice.5 However, the RVB is our first example of a QSL. It does not break
rotational symmetry since each bond represents a s = 0 spin state. Moreover, the state
itself can be thought of in terms of a complicated dynamic dance of singlet bonds that
represents the underlying pattern of quantum entanglement.

The notion of a dynamic pattern of quantum correlations that underlies a
magnetically-disordered state of macroscopic matter will now be expanded via a con-
sideration of some of the background concepts needed to understand the QSL picture.

3. Ingredients of a QSL

There are a number of ingredients of QSLs that we describe here and will feature
in the rest of the article. The first is reduced dimensionality. When interactions
are confined to less than three spatial dimensions (3D), fluctuations become more
effective in destabilising order. In fact, the Mermin-Wagner theorem [4,7] says that for
spins with a continuous degree of freedom, magnetic order will always be destabilised
above T = 0. We shall mainly be concerned in this review with the case of two spatial
dimensions (2D) and time [known as (2+1) dimensions]. Although the two-dimensional
Heisenberg magnet will not order for T > 0, the ferromagnetic does at T = 0, and

4Reminder: two Heisenberg spins |s1s2〉 with isotropic antiferromagnetic exchange coupling between them
will have a singlet ground state: (| ↑↓〉 − | ↓↑〉) /

√
2, and a triplet of excited states, comprising | ↑↑〉, | ↓↓〉 and

(| ↑↓〉+ | ↓↑〉) /
√

2.
5It has, however, since been invoked in several contexts, not least to describe high Tc cuprate superconductors.
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there is good evidence that the antiferromagnet should order at T = 0 as well [15].
We therefore need some further source of fluctuations if we want to prevent long-
range magnetic order and instead promote the quantum order that gives robust (i.e.
T = 0) spin-liquid behaviour. Frustration, as considered above for the triangle, is one
possibility, but there are others, including higher-order interactions or disorder. (There
are also QSL states that can be realised in 3D, which we return to at the end of the
article.)

The second ingredient is topology. Topology enters many-body physics in a number
of ways [1,4,16]. One is in theories: some theories make no contact with the distances
and time intervals in a problem (i.e. the geometric features) and instead rely only
on the underlying shape of their space. These are topological theories: an example
is the Chern-Simons theory used to describe the FQH fluid, along with some QSL
states. A consequence of this lack of geometry turns out to be that the Hamiltonian
of a purely topological theory (such as a the Chern-Simons Hamiltonian) is Ĥ = 0,
meaning all states are degenerate with zero energy. The exact size of the large resulting
degeneracy depends on the topology of the underlying space (or manifold) on which
we’re working. The topology of the manifold is an interesting case in itself. If we impose
periodic boundaries on our 2D lattice in both spatial directions then the shape of the
underlying topological space is a torus. This topology leads to a robust degeneracy:
it is very difficult to split the energies of the degenerate states with perturbations.
Topological order (where there is a nonzero energy gap between the lowest-energy
state and all of the excited states) follows from the existence of these robust topological
degenerate ground states, and is sometimes described in terms of topology “protecting”
the gaps that appear in topologically-ordered states. A final appearance of topology
is made by excitations [4,17]. Some excitations are extended in space and cost a large
amount of energy to remove. Topological excitations, often called topological defects,
include the domain wall in the one-dimensional (1D) magnet, the vortex in 2D and
the monopole in 3D. In each case, the large energetic penalty involved in removing a
topological excitation can be traced back to their shape (e.g. for the domain wall, we
would need to flip a semi-infinite number of spins to remove the wall).

Entanglement is our next ingredient. A state is entangled if it is in a quantum
superposition that cannot be written as a product, even under an arbitrary (local)
change of basis states. The key example to have in mind here are two spins in an
entangled singlet state (| ↑↓〉 − | ↓↑〉) /

√
2. As we’ve said, quantum order describes

the pattern of entanglements in a many-body system, although it’s rather hard to
rigorously define a many-particle entangled state. We saw one example in the RVB of
resonating singlets, we’ll see another in our discussion of the toric-code model.

The number of different elementary excitations6 of the QSL are an important
means of classifying the states, especially whether they are gapped or gapless (i.e.
whether or not there is a nonzero energy gap between the lowest-energy state and first
excited state). QSLs can support local particle-like excitations that can be fermionic,
bosonic or anyonic, and can have fractional quantum numbers. For example, many
QSLs support gapless, chargeless s = 1/2 fermionic excitations known as spinons [18].
In constrast, excitations can also be topological objects. An example of a (bosonic)
excitation found in many QSLs is the topological vortex.

In order to discuss spin liquids we shall also need some ideas from quantum field
theory (QFT) [4,19]. In a QFT we describe a system in terms of a field (an object in

6The low-energy excited states that exist close to the ground state of an interacting, many-body system can be
thought of as hosting an assembly of elementary excitations. Examples of elementary excitations are phonons

in a crystal, magnons in a ferromagnet, quasielectrons in a metal etc.
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which we input a position and output an amplitude or quantum operator). Particle-
like excitations in QFT are quantised excitations in the field. Operators in QFT act on
many-particle states that describe the system. The most important state is the ground
state or vacuum |0〉. Excited states, such as particle excitations, are then added to this
vacuum state, using operators like ĉ†. For example, to add a c-particle to the vacuum

we write ĉ†i |0〉 = |1i〉, where |1i〉 is a state containing one c-particle at position i. (We
can also annihilate particles: ĉi|1i〉 = |0〉.) One important model to have in mind in our
discussion is the tight-binding model, describing the energies of electrons on a lattice
with a Hamiltonian

Ĥ =
∑
ij

(−tij)ĉ†i ĉj , (1)

where the subscripts label lattice sites. The idea here is that the operators annihilate
the electron at site j and create it at site i, causing an electron to hop between sites,
making a contribution of kinetic energy of (−tij). This model can often be solved in

momentum space to give Ĥ =
∑

kE(k)ĉ†kĉk, where E(k) is the electron dispersion.
We’ll see that some important models of QSLs can be boiled down to variations of
this basic picture.

The final, crucial, ingredient is gauge field theory [4]. A gauge field is one where
there is some redundancy of description. This is to say that the same physical state
can be described by several different configurations of a gauge field. (You can think of
this as a little like a language in which a physically-equivalent scene can be described
in English, French, Arabic, Hindi, Japanese etc.) The most familiar gauge field is the
electromagnetic gauge field, whose components are Aµ = (V,Ax, Ay, Az) = (V,A).
This is often also called the electromagnetic potential. We define the electric field E
in terms of the components of the gauge field as E = −∇V − ∂A

∂t , and the magnetic
field B as B = ∇ × A. An important property of these equations is that there is
some freedom in how the components Aµ are specified. In fact, if we make the gauge
transformations

V → V − ∂χ(t,x)
∂t , A→ A+ ∇χ (2)

where χ(t,x) is some arbitrary function, then the values for the E and B fields are
unchanged.

The notions of anyons and of a gauge theory are so important that we’ll devote
some more discussion to them in the following sections.

4. Anyons and topology

One of the most striking properties of QSLs is that they can host excitations that are
neither conventional fermions nor bosons [4,20]. In quantum mechanics in 3D, changing
the labels on two identical particles results in a change of the wavefunction according
to the rule ψ(x1, x2) = ±ψ(x2, x1), where the + sign applies to bosons and the − sign
to fermions. For the case of 2D space, the exchange of particles needs more careful
attention. We start with two identical particles at positions x1 and x2 and identify two
distinct ways of exchanging them. The result of processes of type I is to move x1 → x1

and x2 → x2. Some examples are shown in Fig. 3(a) and (b). The particles end up
where they were originally, although they may move around each other. The result of
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Figure 3. Examples of ways of exchanging particles. (a) and (b) are type-I processes, where the particles
end up at the same positions. In case (b) one particle loops around the other once in the exchanging process.

(c) and (d) are type-II processes where the particles exchange positions. In case (d) one particle loops once

around the other during the exchange. [Figure reproduced from Ref. [4], reprinted with permission of Oxford
University Press.]

type-II processes is to move x1 → x2 and x2 → x1 [Fig. 3(c) and (d)]. Again particles
may move around each other several times before settling at their final positions [as
in Fig. 3(d)].

We ask what the relative quantum mechanical phase difference is between processes
of type I and type II. The key parameter is the angle that one particle is moved around
the other. Topology comes in here: given a set of particle paths in 2D space, we can
smoothly distort the paths of the particles, but we may not change the number of
times particles wrap around each other without introducing singularities in the paths.
Processes of type I involve rotating particle 2 around particle 1 by angle φ = 2πp,
where the winding number p takes an integer value (including zero). Processes of type
II involve rotations of φ = π(2p+ 1). Each value of p describes a topologically distinct
process. We suppose that these topologically distinct processes make a multiplica-
tive contribution to the wavefunction of Φ(φ) which is pure phase. If we carry out a
sequential string of these processes then we require that the angles add, whilst the
wavefunctions should multiply. That is, Φ(φ1 + φ2) = Φ(φ1)Φ(φ2), which implies that
Φ(φ) = eiηφ, where η is a parameter. Despite our characterizing the particle in terms
of winding numbers, there is nothing in this argument that necessitates η being an
integer.

Compare our upgraded 2D exchange to the old-fashioned definition. If we carry
out the exchange (x1, x2) → (x2, x1) [shown in Fig. 3(c)] then the formal definition
of exchange tells us that the wavefunction should be identical (for bosons) or pick
up a minus sign (fermions). However, the new version merely tells us that φ = π,
resulting in a phase factor of Φ(φ) = eiηπ. The two versions of exchange are only
identical for the special cases that (a) we have η = even integer, when we recover
the expected exchange behaviour for bosons or (b) we have η = odd integer, when
we recover fermion exchange. However, this analysis shows that there are many more
possible values of η in 2D, since it doesn’t have to be an integer. We are therefore not
tied simply to bosons and fermions, the freedom to choose η means we can have any
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exchange statistics, and particles with such statistics are called (Abelian) anyons.7

5. Gauge theory

QSLs are often named with a mathematical group (e.g. a Z2 spin liquid, or U(1) spin
liquid). This is related to the properties of the QSL’s gauge structure, considered in
this section through a number of examples.

Example 1: Consider complex scalar field theory, which is a model built from con-
tinuous complex-number valued fields ψ(x) that are described by a Hamiltonian

Ĥ = (∂xψ)†(∂xψ) +m2ψ†ψ, (3)

where ∂x ≡ ∂/∂x and m is a constant. This theory has an internal symmetry known
as a global phase symmetry, or global U(1) symmetry. This is a shorthand for the
observation that with the replacement ψ(x) → ψ(x)eiα, the Hamiltonian H does not
change.8 This is a global transformation in that the phase changes by the same amount
(α) at every point.

What if we attempt to change the phase locally, i.e. differently at each point? That
is, change the phase by an amount α(x) that depends in some arbitrary manner on
position. Under the local transformation, the derivatives change as follows:

∂xψ(x)→ ∂x

[
ψ(x)eiα(x)

]
=eiα(x)∂xψ(x) + ψ(x)eiα(x)i∂xα(x)

=eiα(x) {∂x + i [∂xα(x)]}ψ(x). (4)

Similarly ∂xψ
†(x) → e−iα(x) {∂x − i [∂xα(x)]}ψ†(x), and the first term in the Hamil-

tonian becomes

(∂xψ)†(∂xψ)− iψ†(∂xα)(∂xψ) + iψ(∂xψ
†)(∂xα) + ψ†ψ(∂xα)(∂xα), (5)

which is not what we started with. Perhaps unsurprisingly, the theory is not there-
fore invariant with respect to local phase transformations. However, to fix things we
introduce a new gauge field whose job is to cancel out the effect of the change in
internal variable α(x) with position. This enters into the Hamiltonian as a covariant
field derivative Dx, defined by Dxψ(x) = ∂xψ(x)− iqAx(x)ψ(x), where q is a coupling
constant. We define the gauge field such that if we change the phase by angle α(x),
the components of the gauge field transform according to Ax(x)→ Ax(x) + 1

q∂xα(x).

Now if ψ(x)→ ψ(x)eiα(x), then

Dxψ = (∂x − iqAx)ψ → eiα(∂xψ) + iψeiα(∂xα)− iqAxψeiα − iψeiα(∂xα) = eiαDxψ.
(6)

This property makes the whole Hamiltonian invariant under local phase changes if we

7Having only two spatial dimensions is vital to the argument. In 3D all type-I processes are topologically
identical since they are all deformable into paths where the particles don’t move. Similarly all type-II processes

are topologically identical and may be reduced to a simple exchange of particles. This reduction occurs because
the extra dimension allows us to move the paths past each other in the third dimension, shrinking all loops to

zero.
8This transformation generates the elements of the Lie group U(1), hence the name.
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replace ordinary derivatives by covariant ones: Ĥ = (Dxψ)†(Dxψ)+m2ψ†ψ, since now
with Dxψ → eiαDxψ, the first term is invariant.

The message of these manipulations is that if the phase α(x) is a function of x then,
in order to guarantee local phase invariance, a new gauge field Ax(x) is required to
form the covariant field derivative. Furthermore, we recognise this field as akin to the
electromagnetic gauge field, where one of its features is that, without changing E and
B, the gauge field can be changed by an arbitrary amount Ax(x)→ Ax(x)+∂xχ(x). If
we identify χ(x) with α(x)/q, then the transformation demanded by our argument is
simply electromagnetic gauge invariance, confirming that Ax has the usual properties
of a gauge field as defined in electromagnetism. We say that the gauge field has its own
dynamics, which in electromagnetism are governed by the Maxwell equations, written
in terms of the (3+1)-dimensional field Aµ.

Example 2: In Section 7 we will introduce a model of spinon particles on a lattice

represented in terms of the operator f̂ †i , which creates a spinon at site i. This is similar
to the continuous model in Example 1, except that position is now a discrete variable.
We again demand invariance under a local U(1) phase transformation f̂i → f̂ie

iφi ,
which changes the phase at each lattice point i. To ensure this we again introduce a
gauge field, this time χ̄ije

iθij , where θij is a phase that depends on the bond between
sites i and j. The spinons and the gauge field interact according to a Hamiltonian of the

form Ĥ = f̂ †i f̂j
(
χ̄jie

iθij
)
, so if the gauge field transforms according to θij → θij+φi−φj ,

then the Hamiltonian is symmetric under local U(1) transformations of the spinon
operators. We will see later that this gives us a U(1) gauge theory of spinons.

Example 3: Z2 (more often written Z2 in the mathematics literature) is a group with
two elements: 1 and −1. For the Kitaev model on a lattice (Section 8), we identify an
operator ĉi and demand invariance under a local transformation ĉi →Wiĉi, where Wi is
an arbitrary function that outputs 1 or −1 at the ith site. We identify a gauge field ûij
that depends on two positions i and j, and a Hamiltonian of the form Ĥ = (ûjk)ĉj ĉk.

If ûij transforms according to ûij → WiûijW
−1
j , then this allows the theory to be

locally Z2 invariant.
Example 4: Our discussion in the next section relies on another Z2 gauge field Sij ,

where positions are specified by two lattice sites i and j. Here we will again transform
via the local transformation Sij → WiSijW

−1
j in the same way as Example 3. This

transformation leaves the Hamiltonian invariant, as we shall now discuss.

6. Our second spin liquid: the toric code

There is a class of models that allows us to get a handle on some of the ingredients we’ve
met so far: we start with the toric code and then (Section 6.2) consider a simplified
version of this model. We shall see how these models give rise to spin-liquid ground
states with topological ground-state degeneracy, anyonic excitations and a gauge-field
structure based on the group Z2.

The toric code [12,21] describes spins on a 2D lattice with periodic boundary con-
ditions. The boundary conditions are a key feature: by identifying each of the two
perpendicular directions on the lattice, we obtain a space with the topology of a torus
(hence the name of the model). An example torus is shown in Fig. 4(a). This surface
has two holes: one through the empty middle of the doughnut, and one through the
tubular part (filled with dough in the edible version). The important thing to note
is that there are three main sorts of paths on the torus [see Fig. 4(a)]: A-type and
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Figure 4. (a) A torus with three different sorts of paths on its surface. [Figure reproduced from Ref. [4],

reprinted with permission of Oxford University Press.] (b) Square lattice in which spins lie in the spaces
between lattice points. Example spin positions are shown in green in the upper left. An example plaquette p

and star s are also shown. (c) Flipping a connected string of spins aligned along ±x (red dots) excites two e

anyon (or star) excitations at the ends of the string (labelled s1 and s2). (d) Flipping spins aligned along ±z
along a string perpendicular to the bonds (blue dots) creates two m anyon (or plaquette) excitations (labelled

p1 and p2). (e) Top: the action of the star operator on a path through the lattice flips spins (purple), giving a
loop of flipped spins on the dual lattice (green). Bottom: a line of flipped spins (blue) makes an A-type path on
the torus. (f) Configuration of bonds and plaquettes that results from applying periodic boundary conditions

to a lattice of 4 points. Arabic numerals label bonds, roman numerals label plaquettes.
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B-type paths wrap the two different holes that characterise the torus, while C-type
paths wrap neither of the holes. It is impossible to smoothly deform one type of path
into a different one (that is, they are topologically distinct: we would need to cut the
paths and glue them back together to do this).

The lattice in the toric code model is decorated by s = 1/2 spins which are, rather
unusually, situated on the centres of the bonds, rather than on the vertices of the lattice,
as one would usually expect, [the spins are represented by green dots in Fig. 4(b)].
We shall mostly work in a basis of spins directed up and down along z, and operate
on a spin between sites i and j with Pauli sigma operators using the usual rules
σ̂zij | ↑ij〉 = | ↑ij〉, σ̂zij | ↓ij〉 = −| ↓ij〉, σ̂xij | ↑ij〉 = | ↓ij〉 and σ̂xij | ↓ij〉 = | ↑ij〉.

There are two contributions to the Hamiltonian [see Fig. 4(b)]: (i) from each square
plaquette (labelled with an index p) on the lattice, and (ii) from each star, which is the
cross-shaped structure formed from the nearest-neighbour bonds of lattice site s. The
contribution from a plaquette is given by P̂p =

∏
ij∈p σ̂

z
ij , which is to say a product

of the z-components of spins on the bonds around a plaquette. This takes values ±1.
The contribution from a star is given by R̂s =

∏
ij∈s σ̂

x
ij , (i.e. operate with the x-sigma

matrix, flipping spins in our σz basis). This contribution also takes values ±1 (most
easily seen by transforming to a basis of spins directed along ±x). Each of these two
operators commutes amongst themselves and, as can be checked, they commute with
each other. We put the two contributions together to form the Hamiltonian for the
toric code

Ĥ = −g
∑
p

P̂p − t
∑
s

R̂s, (7)

where g and t are positive constants.

6.1. Ground state and excitations

On one level, the toric code is quite a simple model whose properties can be guessed.
We can immediately spot a candidate ground state |0〉: if we can find a wavefunction
such that all eigenvalues Rs = Pp = 1 we obtain the lowest-possible energy. Consider
plaquette q, to get Pq = 1 we must have an even number of down spins. (There are,
of course, several ways to arrange this.) We can also see the role of entanglement.
Consider the ground state expressed in a basis of eigenstates of the σ̂x operator. Each
spin is shared between two stars. To make sure a star has Rs = 1 there must be an
even number of down (along-x) spins in the star. Moreover, in order that all stars have
Rs = 1, these down spins must be must be arranged in closed loops. (Try it and see!)
The ground state |0〉 is an equal amplitude superposition of such loop states. Such an
entangled ground state does not have a preferred spin direction and so is magnetically
disordered and is an example of a quantum spin liquid.

Excitations from the ground state have some plaquettes or stars contributing −1 to
the Hamiltonian. Excitations with Pp = −1 are known as vortices. These are bosons,
they cost energy 2g to produce, and are also known as magnetic (m) particles (or
sometimes as visons). The other sort of excitation is a single negative star Rs = −1,
which is also a boson, this time costing energy 2t, and is known as an electric (e)
charge. Neither m nor e can be created locally as individual excitations using a single

operator, as we do with particles (where c†i |0〉 = |1i〉). For the e particles, for example,
the best we can do is flip a string of spins, which creates two localised e particles:
one at each lattice site at the end of the string of flipped spins [Fig. 4(c)]. This is
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because each spin is shared between two lattice sites, and hence shared by two stars.
The m particles are also created in pairs, occurring at plaquette centres at the ends of
strings of flipped bonds, this time as shown in Fig. 4(d). Again this is due to each spin
being shared between two plaquettes. This non-locality of excitations leads to anyon
statistics, although in slightly more subtle form to what we’ve seen so far. Although e
and m are both bosonic, moving an e around an m gives a π phase shift, resulting in
a negative sign. We say that the particles have mutual statistics, specifically we call
them mutual semions in this context. Additionally, the composite particle ε made up
of a boson e and a boson m is actually a fermion.

Using these ideas, we can deduce some basic properties of the toric-code ground
state more formally. Working in a basis of eigenstates of σz operators, we specify
spin configurations by writing a wavefunction |{Sij}〉, where {Sij} are a list of the
eigenstates of each operator σzij for the bond between sites i and j. The ground state
|0〉 will be built from a superposition of these spin states |{Sij}〉. To find |0〉, we require

for the plaquette term that P̂p|0〉 = |0〉. This is only possible for a state of the form

|0〉 =
∑

cs |{Sij}〉 , (8)

where the css are constants and the sum is constrained to be over those spin configu-
rations that feature no vortices (i.e. where Pp = 1).

In this σz basis, the star operators act on an |{Sij}〉 to flip spins. If we start with a
state with no vortices and act with the star operator on sites that lie on paths around
the lattice then we create a pattern of down spins on an up-spin background. (The
star operator never creates vortices owing to the commutation of the two operations.)
If we visualise this by linking the down spins via the dual lattice (i.e. the lattice
formed from points in the middle of each lattice point on the original lattice), the
result is always closed loops of down spins, of the sort shown in green in the example
in Fig. 4(e). A ground state is formed from the superposition of all such vortex-free
states comprising closed loops of down spins on the dual lattice. These all contribute
with equal coefficients cs = c in eqn 8. The resulting state gives R̂s|0〉 = |0〉, confirming
that we have a ground state.

Although this accounts for one ground state, there are actually three more degen-
erate states, making four in total. To access the others, let’s consider the Wilson loop
operator Û(C), which multiplies the spins around a closed contour C. The operator is
given explicitly by

Û(C) = ŜijŜjk...Ŝli, (9)

where the indices are selected to take us around the contour. The eigenvalue U(C),
which can take values ±1, is called the Z2 flux through C. [For example, the flux from
a vortex excitation (i.e. Pp = −1 on a plaquette p) is U = −1.] Since the star operator

flips pairs of spins along any contour through the lattice, it must commute with Û(C).
Now, if we take the path around the two distinct paths that wrap a torus [`1 = A or
`2 = B in Fig. 4(a)], then we must have U(`i) = ±1. [The ground-state configuration
we formed in the last paragraph has U(A) = U(B) = 1.]

The four degenerate ground states come from the possibility of adding loops of down
spins that wrap all the way around the torus in either of those two distinct paths that
link the torus [i.e. paths A or B in Fig. 4(c)]. An example of an A-type loop of down
spins is shown in Fig. 4(e). A B-type contour that wraps the torus must cross this line
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of down spins and yield U(B) = −1 [we also have U(A) = +1]. Note that there is no
way to create the down-spin loop from the application of the star operators, and also
that the state containing just this loop has no vortices. Compared to the state with no
down-spin loops that wrap the torus, this state will give distinct patterns of down spins
on the dual lattice once we start working on it with the star operator. As a result, the
state formed by all down-spin loops in an U(A) = 1, U(B) = −1, system yields a second
degenerate ground state. The other degenerate states have U(A) = −1, U(B) = +1
[i.e. a vertical line of flipped spins on Fig. 4(e)] and U(A) = U(B) = −1 [i.e. both a
vertical and horizontal line of flipped spins].

The resulting 4-fold degeneracy is a topological degeneracy, meaning that it occurs
for all lattices on the torus. In the language of flux, we might call U(A) the flux through
one hole of the torus and U(B) the flux through the other. States with U = 1 have
no flux through the torus while states with U = −1 have one unit of flux threading
it.9 The degeneracy is very robust, as we can see if we treat the star term as a small
perturbation to the vortex term by assuming g � t in eqn 7. Recall from degenerate
perturbation theory that to compute the splitting caused by a perturbation, we need
to identify a series of operators that takes the ground state up to an excited state (or
states) and then returns it back to another state in the ground-state manifold. The
only way this can occur here [1] using the star operator is for it to create excited stated
by flipping spins all of the way around the torus. For an L × L lattice, this requires
L excitations. Perturbation theory tells us that any energy gap caused by such a
perturbation is of order ∆E ≈ tL/gL−1, but as we tend to the thermodynamic limit
of a system L → ∞, we find ∆E → 0. We conclude that the topological degeneracy
is robust. In fact, the degeneracies in our toric code are exact, and not split at all by
tL/gL−1 terms, although such a splitting would apply in a more generic model.

6.2. Counting states in Z2 theory

This subsection, and the following one, are a tutorial given in terms of a simplified
model theory to explicitly compute the degeneracy via a demonstration of the gauge
structure. You can skip to Section 7 at this stage if desired.

Let’s simplify the toric code model further and consider only the plaquette term
[1] with spins acted on by operators Ŝij = σ̂zij (that is, we set t = 0 in eqn 7). The

Hamiltonian is now simply Ĥ = −g∑p P̂p, where P̂p =
∏
ij∈p Ŝij now operates on the

spins in a plaquette p only. For definiteness take the number of sites on the lattice
to be n = 4 so we have only a single plaquette p = I. In the absence of boundary
conditions, the spins on this plaquette can adopt 2n = 16 configurations, half giving
PI = 1; half giving PI = −1.

Now apply the all-important boundary conditions and get Fig 4(f) with 2n = 8 spins
on the resulting bonds (labelled 1-8 in the figure), and therefore 22n = 256 possible

spin configurations. However, the description in the Hamiltonian Ĥ = −g∑p P̂p is
not given at the level of spins, but at the higher level of plaquettes. By seeking to
describe the system’s states at this higher level, we’ll see that a description in terms
of Pp can be visualised as a pattern of fluxes that thread the lattice. Compared to the
model without boundary conditions, the periodic boundaries provide three additional
plaquettes, making four in total [labelled I, II, III and IV in Fig. 4(f)]. However, these
four plaquettes are not independent, since each spin is shared between two plaquettes.

9In fact, for a genus g Riemann surface, we can put zero or one unit of flux through each of the 2g holes of

the surface, leading to a 22g degenerate ground state.
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Plaquette Spins in No. of free choices to
p the plaquette obtain a given Pp
I 1 2 3 4 8
II 1 3 5 8 2
III 2 4 6 7 2
IV 5 6 7 8 0

Table 1. Decorate the periodic lattice in Fig. 4 with spins to realise a pattern of (PI, PII, PIII, PIV), in the

order p =I, II, III, IV. There are 8 choices to obtain PI, but because spins are shared, these are constrained for

the other plaquettes. The table shows that there are 8× 2× 2 = 32 spin configurations that give each pattern
of fluxes {Pp}. (We check that 32× 8 different {Pp} gives our 256 possible spin configurations.)

If we multiply all of the plaquette operators together, each spin features twice in the
product, and since Pp = ±1, we have the constraint

∏
p Pp = 1. A consequence is that

there are only 3 possible values of energy E =
∑IV

p=I Pp, namely 4, 0 and−4. There is

one set of {Pp} = (PI, PII, PIII, PIV) that leads to E = 4, one set that gives E = −4,
and six sets with E = 0, making 8 different allowed sets (called “patterns of flux”
below) in total. This is a lot less than the 256 possible spins states! In fact, consulting
Table 1, we find that there are 8 × 2 × 2 = 32 ways of arranging spins to get each
allowed choice of {Pp}.
Takeaway: there are 22n = 256 configurations of spins in the model. There are only 8
unique sets of {Pp}. That is, there are 8 distinct patterns of flux through the lattice.
It’s therefore impossible to uniquely label spin configurations with a list of Pp.

Although there are 8 patterns of flux, we don’t actually know how many states
exist in the Hilbert space of the system when it is described in terms of fluxes. This
is because both degeneracy and gauge equivalence will cause there to be several spin
states that give an equivalent pattern of fluxes.

Evaluating the balance between degeneracy and gauge equivalence is the subject of
the next subsection. However, if formal gauge theories are not to your taste, here is
the direct argument: our simplified model has t = 0 in eqn 7. We might ask how the
energies of these sets of states are split for 0 < t/g � 1. The answer is that all the
exact eigenstates for t, g > 0 can be labelled by the positions of the e and m particles,
plus the values of the fluxes around the two loops that encircle the torus. Here we
have 8 configurations of m particles (i.e. one with no plaquettes occupied, one with all
four plaquettes occupied, and six with two of the plaquettes occupied) , and for each
set of m particles there are 8 possible configurations of e particles (i.e. one with no
sites occupied, one with all four sites occupied, and six with two of the sites occupied).
For each of these 64 configuration of m and e particles we’ve seen that there are 4
possible configurations of flux that wrap the torus. So the total number of states is
8× 8× 4 = 256 as expected. For t, g > 0 these states must exist as 4-fold degenerate
levels, since the values of the flux don’t influence the energy of the states.

6.3. Introducing gauges

Many of the 256 spin states are gauge equivalent. Recall that “gauge equivalence” is
a statement that several different configurations specified by a gauge field can cor-
respond to the same state in the Hilbert space of a system. We see this if we make
a local transformation: the transformed system gives the same Hamiltonian and ob-
servables. For our problem, the Hamiltonian is given in terms of the configuration of
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plaquettes, which therefore determines the Hilbert space. We will call these states in
the Hilbert space, which can be visualised in terms of the patterns of fluxes through
the plaquettes, the physical states for this problem. Since many of the underlying spin
states correspond to the same pattern of fluxes, we can therefore treat the specific
description of spins as a gauge field. To summarise, on putting the spins on bonds and
specifying the configurations using the the plaquette operators P̂p in our Hamiltonian,
rather than the spins, we obtain a redundancy of description, and hence we say that
a gauge structure emerges.10

In our model, Sij is the gauge field and we’ll see that several states described
by different Sij correspond the same state in the Hilbert space of the model when
described in terms of plaquette operators. Technically, we can group spin states into
collections called gauge-equivalent classes, where all of the states in such a class are
related by a local transformation and so represent the same physical state. [1] As
a result, states in a Hilbert space are in a 1-1 relation with the number of gauge-
equivalent classes.

The gauge group for our model is Z2, which is to say specifically that a local trans-
formation Wi of the spin field Sij leaves the Hamiltonian invariant. Here the local
transformation Wi is an arbitrary function that takes values ±1 at the different lattice
sites. Two spin fields Sij and S̃ij are gauge equivalent if they are related by a local

transformation Wi via S̃ij = WiSijW
−1
j . You can see an example of how this works

by starting with a state S̄ij , selecting some site k and setting Wk = −1 and all of
the other Wi to be +1. This flips spins in a star shape around site k to give a config-
uration S̃ij . Since two of the flipped bonds feature in each plaquette surrounding k,

the Hamiltonian Ĥ = −g∑p P̂p is gauge invariant: you get the same value of energy,

no matter whether you use S̄ij or S̃ij . Moreover, you can make 2n = 16 different Wi

functions on our lattice, so this is the number of possible local transformations.
In order to work out if two states on a lattice are really the same physical state (i.e.

if they are gauge equivalent), an important role is played by the Wilson-loop operator

Û(C) from eqn 9. The key is that U(C) itself is gauge invariant, so states that give dif-
ferent values of U(C) cannot be related by an arbitrary local transformation. Therefore
if we know the pattern of fluxes provided by evaluating U(C) around each plaquette,
then we have the physical description of a state. Note that if C is a single plaquette
p then Û(C) ≡ P̂p, and so the sets {Pp} pick up the flux through each plaquette and
label states in a way that’s invariant with respect to local transformations. In short: a
different {Pp} means a different physical state. However, the same {Pp} doesn’t guar-
antee that all of the states are gauge equivalent (i.e. the same physical state) because
we don’t yet know how many states are distinct states that are degenerate. Returning
to our example, we have that a number (32 in our case) of spins states will give the
same pattern of fluxes described by a given {Pp}.

To finally compute the degeneracy, we need a technical argument [1], which goes as
follows: There are 2n = 16 different possible local transformations, but there are two
special transformations that don’t change the spin configuration, namely Wi = 1 and
Wi = −1, for all i. A (non-trivial) consequence of the existence of these two special
transformations is that the 16 gauge transformations can actually only create 2n/2 =

10The situation here is subtly different to that of electromagnetism, where there is no direct experimental access
to the gauge field. Here we could imagine making measurements of the spins in a real system via magnetic

susceptibility. However, by treating the physics at the (Hamiltonian) level of plaquettes and, equivalently,

fluxes, there’s a sense in which we’re treating the spins as a microscopic description that we can’t access, and
working instead with what emerges at the more coarse-grained level of fluxes.
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8 gauge-equivalent configurations, where the 2 in the denominator is the number of
these special transformations. With this key fact in hand, we can say that there are
22n/(2n/2) = 2 × 2n = 32 gauge-equivalent classes [i.e. total number of spin states
(256), divided by number of gauge-equivalent configurations (8)] and therefore 32
different physical states in the Hilbert space. So out of 256 total spin configurations,
only 32 are distinct physical states. To label the flux states we use the Z2 flux through
a plaquette provided by the eigenstates of the P̂p operator. We saw that there are
only 2n/2 = 8 different values of {Pp} and so only 8 distinct patterns of flux through
the system. However, if each state is 4-fold degenerate we are saved, since then the
different flux patterns give the 8× 4 = 32 physical states in the Hilbert space.
Takeaway: There are 32 physical states in the Hilbert space of the model. Each of these
states corresponds to 8 gauge-equivalent states (accounting for 256 spin configurations).
There are 8 different patterns of flux encoded by {Pp}. Each of the 8 flux patterns
corresponds to 4 physically-distinct degenerate states.11

Let’s pause and consider what we’ve learnt from this technical discussion. The sim-
plified toric-code model has a spin-liquid ground state which respects rotational spin
symmetry and is highly entangled. The model is invariant with respect to local Z2

transformations, giving it a rich gauge structure. The topology of the lattice, via the
gauge structure, causes all states to be 4-fold degenerate. Finally, we might congratu-
late ourselves by getting this far with a quotation from X-G. Wen [1]:

If you feel the definition of Z2 gauge theory is formal and the resulting theory is
strange, then you get the point.

7. Spinons

An important excitation found in most spin-liquid models is the spinon. The spinon
is an s = 1/2, neutral fermion and therefore (compared, e.g., to the s = 1/2, charged
electron) an example of a fractional excitation. The idea of fracturing of the quantum
numbers of an electron is easiest to see in one dimension [18], which demonstrates the
remarkable feature that the apparently fundamental properties of the electron: spin
and charge, can break into two. We imagine a set of electrons arranged along a one-
dimensional line as shown in Fig. 5(a), with electron spins aligned up-down-up-down,
so the overall spin of the system is zero. If we remove an electron from this system then
we leave behind a hole, which can be thought of as an excited state of charge (known
as a holon in this context). If we move an electron along the line into the empty space
without changing its spin, then we see that the hole is mobile. This has a consequence:
it leaves two like spins as neighbours forming a s = 1/2 spinon excitation. As we slide
electrons around we see that the holon can move independently of the spinon. Similarly
by flipping a pair of spins we can move the spinon around. The spin excitation and
the hole excitation are independent: we have spin-charge separation.

In the purely magnetic case (i.e. without the charge excitation), we attempt to
measure the dispersion by flipping a spin [Fig. 5(b)] to create a s = 1 magnon excitation
with wavevector q. This is not stable on the 1D chain and so falls apart into a pair
of s = 1/2 spinons that propagate via pairs of spin flips with wavevectors q1 and q2,
where q = q1 + q2. We therefore expect to measure (in an inelastic neutron scattering
measurement) a continuum of possible excitations [the grey shading in Fig. 5(c)] lying

11Since each of the physically distinct states can be expressed as 8 gauge equivalent configurations of spins,

there are 32 spin configurations giving each pattern of fluxes, as we found above.
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Figure 5. (a) Spin and charge separate in a one-dimensional electron system. A spin up electron is removed,

leaving a hole behind. As the hole moves down the chain it leaves behind it a spin excitation (circled). (b) In
a spin chain we create a s = 1 magnon by flipping a spin. This is not a stable excitation but can split into

a pair of s = 1/2 spinons (circled) that can propagate via flips of spin pairs. (c) Spinons pairs give rise to a

continuum of excitations in the chain (grey area) lying between the magnon dispersion (upper curve) and the
single spinon dispersion (lower curve).

between the dispersion curves of a single spinon and the single magnon. It is the
characteristic continuum of excitations that tells us we have fractional excitations.

7.1. Representing spins as fermions

It is rather surprising that we can form spinons from the spins in a magnet. In this
section we discuss how this is possible within a mean-field picture of magnetism.12 The
idea will be to fractionalise the spins into parts or “partons”. If we guess how to make
the split correctly, the partons might represent the true excitations of the system. As
has been commented [1,12], some practitioners are uncomfortable with this approach,
but we shall willingly suspend disbelief for the moment.

Let’s return to two dimensions and to the Heisenberg antiferromagnet with Hamilto-
nian Ĥ = −∑〈ij〉 JijŜi · Ŝj and make a mean-field approximation [4]. This essentially
causes a spin to sit in the constant average magnetic field of its ordered neighbours,
allowing us to compute its dynamics. The usual recipe to do this replaces the original
Hamiltonian by

Ĥmf = −
∑
〈ij〉

Jij

[
〈Ŝi〉 · Ŝj + Ŝi · 〈Ŝj〉 − 〈Ŝi〉 · 〈Ŝj〉

]
. (10)

where 〈Ŝi〉 = 〈Φmf |Ŝi|Φmf〉 and |Φmf〉 is the mean-field ground state of the system.
Although this approximation represents the spirit of this section, this prescription
won’t actually work for a QSL, since the states with which we’re interested have
〈Si〉 = 0, as we expect them to be disordered.

To make progress, we perform a transformation trick that allows us to represent
the spin as a chargeless fermion.13 We introduce spinon operators f̂iα where i is a

12Although our discussion is given in terms of fractionalising spins to form fermionic spinons, it is also possible

to choose to form bosonic spinons via the use of the Schwinger boson representation of spin [19]. Such an
approach has the appealing feature that some states can be described in terms of the Bose-Einstein condensation

of such spinons [22].
13It’s worth noting that such transformations have a rich history in many-body physics. Jordan and Wigner

spotted that a single spin state can be thought of as an empty, or singly-occupied fermion state using a mapping
| ↑〉 ≡ f†|0〉 and | ↓〉 ≡ |0〉. However, to deal with more than one spin they must add a phase factor, called a

string, to each fermion. [19]
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site on the lattice and α = 1, 2 [1,14]. These are two-component, fermionic s = 1/2,
charge-neutral operators (sometimes called Abrikosov fermions). There are two sorts
of these (fi1 spinons and fi2 spinons). A spin operator is represented by spinons as

Ŝi =
1

2
f̂ †iασαβ f̂iβ =

1

2

(
f̂ †i1 f̂ †i2

)(
σ11 σ12

σ21 σ22

)(
f̂i1
f̂i2

)
. (11)

In these equations, sums over the Greek indices, which take the values 1 and 2, are
implied.

The result of the spinon transformation is that the magnetic Hamiltonian becomes

Ĥ = 1
2

∑
〈ij〉 Jij f̂

†
iαf̂jαf̂

†
jβ f̂iβ + const. To recap, we have recast the magnetic Hamil-

tonian in terms of chargeless spinons which yields an expression in the spirit of the
tight-binding model of eqn 1, that can be interpreted in terms of fermions hopping
between sites. By making this transformation we’ve allowed there to be four possible
spinon states per site (|fi1fi2〉 = |00〉, |01〉, |10〉, |11〉), where previously there were only
two spin states (| ↑〉 and | ↓〉). To make sure there’s one fermion per site we should,

strictly speaking, set the constraint f̂ †i1f̂i1 + f̂ †i2f̂i2 = 1, which reduces the possible
states down to |10〉 ≡ | ↑〉 and |01〉 ≡ | ↓〉 only.

We can now make progress by imposing a mean-field approximation on the spinon
model [1,14]. Recall that this involves taking an average of combinations of operators.
This is carried out here by relaxing the constraint on the number of fermions per site,

such that we set 〈f̂ †iαf̂iα〉 = 1, which says that the average number of fermions per
site is now one. In practice this is done using a Lagrange multiplier Vi, leading to a

new term Vi(f
†
iαfiα − 1) in the Hamiltonian. We enact the mean-field approximation,

which now amounts to taking averages of combinations of pairs of spinon operators,
and throws up the answer

Ĥmf =
1

2

∑
〈ij〉

Jij

[
f̂ †iαf̂jαχji + h.c.− |χij |2

]
+
∑
i

Vi(f̂
†
iαf̂iα − 1), (12)

where h.c. is the Hermitian conjugate of the preceding term. The new quantity χij =

〈f̂ †iαf̂jα〉 = 〈f̂ †i1f̂j1〉+ 〈f̂ †i2f̂j2〉 is key here. It measures the amplitude for either sort of
fermion to hop from site j to site i. The quantities χij and Vi don’t change if we rotate
spins, so we can conclude that the ground state also has this rotational invariance.
The model can now yield spin-liquid ground states.

From the previous discussion, we would conclude that there is a disordered, corre-
lated ground state whose excitations are spinons. However, to get a reliable picture
that maps to the Hilbert space of the original spin model, we must also include the
possibility of low-energy fluctuations in χij by saying χij = χ̄ije

−iθij and obtain

Ĥmf =
1

2

∑
〈ij〉

Jij

[
f̂ †iαf̂jαχ̄jie

−iθij + h.c.
]

+
∑
i

Vi(f̂
†
iαf̂iα − 1), (13)

We see that if we make the local phase transformation θij → θij+φi−φj and f̂i → f̂ie
iφi

the Hamiltonian is unchanged. We have discovered the U(1) gauge structure of the
model. We identify the Vi and θij , which interact with the spinons in the same form,
as components of a gauge field, and conclude that the excitations of the theory are
spinons coupled to this U(1) gauge field. To make further progress we need to specify
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the form of χij , which then allows us to derive the dispersion of the excitations for
specific QSL models. This can result in a range of states including RVB-type models
and a several Z2 spin liquids [1].

For now, we can recap the main features of this approach to finding QSLs: in order
to use a mean-field theory to describe magnetically-disordered states we have needed
to fractionalise the spins before taking the averages on which the mean-field tech-
nique relies. The result is a theory that predicts magnetically disordered ground states
with neutral s = 1/2 fermion excitations. On allowing fluctuations in the averaged
quantities we obtain a gauge structure, where we interpret these fluctuations quantum
mechanically as bosonic excitations in the gauge field. In short, we split up the spins
at the start, and we use bosonic glue (via the gauge-field component Vi) to stick them
back together! This results in a Hamiltonian model that can support a spin liquid
ground state, with predictions of its excitations.

This general approach can be extended to more complicated gauge structures to
make a range of spin liquids states. We expect stable mean-field QSLs to have a
non-zero energy gap against gauge field fluctuations. The stable QSLs always contain
neutral s = 1/2 spinons with short range interactions between them. The mean-field
approach predicts four families of spin liquid in (2+1) dimensions, characterised by
the nature of the energy gap between the ground state and the spinon and gauge
excitations. (See Ref. [1] for the full story.)
Rigid spin liquids are topologically ordered, which means both spinon excitations and
the excitations in the gauge field have non-zero energy gaps. The gaps lead the QSLs to
be stable since there are no low-energy excitations to destabilise the states. Examples
include Z2-gapped liquids and chiral liquids.
Bose spin liquids are a class characterised by spinon excitations with an energy gap,
and gapless U(1) gauge-boson excitations. These are not stable in (2+1) dimensions.
Fermi spin liquids have gapless s = 1/2 spinon excitations with short-range interac-
tions between them. The name derives from Fermi liquids, which are characterised
by their gapless electronic excitations. Examples include Z2-linear-, Z2-quadratic-,
Z2-gapless liquids, where names refer to features of the spinon dispersion.
Algebraic spin liquids have gapless excitations, but these are neither free bosons nor
free fermions. Excitations are massless fermions coupled to U(1) gauge field. Examples
include the U(1)-linear liquid.

If you’ve succeeded in suspending disbelief until now, disbelief is surely flooding
back! Should we trust any of these manipulations? Arguably, the jury is still out,
but the approach does suggest the features of some of the possible states that might
be out there for discovery. Ultimately experiment will be the arbiter and we shall
discuss the status of experiments at the end of the article. For now we shall turn to
a different means of realising a QSL that, unlike the mean-field picture, does not rely
on approximations.

8. The Kitaev model

For many of the formative years of the subject, the search for QSLs was inspired by
the successes such as the FQH fluid and BCS superconductivity, that suggested that
identifying wavefunctions, rather than Hamiltonians, was the way to discover new
states of matter. Although this approach has indeed been transformative, there was
also a great deal of value in the later identification of Hamiltonian models of QSLs. A
major step forward has been the formulation of the Kitaev model [21]. This is not least
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Figure 6. The Kitaev model. (a) Honeycomb lattice with directional bonds. (b) To solve the model, we define

a set of particle operators attached to each vertex of the lattice. (c) A plaquette in the lattice leads to the
definition of the operator Ŵp. (d) Dispersion for Jx = Jy = Jz showing Dirac cones. (e) The triangular phase

diagram given in terms of (Jx, Jy , Jz). (f) For Jz � Jx, Jy , we create superspins along the z bonds and recreate

the toric code lattice. A sample plaquette and star is shown.

because it is solvable, based on a simple magnetic Hamiltonian that has a spin-liquid
ground state. The solution, which involves the use of operators representing Majorana
fermions (a hypothetical fermion that is its own antiparticle), looks potentially rather
unfamiliar, but the result is less so: it leads to a Z2 gauge field and vortex excitations,
just like we saw in Section 6. Even better, in one limit of interactions the system gives
us back the toric code model exactly.

The Kitaev model is based on a planar honeycomb lattice with spins on each vertex
[Fig. 6(a)]. The links are labelled x, y, z and the Hamiltonian is written

Ĥ = −Jx
∑
x

σ̂xi σ̂
x
j − Jy

∑
y

σ̂yi σ̂
y
j − Jz

∑
z

σ̂zi σ̂
z
j . (14)

To solve the model we introduce an operator that operates on hexagonal plaquette p
shown in Fig. 6(c) via Ŵp = σ̂x1 σ̂

y
2 σ̂

z
3σ̂

x
4 σ̂

y
5 σ̂

z
6 , with eigenvalues Wp = ±1. The Ŵp for

each p commutes so we can describe the Hilbert space in terms of a set {Wp}. It will
turn out that the ground states has Wp = 1 for all plaquettes.

Although this is progress, the full solution requires swapping spins for a new set
of operators as we did in the last section. Fascinatingly, these are the operators de-
scribing Majorana fermions. Conventional fermions can be created (with operator d̂†)

an annihilated (d̂), with the constraints d̂†d̂† = 0 and d̂d̂ = 0, and anticommutator

d̂†d̂ + d̂d̂† = 0. A Majorana fermion is its own antiparticle, which means that conju-
gating the charge of a Majorana has no effect. In terms of operators this means we
represent Majoranas as real-valued. Therefore, if we have two species of Majorana (a
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and b particles) then we could split up a fermion as d̂ = (â + ib̂)/2, where the Majo-

rana operators for this representation are â and b̂. It follows that the Majoranas have
the properties â = â† and b̂ = b̂† (i.e. the creation and annihilation operators are the

same), â2 = b̂2 = 1 (i.e. applying the operator twice has no effect) and âb̂ + b̂â = 0
(the operators anticommute with each other).

8.1. The Kitaev model solution and its gauge structure

For our problem [21], we will need to introduce four Majorana particles at each vertex
of the lattice [Fig. 6(b)]. At each vertex we therefore define a set of Majorana operators

b̂x, b̂y, b̂z, ĉ, and we write spin operators in terms of these as σ̂x = ib̂xĉ, σ̂y = ib̂y ĉ, and
σ̂z = ib̂z ĉ. The new operators square to unity and they anticommute in the same
way that the σ matrices do. However, we find that we also need an extra constraint:
identify operator D̂ = b̂xb̂y b̂z ĉ (which commutes with the spin operators) and, with
the stipulation that D = ±1, we guarantee a consistent theory.14 So why do we need
four Majoranas? We’ll give the c-field a local Z2 invariance, and the b-fields will be the
gauge fields that guarantee this. This will give us a QSL ground state with fermion
excitations that derives from the c-field, along with vortex excitations that will arise
from the flux of the gauge field.

With the proposed set of transformations, the Kitaev Hamiltonian becomes

Ĥ =
i

4

∑
〈jk〉

2Jα

(
ib̂αj b̂

α
k

)
ĉj ĉk. (15)

The first thing to notice is that this looks like a tight-binding model for the c-particles.
Moreover, the shape of this Hamiltonian has the c-type Majoranas interacting with
an effective field ib̂b̂. In this case, the combination ib̂αj b̂

α
k = ûjk, with α determined

by the direction of the bond [i.e. α = α(i, j)], is a Z2 gauge field, since ujk = ±1.15

The operator ûjk commutes with the Hamiltonian, so we can split up the solutions

according to the values of ujk using the product around a plaquette Ŵp =
∏
ûjk,

which we now see evaluates the flux of the gauge field through a plaquette.
The ground state has Wp = 1 for all plaquettes. This state is a magnetically-

disordered (i.e. spin-rotation invariant), spin-liquid phase. The Hamiltonian can
then be diagonalised to reveal the dispersion for the c-field excitations of E(k) =
±2
∣∣Jxeik·n1 + Jye

ik·n2 + Jz
∣∣ , where n1,2 =

(
±
√

3/2, 3/2
)
. As usual, we characterise

the material in terms of the gap against excitations. An example of the spectrum
for Jx = Jy = Jz is shown in Fig. 6(d) and has several sets of excitations existing
from E = 0, each with a striking linear dispersion. The points in k-space from which
they emerge are known as Dirac points, where the dispersion resembles that of highly
relativistic particles (i.e. with linear dispersion E = |p|c, where c is the speed of light).

We can always find some fermion solution with E = 0 as long as the exchange
constants obey triangle inequalities: |Jx| ≤ |Jy| + |Jz| or |Jy| ≤ |Jz| + |Jx| or |Jz| ≤
|Jx|+|Jy|. When these aren’t obeyed, the spectrum has a gap. We can draw a triangular
phase diagram of gapped and gapless phases as shown in Fig. 6(e). The phases Ai are

14The point here is that the Hilbert space dimension for a single spin is 2 but for four majoranas it is 4, so we
need to project out two spurious states per site.
15To see this, note that the local transformation in this case would send cj →Wjcj and then a change in the

gauge field of ujk →WjujkW
−1
k cancels out this effect.
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completely gapped, while the phase B is gapless. In addition to the fermion excitations,
we have Wp = −1 excitations in the gauge field. These are bosonic vortices.

Finally, as promised, in the limit of strong Jz-coupling we recover the toric code
Hamiltonian. Physically, this is because the strong z-links tie the spins together to
form effective spins |1〉 = | ↑↑〉 and |2〉 = | ↓↓〉 which decorate the edges of a square
lattice. This is shown in Fig. 6(f), where a sample plaquette and star are indicated.

9. Realising a QSL in materials

We’ve seen several ways of describing different putative QSLs, but the question re-
mains whether the state is realised in real materials. As we said at the start of this
article, there is a wide-ranging literature claiming QSL behaviour in a large number
of materials. However, it’s probably fair to say that we do not have a case where a
consensus has been reached in favour of the occurrence of the QSL state. Despite this
we have reason to be hopeful. We have dealt with (2+1) dimensions in our discussion
so far, but the analogous one-dimensional (1D) case of the spin-Luttinger liquid is
agreed to be realised in some spin-chain materials, in which direct measurements of
spinons have been made, most directly using inelastic neutron scattering (INS). The
spin-Luttinger regime is characterised by a lack of long-range magnetic order (LRO),
algebraically-decaying spin correlations and, most vividly, a continuum of spinon exci-
tations [Fig. 5(c)]. Here it is unwise to say a material is a spin-Luttinger liquid, rather
that it behaves as a spin-Luttinger liquid under certain conditions. The 1D chain will
be characterised by an intrachain interaction J . If the chains have some small inter-
chain interaction J ′ then the material might well order at a very low temperature
TN determined by J ′. In order to observe 1D physics we seek to be in a regime that
TN � T � J . This means we stay away from magnetic order, but the temperature is
low enough that the collective behaviour is promoted by J . (For T � J excitations
will start to resemble single uncorrelated spin flips.)

A QSL will be realised in more than one dimension. Although we have dealt with
2D in our discussion, there are also proposals for 3D QSL states. To realise a QSL we
seek to suppress magnetic order in materials with strong spin-spin interactions. Low
dimensionality is good for this, although many 2D materials enjoy enough coupling
in the third dimension to promote order at low temperature. Magnetic order can
also be suppressed by frustrating magnetic interactions. (When this occurs, small
interactions can tip the system over into LRO at a low-enough T , so these must be
borne in mind.) We also want to promote quantum fluctuations and for this s = 1/2
spins are most effective. Other possibilities involve promoting higher-order exchange
interactions, such as next-nearest neighbour couplings.

The experimental identification of a QSL is a knotty problem, as discussed in
Refs [23,24]. Clearly we seek a system without magnetic order down to low temper-
ature. A lack of order can be difficult to establish, but sensitive local probes such as
NMR and muon-spin spectroscopy (µ+SR) are often used to search for weak signs of
order, or spin dynamics characteristic of disordered spin-liquid states. We have stressed
that the excitation spectrum is key to the characterisation of a QSL system. Perhaps
the most important question is whether there is a gap against excitations and there are
several ways of investigating this that are sensitive to the density of states, including
thermodynamic, scattering and spectroscopic probes. Beyond this, a determination
of the excitation spectrum might be expected to supply the smoking-gun evidence.
INS remains a key method here, but requires samples that are relatively large com-
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Figure 7. (a) Structure of Herbertsmithite showing 2D Kagome layers [28]. (Copyright Springer, Nature.) (b)
κ-(ET)2Cu2(CN)3 is based on a 2D triangular lattice of BEDT-TTF dimers. (c) The 3D pyrochlore structure

[29] (Copyright American Physical Society.) (d) α-RuCl3 showing the hexagonal lattice realised by the Ru3+

ions [30]. (Copyright AAAS.) Reprinted with permission.

pared to those required for other measurements. There is also the problem that some
nuclei have large neutron-capture cross sections, or the material contains hydrogen
or other nuclei that cause a large degree of incoherent scattering. Nevertheless, we
look for fractionalised quasiparticles which, like spinons in 1D, give broad responses
in scattering as they correspond to the creation of several particles. In the absence of
momentum-resolved scattering measurements, there are predictions for the tempera-
ture and magnetic field dependence of properties such as heat capacity, spin relaxation
or transport. In the case of the latter, although QSLs should strictly be insulators,
there are possibilities for the state to couple to charges, allowing an additional handle
to probe the system.

We have stressed that the key to the QSL problem is the special pattern of quantum
entanglements that underlie the physics. Finding a means of evaluating these could
prove the key to this subject. The entanglement entropy S of the many-particle ground
state is useful here. For a gapped system it follows the form S = cL − Γ + ..., where
L in the first term is the size of the system, while the second term quantifies long-
range entanglements [23]. This latter part is only non-zero in a topological phase (for
a Z2 QSL, Γ = ln 2). The bad news, however, is that there isn’t yet a known way of
measuring this quantity.

Below we briefly introduce four different candidate systems that have been much
discussed as possible approximate realisations of a QSL state. This represents tip of
the iceberg in terms of the extensive literature, which now includes lots of distinct
avenues: for example possible QSLs in cold-atom experiments [25]. Further discussion
of our four chosen candidates, including the many relevant references, can be found in
the detailed reviews of Refs. [12–14,26,27].

Herbertsmithite or ZnCu3(OH)6Cl2 is a mineral, originally discovered in a
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Chilean mine, but since synthesised in the laboratory. It comprises s = 1/2 spins on a
frustrated 2D kagome lattice interacting with an exchange of J = 180 K [Fig. 7(a)]. The
kagome lattice is formed from corner sharing triangles (as distinct from edge-sharing
triangles of the triangular lattice), resulting in a larger degeneracy and potential for
realising QSL states. No evidence of long-range magnetic order has been found in
Herbertsmithite down to 50 mK. Specific heat and some NMR measurements suggest
gapless behaviour, although a spin gap has also been identified on the basis of Knight-
shift measurements. Large crystals have enabled neutron scattering, but the broad
continuum of magnetic excitations found was not one predicted by spin liquid theory.
In fact, the low-energy excitation spectrum appears dominated by impurity spins that
originate from sites between the kagome planes. Although these sites should host non-
magnetic Zn2+, they appear to contain enough magnetic Cu2+ to form a significant
population of orphaned impurity moments (estimated to be 5-10%). This raises the
question of how robust a QSL might be with respect to disorder, which is a ques-
tion that is pertinent to all of the cases discussed here. The presence of perturbing
anisotropic (Dzyaloshinskii-Moriya) interactions between intrinsic kagome spins has
also been found using electron spin resonance, which could have a large effect on the
ground state [31].
κ-(ET)2Cu2(CN)3 is formed from a layered structure built from structural dimers

of planar BEDT-TTF molecules, sandwiched between layers of Cu2(CN)3. Each dimer
gives rise to a magnetic s = 1/2 spin that form a 2D triangular lattice with a large
exchange J > 200 K [Fig. 7(b)]. This material is part of a family of materials that show
superconductivity and magnetic order, along with a number of spin-liquid candidates.
For κ-(ET)2Cu2(CN)3 there is no evidence of magnetic order from µ+SR or NMR. The
combination of constant low-temperature magnetic susceptibility χ, linear specific heat
(i.e. like a metal C = γT ) and a resulting Fermi-gas like Wilson ratio W (∝ χT/C,
often used to characterise interactions in electron systems) was suggestive of a gapless
phase with spin-carrying excitations. However conductivity and µ+SR both suggested
the presence of an energy gap. Owing to the tunability of molecular materials, several
other systems based on similar building blocks also show some promise.
R2M2O7 (R =rare earth, M =transition metal such as Ti or Sn) are a

well know frustrated series of 3D materials based on spins in a 3D arrangement of
corner-sharing tetrahedra, called the pyrochlore lattice [Fig. 7(c)], which is known to
exhibit a high degree of frustration. Strong spin-orbit interactions and crystal field
splitting can result in systems described by an effective s = 1/2 theory. Some of these
materials are well-described by classical theories (e.g. Ho2Ti2O7 and Dy2Ti2O7). For
example, in Dy2Ti2O7 the crystal-field anisotropy constrains the magnetic moments
to lie along the local 〈111〉 axes (i.e. directly in our out of the tetrahedron) and
there is an effective local ferromagnetic coupling between these moments, as well as
long-range dipolar couplings, which turn out to be important. As a result of this
combination of interactions and the local anisotropy, below about 1 K the system
settles into a disordered spin-ice state, which is often described as a classical spin
liquid (i.e. a highly correlated magnetic system that avoids magnetic order). Spin ice
is characterised by a ‘2-in 2-out’ spin configuration (meaning that two spins point
in and two spins point out of each tetrahedron), analogous to proton displacement
vectors in Pauling’s model of hydrogen disorder in water ice. The excitations in spin
ice are created by reversing a single spin, which produces a pair of effective magnetic
monopoles which can move independently through the lattice and interact with an
emergent gauge field, but remain connected by a topological Dirac string of flipped
spins between them. In contrast, strong quantum effects have been found in R2Ti2O7
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with R =Yb, Er and Tb and in Pr2Zr2O7. Of these Yb is the most studied, having
been suggested to be a quantum version of spin ice which features frustrated Ising
interaction. Such a model is thought to support a U(1) QSL in some limits of its
parameters. This picture has some experimental support (e.g. it features a “pinch
point” feature in its neutron spectrum, predicted for classical spin ice owing to dipolar
spin correlations). However, there is also good evidence for a phase transition to a
ferromagnetic ground state in high-quality samples, and the unusual neutron spectrum
has been suggested to arise from an interplay of types of conventional order [32]. This
is another case where there is a degree of sample dependence, suggesting a role for
disorder.

Finally, there are several candidate materials that might be described by the Kitaev
Hamiltonian. Although the Kitaev Hamiltonian, with bond-dependent Ising interac-
tions, appears somewhat contrived, it was suggested that partially-filled t2g levels in an
octahedral environment with strong spin-orbit coupling could realise the model. The
idea was originally to look at materials containing Ir4+, which has an effective j = 1/2
moment, owing to the orbital degeneracy being lifted in favour of a Kramers doublet.
Studies of honeycomb α-Na2IrO3 and α-Li2IrO3 revealed magnetic order, but also
indicated that the bond-directed Kitaev interactions were, to some extent, realised.
Iridium is well known for its high neutron capture cross section, making INS difficult
and so the most-studied Kitaev candidate is not an Ir-hosting material, but α-RuCl3
[Fig. 7(d)]. Here j = 1/2 ruthenium ions form a honeycomb lattice between Cl planes.
This system also orders (TN = 15 K), and seems to host conventional Heisenberg in-
teractions in addition to bond-directed ones. However, there is evidence from Raman
scattering for a fermionic continuum and magnetic order seems to be fully suppressed
by a strong applied field, suggesting that the interactions might be tuned to QSL be-
haviour. As a result, the system is sometimes called a proximate spin liquid. So is the
honeycomb lattice really sufficient for the Kitaev model? It is possible that the spin
liquid regime might only be stable in a tiny region and the interpretation of data on
these materials has been hotly debated. Owing to the large amount of work on this
subject at the time of writing, this remains an area to watch.

None of these systems uncontroversially show QSL behaviour, but all have features
suggesting they might be close. As with the 1D materials the key to observation of this
behavior will be looking at the realm of applicability of the models to the materials. If
the QSL states are realised in some form, and it seems likely that they are, evidence will
likely continue to accumulate slowly as the vast parameter space of possible materials is
surveyed. One essential ingredient to consider is disorder. This is an inevitable feature
of condensed matter systems and will be of relevance here. It is perhaps worth keeping
in mind its dual role in the related field of quantum Hall physics: the FQH fluid was
only observed in relatively clean samples, but disorder is also believed to be necessary
in order to observe the Hall plateaux. It is possible disorder might adopt a similar dual
role in the story of the QSL, or at least resolve some of the contradictory experimental
evidence that is found in the current literature.

10. Conclusion

The study of quantum magnetism started with doubts about the existence of the an-
tiferromagnet but, through careful experiment and thoughtful theoretical description,
the field now boasts a wealth of established results that demonstrate the fractionalisa-
tion of excitations in 1D and the existence of topological excitations related to vortices.
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Advances in materials preparation, including those towards the ability to engineer mag-
nets from tuneable building blocks, also provide hope that hitherto purely-theoretical
models might be realised in material systems. The quest to realise a quantum spin
liquid remains a much sought-after goal that goes well beyond simply finding a mate-
rial that fails to order at low temperatures. The aim of this article has been to give a
sense of what is at stake here beyond a lack of magnetic order: namely a macroscopic
manifestation of a very specific type of quantum entanglement that presents us with
a zoology of elementary excitations over and above those that fit comfortably within
Landau’s “Standard Model” of condensed matter physics. From this point of view,
the investigation of QSLs could help us in the next phase of determining the ordering
principles that quantum mechanics imposes on our material world.
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