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Abstract—Perception of the driving environment is critical for
collision avoidance and route planning to ensure driving safety.
Cooperative perception has been widely studied as an effective
approach to addressing the shortcomings of single-vehicle per-
ception. However, the practical limitations of vehicle-to-vehicle
(V2V) communications have not been adequately investigated. In
particular, current cooperative fusion models rely on supervised
models and do not address dynamic performance degradation
caused by arbitrary channel impairments. In this paper, a self-
supervised adaptive weighting model is proposed for intermediate
fusion to mitigate the adverse effects of channel distortion.
The performance of cooperative perception is investigated in
different system settings. Rician fading and imperfect channel
state information (CSI) are also considered. Numerical results
demonstrate that the proposed adaptive weighting algorithm
significantly outperforms the benchmarks without weighting.
Visualization examples validate that the proposed weighting
algorithm can flexibly adapt to various channel conditions.
Moreover, the adaptive weighting algorithm demonstrates good
generalization to untrained channels and test datasets from
different domains.

Index Terms—Adaptive weighting, cooperative perception, self-
supervised learning, V2V communications.

I. INTRODUCTION

Cooperative perception enabled by vehicular communica-
tions facilitates the exchange of complementary perceptual
information among multiple connected and autonomous vehi-
cles (CAVs), leading to a more comprehensive and integrated
perception for autonomous driving [1]. By aggregating the
information from multiple viewpoints, it provides an effec-
tive framework to alleviate the limitations of single-vehicle
perception, to detect occluded or distantly located objects.
Such collaboration schemes highly rely on the vehicular com-
munications system to transmit the shared information from
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CAVs to the ego vehicle. In practice, the reliability of vehicle-
to-vehicle (V2V) communications is constrained by limited
bandwidth and channel distortion. Therefore, addressing the
practical limitations imposed by the V2V communications
system on collaborative perception is vital, which has garnered
considerable interest from researchers.

Based on the previous works in 3D detection backbones
[2]–[4], related works have been widely conducted to develop
efficient collaborative fusion schemes, including sharing raw
point clouds (i.e. early fusion) [5], intermediate features (i.e.
intermediate fusion) [6]–[14] and detection results (i.e. late
fusion) [15]. Most of these works focus on improving percep-
tion accuracy and reducing bandwidth utilization, assuming
ideal exchange of information. To consider more realistic
V2V communication, some studies examined the effects of
communications delay [12], pose error [7], and lossy com-
munications [13]. However, they have still assumed perfect
communications channel without any channel impairments,
except [16], which considered Rician fading and free-space
path loss by incorporating the learning-based communication
channel into cooperative perception. Moreover, the work in
[16] demonstrated that the intermediate features are more
robust to channel impairments than raw point clouds and
detection results. Also, the intermediate fusion can be further
improved in the presence of channel impairments.

In realistic V2V communications, the information shared
among vehicles could potentially enhance the detection per-
formance, but if it suffers from severe channel distortion, it
may instead manifest as interference that undermines detection
accuracy. Especially for intermediate features, it is more
challenging to identify the corrupted features than the raw
point clouds and detection outputs since latent features do
not have a physical detection range. Therefore, it is vital to
prevent the severely distorted information from taking part in
the fusion or collaboration.

On the other hand, the channel distortion in realistic V2V
communication may exhibit arbitrary and dynamic character-
istics, leading to signal strength fluctuation [17]. This non-
stationarity of the V2V channel is mainly caused by the high
velocity of the transmitter, receiver and moving scatterers in
the V2V environment [18]. This necessitates the cooperative
system to adapt to various levels of channel impairment. In
this regard, relying solely on the supervised training with
the well-labeled dataset is inefficient when dealing with vari-
ous communication environments, since labeling the received
intermediate features is difficult due to their latent repre-
sentation. Consequently, the cost of training and labeling
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would exponentially increase when scaling to a more complex
communication environment or different levels of channel im-
pairments. Supervised models might also encounter difficulties
in generalizing effectively to unseen data that significantly
differs from the training samples due to random distortion.
Therefore, it is necessary to design a specialized loss function
and training scheme to address these challenges.

Although the previous works have explored various fusion
schemes for cooperative perception, several challenges remain.
For example, although different fusion schemes for cooper-
ative perception with V2V communications were studied in
[16], the significant performance degradation for intermediate
fusion due to channel distortion has yet to be addressed. Ad-
ditionally, the works mentioned above mainly use supervised
learning with well-labeled datasets, but this could be impracti-
cal for dynamic and random channel distortions. Motivated by
these, this work will focus on mitigating the adverse effects
of channel distortion on the intermediate fusion in cooperative
perception. The main contributions are summarized below:

1) To address the severe performance degradation of in-
termediate fusion in [16], a self-supervised adaptive
weighting model is proposed for the cooperative per-
ception with intermediate fusion. A convolutional neural
network (CNN)-based structure ending with Softmax
is used for adaptive weighting. Self-supervised training
with contrasting information is used to train this model
without manual annotation. Different data domains, de-
tection backbones, noise levels, and path loss factors
are examined to validate its generalization and adaptive
ability.

2) Unlike previous works that neglect realistic channel
models, we evaluate the proposed adaptive weighting
considering the WINNER II channel using orthogonal
frequency-division multiplexing (OFDM). Different fu-
sion methods and transmitted information are evaluated
for different SNRs and path loss factors. A real-world
dataset for cooperative perception is also considered.

3) Numerical results show that the proposed adaptive
weighting algorithm performs better than the bench-
marks without weighting. It is also validated that the
proposed adaptive weighting can scale to PointPillars
with different fusion schemes and real-world datasets.
Visualization examples further validate that the proposed
weighting algorithm can mitigate the adverse effects
under severe channel conditions and simultaneously
enhance the received shared features when the channel
condition improves.

The rest of the paper is organized as follows. Section II will
briefly review the related works. In Section III, we will intro-
duce the system model of the cooperative perception system
and describe the backbone algorithm. Section IV will present
the adaptive weighting algorithm and the self-supervised op-
timization. Simulation results will be demonstrated in Section
V. Finally, Section VI will conclude the work.

II. RELATED WORK

1) Single-vehicle perception: Due to the advancement of
sensor technologies and learning-based algorithms, the perfor-

mance of 3D object detection for autonomous driving has been
continuously improved using 3D scanners, such as light detec-
tion and ranging (LiDAR). Several approaches to processing
the LiDAR point clouds have been proposed in [2]–[4], [19]–
[21]. The work in [2] proposed a novel method to convert
point clouds into 3D voxels and extract essential features. This
detection algorithm adopts an end-to-end learning structure,
enabling integration with a learning-based communications
system for the end-to-end global optimization. To reduce the
computational complexity, SECOND was proposed in [4],
where sparsely embedded convolutional layers were applied to
3D voxel features. On the other hand, the work in [3] proposed
to convert the voxels along the z-axis into pillars to avoid the
computation of 3D voxels. Meanwhile, the imbalance issue
caused by anchors was addressed in [19]. Furthermore, a two-
step detection framework was proposed in [20], where the
rough estimation of proposals was generated first and refined
in the second stage. In [21], the authors proposed to jointly
leverage voxel-based and point-based detection methods.

2) Cooperative fusion: Using the previous works on
LiDAR-based 3D object detection backbones, efficient coop-
erative fusion schemes can be adopted for multiple CAVs. In
[5], early fusion was first proposed to aggregate the raw point
clouds shared among multiple CAVs, while the late fusion
scheme was proposed in [15] to use independently detected
results for late fusion.

To avoid the excessive bandwidth usage in early fusion, F-
Cooper was proposed in [6] to use the intermediate features
in cooperative perception. Furthermore, V2VNet in [7] used a
graph neural network for the intermediate feature fusion con-
sidering the V2V communication with imperfect localization
and time delay. To further reduce the bandwidth requirement,
Who2com in [22] proposed a three-stage handshake com-
munication mechanism to select collaborators based on their
matching scores. It was optimized by end-to-end supervision
using the ground truth of the target task without annotations
for the best agents to communicate with. Based on this hand-
shake communication framework, When2com was proposed
in [8] to construct communication groups and learn when to
communicate by using an asymmetric attention mechanism,
while Where2comm [9] proposed a spatial-confidence-aware
communication scheme to only transmit the crucial area of
the perceptual information. In [10], a collaboration weight-
ing graph was proposed for multi-vehicle perception, which
requires fewer communication rounds than When2com and
V2VNet. Furthermore, in [11], the attention mechanism was
used to aggregate the intermediate features from CAVs, while
the work in [12] proposed a fusion framework based on vision
Transformer to leverage the features from vehicles and infras-
tructures. Then, a hybrid object detection and tracking frame
was proposed in [23], where historical tracking information
was leveraged to enhance the inference for object detection
with a spatial-temporal deep neural network. In [24], a data
acquisition and analysis framework was proposed to collect
and process the advanced sensor data from multiple CAVs for
vehicle trajectory extraction, reconstruction, and evaluation,
in which the Kalman filter and the Chi-square test were used
to reduce the noise and outlier in the trajectories. In [14],
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a spatial-wise adaptive fusion was proposed for intermediate
features. In [13], attention-based modules were adopted to
enhance the interaction between the ego vehicle and other
CAVs, and a repair network was used to mitigate the adverse
effects of lossy communications. Most of these works focus
on improving perception accuracy and reducing bandwidth
utilization, assuming ideal communications. Very few have
considered more realistic V2V communications, such as time
delay [12], pose error [7], [22], lossy communication [13]
and Rician fading with channel impairments [16]. Among the
existing works for cooperative fusion, [10], [14], and [22]
are more relevant to our work, where different weighting
algorithms were investigated for fusion. However, these works
are trained with well-annotated datasets for detection and
neglect the realistic channel impairments.

III. SYSTEM MODEL

Physical
channel

Physical
channel

Physical
channel

CAV 1 CAV 2 CAV K

Ego vehicle

Feature
fusion

Fig. 1: Cooperative perception via V2V communication.

A. V2V communications channel model

Consider a cooperative perception system where one ego
vehicle is collaborating with K CAVs. The shared information
is transmitted from the CAVs to the ego vehicle, which is
demonstrated in Fig. 1.

1) Rician fading: Consider line-of-sight (LOS) signal prop-
agation with path loss, the received signal at the ego vehicle
from the k-th CAV is

yk =

√
p0
dnk

hkxk +wk, (1)

where
√

p0

dn
k

is the path loss with parameter p0 determined
by antennas and channel characteristics, distance dk between
transmitter and receiver, and path loss factor n, hk denotes
the Rician fading channel following CN (µ, σ2

h), yk ∈ CL×1

denotes the complex-valued received signals from the k-th
CAV, xk ∈ CL×1 is the transmitted signal, and wk denotes
the additive white Gaussian noise following CN (0, σ2).

2) Multi-path: In realistic communication, the communi-
cation channel may also suffer from multi-path fading. In
addition to the communication model in (1), a multi-path

channel model using OFDM is also considered. The received
symbols at i-th sub-carrier from the k-th CAV are

Y k[i] = Hk[i]Xk[i] +W k[i], (2)

where Hk[i] denotes the channel frequency response, W k[i]
denotes the additive white Gaussian noise, and Xk[i] denotes
the transmitted symbol.

To cooperatively leverage the shared information from mul-
tiple CAVs, denote the aggregation of the shared information
at the ego vehicle as

fagg = Ffusion(fego, f̂1, f̂2, ..., f̂K), (3)

where Ffusion(·) denotes the fusion algorithm to combine
the shared information received from CAVs, fego denotes
the information sensed at the ego car itself, and f̂k denotes
the shared information of the k-th CAV, reshaped from the
recovered received signals yk and Y k.

The sensed information from CAVs could provide infor-
mative viewpoints to improve the perception precision and
range. However, when there are severe channel impairments,
the recovered information f̂k suffers from distortion, thus
compromising the aggregated feature fagg . In order to explore
the effects of channel impairments, we consider the Rician
fading channel with free-space path loss as in (1) and the
WINNER II channel model [25] with multi-path fading as
in (2) to simulate the practical channel. Imperfect CSI with
a Gaussian disturbance and pilot-based least-square channel
estimation are adopted, accounting for channel estimation
error. A zero-forcing detector is used to recover the signal
f̂k from the received yk or Y k.

B. Cooperative perception backbone

Fig. 2 demonstrates the system model for cooperative per-
ception with learning-based communications, the same as that
in [16]. SECOND [4] is adopted as the backbone algorithm
for 3D detection. Based on the end-to-end learning structure
of VoxelNet [2], SECOND incorporates sparsely embedded
convolutional layers to improve the computational efficiency.
This enables the integration with learning-based communica-
tions system for the end-to-end global optimization. SECOND
has three main components voxel feature extractor (VFE),
sparse convolution middle layer (SpConv), and region proposal
network (RPN). Firstly, iterative conversion of raw point
clouds into voxel representations is conducted by assign-
ing the points to their corresponding voxels. Then, a VFE
layer is employed to extract point-wise features from voxels.
Subsequently, 3D sparse convolution is conducted for these
point-wise features by only applying convolution to those
non-zero elements of the sparse embeddings. This selective
processing significantly reduces computational costs. The RPN
adopts a residual structure, which involves downsampling and
upsampling operations. To achieve downsampling, multiple
layers of 2D convolution are applied to the features, along with
batch normalization and rectified linear unit (ReLU) activation.
On the other hand, upsampling is achieved by performing a 2D
deconvolution on each level of downsampled features. Then,
these deconvoluted features are concatenated to reconstruct the
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Fig. 2: The system model of cooperative perception with learning-based communications system.

convolution feature, which serves as the input to the detection
head. Finally, a single-shot detector (SSD) is used to output
the classification results of objects and the regression results
of their box localization.

To enable collaboration, multiple CAVs are connected to the
ego vehicle. In this scenario, attentive fusion [11] is employed
as an intermediate fusion method to aggregate the received
downsampled features. Attentive fusion process the features
of each CAV via attention-based neural network.

C. Supervised end-to-end training
Supervised end-to-end training is adopted for cooperative

perception with V2V communications, as the end-to-end train-
able structure of SECOND allows any part of the information
to be transmitted through the learning-based communications
system. In this case, the learning-based communication and
the detection algorithm can be trained together to consider
signal distortion in communication using the loss function in
[3], [4]. Define the boxes and anchors for object detection as

(x, y, z, w, l, h, θ), (4)

where x, y and z denote the coordinates of the box center,
w, l and h denote the width, length and height of the box,
θ denotes the rotation angle around z-axis. The localization
residuals for elements in (4) can be expressed by

∆x =
xgt − x̂

d̂
,∆y =

ygt − ypred
d

,∆z =
zgt − zpred

d̂
,

∆w = log(
wgt

wpred
),∆l = log(

lgt
lpred

),∆h = log(
hgt

hpred
),

∆θ = sin(θgt − θpred),

(5)

where ∆ is the residual between the ground truth and the
prediction, the superscript gt and pred denote the ground truth
and the prediction from the model, respectively. The regression
loss of the box localization is computed by

Lreg =
∑

λ∈(x,y,z,w,l,h,θ)

FSmoothL1(∆λ), (6)

FSmoothL1(x) =

{
0.5x2 if|x| < 1

|x| − 0.5 otherwise
. (7)

To address the imbalance of the object samples in dataset, the
focal loss in [26] is adopted as the classification loss of target
objects, which can be expressed by

Lcls = Lfocal = −α(1− qpred)
γ log (qpred) (8)

where qpred is the model’s estimated probability, α and γ
denote the parameters for the focal loss. Therefore, the overall
loss can be calculated by

Ltotal =
1

N
(βregLreg + βclsLcls) (9)

where N denotes the number of positive anchors, βreg and βcls

are the parameters for the regression loss and the classification
loss, respectively.

The cooperative perception model is trained by the Adam
optimizer with adaptive learning rate and decay weight to
minimize the total loss Ltotal. This optimization process has
been widely utilized by previous works as a solid framework
for training an effective cooperative perception model, which
will be adopted as the baseline for comparison in this work.

IV. ADAPTIVE WEIGHTING

In this section, the proposed CAV-level adaptive weighting
algorithm will be discussed first. Then, the self-supervised
training algorithm without labeled data will be presented.

A. CAV-level adaptive weighting

As shown in Fig. 2, the adaptive weighting is employed at
the ego vehicle after receiving the features from other CAVs.
This weighting algorithm is designed to exclude severely
distorted information from certain CAVs or outliers in the
fusion while leveraging the multiple viewpoints from other
CAVs, with less distorted information having higher weights.
This requires the weighting algorithm to generate weights for
features from different CAVs. The weighted feature from the
k-th CAV can be computed by

Wk = Fweighting(fego, f̂k) (10)

f̃k = Wk f̂k (11)
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where fego and f̂k ∈ RB×C×H×W denote the intermediate
features from the ego vehicle and the k-th CAV, respectively,
Fweighting denotes the weighting algorithm, Wk ∈ RB×1×1×1

denotes the output weight and f̃k denotes the weighted feature.
Fig. 3 demonstrates the working flow of the adaptive weighting
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Received features
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 Features
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Weighted feature  
for CAV k

...
Conv-BatchNorm-ReLU

Conv-BatchNorm-ReLU

Conv-BatchNorm-ReLU

Dense-ReLU

Softmax

Fig. 3: The illustration of adaptive weighting for the received
features from other CAVs.

for the received features from other CAVs. The input for the
weighting algorithm is constructed by concatenating the fea-
tures from the CAV and the ego vehicle. The underlying moti-
vation behind this design is to effectively utilize the contrasting
information in these two features. Despite having distinct
viewpoints, the ego vehicle and CAV typically demonstrate
similar data distribution and scales for the intermediate feature,
particularly under optimal communication channel conditions.
However, in scenarios where the communication channel is
severely corrupted, there is a substantial difference between
the CAV feature and the ego vehicle feature. Therefore, the
contrasting characteristics between these two features could
offer valuable insights for the weighting algorithm to generate
adaptive weights.

In order to exploit these contrasting features, we use 2D
CNN combined with batch normalization (BatchNorm) and
ReLU activation to process the input. Multiple layers of
CNN-BatchNorm-ReLU could enhance feature learning and
allow for effective gradient propagation through deep net-
works. Moreover, BatchNorm and ReLU are essential due
to its capability of preventing gradient vanishing. Instead of
generating pixel-wise and channel-wise fusion weights, as in
[10] and [14], we adopt CAV-level weighting that generates
a value between 0 to 1 for each CAV for computational
efficiency, which is similar to Who2com [22] but focuses on
mitigating the channel distortion. To achieve this, we flatten
the multi-dimensional latent features processed by the CNN-
BatchNorm-ReLU blocks. Then, linear dense layers and ReLU
are used to facilitate fast convergence and mitigate the gradient
vanishing. For the output layer, Softmax is employed to gener-

ate the regression results instead of using Sigmoid, as Sigmoid
leads to severe gradient vanishing in self-supervised models
without ground truth labels. Softmax is often utilized in multi-
classification tasks to produce a probability distribution where
the sum of the probabilities of all classes equals 1. In this work,
we define two classes representing the positive or negative
impact on the performance. The probability of the positive
class is used as the output weight for the feature of the CAV.

B. Self-supervised optimization

The primary purpose of this weighting model is to mitigate
the negative effect of channel distortion when it is severe,
while minimizes its influences when the channel conditions are
good. This requires the weighting model to adapt to the shared
information with different levels of communication channel
distortion. Unlike the works in [10], [14], and [22], which rely
on the supervision of annotated datasets to determine weights
for cooperative perception, we adopt self-supervised training
that only requires the shared information and its augmentations
for scalability and data efficiency. Specifically, a tailored self-
supervised loss to optimize the weighting model Fweighting

is proposed, which can be expressed by

Lself =
1

K
(λposLpos + λnegLneg), (12)

Lpos =

K∑
k=1

Dkl[S(W+
k f+k )||S(fk)], (13)

Lneg =

K∑
k=1

Dkl[S(W−
k f−k )||S(fk)], (14)

where K is the number of CAVs, Lpos and Lneg denote the
positive loss and negative loss with hype-parameter λpos and
λneg , respectively, S denotes the Softmax function, Dkl(·)
denotes the Kullback–Leibler (KL) divergence, f+k and f−k
denote the positive and negative augmentation experiencing
minor and critical channel distortions, respectively, and W+

k

and W−
k denote the corresponding adaptive weights.

KL divergence enables the comparison between two prob-
ability distributions with different scales, offering a means to
quantify the extent to which the distribution of the weighted
feature deviates from that of the transmitted feature. Instead
of depending on external ground-truth annotations for object
detection as in supervised learning, self-supervised learning
leverages the shared information itself to generate internal
supervisory signals for training models. By simulating light
and severe channel distortions for the positive and the nega-
tive augmentation, respectively, their contrastive information
can enhance the adaptability to various channel conditions.
Specifically, minimizing both positive and negative loss in
the same iteration allows the weighting model to generate
adaptive weights for features with different distortion levels.
Ideally, the output weight for the less distorted feature should
be close to 1, while the output for the severely polluted
features should be close to 0 to minimize its negative effects.
Furthermore, the self-supervised method is independent of the
supervised training, allowing for a flexible extension to diverse
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communication environments without any modifications to the
backbone network.

C. Training strategy

Three training schemes are considered to evaluate the per-
formance of cooperative perception with V2V communica-
tions. Training Scheme 1 assumes the ideal communication
for the cooperative perception without an adaptive weighting
module, which is widely used in the benchmarks in [11],
[28]. Different from Training Scheme 1 that ignores channel
distortion in training, Training Scheme 2 adopts a distortion-
in-the-loop training strategy by incorporating a communication
channel model into the cooperative perception system. Since
we cannot assume the realistic channels in the training stage,
this communication channel is usually mathematically simu-
lated. In this case, the cooperative perception is trained in an
end-to-end manner by using the supervised loss function in (9)
and applying a simulated distortion to the shared information
to enhance the model robustness, which is adopted in [16].

Unlike Training Scheme 1 and 2 focus on the supervised
optimization for the cooperative perception without weighting
module, the proposed weighting module is introduced and
optimized by Training Scheme 3. One prerequisite for this
optimization is a pre-trained cooperative perception by Train-
ing Scheme 2, which generates the shared information for self-
supervised training. However, the ground-truth annotations for
the detection tasks are not required for training the adaptive
weighting module. The proposed adaptive weighting is trained
solely with the self-supervised loss in (12) using the shared
information and its simulated augmentations, while the pa-
rameters of this pre-trained model will not be updated at this
stage. The purpose of this design is to dynamically address the
variations of channel distortion by adaptive weighting without
affecting the cooperative detection systems. Additionally, the
self-supervised training without annotated datasets contributes
to data and computation efficiency, enabling flexible adaption
to diverse communications environments.

In this work, the performance of different training schemes
will be evaluated in Section V-C, and the training details will
be given in Section V-A. Training Scheme 2 will be adopted
as benchmarks without adaptive weighting for comparison in
other scenarios in Section V.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the simulation settings will be presented first.
Then, the proposed adaptive weighting model will be evaluated
for various effects.

A. Simulation settings

The simulation settings are as below:
1) Dataset: To conduct the training and evaluation, we uti-

lize the OPV2V dataset proposed in [11], which is constructed
using OpenCDA simulation tool [27]. OPV2V consists of the
default CARLA towns and the Culver city dataset. The default
CARLA towns consists of 6,765 samples for training and
1980 samples for validation, while the Culver city has 550

samples to evaluate the domain adaptability of the proposed
model as the test set for generalization ability. In addition
to the simulation dataset, V2V4Real dataset [28] is adopted
as the real-world dataset, which is collected by two vehicles
considering diverse real-world scenarios.

2) Baseline: Attentive fusion [11] with SECOND detection
backbone [4] is employed as the baseline method for the
cooperative perception. As a benchmark, the single-vehicle
perception using only the sensed information from the ego car
itself is adopted. Additionally, PointPillars [3] with attentive
fusion [11] and V2VNet [7] are implemented to evaluate the
scalability of the proposed methods. Average precision (AP)
is adopted as the performance metric, which computes the
average precision according to the recall value at different
thresholds of intersection over union (IoU).

3) Communication settings: Rician fading with Rician K
factor of 1 and free space path loss are considered to simulate
the LOS channel. A Gaussian disturbance with mean 0 and
variance 0.1 is added to the CSI to simulate the imperfect
CSI for the Rician fading channel. Additive white Gaussian
noise is considered with the signal-to-noise ratio (SNR) from
-10 dB to 30 dB. Moreover, various path loss factors from
1 to 3 are also considered. To account for the realistic
communication channel, we use the WINNER II channel [25]
in an OFDM system with 64 sub-carriers to consider the multi-
path effects. The carrier frequency is 2.6 GHz, the number of
paths is 24, and the maximum delay is 16. To consider the
channel estimation error, the least-square channel estimator
with different pilots is also taken into account. It is important
to note that the simulated Rician fading channel is used in
training, while the WINNER II channel is only applied in
inference to validate the performance of the proposed method
as unseen realistic distortions.

4) Training: For Training Scheme 1, ideal communication
is considered for the cooperative perception without adaptive
weighting module, the same as the benchmarks in [11], [28].
For Training Scheme 2, a Rician fading channel with an SNR
at 15 dB is simulated for the distortion-in-the-loop training,
adopted as the baseline for cooperative perception without
weighting. The reason for adopting a mild distortion in this
training is to enhance the model’s robustness to distortions
while preventing the overfitting on the patterns of the distorted
samples. To train the proposed adaptive weighting by Training
Scheme 3, the pre-trained model by Training Scheme 2 is
used to generate the shared information without updating its
parameters. Then, a mathematically simulated Rician fading
channel with an SNR of 30 dB and -10 dB is applied to the
shared information to generate the positive augmentation f+k
in (13) and the negative augmentation f−k in (14), respectively.
Lastly, the proposed adaptive weighting is trained solely with
the self-supervised loss function in (12) based on the shared
information and augmentations, where λpos is 1 and λneg is
0.0001.

For the proposed adaptive weighting model, we use 4 layers
of CNN-BatchNorm-ReLU blocks to process the inputs, and
then flatten the convoluted features by one layer of Dense-
ReLU block. Finally, a Softmax is used to produce a proba-
bility distribution for two classes, positive and negative. The
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probability of the positive class is used as the output weight
for the feature of the CAV. The computational resource for
the implementation, training and evaluation of the cooperative
perception is provided by Oracle Cloud Infrastructure with
NVIDIA Tesla V100 GPUs.

B. Performance in Rician fading channel
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Fig. 4: Average precision with Rician fading, free path loss
and noise. (a) Default towns. (b) Culver city.
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Fig. 5: Average precision with WINNER II channel. (a)
Default towns. (b) Culver city.

Fig. 4 shows the performance of cooperative perception in
the presence of Rician fading, path loss and noise, where both
perfect and imperfect CSI are considered.

In Fig. 4(a), we evaluate the performance on the dataset
of the default towns. For the cooperative perception without
adaptive weighting, it experiences a significant decline in
average precision from approximately 85% to 5% for IoU=0.7
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and from 90% to 10% for IoU=0.3, when the SNR decreases
from 30 to -10 dB, assuming the perfect CSI. This is because
the fusion is degraded by outliers with very noisy shared
information. For the single-vehicle perception, it has stable
performance at about 60% for IoU=0.7 and 65% for IoU=0.3
regardless of the SNRs, as it only uses its own sensed
information at the ego car to avoid the distortion incurred
in shared information. However, this method cannot leverage
the multiple viewpoints when the channel condition improves.
The cooperative perception with adaptive weighting could
mitigate the adverse effects of severe channel impairments and
leverage the shared information when there is limited channel
distortion. Specifically, it achieves an accuracy at about 60%
for IoU=0.7 and 65% for IoU=0.3 when the SNR decreases
to -10 dB while having a similar performance to the non-
weighted cooperative perception when the SNR is larger than
10 dB. These observations demonstrate that the weighting
model outperforms the single-agent perception and the non-
weighted cooperation by intelligently adapting to different
levels of channel impairments.

Furthermore, obtaining the perfect CSI is not practical in
realistic scenarios; thus, a Gaussian disturbance is added to
CSI to simulate the imperfect CSI. Without weighting, the
cooperative perception experiences around 10% performance
degradation due to the imperfect CSI. However, with the
implementation of adaptive weighting, the performance is
nearly unaffected by imperfect CSI because of the effective
mitigation of the negative effects. In this case, the system
aided by adaptive weighting outperforms the non-weighted
cooperation and single-agent perception across all SNRs.

Fig. 4(b) shows the performance using the dataset of the
Culver city. Similar to the performance on the default dataset,
the weighted cooperative perception performs better than the
non-weighted systems when the SNR is less than 10 dB. When
the SNR is larger than 10 dB, the perception with weighting
achieves a very close accuracy to the baseline without weight-
ing, which outperforms the single-agent perception. This also
validates that the proposed weighting model is well-trained
and adaptive to datasets from diverse domains.

C. Performance in multi-path fading channel

Fig.5 shows the performance of cooperative perception in
WINNER II channel. An OFDM system with 64 sub-carriers
is adopted. Pilot-based least-square channel estimation is used
to account for the channel estimation error.

In Fig. 5(a), when 16 pilots are used and the SNR is 30 dB,
the baseline without weighting can only achieve an accuracy at
approximately 30% for IoU=0.7 and 60% for IoU=0.3. How-
ever, stable performance at about 60% for IoU=0.7 and 65%
for IoU=0.3 can be obtained by the proposed weighting model
across all SNRs, which is almost identical to the performance
with ego vehicle only but significantly outperforms the one
without weighting.

If 64 pilots are used, the weighted cooperative perception
performs better than the non-weighted model when the SNR
increases from -10 to 20 dB while maintaining a similar
performance to the non-weighted cooperation for the SNR

over 20 dB. Compared with the single-agent detection without
collaboration, the non-weighted system can obtain a better
accuracy only when the SNR is over 20 dB. In contrast, the
weighted system performs better regardless of the SNRs. This
demonstrates that the weighting algorithm works effectively
on the realistic channel with multi-path fading. Furthermore,
since the WINNER II channel is not used to train the weight-
ing model, the proposed weighting model is also proved to
generalize well to unseen communications channels. Similar
observations can be made for the Culver city dataset in Fig.
5(b).

D. Performance for different training schemes

TABLE I: Performance of cooperative perception for different
training schemes with WINNER II channel. (a) Default towns.
(b) Culver city.

(a)

SNR
Training Scheme 1 Training Scheme 2 Training Scheme 3

AP@0.3 AP@0.7 AP@0.3 AP@0.7 AP@0.3 AP@0.7

Ideal 0.899 0.831 0.914 0.857 0.903 0.833
30 dB 0.857 0.786 0.913 0.855 0.903 0.832
10 dB 0.089 0.054 0.578 0.487 0.875 0.772
-10 dB 0.042 0.023 0.076 0.055 0.663 0.576

(b)

SNR
Training Scheme 1 Training Scheme 2 Training Scheme 3

AP@0.3 AP@0.7 AP@0.3 AP@0.7 AP@0.3 AP@0.7

Ideal 0.894 0.754 0.897 0.794 0.894 0.783
30 dB 0.862 0.720 0.894 0.791 0.894 0.783
10 dB 0.133 0.075 0.641 0.488 0.866 0.725
-10 dB 0.094 0.057 0.154 0.107 0.737 0.578

In this section, we compare the performance of cooperative
perception using different training schemes. Training Scheme
1 uses ideal communication for training, and Training Scheme
2 adopts a distortion-in-the-loop training strategy. Training
Scheme 1 and 2 do not have an adaptive weighting mod-
ule, while Training Scheme 3 additionally applies adaptive
weighting to a pre-trained model based on distortion-in-the-
loop training. The performances are validated on the WINNER
II channel with an SNR of 30 dB, 10 dB, and -10 dB
for the unseen realistic channel with light, mild, and severe
distortions, respectively.

Table I(a) presents the average precision of different training
schemes on the default town dataset. Training Scheme 1 can
barely achieve an accuracy of 10% when the SNR is 10 dB
and -10 dB. On the other hand, Training Scheme 2 outperforms
Training Scheme 1 in all communication conditions, demon-
strating enhanced robustness to channel distortions. Even in
ideal communication scenarios, Training Scheme 2 performs
better than Training Scheme 1. This is because the simulated
light distortion on the shared information serves as a form
of data augmentation, improving the system robustness and
avoiding overfitting on the training samples. However, when
there is severe channel distortion, the performance of Training
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Scheme 2 experiences a significant degradation to below 10%.
To address this, Training Scheme 3 obtains the best accuracy
among these three schemes when the SNR is 10 dB and -
10 dB. This underscores the efficacy of Training Scheme 3
in mitigating the adverse effects of severe channel distortion.
Meanwhile, although Training Scheme 3 has a very slight
performance degradation compared with Training Scheme 2
when the channel condition improves, Training Scheme 3
can achieve over 90% for IoU=0.3 and 80% for IoU=0.7,
outperforming Training Scheme 1. This observation highlights
the adaptability of Training Scheme 3 to the non-distorted
communications scenarios, maintaining competitive perfor-
mance to models trained under ideal communications and
simulated distortions. Similar observations and conclusions
can be obtained for the performance on the Culver city dataset
in Table I(b), which validates the effectiveness of the proposed
adaptive weighting model.

E. Performance for different path loss factors
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Fig. 6: Average precision with different path loss factor n.

Fig. 6 depicts the performance curves of the cooperative
perception with various path loss factors when the SNR
is 30 dB with imperfect CSI. When the path loss factor
increases from 1 to 3, the non-weighted cooperative perception
experiences a substantial decline in accuracy, decreasing from
about 80% to 30% for IoU=0.7 and from 90% to 40% for
IoU=0.3, respectively. For the cooperative perception with
adaptive weighting, the accuracy ranges from approximately
80% to 65% for IoU=0.7 and 88% to 73%, which is more
robust than the non-weighted system. Moreover, when the path
loss factor ranges from 2 to 3, the weighted model performs
better than both baselines with non-weighted cooperation and
single-agent perception. Therefore, the proposed weighting
model can adapt to different communications environments
with different path loss factors and mitigate its negative effects.
This is important for autonomous driving, as the car can move
from city centre to highway with different n.

F. Performance on real-world datasets using other backbones

To evaluate the adaptive weighting in a real-world dataset
and its scalability to different backbones, Fig. 7 demonstrates
the performance of PointPillars [3] on the V2V4Real dataset
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Fig. 7: Performance of the attentive fusion and V2VNet using
the PointPillars backbone on the V2V4Real dataset in the
WINNER II channel.

[28] with WINNER II channel. V2VNet [7] and attentive
fusion [11] are used to account for different intermediate
fusion schemes.

In Fig. 7, the performance of the weighted attentive fusion
with PointPillars ranges from around 47% to 70% for IoU=0.3
and 23% to 34% for IoU=0.7, which performs better than
the non-weighted baselines and the single-vehicle detection.
As the SNR decreases from 30 dB to -10 dB, the non-
weighted collaboration experiences a significant performance
degradation to be below 10%; nevertheless, the performance
of the weighted model decreases slowly until it approaches
the single-vehicle detection accuracy with no fusion. This
indicates that the proposed weighting algorithm could effec-
tively work with PointPillars and adapt to different channel
conditions in real-world datasets. Similar observations can
be made for the performance of the weighted V2VNet with
PointPillars in Fig. 7. The weighted V2VNet with PointPillars
outperforms the non-weighted collaboration and the single-
vehicle detection by mitigating the negative effects of severe
channel distortions and maintaining a close accuracy to the
non-weighted collaboration when the SNR is over 20 dB.
These observations demonstrate that the proposed adaptive
weighting can not only generalize on the real-world dataset
with communication channel distortion but is also compati-
ble with different intermediate fusion schemes and detection
backbones.

G. Visualization example of adaptive weighting

In order to visualize how adaptive weighting improves
cooperative perception, Fig. 8 shows examples of cooperative
perception with and without weighting. When the SNR is 10
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(a) (b)

(c) (d)

Fig. 8: Examples of cooperative perception with and without adaptive weighting on the WINNER II channel. The ground truth
and predicted 3D bounding boxes are illustrated in green and red, respectively. Bold red circles highlight the false predictions
of the cooperative perception without weighting when the SNR is 10 dB. Bold blue circles indicate the vehicle additionally
detected by the weighted cooperative perception when the SNR is 30 dB. (a) SNR = 10 dB, without weighting. (b) SNR = 10
dB, with weighting. (c) SNR = 30 dB, without weighting. (d) SNR = 30 dB, with weighting.

dB, the baseline without weighting is affected by the channel
distortion, thus leading to false predictions shown in Fig. 8(a).
However, it is demonstrated in Fig. 8(b) that adaptive weight-
ing could eliminate the falsely predicted bounding boxes.
When the SNR is 30 dB, both weighted and non-weighted
systems can significantly reduce the false predictions due to
the improved channel conditions, which are demonstrated in
Fig. 8(c) and Fig. 8(d). Nevertheless, the weighted cooperative
perception detects an additional vehicle, highlighted by the
blue circle in Fig. 8(d), which the non-weighted baseline
neglects. This indicates that the proposed weighting algorithm
can not only mitigate the adverse effects under severe channel
conditions, but also enhance the received shared features when
the channel condition improves.

VI. CONCLUSION

In this work, we have proposed a self-supervised adap-
tive weighting model for intermediate fusion to mitigate the
adverse effects of distorted information caused by channel
impairments. The performance of our proposed weighting
algorithm has been evaluated in terms of different datasets,
detection backbones, fusion schemes, noise levels and path
loss factors. Numerical results and visualization examples have
demonstrated that the proposed adaptive weighting algorithm

performs better than the benchmarks without weighting un-
der all conditions. It is shown that the proposed weighting
algorithm can mitigate the adverse effects of severe signal
distortion and enhance the received shared features when the
channel condition improves. Moreover, the adaptive weighting
algorithm has also demonstrated good generalization to unseen
realistic communications channels and test datasets from dif-
ferent domains. It is also validated that the proposed weighting
can flexibly scale to other detection backbones, fusion schemes
and real-world datasets.
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