SYCL compute kernels for ExaHyPE*

Chung Ming Loif

Abstract

We discuss three SYCL realisations of a simple Finite Vol-
ume scheme over multiple Cartesian patches. The realisation
flavours differ in the way how they map the compute steps
onto loops and tasks: We compare an implementation that
is exclusively using a sequence of for-loops to a version that
uses nested parallelism, and finally benchmark these against
a version modelling the calculations as task graph. Our work
proposes realisation idioms to realise these flavours within
SYCL. The results suggest that a mixture of classic task
and data parallelism performs if we map this hybrid onto
a solely data-parallel SYCL implementation, taking into ac-
count SYCL specifics and the problem size.

1 Introduction

Exascale and pre-exascale pioneers obtain the majority
of their compute power from GPGPUs. Their nodes are
heterogeneous, with a general-purpose CPU, the host,
being supplemented by streaming multiprocessor cards.
Delivering code for such architectures is challenging,
once we want to harness both the capabilities of the
CPU cores and the GPUs. We need code that runs on
either compute platform. In our work, we study a block-
structured Finite Volume code for wave equations.

Performance analysis shows that the majority of
its runtime is spent in one compute routine which
we call a computational kernel. It takes a set of
small Cartesian meshes of Finite Volumes (blocks or
patches) and advances them in time [7, 12]. This kernel
spans a small, static execution graph over nested loops.
Making the kernel perform on GPGPUs and CPUs is
key to exploit heterogeneous systems. We assume that
this is typical for many scientific codes.

Programmers have various technologies at hand to
realise such compute kernels. OpenMP [6], SYCL [9]
and Kokkos [10] are popular examples. Our work here

" *The full version of the paper can be accessed at https:
//arxiv.org/abs/2306.16731

TDepartment of Computer Science, Durham University, United
Kingdom chung.m.loi@durham.ac.uk

fIntel Deutschland GmbH, Germany hein-
rich.bockhorst@intel.com
$Department of Computer Science, Institute for

Data Science, Durham University, to-

bias.weinzierl@durham.ac.uk

United Kingdom

Heinrich Bockhorst?

Tobias Weinzierl®

focuses on SYCL. However, we address fundamental
questions that also apply—partially and/or to some
degree—to our OpenMP [12] and C++ GPGPU ports
of the compute kernel as well as other numerical schemes
within the underlying software [8]: What patterns and
idioms exist to write kernels in languages that support
both data- and task-parallelism and focus on GPUs with
their SIMD/SIMT hardware parallelism? Further to
that, is it possible to make early-day statements on the
expected efficiency impact of using one or combining
the two parallelism paradigms, i.e. tasks vs data paral-
lelism?

We start from the definition of a microkernel that
is embedded into the kernel’s compute blueprint. Mi-
crokernels represent invocations of domain-specific code
fragments. In the Finite Volume context this in-
cludes the flux and eigenvalue calculations for example.
Through microkernels, we keep the domain-specific code
separate from the way how the kernel is realised. We
next identify three different approaches how to map the
arising compute graph, which is a graph over the invoca-
tion of user functions aka microkernels, and its required
(temporary) data structures onto SYCL kernels. For
these approaches, we discuss realisation idioms.

Our research stands in the tradition of work that
distinguishes the role of the performance engineer
strictly from the role of domain scientists, numerics ex-
perts, research software engineers, and further special-
ists participating in the computational sciences work-
flow [5]. We focus on the performance aspect in a
GPGPU context. As our approach never alters domain
code, traditional performance tuning opportunities tar-
geting the calculations or data layout are largely off the
table. Instead, we have to focus solely on the orchestra-
tion of concurrency. Such work closes a gap between the
formulation of an algorithm and its realisation in SYCL.
To the best of our knowledge, such work is largely ab-
sent in literature.

Our data suggest that flexible, high-level task paral-
lelism underperforms relative to plain loop parallelism.
However, it is not clear if this is due to the newness
of the underlying software stack or indeed an intrinsic
consequence of the underlying SIMT hardware. Our
measurements also suggest that SYCL’s Unified Shared
Memory (USM) is slow and that codes benefit from ex-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2306.16731
https://arxiv.org/abs/2306.16731
mailto:chung.m.loi@durham.ac.uk
mailto:heinrich.bockhorst@intel.com
mailto:heinrich.bockhorst@intel.com
mailto:tobias.weinzierl@durham.ac.uk
mailto:tobias.weinzierl@durham.ac.uk

plicit copying or host-managed GPU memory as intro-
duced in [12]. We note that future hardware genera-
tions might actually “solve” this by a tight GPU-CPU
integration. This implies that efficient compute kernel
realisations gain even more importance. Finally, we fo-
cus on two GPU generations only and hence omit any
discussion to which degree our realisation flavours are
performance portable [3].

The remainder is organised as follows: We first in-
troduce our underlying simulation code and formalise
its Finite Volume numerics via a task graph over micro-
kernels (Sec. 2). The main body of work in Section 3 dis-
cusses three approaches how to map the computational
scheme onto a kernel implementation. We continue with
a discussion of the implementation of these schemes
within SYCL (Sec. 4), before we present some results
in Sec. 5. After a reflection on the lessons learned, a
brief outlook closes the discussion. Our work is com-
plemented by instructions how to reproduce all results
(Appendices A and B), as well as a section presenting
further data.

2 ExaHyPE’s Finite Volumes

Our work employs ExaHyPE 2, an engine to solve
hyperbolic equation systems

(1) $Q+V F@+Y Bip s =8(Q)+ Y5

given in first order formulation. ExaHyPE 2 is a
rewrite of the first-generation ExaHyPE [8] that in
turn employs principles advocated for in the under-
lying adaptive meshing framework Peano [11]: Users
specify the number of unknowns held by Q@ € RY and
provide implementations of the the numerical terms
F.(Q),Bin, 5,6 : RN +— RN, These represent (con-
servative) flux, non-conservative fluxes, volumetric and
point sources. The software then automatically assem-
bles a solver for the equation system from (2.1). As
we stick strictly to Cartesian formulations, the software
expects directional fluxes along the axes.

2.1 Block-structured adaptive mesh refinement
with tasks Our code provides various explicit time
stepping schemes to solve these PDEs over adaptive
Cartesian meshes spanned by spacetrees [11]: The
computational domain is covered by a square or cube
that is recursively subdivided into three equidistant
parts along each coordinate axis. We end up with a
spacetree that spans an adaptive Cartesian grid. Into
each octant of this spacetree grid, we embed a Cartesian
pXxp(d=2)orpxpxp(d=3) mesh. This is the
actual compute data structure. It equals, globally, a
block-structured adaptive Cartesian mesh [4].

ExaHyPE employs a cascade of parallelisation tech-
niques: It splits the spacetree mesh along the Peano
space-filling curve into chunks and distributes these
chunks among the ranks. Each rank employs the same
scheme again to keep the cores busy. This is a classic
non-overlapping domain decomposition over the mesh
of octants hosting the Cartesian patches. In a third
step, the code identifies those patches per subdomains
that are non-critical, i.e. are not placed along the crit-
ical path of the execution graph, and also can be ex-
ecuted non-deterministically. It deploys their updates
onto tasks [2, 7].

Among these so-called enclave tasks, ExaHyPE
identifies tasks on-the-fly that are free of global side
effects [7], i.e. do not have to be executed within the
node’s shared memory space, bundles T' of these tasks
into one large meta task assembly, and then process
them via one large compute kernel in one rush. Such
assemblies can be deployed to GPGPUs [12].

2.2 Kernels and microkernels In the present pa-
per, we employ Finite Volumes with a generic Rusanov
solver. This is the simplest, most generic solver offered
through ExaHyPE. Each volume within the p? patch
carries the N quantities of interest from (2.1). For a
given solution) over a volume c and time step size At,
we determine a new

Q|c — Qlc + At - hZF|n(Q)>

dc
where the flux over each face dc with a normal n €
{z,y, 2z} is computed as

1

Fln@ ~ 5 (F@+F (@) -5 (@ -@)
(2.2)

h
maX()\max)n(Q+),)\max,n(Q_))'

There is no unique solution F|,(Q) on the face, since
Q@ jumps from one volume into the other. Therefore,
we approximate the flux through the */~ values in the
cells left and right of the face, where all N quantities
are uniquely defined. We omit the treatment of the
asymmetric non-conservative term B; in (2.2) in the
discussion here, but emphasise that we require the user
to provide implementations Amax.»(Q) : RN +— R. They
yield the maximum eigenvalue (wave speed) over the
flux for a given quantity along the axis n.

To make the scheme work, each patch is supple-
mented with a halo layer of size one. ExaHyPE [8] and
its underlying AMR framework Peano [11] manage the
adaptive Cartesian mesh, distribute it among the cores,
identify tasks, equip the patches associated with these
tasks with a halo layer, and then invoke an update ker-
nel for the patch following (2.2). Once updated, the ker-
nel eventually might compute the new maximum eigen-

_ <.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

value over the new solution. This reduced eigenvalue
feeds into the CFL condition and determines the next
time step size. As we support local time stepping, the
maximum eigenvalue has to be determined per patch.

2.3 DAG Our GPU update kernel accepts N - (p +
2)4 . T quantities (double values) associated with the T
patches (including their halo) and yields the N - p? - T
quantities at the next time step.

Definition 1. A microkernel is a function accept-
ing a volume indexr [0,...,T — 1] x [-1,0,...,p|%,
pointers to some input and output arrays as well as some
meta information such as the time step size. Fach mi-
crokernel wraps one compute step such as a flur evalua-
tion or an update of a cell according to an additive term
from (2.2).

As a microkernel is passed an index, we can pa-
rameterise the microkernels with a function enum :
[0,...,T —1] x [-1,0,...,p]% = NF. It encodes how
we order the input and output data in memory. There-
fore, each microkernel call knows exactly what elements
from the data arrays to read and write.

ALGORITHM 2.1. Schematic sketch of a
2d compute kernel over a set of patches.
1: for patch € [0,...,T — 1] do
2. allocate tmpg,, tmpr, € RNT-(+2)
3. allocate tmpy,,tmpy, € RT-(p+2)"
4: force[0,p—1] x[0,p—1] do
5: Q) (patch, ¢) < Q(patch,c) // microkernel
6: end for
7. for ce[-1,p] x[0,p—1] do
8: tmpr, Fw Q)(patch,c) // microkernel
9: end for
10. for c€[0,p— 1] x [-1,p] do
11: tmpp, < F,(Q)(patch,c) // microkernel
12: end for
13: for c€ [0,p—1]¢ do
14: Q) (patch, c) «— Q%) (patch,c) + At - h -

tmpr, (patch, left of ¢)
15: Q™) (patch, c) «— Q%) (patch,c) — At - h -
tmpr, (patch, right of ¢)

16: R

17: // microkernels

18: end for

19: for c € [-1,p] x [0,p — 1] do

20: tmpx, < Amax,z(@)(patch, c) // microkernel
21: end for

22: end for

The overall numerical scheme over T' patches that
is realised by one kernel invocation (Alg. 2.1) can be

written down as a series of (nested) loops over micro-
kernels. Some of them are trivial copies, others invoke
user functions, while again others combine the outcomes
of the latter and add them to the output. The + oper-
ator highlights that all memory address calculations are
hidden within the kernels as we instantiate them with
an enumerator enum(patch, c).

3 Kernel realisations

(J(*J 5
N

Figure 1: Sketch of the compute graph sketch for
a kernel over T patches. Each node in the graph
represents a d-dimensional loop over all volumes of the
patch subject to halo volumes where appropriate.

patch-wise

There is a multitude of ways to translate Alg. 2.1
into SYCL. We start from a rewrite of the algorithm into
a directed, acylic graph (DAG) over sets of calculations
per patch (Fig. 1). Each node within this DAG equals
a d-dimensional loop over microkernel calls. It can be
vectorised, i.e. facilitates coalesced memory access.

Definition 2. A patch-wise realisation employs a (par-
allel) outer loop running over the patches. Within each
loop “iteration”, one patch is handled.

Patch-wise kernels group the calculations vertically
(Fig. 1). An outer loop handles the set of patches patch
by patch. While this outer loop yields parallelism over
the patches—the SYCL code is very close to Alg. 2.1
where the outer loop over patch is running in parallel—
there are additional (nested) parallel loops over ¢. Their
ends synchronise the logical steps of Alg. 2.1 on a per-
patch base: After we have done all the flux calculations
along the x-direction for one patch, we continue with all
the calculations along y. This synchronisation is totally

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

independent of the flux calculations for any other patch.
Only the very end implements a global synchronisation
that coincides with the end of the loop over the patches.

Globally, the execution graph fans out initially with
one branch per patch, and it fans in once in the end.
Within each fan branch, the steps run one after the
other. However, each step fans in and out again.
The concurrency level within the kernel hence always
oscillates between T and O(T(p + 2)¢) with only one
global synchronisation point in the end.

Definition 3. A batched realisation runs over the
logical algorithm steps one-by-one. Within each step,
it processes all volumes from all patches in parallel.

This scheme clusters calculations horizontally (Fig. 1).
It realises the kernel as a sequence of algorithmic steps.
Within each step, we update all volumes from all
patches concurrently. After each step, we synchronise
over all patches. The scheme is labelled as batched
[7], inspired by batched linear algebra [1], while we use
the same (non-linear) operator (matrix) for each patch
input Q.

Globally, we get a trivial DAG enlisting the calcu-
lation steps like pearls in a row. Each step within the
DAG fans in and and out, i.e. has an internal concur-
rency level in the order O(T - (p+2)9). As we bring the
algorithmic steps into an order, i.e. remove concurrency
from the global DAG by partial serialisation, there are
multiple synchronisation points.

Definition 4. The task-graph realisation employs one
task graph where each node represents all operations
(microkernel calls) of one type for one patch.

The task-graph approach is a plain realisation of the
logical task graph (Fig. 1). Each individual node within
this task graph fans in and out and has an internal
concurrency of O((p + 2)%), and we may assume that
there are always at least T nodes ready.

Different activities (types of microkernels) within
the DAG can run in parallel. An example is the
calculations of the directional fluxes F,(Q), F,(Q) and
F.(Q) that have no dependencies. Both the batched
variant and the patch-wise variant serialise these three
steps; the former globally and the latter on a patch
basis. It is the task-graph approach that does not go
down this route and exposes the concurrency explicitly
(Fig. 2).

4 SYCL implementation

Conceptually, mapping either of the three realisations
onto SYCL is straightforward. There are subtle details
to consider however.

F.(Q)

QU = L Fr(Q) + .+ F(Q) +

S\

Figure 2: Partial sketch of the task graph fed into the
task-graph realisation.

Kernels The batched variant yields a sequence of
SYCL command group functions. They are submitted
to a queue and executed in-order. The synchronisation
points currently are realised via waits on the events re-
turned by a kernel launch, i.e. each SYCL submission
waits for the required predecessors to terminate. Dif-
ferent command groups thus may run in parallel, but
each handles all volumes of all patches subject to one
microkernel only. We do not tie our implementation to
an in-order queue, for which we could omit the waits.

Each command group hosts one large parallel
for iterating over all patches times all finite volumes
within the patches. Depending on the step type, we
might have further embedded loops over the (flux)
direction and the unknowns (for the copy kernel). We
end up with a cascade of 14+d-+d = 142d loops (patches,
cells along each direction, flux along each direction).
They are collapsed into one large loop.

The graph-based variant starts to spawn one SYCL
command group per patch for the first algorithmic
step. Each command group’s return event is collected
in a vector. We continue to launch the next set of
command groups for the next algorithmic step per
patch, augment each submission with the corresponding
event dependencies on the previously collected events—
where required—and again gather the resulting events.
The dynamic construction of the SYCL DAG resembles
the batched variant code, where we replace the global
waits with individualised dependencies. Each individual
task within the graph-based variant hosts one parallel
for that traverses a collapsed loop. The number of loops
collapsed is smaller by one compared to the batched
variant.

The patch-wise realisation of the kernel requires
most attention. SYCL does not have direct support for
nested parallel loops or sequences of loops within one

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

kernel. Furthermore, we may only synchronise individ-
ual work groups. Therefore, we map the outer loop onto
a parallel for over work groups via nd_range.

Idiom 1. To support nested parallelism, we manually
collapse the loops and issue one large parallel for
over the resulting total loop range subject to an nd_range
object. The nd_range decomposes the iteration range
again into subranges that are independent of each other,
i.e. correspond to the outer loop.

Idiom 2. To support sequences of parallel loops within
one kernel, we issue one parallel for subject to an
nd_range. After each logical loop body, we use a
workgroup barrier.

Idiom 3. To support sequences of parallel loops with
different ranges, we take the union of all iteration
ranges. Per code snippet in-between two barriers, we
manually mask out loop indices which are not required
in this particular step, i.e. result from the union.

ALGORITHM 4.1. Manual masking and
concatenation of logical algorithmic
steps for the patch-wise realisation.

1. usyclirange< 4 > total { T,2+p,2+p,2+p }

2: usycl:irange< 4 > workgroup { 1,24p,24+p,2+p }
3: queue.submit([&](::sycl::handler &handle) {

4: handle.parallel_for(

5: ::syclind range< 4 >{total, workgroup},

6: [=] (::syclind_item< 4 > i) {

7. if (¢; 2 0A ¢, <p—1) then

8 tmpr, «— F.(Q)(patch,c) // microkernel

9: end if

10: i.barrier()
11: ... // Next algorithmic step
12: ... // with different masking

13)
14: });

As each patch is mapped onto a workgroup and work
groups run concurrently, we add a workgroup barrier
after each compute step on a patch (after each hori-
zontal cut-through in Fig. 1). The iteration range per
algorithmic step per workgroup is different from step
to step, i.e. between any two barriers: A single flux
computation for example runs over an iteration range
of (2 +p) - p?~!, while the subsequent update of a cell
using all directional fluxes iterates over a range of p.
Therefore, the workgroup loops over the maximum iter-
ation range of (2 + p)? right from the start, and we add
if statements to mask out unreasonable computations
manually (Alg. 4.1).

Data structure layout The discussion of AoS
vs. SoA is an all-time classic in supercomputing. In

the context of Finite Volumes, SoA can yield signifi-
cant speedups. However, we write our kernels around
the notion of microkernels wrapping user functions for
the PDEs. This commitment which allows us to sep-
arate the roles of domain scientists clearly from per-
formance engineers [5] implies that AoS is the natural
data structure for @ in ExaHyPE: fluxes, eigenvalues,
sources, ...all are defined as functions over Q). Having
all N entries of (Q consecutively within the memory al-
lows us to realise these operations in a cache efficient
manner. Furthermore, many PDEs require the same
intermediate results entering all components of F,(Q),
e.g. Storing and traversing () as SoA would require us
either to gather the N entries first, or to recompute
partial results redundantly.

For the temporary results, i.e. all the fluxes and
eigenvalues, it is not clear if they should be stored in
AoS or if the microkernels should scatter them imme-
diately into SoA. They enter subsequent compute steps
where SoA could be beneficial. Our realisation hence
parameterises the microkernels further, such that we can
use them with different storage formats: We augment
the enumerator with a function enum : [0,...,T — 1] x
[-1,0,...,p] x NJ — N{, such that they also take the
unknowns into account.

Idiom 4. Due to the absence of d > 3-dimensional
ranges within SYCL, we “artificially” map our higher-
dimensional indices and ranges onto d = 3-dimensional
SYCL ranges.

While this is a workaround and higher-dimensional
ranges in SYCL are promised for future language gen-
erations, the manual partial linearisation allows us to
anticipate the order of the fastest running index within
enum, such that all memory accesses are coalescent.
Reduction Native SYCL reductions for the eigen-
value reduction are available when we work with the
task graph realisation: We launch one dedicated SYCL
command group with a reduction per patch. For the
batched variant, we have to abandon the parallel for
over a range, and instead launch the for over an
nd_range similar to the patch-wise solution. Within the
for loop, we use the reduce_over_group variant. The
patch-wise variant finally is able to use the reduction
over the group, too. However, the manual masking has
to be mapped onto a branching that returns the neutral
element, i.e. max(Amax,z(Q), Amax,y (@), Amax,-(Q)) = 0.
Without reduce_over_group, it is possible to re-
alise the reduction via atomics or to run through each
patch serially. A serial implementation means that
the batched flavour launches a parallel for over the
patches (concurrency T') yet uses a plain nested C for
loop for the reduction itself. For the patch-wise imple-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

mentation it means that only the Oth thread per patch
aka workgroup performs this loop. All the others are
masked out. We use the parallel variant.

Data transfer SYCL offers USM. Hence, we can
run all kernel variants directly on the GPU, as long
as the underlying data structures are allocated via
malloc_shared. The responsibility to transfer all data
then is deployed to the runtime. Alternatively, we
can copy data forth and back explicitly. Remote
GPU allocations issued by the host, as required by an
explicit copy, are expensive in OpenMP [12]. Assuming
similar patterns arise for SYCL, we implement managed
memory, where we allocate memory explicitly on the
GPU yet do not free it once a kernel has terminated.
Instead, we recycle this memory.

For the batched kernel variant, there is limited free-
dom to overlap memory transfer and kernel kick off.
The piece-wise and the DAG variant however allow the
kernels to overlap by kicking off one patch’s computa-
tions while data for the second patch is still dropping
in. Explicit copying and the managed memory elimi-
nate this advantage, as they are realised as preamble to
the compute kernel launch, but USM plus patch-wise
or DAG flavour allow for overlaps of computations and
data transfer.

Code change complexity All three realisation
flavours have to be maintained separately. As we rely
on the notion of a microkernel and can extract common
features such as the enumerations, the allocation of
temporary data structures, or the actual data transfer
(if required) into helper functions, each manifests in a
few hundred lines of code realising the core SYCL task
or loop structure.

The structure of the batched realisation in SYCL
resembles 1:1 a plain C++ implementation subject to
the additional queue submits and waits. The patch-wise
variant is similar to its C++ counterpart, yet requires
one additional barrier per algorithmic step plus the
additional masking (if statements). This corresponds to
two lines of additional code per algorithm step and an
increased logical complexity to keep track of the correct
masking. The task-graph version resembles the batched
variant but does not wait for any outcome: The tasks
are spawned in the same order as in the batched variant,
the task completion events are stored in one STD
vector per algorithm step, and additional depends_on
calls insert the dependency graph’s edges using the
previously populated vectors. The task logic—although
not trivial—materialises in one or two lines of code
per algorithmic step. All task graph construction is
dynamic and hence enters the kernel runtime cost.

5 Results

Our present work studies exclusively the Euler equa-
tions (N = 2+d) and drops the non-conservative terms
B; = 0 as well as the point (6 = 0) and volumetric
(S(Q) = 0) sources from (2.1). All timings present the
compute time for T patches on the GPU, and we typ-
ically use p € {4,6,8}. All measurements are averaged
over at least 16 samples.

We ran our experiments on an A100 NVIDIA GPU.
The card runs at 1,056 MHz, and it features 80GB
of HBM2e memory. Further to that, we also run all
experiments on one stack (half of)) of a Intel Data
Center GPU Max 1550 (Ponte Vecchio) equipped with
128 GB of HBM2e memory and clocked at a base
frequency of 1,000 MHz.

For all experiments, we employed the 2023.2.0
oneAPI software stack with Intel’s LLVM compiler. On
NVIDIA, the Codeplay plugin was added to enable the
CUDA backend for SYCL, whereas the Intel hardware
is supported out of the box (Level Zero). Our exper-
iments with CUDA unified memory crash immediately
due to an error in the CUDA layer. On the PVC, the
USM realisations pass, although we had to disable ad-
vanced features (Appendix D). We note that both the
CUDA software stack and the PVC driver and BIOS are
still in active development. An improved stability might
lead to quantitatively different results in the future.

Patch-wise kernels We start with an assessment
of the patch-wise strategy for different p values and T
choices (Fig. 3). AoS is used for all input, output and
intermediate data structures. Our experiments once
run the kernel including the computation of a final
maximum eigenvalue, before we rerun the same kernel
again yet strip it off this final reduction. All timings
incorporate data transfer.

Higher p or T' counts reduce the cost per unknown
update on both architectures and for all realisation
flavours. The reduction increases the runtime, but the
impact is almost negligible. As we increase the problem
size, we would expect throughput improvements given
the enormous hardware concurrency of the cards. In-
stead, the A100 data plateaus and exhibits deteriorated
performance for some p - T combinations. The PVC is
robust regarding outliers, but plateaus as well. Alld = 3
data are qualitatively similar, though the anomalies on
the A100 are more pronounced. Explicit copying and
host-managed GPU memory both outperform USM on
the PVC, but do not differ from each other. On the
A100, it is advantageous to recycle memory.

Our runtimes are dominated by data transfers
(Fig. 4). ExaHyPE’s patches are scattered over the
CPU’s heap memory and have to be brought to the ac-
celerator one by one. The transfer cost suffers from

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

105 patch-wise, AoS, d=2, A100

—&— copy, with reduction, ps=4
—#- copy, no reduction, ps=4

—&— copy, with reduction, ps=6
—&— copy, with reduction, ps=8
—A— managed, with reduction, ps=4
A=
——

-
S)
1

S

managed, with reduction, ps=6
managed, with reduction, ps=8

Kernel time per unknown /s
-
b

-
=)
1

®

2‘1 2‘2 2‘5 2‘7 2‘9
Number of patches, T

patch-wise, AoS, d=2, PVC

copy, with reduction, ps=4
-@- copy, no reduction, ps=4

copy, with reduction, ps=6
copy, with reduction, ps=8
managed, with reduction, ps=4
managed, with reduction, ps=6
managed, with reduction, ps=8
usm, with reduction, ps=4
usm, with reduction, ps=6

$

10-5 4

RITERT!

10-7 4

Kernel time per unknown / s

2 2 2 2 2
Number of patches, T
Figure 3: Cost per degree of freedom update for various
p and T choices for d = 2 on an NVIDIA A100 (top) or
Intel PVC (bottom). Patch-wise realisation.

the latency of multiple, scattered memory transfers.
It therefore increases with T. Copying a single patch
seems to be particularly expensive on the A100. Here,
we benefit particularly from a managed memory ap-
proach. The compute time flatlines for small T'. Once
we increase T sufficiently, also the compute time starts
to grow. The PVC compute times peak for some small
T choices and p = 8, while the A100 shows some run-
time peaks for few larger p-T combinations. The latter
explain the runtime “anomalies” in the total execution
time.

Each patch is mapped onto a workgroup of its own.
Increasing the workload p per workgroup yields higher
throughput, since the elementary workgroup workload
is higher, i.e. we can do more calculations before we
terminate or swap a workgroup. Furthermore, the
share of iteration range indices that do not fit to the
hardware’s workgroup size and hence have to be masked
out diminishes. The thread divergence decreases. The
PVC seems to be particular sensitive to these effects for
small p. The A100 is sensitive to these effects when they
are scaled up by using many patches T. The compute
performance’s inital flatlining demonstrates that small

patch-wise, AoS, d=2, A100

copy, full runtime, ps=4
copy, kernel time, ps=4
copy, full runtime, ps=6
copy, full runtime, ps=8
managed, full runtime, ps=4
managed, full runtime, ps=6
managed, full runtime, ps=8

FEEedesd

Time /s

‘_ Sigzannna E;E.nsc‘/-:: ==

2‘1 2‘3 2‘5 2‘7 2‘9
Number of patches, T

patch-wise, AoS, d=2, PVC

—&— copy, full runtime, ps=4
-@- copy, kernel time, ps=4
—&— copy, full runtime, ps=6
—&— copy, full runtime, ps=8
1072 4 —A— managed, full runtime, ps=4
—A— managed, full runtime, ps=6
—A— managed, full runtime, ps=8

»
P
E 10
=
1074
2 2 2 2 2
Number of patches, T
Figure 4: Breakdown of the total runtime for all

patches from Fig. 3 into total kernel compute time and
total kernel runtime including data transfer cost.

choices of T - p struggle to exhaust the compute power.

Idiom 5. Larger d-p combinations are infeasible due to
workgroup size limits in SYCL (1,024 on both PVC and
A100). Large patches p have to broken down manually
such that they fit onto the hardware.

We also conclude that USM—even ignoring the reported
stability issues—is best to be avoided if we can copy
explicitly. Notably, it fails to to benefit from overlap-
ping computations and calculations. However, our im-
plementation lacks the usage of prefetches which might
help to make the USM implementation faster.

Batched kernels The batched kernel variant
yields performance curves on the A100 where the peaks
are amplified. It also is significantly slower than the
patch-wise approach for a single patch (Fig. 5). The
PVC’s performance deteriorates totally for T = 1 and
for d = 3 with larger T -p (Fig. 6). Here, we suffer from
the cost of the reduction. For all other experiments, the
batched variant catches up with its patch-wise cousin
and eventually matches its performance on either ma-
chine as T - p grows.

The GPU copes well with a large number of threads

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

batched, AoS, d=2, A100

107°
—&— copy, with reduction, ps=4
—-&- copy, no reduction, ps=4
—&— copy, with reduction, ps=6
" —5— copy, with reduction, ps=8
= . s ™ —A— managed, with reduction, ps=4
§ 10 —#— managed, with reduction, ps=6
g —A— managed, with reduction, ps=8
S
s
v
a
£
£ 1077
°
£
Q
PV
1078 4
T v T v
2! 23 2° 27 2°
Number of patches, T
batched, AoS, d=3, A100
—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4
—&— copy, with reduction, ps=6
1076 4 —&— copy, with reduction, ps=8
2 —A— managed, with reduction, ps=4
1S —#— managed, with reduction, ps=6
§ —A— managed, with reduction, ps=8
]
81077
v
£
=
°
£
Q
~
1075 4
T v T v
2! 23 2° 27 2°
Number of patches, T
Figure 5: Normalised runtime for batched kernels on

the A100 for d = 2 (top) and d = 3 (bottom).

that all run the same computations, as SYCL can
subdivide the iteration range into workgroups as fit
for purpose. Per algorithmic step, the batched variant
has no logical thread divergence, i.e. we do not mask
out threads manually, although SYCL will add idle
threads internally to make the iteration ranges match
the hardware concurrency. A profiler indeed shows
smaller workgroup sizes compared to the patch-wise
version, i.e. more workgroups are created. Yet, the
register pressure per workgroup is significantly smaller.

The ratio of idling threads per workgroup compared
to the actual workload is smaller than for the patch-
wise variant, and the arrangement of workgroups might
even change between different algorithmic kernel steps.
However, we pay a price for launching multiple GPU
kernels in a row and the corresponding synchronisation
points. The A100 seems to be particularly sensitive to
this. p-T has to become reasonably large, before the
increased flexibility plus the fewer “wasted” threads al-
low the batched version to compensate for the kernel
launch overhead and to close up on the patch-wise re-
alisation. While we do not have to care about max-
imum workgroup sizes for the kernel’s main compute

batched, AoS, d=2, PVC

copy, with reduction, ps=4
copy, no reduction, ps=4
107° 4 copy, with reduction, ps=6
” copy, with reduction, ps=8
- managed, with reduction, ps=4
§ managed, with reduction, ps=6
g 1076 4 managed, with reduction, ps=8
S usm, with reduction, ps=4
o usm, with reduction, ps=6
a
o
£
S 1077 4
°
£
Q
V4
108
T v T v
2! 23 2° 27 2°
Number of patches, T
104 batched, AoS, d=3, PVC
—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4
s —&— copy, with reduction, ps=6
10” —&— copy, with reduction, ps=8
0
- —A— managed, with reduction, ps=4
1S —#— managed, with reduction, ps=6
g 10-6 —A— managed, with reduction, ps=8
E]
@
a
o
£107
=
°
£
M
1078
10°° T T T T T
2! 23 2° 27 2°
Number of patches, T
Figure 6: Normalised runtime for batched kernels on

PVC for d = 2 (top), and on PVC for d = 3 (bottom).
Deteriorated runtimes ¢(7' = 1) > 41075 are cut off
to preserve a uniform scaling of the y-axes. USM data
is omitted due to its non-competitiveness.

steps, an efficient, parallel reduction of the final max-
imum eigenvalue continues to hinge on the fact if one
patches fits into a workgroup. Even if this is the case,
the PVC’s performance might suffer from reductions
over large data sets.

Task-graph kernels A straightforward imple-
mentation of our task graph approach does not scale
at all in T (Fig. 7). We observe qualitatively similar
data for d = 2 and d = 3 on the A100. While increas-
ing p brings the relative runtime down, the performance
immediately starts to stagnate and the resulting overall
kernel remains significantly slower than the batched or
patch-wise kernels. On the PVC, the performance does
not stagnate but actually increases for growing T' after
a brief scaling phase or the code deadlocks (no data
shown). For d = 2, the performance gap between
USM and the other approaches eventually closes, but
this is due to the poor performance of the latter rather
than USM’s performance.

We assume that the dynamic assembly of the task
graph, which is included in the compute kernel timings,

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

task-graph, AoS, d=2, A100

—&— copy, with reduction, ps=4
—-&- copy, no reduction, ps=4

copy, with reduction, ps=6
—&— copy, with reduction, ps=8
—A— managed, with reduction, ps=4
managed, with reduction, ps=6
8{ —A— managed, with reduction, ps=8

1075

-
S)
1
S
2

Kernel time per unknown /s
-
b

-
=)
1

®

2 2 > 2 2
Number of patches, T

task-graph, AoS, d=2, PVC

—5— copy, with reduction, ps=4
—@- copy, no reduction, ps=4

copy, with reduction, ps=6
—&— copy, with reduction, ps=8
—A— managed, with reduction, ps=4

managed, with reduction, ps=6
»—A— managed, with reduction, ps=8
—&— usm, with reduction, ps=4
usm, with reduction, ps=6

10-5 4

10-6 4

Kernel time per unknown / s

10-8 4

2‘] 2‘3 2“1 2‘/ 2‘9
Number of patches, T
Figure 7: Kernel runtimes on the A100 (top) and the

PVC (bottom) for a realisation using a SYCL task graph
for d = 2.

is too expensive, as it maps each compute step within
the DAG onto a separate kernel launch. The low
arithmetic intensity of our individual computations
amplifies this effect. Once p increases and hence
introduces reasonable high compute load per DAG step,
the relative overhead reduces. The A100 profits from
this fact, while the PVC continues to struggle with
the high number of kernel launches. We conclude
that a dynamic administration of the task graph on the
host side is not competitive with our two alternative
realisation variants.

While our code base should support dynamic num-
bers of T—we want to support dynamic AMR where we
do not know a priori how many tasks are spawned and
offloaded to the GPU per thread [7, 12]—the task graph
is fixed once we decide to load a certain number T of
patches with a given p to the accelerator. There is no
need to assemble a task graph dynamically. Instead, we
can precompile the graph, offload it to the GPU, and
let the GPU handle the dependency administration in-
ternally. SYCL provides (experimental) extensions for
this through task graph recording and explicit graph

construction APIs. Unfortunately, we were not able to
use them successfully with our current software stack.
Instead, we use dynamic task graph assembly and let
the assembly contribute towards the kernel runtime.

Further implementation remarks We did ex-
tensive studies comparing SoA against AoS and also
Ao0SoA, where the data data per patch are stored as
SoA, while the individual patch data chunks are stored
one after another. These ordering variations make no
significant difference to the runtimes. Solely converting
the input @ into SoA increases the runtime dramati-
cally, as we then have to gather data for each and every
microkernel.

We use SYCL’s reduce_over_group for reductions
wherever a plain reduction does not work. It yields a
speedup of around a factor of two compared to a purely
sequential version for small patches, and still a runtime
improvement of around 10% for the larger p values.
An alternative parallel reduction using one atomic per
patch is not competitive. No problem was scaled
up to a point where SYCL’s workgroup size becomes
a limiting factor, though this limitation is discussed.

In all kernels, we refrain from an explicit paralleli-
sation over the unknowns in @ € RY. Some loops over
microkernels expose concurrency in the unknowns; to
update all components according to an explicit Euler,
e.g. However, exploiting this concurrency seems never
to pay off, while it introduces massive (logical) thread
divergence penalties in the patch-wise variant.

6 Outlook and conclusion

SYCL is still the new kid on the block when it comes to
GPU programming. However, its “all-in-native-C++"—
policy makes it attractive to projects that aim for code
which runs both on CPUs and GPUs [3], and that aim to
hide platform specifics by sticking to one language and
one implementation only. It also is appealing, as it offers
a task-first approach to heterogeneous programming:
All kernel submissions can be considered to be tasks,
return events, and can have dependencies.
Unfortunately, the flexibility promised by tasks
seems not to pay off. Our data suggest that perfor-
mance engineers have to embed the logical task graph
into sequences of nested loops and map these loops onto
one high-dimensional SYCL loop to obtain high perfor-
mance. This is a low-level rewrite of the high-level task
concept. We discuss two low-level realisations: batched
and patch-wise. The patch-wise variant’s performance
is robust for small problem sizes and very close to how
domain scientists traditionally phrase their algorithms
(run over all patches; per patch, compute ...), but
it requires some significant re-engineering and several
workarounds if we implement it in SYCL. It is also

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

subject to hardware (workgroup size) constraints. The
batched version outperforms its patch-wise cousin for
some bigger setups on some machine—dimension combi-
nations.

Eventually, performance engineers might have to
maintain two realisations to facilitate high throughput
on a GPU: A patch-wise version for small T' counts,
and a batched version for bespoke, larger setups; which
are time-consuming by definition. On the CPU, a
task-based version might be advantageous, which adds
a third implementation variant. It will be subject
of future work to investigate if this pattern changes
with new hardware and software generations, i.e. if
SYCL’s native task formalism catches up performance-
wisely. As it stands, maintaining different realisations
of one and the same numerical kernels remains necessary
though being tedious and error-prone.

A fast, native, task-first USM programming
paradigm for GPUs would be another real selling point
for SYCL. As it stands, platform-portability might be
guaranteed for the most generic and flexible way to
phrase computations, but performance sacrifices have
to be made if we want to use a strict task formalism
and do not want to administer or copy data ourselves.

On the low-level realisation side, SYCL offers
a GPU abstraction somewhere halfway in-between
OpenMP and CUDA: Some details such as the orches-
tration of collapsed loops are hidden (like in OpenMP),
while they can be exposed and tailored towards the ma-
chinery explicitly by using nd_ranges. Our work show-
cases that some codes would benefit from an even higher
level of abstraction. It is not clear why SYCL does not
provide stronger support for nested parallel fors as we
get them natively in OpenMP, it is not clear why the
maximum workgroup size of the hardware imposes con-
straints on the implementation and cannot be mitigated
within the SYCL software layer, and a better support
for nested parallelism and the automatic serialisation
over some iteration indices (i.e. of loops over unknowns)
would streamline the development.

While our work makes statements on efficient com-
pute kernel realisations, it falls short of examining
the impact of further advanced realisation techniques
such as memory prefetching and task graph recording
plus re-usage. It might be possible that such invasive
techniques—in the sense that more manual source code
augmentation becomes necessary—allow us to close the
performance gap between USM and manual memory
movements as well as on-the-fly task graph construction
and task graph processing. Further to studying these
features, future work will comprise data layout optimi-
sations beyond simple reordering of temporary data and
the optimisation of the core calculations. As long as we

stick to the policy that no user code is altered, our code
is inherently tied to AoS and the physics calculations
are locked away from further tuning. If we want to keep
the strict separation of roles, it hence might become
necessary to switch to domain-specific languages, such
that the translator has the opportunity to alter both
the kernel and the microkernels.

Acknowledgements

Our work has been supported by the UK’s ExCALIBUR,
programme through its cross-cutting project EX20-9
Ezxposing Parallelism: Task Parallelism (Grant ESA 10
CDEL) made by the Met Office and the EPSRC DDWG
projects PAX-HPC (Gant EP/W026775/1) and An
ExCALIBUR Multigrid Solver Toolbox for EraHyPE
(EP/X019497/1). Particular thanks are due to Intel’s
Academic Centre of Excellence at Durham University.
This work has made use of the Durham’s Department
of Computer Science NCC cluster. Development relied
on the DIRAC@Durham facility managed by the In-
stitute for Computational Cosmology on behalf of the
STFC DiRAC HPC Facility (www.dirac.ac.uk). The
equipment was funded by BEIS capital funding via
STFC capital grants ST/K00042X/1, ST/P002293/1,
ST/R002371/1 and ST/S002502/1, Durham University
and STFC operations grant ST/R000832/1. DiRAC is
part of the National e-Infrastructure.

The authors wish to thank Andrew Mallinson (In-
tel) for establishing the collaboration with Intel, Do-
minic E. Charrier (AMD) for the initial suggestion to
rewrite the OpenMP code with microkernels, Mario
Wille (TUM) for the many discussions around the
OpenMP compute kernels, and all the colleagues at
Codeplay and Intel (notably Heinrich Bockhorst for his
help and for reproducing all experimental steps on in-
house hardware) for their help.

References

[1] A. Abdelfattah et al. A set of batched basic linear al-
gebra subprograms and lapack routines. ACM Trans-
actions on Mathematical Software, 47(3):1-23, 2020.

[2] D.E. Charrier, B. Hazelwood, and T. Weinzierl. En-
clave tasking for dg methods on dynamically adap-
tive meshes. SIAM Journal on Scientific Computing,
42(3):C69-C96, 2020.

[3] T. Deakin et al. Heterogeneous programming for the
homogeneous majority. In IEEE/ACM International
Workshop on Performance, Portability and Produc-
tivity in HPC, PSHPC@SC 2022, Dallas, TX, USA,
November 13-18, 2022, pages 1-13. IEEE, 2022.

[4] A. Dubey et al. A survey of high level frameworks
in block-structured adaptive mesh refinement pack-

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

www.dirac.ac.uk

(5]

(6]
(7l

(8]

(9]

(10]

(11]

(12]

ages. Journal of Parallel and Distributed Computing,
74(12):3217-3227, 2016.

J.-M. Gallard et al. Role-oriented code generation in an
engine for solving hyperbolic pde systems. In Tools and
Techniques for High Performance Computing, pages
111-128, 2020.

M. Klemm and J. Cownie. High Performance Parallel
Runtimes. De Gruyter Textbook, 2021.

B. Li et al. Dynamic task fusion for a block-structured
finite volume solver over a dynamically adaptive mesh
with local time stepping. In ISC High Performance
2022, volume 13289 of Lecture Notes in Computer
Science, pages 153-173, 2022.

A. Reinarz et al. Exahype: An engine for parallel
dynamically adaptive simulations of wave problems.
Computer Physics Communications, 254:107251, 2020.
J. Reinders et al. Data Parallel C++: Mastering
DPC++ for Programming of Heterogeneous Systems
using C++ and SYCL. Springer, 2021.

C. R. Trott et al. Kokkos 3: Programming model
extensions for the exascale era. IEEE Trans. Parallel
Distributed Syst., 33(4):805-817, 2022.

T. Weinzierl. The peano software - parallel,
automaton-based, dynamically adaptive grid traver-
sals. ACM Transactions on Mathematical Software,
45(2):14:1-14:41, 2019.

M. Wille et al. Efficient GPU offloading with OpenMP
for a hyperbolic finite volume solver on dynamically
adaptive meshes. In ISC High Performance 2023,
volume 13289 of LNCS, pages 153—-173, 2023.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

A Download and build

All of our code is hosted in a public git repository
on https://gitlab.lrz.de/hpcsoftware/Peano and
available to clone. Our GPU benchmark scripts are
merged into the repository’s main, i.e. all results can
be reproduced with main branch. Yet, to use the exact
same code version as used for this paper, please switch
to tag a3461cb6 on the gpus branch.

the
autotools

ALGORITHM A.1. Cloning
and setting up the

1: git clone https://gitlab.lrz.de/hpcsoftware /Peano

2: cd Peano

3: libtoolize; aclocal;
sre/config.h.in .

4: automake --add-missing

repository
environment.

autoconf; autoheader; cp

ALGORITHM A.2. Configure command used for our

A100 tests (top) and for the PVC runs (bottom).

1. ./configure CC=icx CXX=icpx LIBS="-1tbb”
LDFLAGS="-fsycl -fsycl-targets=nvptx64-nvidia-
cuda -Xsycl-target-backend=nvptx64-nvidia-cuda
--cuda-gpu-arch=sm_80” CXXFLAGS="-03
-std=c++20 -fsycl -fsycl-targets=nvptx64-nvidia-
cuda -Xsycl-target-backend=nvptx64-nvidia-cuda -
-cuda-gpu-arch=sm_80” --with-multithreading=tbb
--enable-exahype --enable-blockstructured --enable-
loadbalancing --with-gpu=sycl

2: ./configure CC=icx CXX=icpx LIBS="-1tbb”
LDFLAGS="-fsycl” CXXFLAGS="-03 -
std=c++20 -fsycl” --with-multithreading=tbb
--enable-exahype --enable-blockstructured --enable-
loadbalancing --with-gpu=sycl

While the project supports CMake as discussed
in the project documentation (available by running
doxygen documentation/Doxyfile), we present the
setup using autotools here (commands in Alg. A.1). To
create the actual makefiles for A100 tests, initialise the
oneAPI environment or use your native oneAPI mod-
ules, and afterwards configure your code accordingly
(command in Alg. A.2). You will obtain a plain makefile
that builds all of Peano’s and ExaHyPE’s core libraries.

B Execution and postprocessing

All experiments as discussed are available through a
Python script that links a test case driver (miniapp)
to Peano’s and ExaHyPE’s core libraries. This miniapp
sweeps through the parameter combinations of interest
for the present discussions.

ALGORITHM B.1. Build a d = 3 setup with patches
of size 8 x 8 x 8. The Python script internally in-

vokes make (or cmake if you have previously config-
ured the code with CMake) and yields an executable
./kernel-benchmark-fv-Xd-patch-size-Y where X is
the dimension (3 in this example) and Y the patch size
(8).

1: cd benchmarks/exahype2

2: cd euler/kernel-benchmarks

3: python3 kernel-benchmarks-fv-rusanov.py --dim 3 -

-patch-size 8

To build the miniapp, we change into Euler’s
kernel-benchmarks folder. The Python 3 script
kernel-benchmarks-fv-rusanov.py yields the test
case executable (commands in Alg. B.1). Passing -h
provides instructions on various further options. For
example, the test can be asked to validate the GPU
outputs for correctness against a CPU run, or you can
alter the number of samples taken, i.e. over how many
runs the measurements should average.

ALGORITHM B.2. Run benchmarking executable, pipe
the outcome into a text file, and produce a graph
through matplotlib. This example will produce an
AoS plot for each implementation plus a comparison
of the total runtime and the compute kernel time. The
ONEAPI DEVICE_SELECTOR environment variable chooses
the target offload device which, in this case, is the
first PVC GPU shown after running sycl-1s. The
text files can be reused for other plots by rerun-
ning the plotting script with different specifications.

—_

export \
ONEAPI_DEVICE_SELECTOR=level zero:0
foriin 4 6 §8; do
python3 kernel-benchmarks-fv-rusanov.py \
-d 3 -ps $i
./kernel-[. . .]-3d-patch-size-8$i \
> pve-3d-ps$i.txt
done
python3 create-exahype-sycl-plot.py -f pvc-3d-
psd.txt pve-3d-ps6.txt pve-3d-ps8.txt -d 3 -ds AoS
-ps 4 6 8 -dn PVC

The directory contains an example SLURM script,
compile-and-plot.sh. It compiles and run
the executable and pipe the output into a txt file,
then finally feeds the output into a matplotlib script
(create-exahype-sycl-plot.py) to produce the out-
puts. If you prefer to run the examples directly, follow
the instructions in Alg. B.2.

C AoS, SoA and AoSoA

Data on the runtime impact of AoS vs. SoA and a
further hybrid (AoSoA) confirms our statement that the

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://gitlab.lrz.de/hpcsoftware/Peano

batched, SoA, d=2, A100

107°
—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4
—&— copy, with reduction, ps=6
" —&— copy, with reduction, ps=8
= . s —A— managed, with reduction, ps=4
§ 10 —#A— managed, with reduction, ps=6
g —A— managed, with reduction, ps=8
S
s
v
a
£
£ 1077
°
£
Q
PV
1078 4
T T v T v
2! 23 2° 27 2°
Number of patches, T
10-5 batched, AoSoA, d=2, A100
—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4
—&— copy, with reduction, ps=6
—&— copy, with reduction, ps=8
0
-~ 0-6 —A— managed, with reduction, ps=4
1S 1074 —~A— managed, with reduction, ps=6
§ —A— managed, with reduction, ps=8
]
@
a
g
= 1077 4
°
£
Q
~
1073 4
T T v T v
2! 23 2° 27 2°
Number of patches, T
Figure 8: d = 2 results on an NVIDIA A100 using

different data layouts within the batched kernels.

organisation of temporary data has negligible impact on
the runtime (Figures 8, 9, 10, and 11). We observe that
the characteristic dips for p = 4,d = 2 on the PVC
appears independently of the data layout chosen for the
temporary fields.

D Machine settings

On Intel’s Data Center GPU Max Series—abbreviated
by PVC in the plots, as the previous codename has been
Ponte Vecchio—we use the level-Zero API. We use only
a subset of the available features of the chip (Alg. D.1).

used on

ALGORITHM D.1. Environment variables

PVC.

1: export EnableImplicitScaling=0

2: export ZE_AFFINITY_MASK=0.0

3: export ZE_FLAT _DEVICE_HIERARCHY=FLAT
4: export \
5. SYCL_PI_.LEVEL_ZERO_USE_COPY_ENGINE=0

The chip features 1,024 Xe Vector engines organised
into two stacks. We use only one stack and disable
implicit scaling. That is, we do not even allow the chip
to make use of the second stack’s memory and other

batched, SoA, d=3, A100

—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4

—&— copy, with reduction, ps=6
—&— copy, with reduction, ps=8
—A— managed, with reduction, ps=4
—#A— managed, with reduction, ps=6
—A— managed, with reduction, ps=8

10-7 4

Kernel time per unknown /s

1078 4

T T T T v
2! 23 2° 27 2°
Number of patches, T

batched, AoSoA, d=3, A100

—&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4

—&— copy, with reduction, ps=6
—&— copy, with reduction, ps=8
—A— managed, with reduction, ps=4
—*— managed, with reduction, ps=6
—A— managed, with reduction, ps=8

10-6 4

10-7 4

Kernel time per unknown / s

10-8 4

2 23 25 27 2°
Number of patches, T
Figure 9: d = 3 results on an NVIDIA A100 using
different data layouts within the batched kernels.

resources. The affinity settings ensure that only this
first half of the card is visible to the tests, while it is
exposed as one flat, uniform device.

Our testbed struggled to benefit from the PVC’s
copy engine. We therefore explicitly disable this feature
throughout the tests, which might negatively affect the
USM throughput.

Future driver and software stacks will likely allow
users to avoid tinkering with environment variables.
Future hardware and software generations also will
enable SYCL USM on the A100. However, we do not
expect large quantitative differences in the outcomes
and notably doubt that the significant performance gap
between USM and manual data transfer variants can be
closed.

For researchers who want to reproduce results,
it is important to note that our test driver covers
all functional variations of the compute kernels. If
features make the code crash or deadlock, the re-
producer benchmark will hence not pass either. In
this case, the respective kernel invocations in the
file KernelBenchmarksFVRusanov-main. cpp have to be
commented out.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

batched, SoA, d=2, PVC

2t 23 25

Number of patches, T

batched, SoA, d=3, PVC

1074
—&— copy, with reduction, ps=4 —&— copy, with reduction, ps=4
—&- copy, no reduction, ps=4 —&- copy, no reduction, ps=4
copy, with reduction, ps=6 s —&— copy, with reduction, ps=6
copy, with reduction, ps=8 107 5 —&— copy, with reduction, ps=8
« 0
- managed, with reduction, ps=4 - —A— managed, with reduction, ps=4
§ managed, with reduction, ps=6 5 —*— managed, with reduction, ps=6
g managed, with reduction, ps=8 g 10-6 4 —A— managed, with reduction, ps=8
E usm, with reduction, ps=4 E
o usm, with reduction, ps=6 o
Q Q
o o
£ £ 1074
b= b=
© ©
£ £
M M
10-8 4
T T T T T 107° T T T T T
o1 23 25 27 29 o1 23 25 27 29
Number of patches, T Number of patches, T
batched, AoSoA, d=2, PVC 10-¢ batched, AoSoA, d=3, PVC
—&— copy, with reduction, ps=4 —©— copy, with reduction, ps=4
—&- copy, no reduction, ps=4 —&- copy, no reduction, ps=4
copy, with reduction, ps=6 s —&— copy, with reduction, ps=6
" copy, with reduction, ps=8 ” 107 5 —&— copy, with reduction, ps=8
- managed, with reduction, ps=4 - —A— managed, with reduction, ps=4
§ managed, with reduction, ps=6 é —#— managed, with reduction, ps=6
g managed, with reduction, ps=8 g 106 4 —A— managed, with reduction, ps=8
E usm, with reduction, ps=4 E
o usm, with reduction, ps=6 o
[=3 a
3 3
£ £
b= b=
T °
= =
g g

Number of patches, T

d = 2 results on the PVC using different Figure 11: d = 3 results on the PVC using different
data layouts within the batched kernels.

Figure 10:
data layouts within the batched kernels.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Citation on deposit:

A
ﬁ’Durham Loi, C. M., Bockhorst, H., & Weinzierl, T. (in press).
University SYCL compute kernels for ExaHyPE *. SIAM
Durham Research Online
Journal on Scientific Computing,

For final citation and metadata, visit Durham
Research Online URL: https://durham-
repository.worktribe.com/output/2022863

Copyright statement: This accepted manuscript is licensed under the Creative
Commons Attribution 4.0 licence.
https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/2022854
https://durham-repository.worktribe.com/output/2022854

	paper
	Introduction
	ExaHyPE's Finite Volumes
	Block-structured adaptive mesh refinement with tasks
	Kernels and microkernels
	DAG

	Kernel realisations
	SYCL implementation
	Results
	Outlook and conclusion
	Download and build
	Execution and postprocessing
	AoS, SoA and AoSoA
	Machine settings

	Citation page-V1-2023

