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Abstract

Dovonon and Hall (Journal of Econometrics, 2018) proposed a limiting distribution

theory for GMM estimators for a p - dimensional globally identified parameter vector

φ when local identification conditions fail at first-order but hold at second-order. They

assumed that the first-order underidentification is due to the expected Jacobian having

rank p−1 at the true value φ0, i.e., having a rank deficiency of one. After reparametrizing

the model such that the last column of the Jacobian vanishes, they showed that the GMM

estimator of the first p− 1 parameters converges at rate T−1/2 and the GMM estimator

of the remaining parameter, φ̂p, converges at rate T−1/4. They also provided a limiting

distribution of T 1/4(φ̂p−φ0,p) subject to a (non-transparent) condition which they claimed

to be not restrictive in general. However, as we show in this paper, their condition is in

fact only satisfied when φ is overidentified and the limiting distribution of T 1/4(φ̂p−φ0,p),

which is non-standard, depends on whether φ is exactly identified or overidentified. In

particular, the limiting distributions of the sign of T 1/4(φ̂p − φ0,p) for the cases of exact

and overidentification, respectively, are different and are obtained by using expansions of

the GMM objective function of different orders. Unsurprisingly, we find that the limiting

distribution theories of Dovonon and Hall (2018) for Indirect Inference (II) estimation

under two different scenarios with second-order identification where the target function is

a GMM estimator of the auxiliary parameter vector, are incomplete for similar reasons.

We discuss how our results for GMM estimation can be used to complete both theories

and in particular how they can be used to obtain the limiting distributions of the II

estimators in the case of exact identification under either scenario.



1 Introduction

Global identification is a necessary condition for consistency of an estimator. In models

that are linear in the parameters, global identification is equivalent to first-order local

identification. However, in models that are nonlinear in the parameters, global iden-

tication of the parameter vector may hold even when some of the parameters are not

first-order but higher order locally identified although in this case the rate of convergence

of the estimators of these parameters is slower than the usual rate.

For the situation where one of the elements of φ, say φp, is not first-order but only

second-order locally identified, Sargan (1983), Rotnitzky et al. (2000) and Kruiniger

(2013) developed asymptotic theory for IV estimators, MLEs and Quasi MLEs, respec-

tively. A common finding is that the estimator of the parameter that is only second-order

locally identified converges at a quartic root rate, i.e., at rate T−1/4 and has a non-normal

asymptotic distribution, while the estimators of the parameters that are first-order locally

identified converge at the usual square root rate, i.e., at rate T−1/2 and have asymptotic

distributions that are mixtures of normal distributions. Furthermore, the limiting distri-

bution of T 1/2(φ̂p − φ0,p)
2 is a mixture of a half-normal distribution and 0.

Dovonon and Renault (2009) give a formal definition of second-order local identi-

fication in the context of GMM estimation. Dovonon and Hall (2018), henceforth DH,

present an asymptotic theory for GMM estimators under second-order identification. The

limiting distribution they give for the estimator of the second-order locally identified pa-

rameter, i.e., φp, holds if a certain condition is satisfied. However, as we show in this

paper, their condition is only satisfied when φ is overidentified. Furthermore, we show

that the limiting distribution of φ̂p depends on whether φ is exactly identified or overi-

dentified. In particular, the limiting distributions of the sign of T 1/4(φ̂p − φ0,p) for the

cases of exact and overidentification, respectively, are different and are obtained by us-

ing expansions of the GMM objective function of different orders. The reason for these

differences is that in the case of exact identification some terms in the expansion vanish.

On the other hand, we find that the formula for the limiting distribution of the GMM

estimator of the vector with the other elements of φ is the same for both cases.

Kruiniger (2018) derived the limiting distributions of two Modified MLEs for a panel

ARX(1) model with homoskedastic errors when the autoregressive parameter equals one

by viewing them as GMM estimators. In the unit root case the parameter vector is only
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second-order locally identified by the objective functions of the Modified MLEs due to the

nonlinear terms in the modified score vector. Alvarez and Arellano (2021) found that in

the same case (i.e., the case of a unit root and homoskedastic errors) the autoregressive

parameter of the panel AR(1) model is only second-order locally identified by certain

nonlinear moment conditions due to Ahn and Schmidt (1995). DH showed that a set

of moment conditions that are related to a conditionally heteroskedastic factor model

for asset returns has a rank deficient Jacobian matrix and that the vector of parameters

in these moment conditions is second-order locally identified. Sargan (1983) discussed

IV and FIML estimation of dynamic simultaneous equation models that are linear in

the variables and nonlinear in the parameters and where the parameter vector is only

second-order locally identified. Finally, Rotnitzky et al. (2000) give additional examples

of models where the parameter vector is only second-order locally identified.

The paper is organized as follows. Section 2 briefly reviews GMM estimation under

first-order local identification. Section 3 defines second-order identification. Section 4

presents the limiting distribution theory for GMM estimators under second-order local

identification and discusses its implications for Indirect Inference (II) estimation under

two scenarios with second-order local identification where the target function is a GMM

estimator of the auxiliary parameter vector. Section 5 offers some concluding remarks.

The appendix contains the proofs.

2 GMM under first-order identification

In this section we briefly review the basic GMM framework based on first-order asymp-

totics, paying special attention to the role of first-order local identification. We first

define the GMM estimator and then discuss some first-order asymptotic theory for this

estimator. To this end, we introduce the following notation. The model involves the

random vector X which is assumed strictly stationary with distribution P (φ0) which is

indexed by the parameter vector φ ∈ Φ ⊂ R
p. φ0 is the true value of φ.

GMM is a semi-parametric method in the sense that its implementation does not

require complete knowledge of P (·) but only population moment conditions implied by

this distribution. In view of this, we suppose that the model implies:

E[g(X, φ0)] = 0, (1)

where g(·) is a q× 1 vector of continuous functions. The GMM estimator of φ0 based on
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(1) is defined as:

φ̂ = argmin
φ∈Φ

QT (φ), (2)

where

QT (φ) = m′
T (φ)WTmT (φ) with mT (φ) = T−1

T∑
t=1

g(xt, φ),

WT is a positive definite matrix, and {xt}Tt=1 represents the sample observations on X .

We will assume that q ≥ p and that mT (φ) satisfies

Assumption 1 (i) mT (φ) = Op(1) for all φ ∈ Φ; (ii) T 1/2mT (φ0)
d→ N(0, Vm), where

Vm is a positive definite matrix of finite constants.

To consider the first-order asymptotic properties of GMM estimators, we introduce a

number of high level assumptions.

Assumption 2 (i) WT
p→ W , a positive definite matrix of constants; (ii) Φ is a compact

set; (iii) QT (φ)
p→ Q(φ) = m(φ)′Wm(φ) uniformly in φ; (iv) Q(φ) is continuous on Φ;

(v) Q(φ0) < Q(φ) ∀φ 6= φ0, φ ∈ Φ.

Assumption 2(v) serves as a global identification condition. These conditions are

sufficient to establish consistency, see, for example, Newey and McFadden (1994).

Proposition 1 If Assumption 2 holds, then φ̂
p→ φ0.

Let MT (φ̃) = ∂mT (φ)/∂φ
′|φ=φ̃ and let Nφ,ǫ be an ǫ-neighbourhood of φ0, that is,

Nφ,ǫ = {φ :‖ φ − φ0 ‖< ǫ}. We can derive the first-order asymptotic distribution of φ̂

after adding the following assumption, cf. Newey and McFadden (1994).

Assumption 3 (i) φ0 is an interior point of Φ; (ii) mT (φ) is continuously differentiable

on Nφ,ǫ; (iii) MT (φ)
p→ M(φ) uniformly on Nφ,ǫ; (iv) M(φ) is continuous at φ0; (v)

M(φ0) has rank p.

Assumption 3(v) is the condition for first-order local identification. It is sufficient but

not necessary for local identification of φ0 on Nφ,ǫ, but it is necessary for the development

of the standard first-order asymptotic theory.

Proposition 2 If Assumptions 1–3 hold, then T 1/2(φ̂MD − φ0)
d→ N(0, Vφ), where

Vφ = [M(φ0)
′WM(φ0)]

−1M(φ0)
′WVmWM(φ0)[M(φ0)

′WM(φ0)]
−1.
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Global identification is crucial for consistency; global and first-order local identifica-

tion are needed for the preceding asymptotic distribution theory.

Given Assumption 2(i), the global identification condition for GMM can be equiva-

lently stated as E[g(X, φ)] = 0 has a unique solution at φ = φ0. The first-order local

identification condition can also be stated as E[∂g(X, φ)/∂φ′|φ=φ0
] has full column rank.

3 Second-order local identification

For our analysis of GMM, we adopt the definition of second-order local identification

originally introduced by Dovonon and Renault (2009). To present this definition, we

introduce the following notations. Let m(φ) = E[g(X, φ)] and

M
(2)
k (φ0) = E

[
∂2gk(X, φ)

∂φ∂φ′ |φ=φ0

]
, k = 1, 2, . . . , q,

where gk(X, φ) is the kth element of g(X, φ) and g(·) is defined in (1). Second-order local

identification is defined as follows.

Definition 1 The moment condition m(φ) = 0 locally identifies φ0 ∈ Φ up to the second

order if:

(a) m(φ0) = 0.

(b) For all u in the range of M(φ0)
′ and all v in the nullspace of M(φ0), we have:(

M(φ0)u+
(
v′M

(2)
k (φ0)v

)
1≤k≤q

= 0

)
⇒ (u = v = 0).

The latter condition is derived using a second-order expansion of m(φ) around m(φ0)

and can be motivated as follows. For any non-zero φ − φ0 with φ ∈ Nφ,ǫ, we have

φ− φ0 = c1u+ c2v where c1, c2 are constants such that c1 6= 0 and/or c2 6= 0. For those

directions for which c1 is non-zero, the first-order term is non-zero and dominates, and

for those directions in which c1 = 0, the second-order term is non-zero. Thus, without

requiring the expected Jacobian matrix M(φ0) to have full rank, conditions (a) and (b) in

Definition 1 guarantee local identification in the sense that there is no sequence of points

{φn} different from φ0 but converging to φ0 such that m(φn) = 0 for all n. The difference

between first-order local identification and second-order local identification (with M(φ0)

rank deficient) is how sharply m(φ) moves away from 0 in the neighbourhood of φ0.
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Example. Consider the following panel AR(1) model with individual effects:

yi,t = ρyi,t−1 + wi,t, (3)

wi,t = ηi + εi,t, where ηi = (1− ρ)µi,

for i = 1, ..., N and t = 1, 2, 3. The number of individuals, N, may be large. Note that

when ρ = 1, then ηi = 0. Adding the term x′
i,tβ̆ to (3) with xi,t exogenous and β̆ = β(1−ρ)

does not affect the essence of the analysis below except that p and q increase by dim(β̆)

and β̆ is first-order locally identified in all cases. We make the following assumption.

Assumption A {ηi, yi,0, yi,1, yi,2, yi,3}Ni=1 is a random sample from a joint distribution

with finite fourth-order moments that satisfies E(εi,t|ηi, yi,0, . . . , yi,t−1) = 0 for t = 1, 2, 3.

Let the unconditional variances of the errors be denoted as E(ε2i,t) = σ2
t for t = 1, 2, 3.

We are interested in GMM estimation of ρ. Assumption A implies the following three

linear moment conditions for the model in (3), cf. Arellano and Bond (1991):

mAB,s,t(ρ) := E[yi,t−s(∆yi,t − ρ∆yi,t−1)] = 0 for s = 2, t and t = 2, 3, (4)

where ∆yi,t = yi,t − yi,t−1. Assumption A also implies one nonlinear moment condition

for the model in (3), cf. Ahn and Schmidt (1995):

mAS,3(ρ) := E[(yi,3 − ρyi,2)(∆yi,2 − ρ∆yi,1)] = 0. (5)

If ρ 6= 1, then ρ is both globally and first-order locally identified by each of the above

four moment conditions, while if ρ = 1, then the first three moment conditions do not

help to identify ρ at all, because they are linear in ρ and dmAB,s,t(ρ)/dρ = 0 for s = 2, t

and t = 2, 3. When ρ = 1 and σ2
1 6= σ2

2, then ρ is still first-order locally identified by

mAS,3(ρ) = 0, because dmAS,3(ρ)/dρ = −σ2
2 + σ2

1 6= 0, but technically speaking ρ is no

longer globally identified because mAS,3(ρ) = 0 now has two solutions, i.e., ρ = 1 and

ρ = σ2
2/σ

2
1. However, the fact that mAS,3(ρ) = 0 has multiple solutions only in this case

(and not when ρ 6= 1) means that in practice ρ is globally identified in this case (because

the occurance of two roots implies that ρ = 1) and that the GMM estimator that exploits

mAS,3(ρ) = 0 is also consistent in this case, see Kruiniger (2013) for details. If ρ = 1 and

σ2
1 = σ2

2, then ρ is second-order rather than first-order locally identified by mAS,3(ρ) = 0,

because dmAS,3(ρ)/dρ = 0 and d2mAS,3(ρ)/dρ
2 = 2σ2

1 6= 0, and ρ is also globally identified

because the two solutions of mAS,3(ρ) = 0 are now both equal to 1, that is, 1 is a double
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root of mAS,3(ρ) = 0, cf. Alvarez and Arellano (2021). Finally, as we have just seen, when

ρ = 1, then ρ is only identified by mAS,3(ρ) = 0 and not by mAB,s,t(ρ) = 0 for s = 2, t

and t = 2, 3, so in this case we really have q = 1 rather than q = 4, that is, ρ is exactly

identified rather than overidentified because q = p = 1.

4 The limiting distribution of the GMM estimator

In this section we consider the moment condition model (1) and study the asymptotic

behaviour of the GMM estimator when φ0 is second-order locally identified because the

moment condition exhibits the properties in Definition 1 but the standard local identifi-

cation condition (Assumption 3(v)) fails.

4.1 Main results

We study the asymptotic behaviour of the GMM estimator by restricting ourselves to the

case of a rank deficiency of one, i.e., the rank of M(φ0) is equal to p− 1, since this case

is relatively easy to analyse compared to the general case. W.l.o.g. we consider the case

where the rank deficiency of M(φ0) is due to its last column being a null vector.1 To this

end, we partition φ into (φ′
1:p−1, φp)

′ where φ1:p−1 is the vector consisting of the first p−1

elements of φ and φp is the p−th element of φ. For ease of presentation below, we shorten

the subscript and write φ1 for φ1:p−1. Thus φ0 = (φ′
0,1, φ0,p)

′ where φ0,1 is a (p − 1) × 1

vector containing the true value of φ1:p−1 and φ0,p is the true value of φp. If M(φ0) has

rank p− 1 with ∂m
∂φp

(φ0) = 0, then second-order local identification is equivalent to:

Rank

(
∂m

∂φ′
1

(φ0)
∂2m

∂φ2
p

(φ0)

)
= p

This is the setting studied by Sargan (1983) for the instrumental variables estimator for a

nonlinear in parameters model. We now present the regularity conditions under which we

derive the asymptotic distribution of the GMM estimator. Define D = ∂m
∂φ′

1

(φ0) and G =

∂2m
∂φ2

p

(φ0). The next assumption states formally the identification pattern described above.

Assumption 4 (i) m(φ) = 0 ⇔ φ = φ0; (ii)
∂m
∂φp

(φ0) = 0; (iii) Rank(D G) = p.

We also require the following regularity conditions to hold.

1As mentioned by Sargan (1983) and shown by DH, any model with an expected Jacobian
that has a rank deficiency of one can be brought into this configuration by reparametrizing the
model as needed.
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Assumption 5 (i) mT (φ) has partial derivatives up to order 3 if q > p and up to order 5

if q = p in a neighbourhood Nφ,ǫ of φ0 and the derivatives of mT (φ) converge in probability

uniformly on Nφ,ǫ to those of m(φ).

(ii)
√
T


 mT (φ0)

∂mT

∂φp
(φ0)


 d→


 Z0

Z1


 .

(iii) WT − W = op(T
−1/4), ∂mT

∂φ′

1

(φ0) − D = Op(T
−1/2), ∂2mT

∂φ2
p

(φ0) − G = Op(T
−1/2),

∂2mT

∂φ′

1
∂φp

(φ0)−G1p = op(1) and
∂3mT

∂φ3
p

(φ0)−L = op(1), and if q = p, ∂3mT

∂φ′

1
∂φ2

p

(φ0)−G1pp = op(1),

∂4mT

∂φ′

1
∂φ3

p

(φ0) − G1ppp = op(1),
∂4mT

∂φ4
p

(φ0) − F = op(1) and
∂2mk,T

∂φ1∂φ
′

1

(φ0) −Kk = op(1) for k =

1, 2, . . . , q, with G1p = ∂2m
∂φ′

1
∂φp

(φ0), L = ∂3m
∂φ3

p

(φ0), G1pp = ∂3m
∂φ′

1
∂φ2

p

(φ0), G1ppp = ∂4m
∂φ′

1
∂φ3

p

(φ0),

F = ∂4m
∂φ4

p

(φ0) and Kk = ∂2mk

∂φ1∂φ
′

1

(φ0) for k = 1, 2, . . . , q, where mk,T (φ) (mk(φ)) is the kth

element of mT (φ) (of m(φ)).

These conditions are stronger than those imposed in the standard first-order asymp-

totic analysis. The derivation of the asymptotic distribution of the GMM estimator

requires an expansion of QT (φ) involving derivatives of mT (φ) up to the third order when

q > p and up to the fifth order when q = p, and the uniform convergence guaranteed

by Assumption 5(i) is useful to control the remainder of our expansions. The orders of

our expansions of QT (φ) for the cases q > p and q = p are different because in the case

of exact identification some terms in the expansion vanish. Assumption 5(ii) states that
√
T (mT (φ0)

′, ∂mT (φ0)
′/∂φp)

′ converges in distribution. Under Assumption 4 and addi-

tional mild conditions on g(X, φ0) and
∂g
∂φp

(X, φ0), the central limit theorem guarantees

that (Z0,Z1)
′ ∼ N(0, v), with v = limT→∞V ar[

√
T (mT (φ0)

′, ∂mT (φ0)
′/∂φp)

′]. Assump-

tion 5(iii) imposes the asymptotic order of magnitude on the differences between some

sample dependent quantities and their probability limits. These orders of magnitude are

enough to make these differences negligible in the expansions. Assumption 5(iii) is not

particularly restrictive since most of the orders of magnitude imposed are guaranteed by

the central limit theorem.

To facilitate the presentation of our main result in this section, we introduce the

following definitions. LetMd be the matrix of the orthogonal projection on the orthogonal

complement of W 1/2D :

Md = Iq −W 1/2D(D′WD)−1D′W 1/2,

where Iq is the identity matrix of size q, let Pg be the matrix of the orthogonal projection
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on MdW
1/2G :

Pg = MdW
1/2G(G′W 1/2MdW

1/2G)−1G′W 1/2Md,

and let Mdg be the matrix of the orthogonal projection on the orthogonal complement of

(W 1/2D W 1/2G) :

Mdg = Md − Pg.

Let

R1 = (Z′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2PgW

1/2
Z0Z

′
0)W

1/2MdW
1/2 ×

(
1

3
L+G1pHG)/σG + Z

′
0W

1/2MdgW
1/2(Z1 +G1pHZ0), (6)

with σG = G′W 1/2MdW
1/2G andH = −(D′WD)−1D′W . In addition, let V =−2Z1(Z <

0)/σG, where Z = G′W 1/2MdW
1/2

Z0 and 1(·) is the usual indicator function.

The following lemma, which is based on Theorem 1 in DH, and theorem give the

asymptotic properties of the GMM estimator φ̂ under Assumptions 2, 4 and 5.

Lemma 1 (Dovonon and Hall (2018)) Under Assumptions 2, 4 and 5, we have:

(a) φ̂1 − φ0,1 = Op(T
−1/2) and φ̂p − φ0,p = Op(T

−1/4);

(b) if in addition φ0 ∈ interior(Φ), then



√
T (φ̂1 − φ0,1)√
T (φ̂p − φ0,p)

2


 d→


 HZ0 +HGV/2

V


 .

Theorem 1 Under Assumptions 2, 4 and 5, and if φ0 ∈ interior(Φ), we have:

(a) if in addition q > p, then

T 1/4(φ̂p − φ0,p)
d→ (−1)B1

√
V ,

with B1 = 1(R1 ≥ 0);

(b) if in addition q = p and Pr(R2 = 0) = 0, where R2 is defined in the proof below

equation (19), then

T 1/4(φ̂p − φ0,p)
d→ (−1)B2

√
V ,

with B2 = 1(R2 ≥ 0).

Parts (a) and (b) of Lemma 1 are the same as parts (a) and (b) of Theorem 1 in DH.

In the Appendix we provide an alternative, self-contained proof for part (b) of Lemma 1.

There we also provide a proof for our Theorem 1.
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4.2 Discussion

Our theorem is different from part (c) of Theorem 1 of DH. The latter only states that

T 1/4(φ̂p − φ0,p) converges in distribution to the limiting distribution given in part (a) of

our Theorem 1 under the condition that Pr(R1 = 0) = 0. DH claim in their Remark 1

that this condition “is not expected to be restrictive in general ...”, although they also

add the following caveat: “However, when q = p = 1 (one moment restriction with one

non first-order locally identified parameter), we can see that R1 = 0.” However, as we

show in the proof of Lemma 2 in the Appendix, the condition Pr(R1 = 0) = 0 is actually

only satisfied when φ is overidentified, i.e., when q > p; when φ is exactly identified, i.e.,

when q = p, then Pr(R1 = 0|Z < 0) = 1 and hence Pr(R1 = 0) 6= 0. In other words, the

theory of DH only provides the limiting distribution of T 1/4(φ̂p −φ0,p) for the case where

φ is overidentified.

In part (b) of Theorem 1 we provide the limiting distribution of T 1/4(φ̂p − φ0,p) for

the case where φ is exactly identified and Pr(R2 = 0) = 0. The difference between the

limiting distributions of T 1/4(φ̂p−φ0,p) given in parts (a) and (b) is related to the difference

between the distributions of the Bernoulli r.v.’s B1 and B2 that determine the sign of

T 1/4(φ̂p−φ0,p) when Z < 0. The condition Pr(R2 = 0) = 0 holds if F+3!G1ppHG+ 4!
2
λ̃3 6=

0, where λ̃3 = (λ3,1 . . . λ3,q)
′ with λ3,k =

1
4
G′H ′KkHG for k = 1, 2, . . . , q, cf. Lemma 2(b).

When q = p > 1 and F + 3!G1ppHG + 4!
2
λ̃3 = 0, then the condition Pr(R2 = 0) = 0

may still hold, but R2 = 0 when F = 0, G1pp = 0 and Kk = 0 for k = 1, 2, . . . , q. When

q = p = 1, then Pr(R2 = 0) = 0 if only if F 6= 0. If q = p and Pr(R2 = 0) > 0, then one

may still be able to describe the limiting distribution (of the sign) of T 1/4(φ̂p − φ0,p), see

later in this subsection.

Part (a) of Lemma 1 gives the rates of convergence of φ̂1 and φ̂p. Because φ1 is first-

order identified and φp is second-order identified, φ̂1 − φ0,1 converges at the usual rate

T−1/2 while φ̂p − φ0,p converges at the slower rate T−1/4.

Part (b) of Lemma 1 gives the limiting distribution of (
√
T (φ̂1 − φ0,1),

√
T (φ̂p −

φ0,p)
2). This result is obtained by minimizing the sum of the leading Op(T

−1) terms of

an expansion of m′
T (φ̂)WTmT (φ̂) around φ0 which are collected into KT (φ0) as given by

(10) in the Appendix. As KT (φ0) is a quadratic function of (φ̂1 − φ0,1) and (φ̂p − φ0,p)
2

only, it only allows one to obtain the limiting distribution of T 1/4|φ̂p − φ0,p|. To obtain

the limiting distribution of the sign of T 1/4(φ̂p−φ0,p) one needs to employ a higher order

expansion of m′
T (φ̂)WTmT (φ̂) which includes an odd power of (φ̂p − φ0,p).
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When q > p, the limiting distribution of the sign of T 1/4(φ̂p − φ0,p) can be obtained

from the Op(T
−5/4) terms in the expansion of m′

T (φ̂)WTmT (φ̂). In that case we have:

m′
T (φ̂)WTmT (φ̂) = KT (φ0,p) + (φ̂p − φ0,p)× 2R1T + op(T

−5/4),

where KT (φ0,p) and R1T are quadratic functions of (φ̂p−φ0,p)
2. We show in the Appendix

that TR1T
d→ R1 and that Pr(R1 = 0) = 0 if q > p.When ZT ≡ G′W 1/2MdW

1/2mT (φ0) <

0, q > p and T is large, the minimum of m′
T (φ)WTmT (φ) is reached when (φp − φ0,p) has

the opposite sign to R1T . This suggests that when q > p, then the limiting distribution

of the sign of T 1/4(φ̂p − φ0,p) can be described by (−1)B1 with B1 = 1(R1 ≥ 0).

When q = p, then Pr(R1 = 0|Z < 0) = 1. In fact, when q = p, then R1 = 0, see

the end of the proof of Lemma 2(a1). However, if q = p and Pr(R2 = 0) = 0, then the

limiting distribution of the sign of T 1/4(φ̂p − φ0,p) can be obtained from the Op(T
−7/4)

terms in the expansion of m′
T (φ̂)WTmT (φ̂). In that case we have:

m′
T (φ̂)WTmT (φ̂) = KT (φ0,p)+(φ̂p−φ0,p)×2R1T+Op(T

−6/4)+(φ̂p−φ0,p)×2R2T+op(T
−7/4),

where the Op(T
−6/4) term and R2T are cubic functions of (φ̂p − φ0,p)

2. We show in the

Appendix that T 6/4R2T
d→ R2 if q = p. When ZT < 0, q = p, Pr(R2 = 0) = 0 and T is

large, then the minimum of m′
T (φ)WTmT (φ) is reached when (φp−φ0,p) has the opposite

sign to R2T . This suggests that if q = p and Pr(R2 = 0) = 0, then the limiting distribution

of the sign of T 1/4(φ̂p − φ0,p) can be described by (−1)B2 with B2 = 1(R2 ≥ 0). If q = p

and Pr(R2 = 0) > 0, then we may still be able to characterize the sign of T 1/4(φ̂p − φ0,p)

by using an expansion of m′
T (φ̂)WTmT (φ̂) of an even higher order. However, if, for

instance, q = p = 1 and ∂km
∂φk

p

(φ0) = 0 for k ≥ 4, then we cannot characterize the sign

of T 1/4(φ̂p − φ0,p) and the latter does not have a proper limiting distribution, whereas
√
T (φ̂p − φ0,p)

2 has one, which is given in Lemma 1(b).

When φ is exactly identified and dim(φ) > 1, i.e., when q = p > 1, then the limiting

distribution of (
√
T (φ̂1 − φ0,1), T

1/4(φ̂p − φ0,p)) still depends on the choice of the weight

matrix WT unlike the limiting distribution of a GMM estimator of a parameter vector

that is wholly first-order identified. The reason for this dependence is that φ̂1 and φ̂p

converge at different rates and as a consequence the sum of the leading terms in the

expansion of m′
T (φ̂)WTmT (φ̂), i.e., KT (φ0) only depends on even powers of (φp − φ0,p),

which cannot be negative. Therefore minimization of KT (φ0) is constrained rather than

unconstrained and that is why WT also matters for the limiting distribution when q = p.

10



When ZT < 0, KT (φ0) is minimized at
√
T (φ̂p−φ0,p)

2 = −2
√
TZT/σG, whereas when

ZT ≥ 0, KT (φ0) is minimized at
√
T (φ̂p − φ0,p)

2 = 0. Given the value of (φ̂p − φ0,p)
2,

KT (φ0) is minimized at
√
T (φ̂1−φ0,1) = H(

√
TmT (φ0)+

1
2
G
√
T (φ̂p−φ0,p)

2). This explains

why the limiting distribution of
√
T (φ̂1 − φ0,1) shown in Lemma 1 is a mixture of two

normal distributions, namely the limiting distribution of H(
√
TmT (φ0) − G

√
TZT/σG)

given
√
TZT < 0 and the limiting distribution of H(

√
TmT (φ0)) given

√
TZT ≥ 0 with

mixing probabilities Pr(Z < 0) = 1
2
and Pr(Z ≥ 0) = 1

2
. Furthermore, note that when

q > p, then Pr(B1 = 1) 6= 1
2
, and when q = p, then Pr(B2 = 1) 6= 1

2
. Hence the limiting

distributions of T 1/4(φ̂p − φ0,p) given in Theorem 1 are generally asymmetric around 0.

4.3 Examples with exact identification

Kruiniger (2018) derived the limiting distributions of two Modified MLEs for the panel

ARX(1) model with homoskedastic errors when the autoregressive parameter equals one

by viewing them as GMM estimators. In the unit root case the autoregressive parameter

is only second-order locally identified by the objective functions of both Modified MLEs

due to the nonlinear terms in the modified score vector. Furthermore, the parameter

vector is obviously exactly identified and the condition Pr(R2 = 0) = 0 holds because

the condition F + 3!G1ppHG + 4!
2
λ̃3 6= 0 is satisfied. It is therefore unsurprising that

the limiting distributions obtained by Kruiniger (2018) for both Modified MLEs of the

autoregressive parameter are in agreement with Theorem 1(b) above.

We now return to the example given in section 3. Recall that when ρ = 1 and σ2
1 = σ2

2,

then ρ is only second-order locally identified by the four moment conditions mentioned

in that example. However, in this example q = p = 1 and F = 0 because there is only

one nonlinear moment condition, i.e., mAS,3(ρ) = 0, which is quadratic in ρ. Therefore

in this case the limiting distribution of T 1/4(ρ̂ − 1) cannot be obtained from Theorem

1(b) above. In fact, it does not exist at all. To see this, note that when ρ = 1, then

mAS,3(r) = E[(εi,3+(1−r)yi,2)(∆εi,2+(1−r)εi,1)]. Hence, when N is large, the GMM esti-

mator for ρ is approximately equal to the solution of N−1/2
∑N

i=1[(ρ̂−1)2yi,2εi,1−(ρ̂−1)×
(εi,1εi,3+yi,2∆εi,2)+εi,3∆εi,2] = 0. However, the linear term −(ρ̂−1)N−1/2

∑N
i=1(εi,1εi,3+

yi,2∆εi,2) = op(1) because N1/4(ρ̂ − 1) = Op(1) and N−1/2
∑N

i=1(εi,1εi,3 + yi,2∆εi,2) =

Op(1). Thus when N tends to infinity, the sample counterpart of mAS,3(ρ) = 0 only

determines the behaviour of N1/2(ρ̂ − 1)2, i.e., N1/2(ρ̂ − 1)2
d→ −Z̃01(Z̃0 < 0)/σ2 with

N−1/2
∑N

i=1(εi,3∆εi,2)
d→ Z̃0, but can no longer determine the sign of N1/4(ρ̂− 1).
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4.4 GMM-based inference under second-order identification

The limiting distributions in Theorem 1 and part (b) of Lemma 1 are non-standard but

easy to simulate. Approximations to these limiting distributions can be obtained by

drawing randomly copies of (Z′
0, Z

′
1)

′ from N(0, v̂), where v̂ is a consistent estimator

of v, and using consistent estimators of W, D, G, L, G1p, G1pp, G1ppp, F and Kk for

k = 1, 2, . . . , q as required. One can use the quantiles of the simulated distributions to

construct confidence sets for the elements of φ0.

Dovonon, Hall and Kleibergen (2020) studied and compared the local power properties

of various test-statistics for conducting inference in moment conditions models that locally

identify the parameters only to second order. The tests considered include tests for

H0 : φ0 = a, where a is a known vector, such as the conventional Wald and LM tests,

the Generalized Anderson-Rubin (GAR) test (Anderson and Rubin, 1949; Staiger and

Stock, 1997; Stock and Wright, 2000), the KLM test (Kleibergen 2002; 2005) and the

GMM extension of Moreira’s (2003) Conditional LR test, also known as the GMM-M

test (Kleibergen, 2005), and tests for H0 : m(φ0) = 0, such as the identification-robust

J test of Kleibergen (2005) and the GAR test. Under the null hypothesis the conventional

LM and Wald test-statistics have non-standard limiting distributions, although the LM

test-statistic converges to a χ2 r.v. in a special case; the distribution of the Wald test-

statistic depends on T 1/4(φ̂p − φ0,p) only through T 1/2(φ̂p − φ0,p)
2, which has a limiting

distribution that is a mixture of a half-normal distribution and 0. All the other test-

statistics are robust to weak and second-order local identification and have the same

limiting distribution under the null hypothesis as they would have under first-order local

identification. Apart from the Wald test, all the tests can also be used when the Jacobian

is rank deficient by more than one. Dovonon, Hall and Kleibergen (2020) found that in a

particular panel AR(1) model, the Wald test of the unit root hypothesis has better power

than the GAR, KLM, LM and GMM-M tests.

Kruiniger (2018) discusses a Quasi LM test for H0 : φ0 = a, when φ0,p is possibly only

second-order locally identified. Specifically, Kruiniger’s (2018) Quasi LM test-statistic

generalizes the LM test-statistic W
(2)
n (θ) in Bottai (2003), who studied the asymptotic

behaviour of several tests and confidence regions in identifiable one-dimensional paramet-

ric models with a smooth likelihood function and Fisher information equal to zero at some

point in the parameter space, in two ways, namely by allowing for several parameters in
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the model and by relaxing Bottai’s ML setup to a Quasi ML setup. Under H0 both LM

test-statistics have a χ2-distribution, also when one of the parameters that appears in

the null hypothesis is only second-order locally identified. In the latter case, the score

that corresponds to that parameter and appears in the LM test-statistic under first-order

local identification will be replaced by its first-derivative. Kruiniger (2018) shows that

his Quasi LM test and the confidence region that is based on inverting his test-statistic

have correct asymptotic size in a uniform sense.

Finally, Lee and Liao (2018) pointed out that when (a part of) φ0 is only second-

order locally identified by the original set of moment conditions, then Jacobian-based

moment conditions can be used to obtain GMM estimators and overidentification-test-

statistics with standard asymptotic properties. They then noted that the asymptotic

normal distributions of such GMM estimators can be used to conduct standard inference

on φ0. However, their tests and confidence intervals are only valid when (a part of) φ0 is

only second-order locally identified by the original set of moment conditions and hence

they obviously do not have correct asymptotic size in a uniform sense.

4.5 Monte Carlo results

Using simulations, Kruiniger (2018) and DH studied the finite sample properties of specific

GMM estimators under second-order identification in the cases of exact and overidentifi-

cation, respectively. Both papers found that the GMM estimator of φ0,p is biased. These

findings are related to the asymmetry of the limiting distributions of T 1/4(φ̂p − φ0,p) in

these cases, which are given in Theorem 1 above.2 DH also studied the coverage rates

of two kinds of confidence intervals for φ0,p in a model with p = 1 that are based on a

GMM estimator that exploits q > p moment conditions and use analytic quantiles of its

limiting distribution given in Lemma 1(b) above and simulated quantiles of its limiting

distribution given in Theorem 1(1a) above, respectively, when φ0,p is locally identified at

the second-order and they concluded that these limiting distributions give a reasonable

approximation to the behaviour of the GMM estimator for φ0,p.

2Recall that in the case of exact identification Theorem 1 of DH does not provide a limiting
distribution of T 1/4(φ̂p−φ0,p) because Pr(R1 = 0) 6= 0 and hence its sign is not well characterized
in the limit in this case.
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4.6 Indirect Inference

Dovonon and Hall (2018) also considered the limiting distribution of an Indirect Inference

(II) estimator under second-order local identification. Specifically, DH focused on an II

estimator for the parameter vector θ0 ∈ Ω ⊂ R
p which is defined by the following set-up:

the auxiliary model consists of a set of q population moment conditions indexed by a

vector of auxiliary parameters h ∈ H ⊂ R
l and the target function for the II estimation

is a GMM estimator of the auxiliary parameter vector. Within this framework, there are

two types of identification conditions: one set involving the binding function, and the

other involving the auxiliary parameters. The standard first-order asymptotic theory is

premised on the assumption that the binding function satisfies global and first-order local

identification conditions and the auxiliary parameters are globally and first-order locally

identified within the auxiliary model. DH presents the limiting distribution of the II

estimator under the following two scenarios: (i) the binding function satisfies the global

and first-order local identification conditions and the auxiliary parameters are globally

identified but only locally identified at second order; (ii) the binding function satisfies

the global identification condition but only satisfies the local identification condition at

second order, and the auxiliary parameters are globally and first-order locally identified.

Unsurprisingly, the limiting distribution theories of DH for II estimation under these

two different scenarios with second-order identification, i.e., their Theorems 2 and 3(b) are

incomplete for similar reasons as their limiting distribution theory for GMM estimation

is: their limiting distributions for scenario (i) and scenario (ii) are only valid in the case

of overidentification, that is, when q > l and when l > p, respectively, or in terms of

their conditions, when Pr(R
(a)
1 = 0) = 0 and Pr(R

(b)
1 (s) = 0) = 0, respectively, where R

(a)
1

and R
(b)
1 (s) are defined similarly as R1, see DH. Our results and derivations for GMM

estimation under second-order local identification can be used to complete both theories

and in particular can be used to straightforwardly derive the limiting distributions of the

II estimators in the case of exact identification under either scenario. The representations

of these distributions are obtained by replacing R
(a)
1 and R

(b)
1 (s) (implicit) in Theorems 2

and 3(b) in DH by R
(a)
2 and R

(b)
2 (s), respectively, which are defined similarly as R2 above

just like R
(a)
1 and R

(b)
1 (s) are defined similarly as R1.
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5 Concluding remarks

The limiting distribution theory of DH (2018) for GMM estimators under second-order

local identification depends on a non-transparent condition, namely that Pr(R1 = 0) = 0

where R1 is defined in (6). We have shown that this condition is only satisfied when φ is

overidentified and derived the limiting distribution of T 1/4(φ̂p−φ0,p) for the case where φ

is exactly identified. This distribution is different from that of T 1/4(φ̂p−φ0,p) given in DH

for the case where φ is overidentified. In particular, the limiting distributions of the sign of

T 1/4(φ̂p−φ0,p) for the cases of exact and overidentification, respectively, are different and

are obtained by using expansions of the GMM objective function of different orders. We

have also pointed out that the limiting distribution theories of DH for Indirect Inference

(II) estimation under two different scenarios with second-order identification where the

target function is a GMM estimator of the auxiliary parameter vector, are incomplete for

similar reasons and we have discussed how they can be completed.

The asymptotic theory for GMM estimators that has been discussed in this paper can

be generalized in two directions: (i) one can consider cases where the (expected) Jacobian

matrix has a rank deficiency that is higher than one, and/or (ii) local identification of an

order that is higher than two. In the case of second-order identification where the Jacobian

has a rank deficiency of rd (with rd ∈ N\{0, 1}), one can reparametrize the model in such

a way that the last rd columns of the Jacobian are zero, and we expect that the asymptotic

theory is similar to the theory for the case of a rank deficiency of one apart from the fact

that in the current case there are now rd GMM estimators that converge at rate T−1/4.

In the case of local identification of order s (with s > 1), we expect that the GMM

estimator(s) of the higher-order identified parameter(s) converge(s) at rate T−1/(2s). Like

Rotnitzky et al. (2000), one also needs to distinguish between cases where s is even and

cases where s is odd: when s is even, we expect that the limiting distribution(s) of the

GMM estimator(s) of the higher-order identified parameter(s) is/are a mixture of a spike

at the true value and a non-standard distribution, while when s is odd, we expect that

their limiting distribution(s) is/are equal to the distribution of the s−th root of a normal

random variable. Furthermore, when s is even, the GMM estimators of the remaining

parameters converge at the usual rate T−1/2 and have a limiting distribution that is a

mixture of two normal distributions, whereas when s is odd, they converge at the usual

rate T−1/2 and have a normal limiting distribution.
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6 Appendix. Proofs

Proof of Lemma 1.

(a) For a proof for this part we refer to the proof of part (a) of Theorem 1 in DH.

(b) Here we provide an alternative to the proof of DH. Our proof is self-contained,

unlike their proof, and it is also more straightforward than their proof.

Using ∂mT

∂φp
(φ0) = Op(T

−1/2) and (φ̂p − φ0,p) = op(1) (from Proposition 1), DH show

in the proof for part (a) of their Theorem 1 that

mT (φ̂) = mT (φ0)+
∂mT

∂φ′
1

(φ1, φ̂p)(φ̂1−φ0,1)+
1

2

∂2mT

∂φ2
p

(φ0,1, φp)(φ̂p−φ0,p)
2+op(T

−1/2). (7)

where φ1 ∈ (φ0,1, φ̂1) and may differ from row to row, and where φp ∈ (φ0,p, φ̂p) and may

differ from row to row.

From (a) and (7), we have

mT (φ̂) = mT (φ0) +D(φ̂1 − φ0,1) +
1

2
G(φ̂p − φ0,p)

2 + op(T
−1/2).

The first-order condition for an interior solution is given by:

∂m′
T

∂φ
(φ̂)WTmT (φ̂) = 0.

In the direction of φ1, this amounts to

(D′ + op(1))W (
√
TmT (φ0) +D

√
T (φ̂1 − φ0,1) +

1

2
G
√
T (φ̂p − φ0,p)

2 + op(1)) = 0.

This gives:

√
T (φ̂1 − φ0,1) = −(D′WD)−1D′W (

√
TmT (φ0) +

1

2
G
√
T (φ̂p − φ0,p)

2) + op(1). (8)

A Taylor expansion of m′
T (φ̂)WTmT (φ̂) around φ0 up to second-order gives:

QT (φ̂) = m′
T (φ̂)WTmT (φ̂) = m′

T (φ̂)WmT (φ̂) + op(T
−1) = KT (φ0) + op(T

−1) (9)
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where

KT (φ0) = m′
T (φ0)WmT (φ0) + 2m′

T (φ0)W (D(φ̂1 − φ0,1) +
1

2
G(φ̂p − φ0,p)

2)

+(D(φ̂1 − φ0,1) +
1

2
G(φ̂p − φ0,p)

2)′W (D(φ̂1 − φ0,1) +
1

2
G(φ̂p − φ0,p)

2). (10)

Defining Z0T = mT (φ0) and replacing (φ̂1 − φ0,1) in (10) by its expression from (8), the

leading Op(T
−1) term in the expansion of m′

T (φ̂)WTmT (φ̂) is obtained as KT (φ0,p) with

KT (φ0,p) = Z ′
0TW

1/2MdW
1/2Z0T+Z ′

0TW
1/2MdW

1/2G(φ̂p−φ0,p)
2+

1

4
G′W 1/2MdW

1/2G(φ̂p−φ0,p)
4.

(11)

Let ZT = Z ′
0TW

1/2MdW
1/2G. If ZT < 0, then m′

T (φ̂)WTmT (φ̂) is minimized at

(φ̂p − φ0,p)
2 = −2

Z ′
0TW

1/2MdW
1/2G

G′W 1/2MdW 1/2G
+ op(T

−1/2). (12)

If ZT ≥ 0, then m′
T (φ̂)WTmT (φ̂) is minimized at (φ̂p − φ0,p)

2 = op(T
−1/2).

Since
√
TmT (φ0) and

√
T (φ̂p − φ0,p)

2 are Op(1), the pair is jointly Op(1) and by

Prohorov’s theorem, any subsequence of them has a further subsequence that jointly

converges in distribution towards, say, (Z0, V ). Hence,

Tm′
T (φ̂)WTmT (φ̂)

d→ K(φ0) ≡ Z
′
0W

1/2MdW
1/2

Z0+Z
′
0W

1/2MdW
1/2GV+

1

4
G′W 1/2MdW

1/2GV 2.

Let Z = Z
′
0W

1/2MdW
1/2G. If Z < 0, then K(φ0) is minimized at

V = −2
Z
′
0W

1/2MdW
1/2G

G′W 1/2MdW 1/2G
= −2

Z

σG

If Z ≥ 0, then K(φ0) is minimized at V = 0.

Either way, we conclude that
√
T (φ̂p − φ0,p)

2 d→ V = −2Z1(Z < 0)/σG.

Finally, using (8) we obtain that
√
T (φ̂1 − φ0,1)

d→ H(Z0 + 1
2
GV ), where H =

−(D′WD)−1D′W. �
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Proof of Theorem 1.

The limiting distribution for T 1/4(φ̂p − φ0,p) that is specified in part (c) of Theorem

1 of DH (2018) is only valid in the case of overidentification, i.e., when q > p, and DH’s

proof of this claim is only valid when q > p. Here we provide a more straightforward and

more complete proof of this claim for the case q > p, i.e., of part (a) of our Theorem 1, and

also derive the limiting distribution of T 1/4(φ̂p − φ0,p) in the case of exact identification,

i.e., when q = p, which is given in part (b) of our Theorem 1.

Proof of (a): In our proof for part (b) of Lemma 1 we have derived the limiting

distribution of
√
T (φ̂p − φ0,p)

2. To get the limiting distribution of T 1/4(φ̂p − φ0,p), it

remains to characterize its sign when Z < 0.

The powers of (φ̂p−φ0,p) in an expansion of m′
T (φ̂)WTmT (φ̂) around φ0 up to Op(T

−1)

are even, cf. KT (φ0,p) in (11), and therefore we cannot characterize the sign of T 1/4(φ̂p−
φ0,p) by using such an expansion. However, following the approach of Rotnitzky et al.

(2000) for the ML estimator, we can do this when q > p by expanding m′
T (φ̂)WTmT (φ̂) up

to op(T
−5/4). Specifically, the Op(T

−5/4) terms in a Taylor expansion of m′
T (φ̂)WTmT (φ̂)

up to op(T
−5/4) will provide the sign of T 1/4(φ̂p−φ0,p) in case q > p as we will now show.

QT (φ̂) = m′
T (φ̂)WTmT (φ̂) = m′

T (φ̂)WmT (φ̂)+op(T
−5/4) = KT (φ0,p)+R1T (φ0)+op(T

−5/4)

with R1T (φ0) = (φ̂p − φ0,p)× 2R1T where

R1T = (mT (φ0) +
∂mT

∂φ′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂mT

∂φp

(φ0) +
∂2mT

∂φp∂φ
′
1

(φ0)(φ̂1 − φ0,1)) +

1

3!
(mT (φ0) +

∂mT

∂φ′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂3mT

∂φ3
p

(φ0))(φ̂p − φ0,p)
2 +

1

2!
(
∂mT

∂φp

(φ0) +
∂2mT

∂φp∂φ
′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂2mT

∂φ2
p

(φ0))(φ̂p − φ0,p)
2 +

1

3!2!
(
∂3mT

∂φ3
p

(φ0))
′W (

∂2mT

∂φ2
p

(φ0))(φ̂p − φ0,p)
4. (13)

Defining Z1T = ∂mT

∂φp
(φ0) and replacing (φ̂1 − φ0,1) in (13) by its expression from (8), we

obtain

R1T = (Z0T +DH(Z0T +
1

2
G(φ̂p − φ0,p)

2))′W (Z1T +G1pH(Z0T +
1

2
G(φ̂p − φ0,p)

2)) +

1

3!
(Z0T +DH(Z0T +

1

2
G(φ̂p − φ0,p)

2))′WL(φ̂p − φ0,p)
2+
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1

2!
(Z1T +G1pH(Z0T +

1

2
G(φ̂p − φ0,p)

2))′WG(φ̂p − φ0,p)
2 +

1

3!2!
L′WG(φ̂p − φ0,p)

4 + op(T
−1)

= Z ′
0TW

1/2MdW
1/2Z1T + Z ′

0TW
1/2MdW

1/2G1pHZ0T +

(
1

3
Z ′

0TW
1/2MdW

1/2L+ Z ′
1TW

1/2MdW
1/2G+

G′W 1/2MdW
1/2G1pHZ0T + Z ′

0TW
1/2MdW

1/2G1pHG)(φ̂p − φ0,p)
2 +

(
1

6
G′W 1/2MdW

1/2L+
1

2
G′W 1/2MdW

1/2G1pHG)(φ̂p − φ0,p)
4 + op(T

−1). (14)

At the minimum of QT (φ), we expect R1T (φ0) to be negative, i.e., (φ̂p − φ0,p) and R1T

have opposite sign. Hence,

T 1/4(φ̂p − φ0,p) = (−1)B1T T 1/4|φ̂p − φ0,p|,

with B1T = 1(TR1T ≥ 0). After replacing (φ̂p − φ0,p)
2 in (14) by its expression from (12)

and scaling (14) by T , we can see, using the continuous mapping theorem, that TR1T

converges in distribution towards R1:

R1 = (Z′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2PgW

1/2
Z0Z

′
0)W

1/2MdW
1/2(

1

3
L+G1pHG)/σG +

Z
′
0W

1/2MdgW
1/2(Z1 +G1pHZ0). (15)

We actually have that (
√
TZ0T ,

√
TZ1T , TR1T ) converges in distribution towards

(Z0, Z1, R1). According to our Lemma 2, when q > p, R1 does not have an atom of

probability at 0.

Applying a version of Lemma 1 of DH (2018), we have (
√
TZ0T ,

√
TZ1T , (−1)B1T )

d→
(Z0, Z1, (−1)B1), where B1 = 1(R1 ≥ 0). Since (

√
T (φ̂1−φ0,1), T

1/4|φ̂p−φ0,p|, (−1)B1T ) =

Op(1), any subsequence of the left hand side has a further subsequence that converges

in distribution. Using part (b) of Lemma 1, such a subsequence obeys (
√
T (φ̂1 − φ0,1),

T 1/4|φ̂p − φ0,p|, (−1)B1T )
d→ (HZ0 +HGV/2,

√
V , (−1)B1). Since the limit distribution

does not depend on the subsequence, the whole sequence converges towards that limit.

By the continuous mapping theorem, we deduce that: (
√
T (φ̂1−φ0,1), T

1/4(φ̂p−φ0,p))
d→

(HZ0 +HGV/2, (−1)B1

√
V ).

Proof of (b): Part (b) of Lemma 1 gives the limiting distribution of
√
T (φ̂p − φ0,p)

2.

To get the limiting distribution of T 1/4(φ̂p − φ0,p), it remains to characterize its sign

when Z < 0. According to our Lemma 2, when q = p, Pr(R1 = 0|Z < 0) = 1. Hence
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when q = p, (−1)B1 with B1 = 1(R1 ≥ 0) will not correctly describe the behaviour of

the sign of T 1/4(φ̂p − φ0,p) in its limiting distribution. However, when q = p, we can

characterize the sign of T 1/4(φ̂p − φ0,p) by expanding m′
T (φ̂)WTmT (φ̂) around φ0 up to

op(T
−7/4). Specifically, the Op(T

−7/4) terms in a Taylor expansion of m′
T (φ̂)WTmT (φ̂) up

to op(T
−7/4) will provide the sign of T 1/4(φ̂p − φ0,p) in case q = p as we will now show.

First we note that the powers of (φ̂p − φ0,p) in the Op(T
−6/4) terms in an expansion

of m′
T (φ̂)WTmT (φ̂) up to op(T

−7/4) are all even and therefore these terms do not provide

information on the sign of T 1/4(φ̂p − φ0,p). Next, we consider the Op(T
−7/4) terms in the

Taylor expansion of m′
T (φ̂)WTmT (φ̂) around φ0 :

R2,T (φ0) = (φ̂p − φ0,p)× 2R2,T where

R2,T =
1

2!
(κ1,T . . . κq,T )W (

∂mT

∂φp

(φ0) +
∂2mT

∂φp∂φ
′
1

(φ0)(φ̂1 − φ0,1)) +

1

2!3!
(κ1,T . . . κq,T )W (

∂3mT

∂φ3
p

(φ0))(φ̂p − φ0,p)
2 +

1

3!
(mT (φ0) +

∂mT

∂φ′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂4mT

∂φ3
p∂φ

′
1

(φ0)(φ̂1 − φ0,1))(φ̂p − φ0,p)
2 +

1

2!
(
∂mT

∂φp

(φ0) +
∂2mT

∂φp∂φ
′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂3mT

∂φ2
p∂φ

′
1

(φ0)(φ̂1 − φ0,1))(φ̂p − φ0,p)
2 +

1

2!3!
(
∂2mT

∂φ2
p

(φ0))
′W (

∂4mT

∂φ3
p∂φ

′
1

(φ0)(φ̂1 − φ0,1))(φ̂p − φ0,p)
4 +

1

3!2!
(
∂3mT

∂φ3
p

(φ0))
′W (

∂3mT

∂φ2
p∂φ

′
1

(φ0)(φ̂1 − φ0,1))(φ̂p − φ0,p)
4 +

1

5!
(mT (φ0) +

∂mT

∂φ′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂5mT

∂φ5
p

(φ0))(φ̂p − φ0,p)
4 +

1

4!
(
∂mT

∂φp

(φ0) +
∂2mT

∂φp∂φ
′
1

(φ0)(φ̂1 − φ0,1))
′W (

∂4mT

∂φ4
p

(φ0))(φ̂p − φ0,p)
4 +

1

2!5!
(
∂2mT

∂φ2
p

(φ0))
′W (

∂5mT

∂φ5
p

(φ0))(φ̂p − φ0,p)
6 +

1

3!4!
(
∂3mT

∂φ3
p

(φ0))
′W (

∂4mT

∂φ4
p

(φ0))(φ̂p − φ0,p)
6. (16)

with κk,T = (φ̂1 − φ0,1)
′Kk,T (φ̂1 − φ0,1) and Kk,T =

∂2mk,T

∂φ1∂φ
′

1

(φ0) for k = 1, 2, . . . , q, where

mk,T (φ) is the kth element of mT (φ).

Recalling that when q = p, then m(φ̂) = 0 and hence mT (φ0) +
∂mT

∂φ′

1

(φ0)(φ̂1 − φ0,1) +

1
2
∂2mT

∂φ2
p

(φ0)(φ̂p − φ0,p)
2 = op(T

−1/2) (cf. (7)), and replacing (φ̂1 − φ0,1) in (16) by its
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expression from (8), we obtain

R2,T =
1

2!
(λ1,T . . . λq,T )W (Z1T +G1pH(Z0T +

1

2
G(φ̂p − φ0,p)

2)) +

1

2!3!
(λ1,T . . . λq,T )WL(φ̂p − φ0,p)

2 +

1

2!
(Z1T +G1pH(Z0T +

1

2
G(φ̂p − φ0,p)

2))′W (G1ppH(Z0T +
1

2
G(φ̂p − φ0,p)

2))(φ̂p − φ0,p)
2 +

1

3!2!
L′W (G1ppH(Z0T +

1

2
G(φ̂p − φ0,p)

2))(φ̂p − φ0,p)
4 +

1

4!
(Z1T +G1pH(Z0T +

1

2
G(φ̂p − φ0,p)

2))′WF (φ̂p − φ0,p)
4 +

1

3!4!
L′WF (φ̂p − φ0,p)

6 + op(T
−6/4). (17)

with λk,T = λ1,k,T + λ2,k,T (φ̂p − φ0,p)
2 + λ3,k(φ̂p − φ0,p)

4, where λ1,k,T = Z ′
0TH

′KkHZ0T ,

λ2,k,T = G′H ′KkHZ0T and λ3,k =
1
4
G′H ′KkHG for k = 1, 2, . . . , q. Let λ̃i,T = (λi,1,T . . . λi,q,T )

′

for i = 1, 2 and recall that λ̃3 = (λ3,1 . . . λ3,q)
′. Combining powers in (17) we get

R2,T =
1

2!
λ̃
′

1,TW (Z1T +G1pHZ0T ) +

1

2!
λ̃
′

1,TW (
1

2
G1pHG+

1

3!
L)(φ̂p − φ0,p)

2 +

1

2!
λ̃
′

2,TW (Z1T +G1pHZ0T )(φ̂p − φ0,p)
2 +

1

2!
λ̃
′

2,TW (
1

2
G1pHG+

1

3!
L)(φ̂p − φ0,p)

4 +

1

2!
λ̃
′

3W (Z1T +G1pHZ0T )(φ̂p − φ0,p)
4 +

1

2!
λ̃
′

3W (
1

2
G1pHG+

1

3!
L)(φ̂p − φ0,p)

6 +

1

2!
(Z1T +G1pHZ0T )

′W (G1ppHZ0T )(φ̂p − φ0,p)
2 +

1

2!
(Z1T +G1pHZ0T )

′W (
1

2
G1ppHG)(φ̂p − φ0,p)

4 +

1

2!
(
1

2
G1pHG)′W (G1ppHZ0T )(φ̂p − φ0,p)

4 +

1

2!
(
1

2
G1pHG)′W (

1

2
G1ppHG)(φ̂p − φ0,p)

6 +

1

3!2!
L′W (G1ppHZ0T )(φ̂p − φ0,p)

4 +
1

3!2!
L′W (

1

2
G1ppHG)(φ̂p − φ0,p)

6 +

1

4!
(Z1T +G1pHZ0T )

′WF (φ̂p − φ0,p)
4 +

1

4!
(
1

2
G1pHG)′WF (φ̂p − φ0,p)

6 +

1

3!4!
L′WF (φ̂p − φ0,p)

6 + op(T
−6/4). (18)
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At the minimum of QT (φ), we expect R2,T (φ0) to be negative, i.e., (φ̂p − φ0,p) and R2,T

have opposite sign. Hence,

T 1/4(φ̂p − φ0,p) = (−1)B2,TT 1/4|φ̂p − φ0,p|, (19)

with B2,T = 1(T 6/4R2,T ≥ 0). After replacing (φ̂p − φ0,p)
2 in (18) by its expression

from (12) and scaling (18) by T 6/4, we can see, using the continuous mapping theorem,

that T 6/4R2,T converges in distribution towards, say, R2. The formula for R2 is given

by (18) with Z0T , Z1T and powers of (φ̂p − φ0,p)
2 replaced by Z0, Z1 and powers of

(−2Z1(Z < 0)/σG), and with the unspecified op(T
−6/4) term at the very end of (18)

omitted.

We actually have that (
√
TZ0T ,

√
TZ1T , T

6/4R2,T ) converges in distribution towards

(Z0, Z1, R2). Furthermore, recall that we have assumed that Pr(R2 = 0) = 0.

Applying a version of Lemma 1 of DH (2018), we have (
√
TZ0T ,

√
TZ1T , (−1)B2,T )

d→
(Z0, Z1, (−1)B2), where B2 = 1(R2 ≥ 0). Since (

√
T (φ̂1−φ0,1), T

1/4|φ̂p−φ0,p|, (−1)B2,T ) =

Op(1), any subsequence of the left hand side has a further subsequence that converges

in distribution. Using part (b) of Lemma 1, such a subsequence obeys (
√
T (φ̂1 − φ0,1),

T 1/4|φ̂p − φ0,p|, (−1)B2,T )
d→ (HZ0 +HGV/2,

√
V , (−1)B2). Since the limit distribution

does not depend on the subsequence, the whole sequence converges towards that limit.

By the continuous mapping theorem, we deduce that: (
√
T (φ̂1−φ0,1), T

1/4(φ̂p−φ0,p))
d→

(HZ0 +HGV/2, (−1)B2

√
V ). �

Lemma 2 (a1) When q = p, then Pr(R1 = 0|Z < 0) = 1.

(a2) When q > p, then Pr(R1 = 0) = 0.

(b) When q = p and F + 3!G1ppHG+ 4!
2
λ̃3 6= 0, then Pr(R2 = 0) = 0.

Proof of Lemma 2. R1 is the sum of two terms with the first term given in the first

line of (15) and the second term given in the second line of (15).

(a1) We will first show that

(Z′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2PgW

1/2
Z0Z

′
0)W

1/2MdW
1/21(Z < 0) = 0

so that the first term of R1 in (15) equals 0 when Z < 0.
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Recall that

Pg = MdW
1/2G(G′W 1/2MdW

1/2G)−1G′W 1/2Md

where Md = I −W 1/2D(D′WD)−1D′W 1/2.

Define

Z1 = −2Z/σG = −2(G′W 1/2MdW
1/2G)−1G′W 1/2MdW

1/2
Z0.

Note that 1(Z < 0) = 1(Z1 > 0) and
√
T (φ̂p − φ0,p)

2 →d V = Z11(Z1 > 0).

Now

(Z′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2MdW

1/2
Z0Z

′
0)W

1/2MdW
1/21(Z < 0) =

(Z′
0W

1/2MdW
1/2G(G′W 1/2MdW

1/2G)−1G′W 1/2MdW
1/2

Z0G
′−

G′W 1/2MdW
1/2

Z0Z
′
0)W

1/2MdW
1/21(Z < 0) =

(−1

2
Z
′
0W

1/2MdW
1/2GZ1G

′ −G′W 1/2MdW
1/2

Z0Z
′
0)W

1/2MdW
1/21(Z < 0) =

−Z
′
0W

1/2MdW
1/2G(

1

2
Z1G

′ + Z
′
0)W

1/2MdW
1/21(Z < 0) = 0

because (Z0 + 1
2
Z1G)′W 1/2MdW

1/21(Z1 > 0) = 0. The latter can be shown as fol-

lows. If q = p and ZT < 0, then upon replacing (φ̂1 − φ0,1, (φ̂p − φ0,p)
2)′ in (10) by

−(D 1
2
G)−1mT (φ0) + op(T

−1/2), we obtain KT (φ0) = op(T
−1). Hence it follows from (9)

that if q = p and ZT < 0, then m′
T (φ̂)WmT (φ̂) ≤ op(T

−1) and hence mT (φ̂) = op(T
−1/2).

Using this result, that
√
TZT →d

Z and that
√
T (φ̂1 − φ0,1) →d

Z2 ≡ HZ0 +HGV/2, it

follows from (7) that (Z0 +DZ2 +
1
2
Z1G)1(Z1 > 0) = 0.3 Hence

W−1/2MdW
1/2(Z0 +

1

2
Z1G)1(Z1 > 0) =

(I −D(D′WD)−1D′W )(Z0 +DZ2 +
1

2
Z1G)1(Z1 > 0) = 0.

Next, we will show that Z′
0W

1/2MdgW
1/21(Z < 0) = 0 so that the second term of R1

in (15) equals 0 when Z < 0. Using Mdg = Md − Pg and the definition of Z1, we obtain

Z
′
0W

1/2MdgW
1/21(Z < 0) = (Z′

0 +
1

2
Z1G

′)W 1/2MdW
1/21(Z1 > 0) = 0

again because W−1/2MdW
1/2(Z0 +

1
2
Z1G)1(Z1 > 0) = 0. We conclude that if q = p, then

R11(Z < 0) = 0, which means that Pr(R1 = 0|Z < 0) = 1.

3I thank P. Dovonon and A. Hall for pointing out a flaw in an earlier version of this argument.
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We can actually show that R1 = 0 when q = p. It is easily verified that the matrix

Mdg projects a vector on the orthogonal complement of (W 1/2D W 1/2G). When q = p,

Rank(D G) = p = q. Moreover, W has full rank. Hence when q = p, then Mdg = 0 and

(1
2
Z1G

′ + Z
′
0)W

1/2MdW
1/2 = Z

′
0W

1/2MdgW
1/2 = 0 so that both terms of R1 equal 0.

(a2) Note that only the second term of R1, that is, Z′
0W

1/2MdgW
1/2(Z1 + G1pHZ0)

depends on Z1. It therefore suffices to show that Pr(Z′
0W

1/2MdgW
1/2

Z1 = 0) = 0.

The latter follows from M2
dg = Mdg, Rank(Mdg) = q − p > 0, and the fact that

((W 1/2
Z0)

′ (W 1/2
Z1)

′)′ has a continuous multivariate (normal) distribution with mean

zero and a covariance matrix of full rank. We conclude that when q > p, Pr(R1 = 0) = 0.

(b) There is no combination of terms in the formula for R2 that includes 1
4!
Z
′
1W (F +

3!G1ppHG + 4!
2
λ̃3) × (−2Z/σG)

2 and equals zero. We conclude that when q = p and

F + 3!G1ppHG+ 4!
2
λ̃3 6= 0, then Pr(R2 = 0) = 0.
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