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Abstract
The literatureondiversitymeasures, regardless of themetric used (e.g.,Gini-Simpson index, Shannon
entropy)has anotable gap: notmuchhas beendone to connect thesemeasures back to the shapeof the
original distribution, or touse them to compare thediversity of parts of a givendistribution and their
relationship to thediversity of thewholedistribution.As such, the precise quantificationof the relationship
between theprobability of each typepi and thediversityD in non-uniformdistributions, both amongparts
of a distribution aswell as thewhole, remainsunresolved. This is particularly true forHill numbers, despite
their usefulness as ‘effectivenumbers’. This gap is problematic asmost real-world systems (e.g., income
distributions, economic complexity indices, rankings, ecological systems)haveunequal distributions,
varying frequencies, and comprisemultiple diversity typeswithunknown frequencies that can change. To
address this issue,we connect case-based entropy, an approach todiversitywedeveloped, to the shapeof a
probability distribution; allowingus to show that the original probability distribution g1, the case-based
entropy curve g2 and the c{1,k} versus the c Alnk k1, 1,*{ } { } curve g3,whichwe call the slope of diversity, are
one-to-one (or injective), i.e., a different probability distribution g1 gives a different curve for g2 and g3.
Hence, a different permutationof theoriginal probability distribution g1(that leads to adifferent shape)will
uniquely determine the graphs g2 and g3. Byproving the injective nature of our approach,wewill have
established auniqueway tomeasure the degree of uniformity of parts asmeasuredbyDP/cP for a givenpart
Pof the original probability distribution, and alsohave shownauniqueway to compute theDP/cP for
various shapes of the original distribution and (in termsof comparison) for different curves.

1. The challenge ofmeasuring diversity

Within the natural andmathematical sciences,mathematical diversity refers to themeasurement and
quantificationof diversitywithin a given systemorpopulationusingmathematical principles and tools. Over the
last several decades, while a considerable literature has developed aroundmeasuring diversity, there remains a key
challenge: regardless of themetric used, such asGini-Simpson index, Shannon entropy, orHill numbers, has a
notable gap, in that notmuchhas beendone to connect thesemeasures back to the shapeof the original
distribution, or to use them to compare thediversity of parts of a given distribution and their relationship to the
diversity of thewhole distribution (Jost 2006, Leinster andCobbold 2012,Chao and Jost 2015,Hsieh et al, 2016,
Pavoine et al, 2016, Jost 2019).

This gap is especially evident in the case ofHill numbers qD, which provide away tomeasure diversity for a
distribution by providing the species richness value or the number of types for an equivalent uniform
distribution that has the same entropy as the original distribution (MacArthur 1965,Hill 1973, Peet 1974,
Jost 2006, Gaggiotti et al, 2018, Jost 2019).

1.1.Hill numbers
Hill numbers (MacArthur 1965,Hill 1973, Peet 1974), provide a comprehensive framework to capture different
aspects of diversity. Hill numbers incorporate the concepts of richness, evenness, and dominance into a single
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numerical index. These indices allow for the comparison and ranking of diverse systems, such as ecological
communities, species populations, or evenmathematical databases.

Hill numbers are characterized by a parameter q that favors types with lower or higher frequencies,
depending onwhether 0< q< 1 or q> 1, respectively.When q= 1, 1Dweighs each type proportional to its
relative frequency, ultimately resulting in eH, whereH is the Shannon entropy of the distribution. Amore recent
book on an axiomatic approach to defining and characterizing diversity can be found in (Leinster 2021).

The interpretation ofHill numbers andmathematical diversity depends on the specific context in which they
are applied. In ecology,Hill numbers are often used to characterize biodiversity in ecological communities. They
provide away to summarize the distribution of species abundances and assess the relative importance of rare
versus common species.

When analyzing species data usingHill numbers qD, the values obtained can be interpreted as follows:

1. Hill number with q= 0: This represents the species richness, which counts the number of unique species
present in the community. A higher value indicates greater species richness.

2. Hill number with q= 1: This is known as the exponential of the Shannon entropy and reflects both species
richness and evenness. It captures the distribution of abundances among species, with higher values
indicating amore even distribution.

3. Hill number with q= 2: Also referred to as the inverse Simpson index, it emphasizes the dominance of
abundant species. A lower value indicates greater dominance of a few dominant species, while a higher value
suggests amore equitable distribution of abundances among species.

4. Hill number with q→∞ : This represents the effective number of species, which accounts for both richness
and evenness. It quantifies the diversity as if the species were equally abundant. A higher value signifies a
more diverse community.

InterpretingHill numbers in other contexts depends on the application and the specific definition of diversity
being used. For example, inmathematical datasets, Hill numbers can be employed to assess the diversity of
numerical values, patterns, or structures. In this case, higherHill numbers indicate a greater variety and
complexity in the dataset.

Overall, Hill numbers provide a unified framework tomeasure and interpret diversity by incorporating
multiple dimensions of richness, evenness, and dominance. They enable researchers to compare and quantify
diversity across different systems, identify patterns of variation, and evaluate the impacts of disturbances or
interventions on diversity.

1.2. The challenge
Despite the usefulness ofHill numbers as ‘effective numbers,’ the exact relationship between the probability of
each type in a distribution and theHill number itself remains unexplored. Furthermore, the original notion of
diversity that was due toHill and Jost is actually insensitive to permutations i.e., if we rearrange the probabilities
of the original distribution g1, then the diversity of the entire distributionwill remain unchanged.

These issues are particularly problematic sincemost real-world systems have unequal distributions, varying
frequencies, and comprisemultiple diversity types with unknown frequencies that can change. Such systems
include income distributions, economic complexity indices, ecological systems, species diversity, and ranking
systems, from genes and exposomic biological assays tomeasures of economic and health inequality. An
excellent example is theGini coefficient. Despite being one of themost widely usedmeasures of economic
inequality, it has several serious flaws. For our purposes, themost important is that it provides the same
coefficient for different income distributions, such that several countries can have different income distributions
but the sameGini index. As this example hopefully illustrates, theGini index and othermeasures of diversity
struggle with the precise quantification of the relationship between the probability of each type pi and the
diversityD in non-uniformdistributions, both among parts of a distribution aswell as thewhole. As a result,
while highly important, this issue remains unresolved.

1.3. Purpose of current study
To address this gap, wewill explicitly connect case-based entropy, an approach to diversity that we developed, to
the shape of a probability distribution.Wemade initial progress on this gap in (Rajaram andCastellani 2020) by
proving an interesting result relating the probabilities pi in a distributionwithK types (including J types whose
frequencies can be changed) and the total diversityDK. In the current paper, wewill show that the case-based
entropy curve g2 and the c{1,k} versus the c Alnk k1, 1,*{ } { } curve g3, whichwe call the slope of diversity are one-to-
one (or injective), i.e., a different probability distribution g1 gives a different curve for g2 and g3. Hence, a
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different permutation of the original probability distribution g1 (that leads to a different shape)will uniquely
determine the graphs g2 and g3. By proving the injective nature of our approach, wewill have established a
uniqueway tomeasure the degree of uniformity of parts asmeasured byDP/cP and also have shown a unique
way to compute theDP/cP for various shapes of the original distribution.

As our case study, wewill consider a general probability distributionwith a randomvariableX as shown in
table 1 (signifying different types or categories), where xi denotes the i− th type, with probability pi and
frequency fi.We note that the randomvariableX under study can be quantitative as well as qualitative. For our
case study, wewill ask the following question: Canwe establish a relationship (direct or indirect) between the
probabilities pi and the case-based entropy curveCc as a function of the cumulative probability c?More
specifically, what if any, is a relationship between the shape of the case-based entropy curve (Cc versus c) and the
original probability distribution shown in table 1?

2. A formal introduction to diversity

Diversity is commonly used as ameasure to assess the ‘richness’ or number of types in a distribution and its
‘evenness,’ or equal probability of occurrence among diversity types, as reported by several studies
(MacArthur 1965,Hill 1973, Peet 1974, Jost 2006). This definition of diversity is based on the intuition that if all
types in the distribution occurwith the same probability, diversity should be equal to the number of typesK.
Conversely, any deviation fromuniformity in probabilities will always result in a lower diversity value.

Definition 2.1. (ShannonDiversity corresponding to q= 1 forHill numbers)Given an ordered set of types
numbered as i NÎ and their corresponding probabilities pi, the diversity of the entire distribution DK

1 is
defined as the number of equiprobable types needed to yield the same value of Shannon entropyH.

Shannon entropy is defined as below:

H p pln . 1K
l

K

l l
1

å= -
=

( ) ( )

It was shown (MacArthur 1965,Hill 1973, Peet 1974, Jost 2006, Rajaram andCastellani 2016) that definition
2.1 implies that the total diversity 1DK is given by:
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Furthermore, we denote the diversity of the first i types (or partial diversity) as 1D{1,i}, where i= 1,..,K. The
partial diversity up to thefirst i types is given by:
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Wenote that equations (2) and (3) can be rewritten in terms of the frequencies fi as below.Wewill continue
to use themodified equation (4) in our exposition.

Table 1.General
dataset with
complexity types xi
each having a
probability pi and a
frequency fi.

X P F

x1 p1 f1
x2 p2 f2
x3 p3 f3
M M M
xJ pJ fJ
M M M
xK pK fK
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In this paper, we have two objectives:

1. Wemake a case for the ratioDP/cP i.e., diversity of a part to its cumulative probability as a way tomeasure the
degree of uniformity of the part P, and also show away to compute this ratio for arbitrary parts from the
graph of the slope of diversity curve (c{1,k} versus c Alnk k1, 1,*{ } { }). This will prove to be an important way to
measure the extent of uniformity of parts of a distribution.

2. We prove some results that relate the case-based entropy curve i.e. c{1,k} versus C{1,k} to the original
probability distribution, again, by using the graph of slope of diversity curve c{1,k} versus c Alnk k1, 1,*{ } { }. This
will close the gap of relating theHill numbers back to the shape of the original distribution.

The paper is organized as follows: In section 3we lay down the foundation towards using the ratioDP/cP as a
means to compare the degree of uniformity of parts of a distribution. In section 4, we show away to compute
DP/cP for parts of a given distribution using a new curve that plots c{1,k} versus c A kln 1,k1, * { }{ } , whichwe call
slope of diversity. In section 5, we prove some results related to comparing the ratioDP/cP for different parts of a
distribution. In section 6we relate the case-based entropy curve to the original probability distribution given in
table 1. In section 7we use the geometric distribution as an example to demonstrate some of our results. In
section 8, conclude the paperwith some remarks on the results.

3. The ratio D

c
P

P
for partsP of a distribution

We recall the following two important ‘parts-to-whole’ formulae that were proved in (Rajaram and
Castellani 2020).

Theorem3.1.Given a probability distribution similar to table 1, the diversity of the entire distribution Dq
K for some

complex system or dataset, and the diversities of disjoint parts Dq
Pi
and their respective cumulative probabilities cPi

are related as follows:
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Wenote that equations (5) and (6) are simply theweighted geometric and arithmeticmeans (of order 1− q)

respectively of the ratio
D

c

q
Pi

Pi
( ).We also note that D DlimK q

q
K

1
1=  . The following corollary can be easily

proved.

Corollary 3.1.Given a probability distribution similar to table 1, let the part P Pi i= ⋃ be a disjoint union of sub-
partsPi. Then, the diversity of the part Dq

P and the diversities of disjoint sub-parts Dq
Pi
and their respective

cumulative probabilities cPi
are related as follows:
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Proof.The proof is obtained by re-normalizing the probability of the type j in part Pi as pj

p

c

j

Pi

=˜ and using the

formulas 5 and 6 in a recursive fashion.
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Remark 3.1. If we consider each partPi in the derivation of the above theorem to be exactly one type i.e.,
P i i K1, ,i = " = ¼{ } , then D i K1 1, ,Pi

= " = ¼ and equation (5) reduces to equation (2).

Remark 3.2.Wecan restrict ourselves to a portion of the distribution starting from l= 1 to say l= k. Then
theorem3.1 is true for the restriction for any sub-partition k of such a restriction. In this case, the probabilities
will have to be re-normalized as p pl l k1,= { } and c cl l k1,= { }.

Wecan re-imagine thegivenprobabilitydistribution (or, aswewill see, anyof its parts aswell)as anabstractuniform
distributionhaving the sameentropy (or conditional entropyofparts, ifweare lookingatparts).Hence, there is a close
relationshipbetween thediversityof adistribution (or its part) touniformity. Inboth theorem3.1 andcorollary3.1

wenotice theoccurrenceof the ratio
D

c

Pi

Pi

repeatedly, givingusa sense that this ratio shouldplay an importantpart in

comparing thedegreeofuniformityor closeness touniformdistributionamongpartsof a givendistribution.
From this point in the paper, we choose to focus our results for q= 1 for theHill number qD to show our

results since theweight given to each type is proportional to the abundance of the type if q= 1. Accordingly,
wewill omit the left superscript of 1while writing the diversityD.

3.1. An abstract visualization of the partP of a distribution
It is well known (MacArthur 1965,Hill 1973, Peet 1974, Jost 2006, Gaggiotti et al, 2018, Jost 2019) that a non-
uniformdistributionwith a diversity ofDK can be abstractly redrawn as a uniformdistributionwithDKnumber
of types each having a probability of

D

1

K
. The abstract uniformdistribution has the same Shannon entropy as the

original distribution, and hence has the same degree of probabilistic uncertainty as the original distribution. The
DKnumber of types for the abstract equivalent distributionmay no longer be an integer.We call theDK types as
Shannon Equivalent Equiprobable (SEE) types.

In a similar way, we consider a part of a distribution Pwith diversityDP and cumulative probability cP, where
P= {k1, k2} is the part between indices k1 and k2 for example. For this part P, we can associate an equivalent
abstract uniformdistributionwhich hasDPnumber of SEE types, each of which has a probability of c

D
P

P
. This

abstract equivalent uniformdistribution has the same entropy as conditional entropy of the original distribution
given the part P. In other words, it has the same degree of uncertainty as the part P.

Hence, we have the following: Given a distribution consisting of disjoint partsPiwith diversity DPi
and

cumulative probability cPi
so thatUiPi is the entire distribution, each part Pi can be redrawn as an abstract

uniformdistributionwith DPi
number of SEE types each having a probability of

c

D

Pi

Pi

.We also have that the

abstract equivalent has the same entropy as the conditional entropy of the original distribution given the part Pi
and its total cumulative probability will also be equal to cPi

.Wewill refer to this abstract equivalent uniform
distribution henceforth as the SEE equivalent of the part Pi.More generally, as shown infigure 1, each of the
disjoint partsPi of a given distribution can be equivalently replacedwith an abstract uniformdistribution each
having a diversity of DPi

and a cumulative probability of cPi
. Aswewill see, this is a very important equivalence

that allows us to compare the uniformity of the abstract equivalent SEE types of the original parts instead of the
original parts themselves. Comparing the latter ismuch easier because the abstract equivalent SEE types are
uniformly distributed even though the original parts themselvesmay not be uniform.

3.2. The case for using the ratioDP /cP to compare degrees of uniformity
Given the conclusion from the last section, it is clear that comparing degrees of uniformity of parts of a
distribution boils down to comparing degrees of uniformity of the abstract SEE (Shannon Equivalent
Equiprobable) equivalents of its parts.

We look at an example of a distributionwhere the SEE equivalents of three parts I, II, and III are shown as in
figure 2.We assume that these three parts are the SEE equivalent types of three parts of a given distribution. The
probability values arefictitious and are used tomake an important point i.e., the ratioDP/cP for each abstract
equivalent SEE part (and hence the same ratio for the original part itself) is ameasure of howmuchmore or less
uniformly distributed a given part is compared to other parts, thereby showing that the ratioDP/cP is a relative
measurement of degree of uniformity of parts of the original distribution.

It is easy to calculate

D D D10, 20, and 30.I II III= = =

So,

D
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D
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and the total diversity from theorem 3.1 is

D
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So, in part I, 33.33 SEE types are assigned per unit cumulative frequency, in part II, 50 SEE types are assigned
and in part III, 100 SEE types are assigned per unit cumulative frequency. Thus, part III has themost number of
SEE types per unit cumulative frequency followed by part II, followed by part I.

Themainpoint is this: SEE types areuniformlydistributed. Ifweare talking about the entire distribution (whichhas
a cumulativeprobability of 1), then thediversityof the entire distribution (in this caseD= 54.51) is an indicationof the
extentof uniformityof the entire distribution.Hence, thediversityDof entiredistributions canbecompared to indicate

Figure 1.Parts of a general distribution alongwith their abstract SEE equivalents.

Figure 2.Example showing comparison of equivalent uniformparts.

6

J. Phys. Commun. 7 (2023) 075006 RRajaram et al



their degrees of uniformity.However, ifwe are talking aboutparts of adistribution (where the cumulativeprobability of
the givenpart isno longer equal to1but c< 1), then thenumberof SEE typesperunit cumulative frequency (which is
the sameasDP/cP) is abetter indicationof thedegreeofuniformity.Wenote thatDP/cP=D if cP= 1andhenceDP/cP
as ameasureofdegreeofuniformity, is a generalizationof the total diversityDbut forparts of adistribution.

If we think of each type having the samewidth(amount) ofmoney, then part III has themost amount of
Shannon Equivalent Equiprobable (SEE)money per person i.e., 100multiplied by thewidth of each bin. In fact,
part III has twice asmuch SEEmoney per person compared to part II. Since D

c
III

III
is the largest, part III should be

treated as themost uniformly distributed, followed by part II followed by part I. In fact, we also note that
DIII>D and hence part III is actuallymore uniformly distributed compared to the entire distribution itself.
SimilarlyDI<D andDII<Dmean that parts I and II are less uniformly distributed compared to the entire
distribution. Finally, the diversityD of the entire distribution is ameasure of degree of uniformity of the entire
distribution and theorem3.1 and corollary 3.1 say that the degree of uniformity of the entire distribution is a
weighted geometricmean of the degrees of uniformity of the parts of the distribution. In otherwords, the total
diversityD is a weighted geometricmean of D

c
I

I
, D

c
II

II
and D

c
III

III
.

Weused the example above to lay down the intuition forwhyDP/cP is a goodmeasure of the degree of
uniformity.Nowwe consider a general casewhere a part of a distribution from say index k1 to k2 has diversity given

by D k k,1 2{ } and a cumulative frequencyof c k k,1 2{ } is given, as shown infigure 1. The ratio
D

c

k k

k k

1, 2

1, 2

{ }

{ }
is the amount of SEE

types or bins that are assigned per unit cumulative frequency and can beused tomeasure degree of uniformity in
thedistribution between parts. Thehigher theDP/cP ratio for a part, themorediversity per unit cumulative
frequency compared to another part that has a lower value. Furthermore, this ratio is actually a trueproportion as
far as thepart{k1, k2} is concerned, since the redrawnSEE equivalent is actually uniform, andhence anyportionPj
of this partwill contain exactly c

D

c P
k k

k k
j

1, 2

1, 2

´{ }

{ }
number of SEE types. The same intuition thatwebuilt using the

example above holds true for the general case aswell i.e., the ratio
D

c

k k

k k

1, 2

1, 2

{ }

{ }
will indicate the number of SEE types per

unit cumulative frequency andhence is ameasure of thedegree of uniformity of the part of the distribution from
index k1 to k2.We focuson computing the ratioDP/cP for a given part P next. Figure 3 below showshowapart of
thedistribution of the type k k,1 2{ } ismappedbetween the case-based entropy curve and theoriginal distribution.

4. Computing the ratioDP /cP for a part of a distribution

ALorentz curve by the name of case-based entropywas introduced to compare distributions in (Rajaram and

Castellani 2016). The case-based entropy of a part P= {1, k} is defined as C k
D

D1,
k

K

1,={ }
{ } , whereD{1,k} is the

diversity of the part P andDK is total diversity ofK types. It is clear from the last section, that the ratioDP/cP for a
part P is a way tomeasure the degree of uniformity of the distribution in the part P. In this section, we showhow
we can use the case-based entropy curve to compute the ratioDP/cP for a given part P of a distribution.

We consider the parts denoted by indices P1= {1, k1} andP2= {1, k2}.We know the following:

C
D

c D
C

D

c D
and .k

k

k K
k

k

k K
1,

1,

1,
1,

1,

1,
1

1

1

2

2

2

= =
· ·{ }

{ }

{ }
{ }

{ }

{ }

Figure 3.Case-based entropy of a part.
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From equation (7) and dividing by the total diversityDK, we have the following:

D

c D

D

c D

D

c D
.

k

k K

c
k

k K

c
k k

k k K

c
1,

1,

1,

1,

1,

1,

k k k k

2

2

1, 2
1

1

1, 1
1 2

1 2

1, 2

= +

+
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠· · ·

{ }

{ }

{ }

{ }

{ }

{ }

{ } { } { }

Wedefine the slopes of the secants on the case-based entropy curve joining the points (0, 0) and (c{1,k},
C{1,k}) byA{1,k}. In other words A k

D

D c1,
k

K k

1,

1,
={ }

{ }

{ }
. Using this, the above equation can be rewritten as:

A A A .k
c

k
c

k k
c

1, 1, 1,
k k k k

2

1, 2

1

1, 1

1 2

1 1, 2= +
+

{ } { } { }
{ } { } { }

So,

A
A

A
,k k

c k
c

k
c1,
1,

1,

k k

k

k1 2

1 1, 2 2

1, 2

1

1, 1
=+

+
{ }

{ }

{ }

{ }

{ }

{ }

D

c D
D

A

A
,

k k

k k k

c

K
c k

c

k
c

1,

1,

1,

1,

k k

k k

k

k

1 2

1 2

1, 2

1 1, 2 2

1, 2

1

1, 1
=+

+

+
⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟·

{ }

{ }

{ }

{ }

{ }
{ }

{ }

{ }

and solving for
D

c

k k

k k

1 1, 2

1 1, 2

+

+

{ }

{ }
we have

D

c

D A

A

.
k k

k k

K k

k

1,

1,

1,

1,

c k
c k k

c k
c k k

1 2

1 2

2

1, 2
1 1, 2

1

1, 1
1 1, 2

=+

+

+

+

( )
( )

{ }

{ }

{ }

{ }

{ }
{ }

{ }
{ }

Note thatDK is the total diversity and it is also known separately. In fact, everything on the right hand side of
the above equation is known.

Solving for A k1, 2{ } in the last equation above, we have:

A A A ,k k k k1, 1, 1,

c k
c k

c k k
c k

2 1

1, 1
1, 2

1 2

1 1, 2
1, 2= +

+( ) ( )·{ } { } { }

{ }
{ }

{ }
{ }

where
c

c

c

c
1.

k

k

k k

k

1,

1,

1,

1,

1

2

1 2

2

+ =+{ }

{ }

{ }

{ }

Wenow take the natural logarithmof both sides of the above equation to obtain a logarithmic interpolation
forumla. That is,

A
c

c
A

c

c
A

c A c A c A

A
c A c A

c c

ln ln ln , or

ln ln ln , or

ln
ln ln

.

k
k

k
k

k k

k
k k

k k k k k k k k

k k
k k k k

k k

1,
1,

1,
1,

1,

1,
1,

1, 1, 1, 1, 1, 1,
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1, 1, 1, 1,

1, 1,

2

1

2

1

1 2

2

1 2

2 2 1 1 1 2 1 2

1 2

2 2 1 1

2 1

= +

= +

=
-
-

+
+

+ +

+

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

( )

{ }
{ }

{ }
{ }

{ }

{ }
{ }

{ } { } { } { } { } { }

{ }
{ } { } { } { }

{ } { }

If we plot a graph of c{1,k} versus c Alnk k1, 1,· ( ){ } { } , then the above formula is the slope of the secant line of the
curve joining the pointsA andB infigure 4.We note that this curve starts at (0, 0) and ends at (1, 0).We name
this curve as the slope of diversity curve.

Infigure 4, pointsA andB have the following coordinates:

A c c A

B c c A

, ln ,

, ln .
k k k

k k k

1, 1, 1,

1, 1, 1,

1 1 1

2 2 2




( ( ))
( ( ))

{ } { } { }

{ } { } { }

Then Aln k k1,1 2+( ){ } is the slope of the line joiningA andB.
Let S k k,1 2{ }be the slope of the line joining c c A, lnk k k1, 1, 1,1 1 1

( ( )){ } { } { } and c c A, lnk k k1, 1, 1,2 2 2
( ( )){ } { } { } . Also, taking

exponentials, we have:

D

c
D e . 9

k k

k k
K

S1,

1,

k k1 2

1 2

1, 2=+

+
· ( ){ }

{ }
{ }

Thenwe have the following equivalence:

D

c

D

c
D e D e S S .

k k

k k

k k

k k
K

S
K

S
k k k k

,

,

,

,
1, 1,k k k k1 2

1 2

3 4

3 4

1 1, 2 3 1, 4
1 2 3 4=  =  =

>

<

>

<
-

>

<
-- -

{ }

{ }

{ }

{ }
{ } { }{ } { }

Thismeans, as shown in figure 5, that the ordering of the slopes of secants of parts of the slope of diversity
curve preserves the same ordering of the ratios ofDP/cP for the corresponding parts in the original distribution.
Thismeans that the c{1,k} versus c Alnk k1, 1,* ( ){ } { } (slope of diversity) curve is away tomeasure the relative degree
of uniformity of parts in the original distribution.
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Remark 4.1.Wenote that in the graph of slope of diversity, we use the convention that the index k= 0
corresponds to the point 0, 0( ) since none of the types in the distribution are included yet. And the point
corresponding to k= 1 is p ,

p D

p1
ln 1

1

-( )( )
. Hence, the slope of the secant joining k= 0 and k= 1

is S p Dln0,1 1= - ( ){ } .

We have that, S Sk k k k1, 1,1 2 3 4
>- -{ } { }means that

D

c

D

c
.

k k

k k

k k

k k

,

,

,

,

1 2

1 2

3 4

3 4

>{ }

{ }

{ }

{ }

For example, the part {k1, k2}hasmore SEE types per unit cumulative frequency than the part {k3, k4} and
hence, ismore uniformly distributed compared to the part {k3, k4}. Alternatively, we could form the ratio
S

S

k k

k k

1 1, 2

3 1, 4

-

-

{ }

{ }
, which tells us howmuchmore or less uniformly distributed the part {k1, k2} is relative to the part

{k3, k4}. Hence, with the slope of diversity curve, we have definitively created a quantitative way to compare the
degree of uniformity of parts of a given distribution using the slopes of its secants.

Having established the importance of the ratioDP/cP as away tomeasure the degree of uniformity of a part
of a distribution, and created away to computeDP/cP, we now exploreways to compare the ratioDP/cP for
different parts of a distribution, and its relationship to the original distribution.

5. Some results related to comparingDP/cP for parts

In this section, we summarize ourfindings about comparison of theDP/cP ratio of parts in the formof theorems.

Theorem5.1. LetP1 andP2 be two parts of a probability distribution like in table 1. Thenwe have the following
equivalence:

A A
D

c

D

c
.P P

P

P

P

P
1 2

1

1

2

2

=  =
>

<

>

<

Proof. Follows by definition of AP1
and AP2

.

Figure 4.Points to compute secant of c versus c Aln c* (Slope of Diversity) curve.

Figure 5.Comparing slopes on the slope of diversity curve.
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Theorem 5.1 is illustrated infigure 6. The key point here is to note that forP1= {1, k1} andP2= {1, k2}, AP1

and AP2
are slopes of secants on the case-based entropy curve between the points (0, 0) and c C,P P1 1

( ) and the
points the points (0, 0) and c C,P P2 2

( ) respectively. So, the degree of uniformity of parts that look likeP1= {1, k1}
andP2= {1, k2} can be directly compared from slopes of secants from the original case-based entropy curve.

However, if the parts of the type P1= {k1, k2} andP2= {k3, k4}where k1≠ 1 and k2≠ 1, then the case-based
entropy curve cannot be directly used to compare their degrees of uniformity. For these types of general
partitions that don’t start at the index 1, we need to plot slope of diversity curve like infigure 5.We summarize
this development in the previous section in the formof the following theorem:

Theorem5.2. Let P k k,1 1 2= { }and P k k,2 3 4= { }be general disjoint parts of a probability distribution like in
table 1. Thenwe have the following equivalence:

S S
D

c

D

c
.k k k k

k k

k k

k k

k k
1, 1,

,

,

,

,
1 2 3 4

1 2

1 2

3 4

3 4

=  =-
>

<
-

>

<
{ } { }

{ }

{ }

{ }

{ }

Proof.Already explained in the previous section.We refer tofigure 5 for an illustration as well.

Remark 5.1.Wenote that theorem 5.1 is subsumed by theorem5.2. This is because we could choose partitions
of the form P k1,1 1= { }and P k1,2 2= { }and obtain the same ordering of the D cP P ratios for the parts P1 and
P2 in theorem 5.2. For such a partition k1,{ }, the slope S k0,{ } is the slope of the line joining 0, 0( ) and
c c A, lnk k k1, 1, 1,*( ){ } { } { } . Hence, we have the following:

S S
c A

c

c A

c
A A

ln ln
,k k

k k

k

k k

k
k k0, 0,

1, 1,

1,

1, 1,

1,
1, 1,1 2

1 1

1

2 2

2

1 2=  =  =
>

<

>

<

>

<* *( ) ( )
{ } { }

{ } { }

{ }

{ } { }

{ }
{ } { }

which shows that theorem5.1 is subsumed by theorem5.2.

We now state and prove an explicit relationship between the probabilities in the original distribution and the
slope of diversity curve.We note that this is the first time that the diversity of a distribution is directly related to
the individual probabilities in the distribution, thereby establishing a connection between the diversity and the
shape of the original distribution.

Theorem5.3.Given a probability distribution like in table 1, we have the following:

p
D e

1
. 10

k

K
S k k1,= - ( ){ }

Proof.Wealready showed the following in equation (9):

D

c
D e .

k k

k k
K

S,

,

k k1 2

1 2

1 1, 2= -·{ }

{ }
{ }

Now, let’s choose k k k1 2= = . Then, D D 1k k k k, ,1 2
= ={ } { } and c c pk k k k k, ,1 2

= ={ } { } . This implies that
equation (9) becomes

Figure 6.ComparingAʼs to relate theDP/cP ratios.
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p
D e

1
,

k

K
S k k1,= -{ }

or

p
D

e
1

.k
K

S k k1,= - -{ }

This proves the Theorem.

Remark 5.2.Wecan alternatively explicitly show the relationship in the above theorem as follows:
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and exponentiating both sides gives us the result of theorem 5.3.

Thismeans that we can completely reconstruct the original distribution simply by looking at slopes of the
form S{k−1,k} for all k= 1,K,K, and computing

p
e

D
.k

S

K

k k1,

=
- -{ }

This is a key reconstruction result, which is illustrated by the following graph:
Figure 7 shows that there is a one-to-one (injective) correspondence between the original distribution and

the case-based entropy curve via the slope of diversity curve. This is a new result.
It alsomeans that two different distributionswill give two different case based entropy curves that are unique

to the shape of each distribution. It alsomeans that two different distributionswill give two different slope of
diversity curves aswell.

Theorem5.4.Given a probability distribution like in table 1, let 1 be the set of graphs of the original probability
distribution, 2 be the set of graphs of the corresponding case-based entropy curves, and 3 be the set of graphs of the
corresponding slope of diversity curves, with g1, g2 and g3 denoting elements (graphs) in 1 , 2 and 3 respectively. In
addition, letTj k be themap from the graph j to the graph k where j k, 1, 2, 3= . Thenwe have the following:

T : 11j k j k
~

  ( )

is injective (or one-to-one).

Remark 5.3.Wenote that since the number of points on the original distribution curve, the case-based entropy
curve and the slope of diversity curve are equal, themapT :j k j k

~  is defined to be the naturalmap
between the points in the same order as they appear from left to right.

Proof.

(1) T1 2 : Let g g,a b
1 1 1Î  .Wewill showbelow thatT g T ga b

1 2 1 1 2 1
= ( ) ( ) implies that g ga b

1 1
=

T g T g c C c C k

c c k p p k

, ,

.

a b
k

a
k

a
k

b
k

b

k
a

k
b

k
a

k
b

1 2 1 1 2 1 1, 1, 1, 1,

1, 1,

=  = "

 = "  = "

 ( ) ( ) ( ) ( ){ } { } { } { }

{ } { }

T g T g g gHence, .a b a b
1 2 1 1 2 1 1 1

=  = ( ) ( )

This shows that themapT1 2 is injective.
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(2) Let g g,a b
2 2 2Î  .Wewill showbelow thatT g T ga b

2 3 2 2 3 2
= ( ) ( ) implies that g g .a b

2 2
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{ } { } { } { } { } { }
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{ }
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{ }

{ }

{ } { }

{ } { }

T g T g g gHence, .a b a b
2 3 2 2 3 2 2 2
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This shows that themapT2 3 is injective.

(3) Let g g,a b
3 3 3Î  .Wewill show below thatT g T ga b
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3 3
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k
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1
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c k
b

1, 1,

2

 

=  = " = "
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⎛
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⎛
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This shows that themapT3 1 is injective.

Remark 5.4.Wenote that the inverse of an injectivemap is also injective. Hence, we could have shown that the
inverses of themapsTj k are injective, and that would have also proved theorem5.4. The key to any or all of
those proof steps is that both coordinates shouldmatch for two points to be equal, and that forces the uniqueness
of points because the equality of one of the coordinates (typically the x) leads to an equality of indices,
probabilities or cumulative probabilities.

Figure 7.Reconstructing the original distribution.
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Remark 5.5.Theorem 5.4 is a significant improvement compared to the original notion of diversity as
introduced by (Hill 1973) and (Jost 2006) in its own right. This is because, theHill numbers Dq are insensitive to
rearrangements in the original distribution. In other words, any permutation of the probabilities in the original
distributionwill lead to the same value for the diversity Dq . Thismight be alright for qualitative distributions
such as for species in a forest, since in such a context, we are only interested in the diversity of the distribution
modulo permutations.However, the shape of the original probability distribution becomes extremely important
in the context of a quantitative distribution such as for income, wherewe are interested in quantifying and
comparing the amount of inequality (or degree of uniformity) that exists in different parts of the distribution.
Given that the graph of c k1,{ } versus c Alnk k1, 1,*{ } { } or slope of diversity g3 3Î  is extremely useful to directly
read off the D cP P ratios (whichmeasure the degree of uniformity of parts) by looking at slopes of secants, such

Figure 8.Graph of c{1,K} versus c Alnk k1, 1,*{ } { } for the infinite geometric distribution.

Figure 9.Graph of c{1,K} versus c Alnk k1, 1,*{ } { } for the infinite geometric distribution showing secant lines on either side of c = 0.5 that
have the same slope.
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comparisons can be easilymade from the graph of g2 2Î  indirectly by using g3 3Î  .In this context,
establishing the injectivity of themaps Tj k is an important step that allows us go back and forth between the
graphs j and k . In essence, we have shown in theorem5.4 that the shape of the original probability distribution
g1 1Î  uniquely determines the case-based entropy curve g2 2Î  and the slope of diversity curve g3 3Î  , and
vice-versa.

6. Results relating the case-based entropy curvewith the original probability distribution

In this section, we present some results that relate the case-based entropy curve i.e. c{1,k} versusC{1,k} curve to
the original probability distribution. The importance of these results stems from the fact that for the first time,
we have a connection between the variation of diversity of a given distribution in table 1 asmeasured by the case-
based entropy curve c{1,k} versusC{1,k} and the slope of diversity curve c{1,k} versus the c Alnk k1, 1,*{ } { } curve, and
the probabilities pk in the original distribution. This will achieve the objective of connecting theHill numbers
from (Jost 2006, Leinster andCobbold 2012, Chao and Jost 2015,Hsieh et al, 2016, Pavoine et al, 2016, Jost 2019)
to the shape of the original distribution.

Theorem6.1.Given a probability distribution like in table 1, the average case-based entropy per cumulative
probability APi

are related as follows:

A 1. 12
P

P
c

i

i
Pi =

Î
( ) ( )

Proof.Divide equation (5) byDK and rewriting using the fact that c 1P Pi iå =Î we get:
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⎞
⎠
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Corollary 6.1.Given a probability distribution like in table 1, and a partPwith a disjoint partition given by Pi iÈ , the
average case-based entropy per cumulative probabilityAP and APi

are related as follows:

A A . 13P
c

P
P

cP

i

i
Pi=

Î
( ) ( ) ( )

Proof.This follows fromdividing equation (7) in corollary 3.1 by the total diversityDK.

Figure 10.Graph of c{1,K} versus for the truncated finite (in red) and the infinite geometric distribution (in blue).
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Theorem6.2.Given a probability distribution like in table 1, we have the following:
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W. efirst rewrite equation (5) for the partition given by P k1,1 = { }and P k K1 ,2 = +{( ) } to get the following:
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Hence, we have the followingwhich proves the theorem:
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Remark 6.1.Rearranging equation (14), we have
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Thismeans that if the average case-based entropy per unit cumulative frequency i.e., the slope of the line joining
the points (0, 0) and (c{1,k},C{1,k}) on the case-based entropy curve is less than 1, then the portion of the original
probability distributionwith indices {1, k} is less uniformly distributed compared to the portion of the original
probability distributionwith indices {k+ 1,K}.

Theorem6.3.Given a probability distribution like in table 1, we have the following for any fixed k:
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From the last equation above, thismeans the following:
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This proves the theorem.

Theorem6.4.Given a probability distribution like in table 1, and given a fixed index k, we have the following:
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Proof.We rewrite equation (5) by using remark 3.2 restricting ourselves to a partition
k k1, , 1 ,1 2= ¼ - = { ( )} { }of the index set k1, ,¼{ }. Now,we rewrite equation (5) for this new partition

using the fact that p c 1k k k k1, 1 1,+ =-{ } ( ){ } as below:
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Remark 6.2.We remark that the following variation of equation (17) is true aswell and the proof follows the
same lines and using the fact that p c1 1k k K k k K, ,+ - =( ){ } { } :
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Theorem6.5.Given a probability distribution like in table 1, we have the following:

C c k K p
D

k K1 ,..,
1

1 ,.., . 19k k k
K

1, 1,= " =  = " = ( ){ } { }

Proof.
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Weuse theorem6.4 to get the following:
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In otherwords, the case-based entropy curve is a straight line joining (0, 0) and (1, 1) if and only if the original
distribution is uniform.

Theorem6.6.Given a probability distribution like in table 1, we have the following:
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Proof. First, we note that

C c A k L1 .k k k1, 1, 1,<  < " >{ } { } { }
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Now,we have the following from equation (17):
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Going the other direction, we have:
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Since A 1K1, ={ } , we have that

A k M C c k M1 1 1,k k k1, 1, 1,< " > +  < " > +{ } { } { }

and the sequence A k k M
K

1, 1= +{ }{ } is an increasing sequence that converges to 1. This proves the the theorem.
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Remark 6.3. In particular, if the sequence of average case-based entropies per unit frequency given by
A k k M

K
1, 1= +{ }{ } increases to 1 very fast (or very slow), then the probabilities given by pk k M

K
1= +{ } will form a right

tail sequence of decreasing probabilities that decreases quickly (or slowly).

Theorem6.7.Given a probability distribution like in table 1, we have the following:

C c k L L p
D A

k M Mfor some
1

for some . 21k k k
K k K

1, 1,
,

> " <  < " < ( ){ } { }
{ }

F. irst we note from remark 6.2, theorem6.1 and theorem6.3 that

C c C c A k L1 .k k k K k K k K1, 1, 1 , 1 , 1 ,>  <  < " <+ + +{ } { } {( ) } {( ) } {( ) }

Wealso note that A 1K1, ={ } . Thismeans that there exists some M L> so that

A A A A... 1,M K M K K K, 1 , 2, 1,< < < < =-{ } {( ) } { } { }
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M L> . Now,we have the following from remark 6.2:
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Going the other direction, we have:
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Since A 1K1, ={ } , we have that

A k M C c k M1 1 1,k K k K k K1 , 1 , 1 ,< " < +  < " < ++ + +{( ) } {( ) } {( ) }

C c k M 1k k1, 1, > " < +{ } { }

and the sequence A M k K k
M

1 , 0+ - ={ }{( ) } is an increasing sequence that converges to 1. This proves the theorem.

Remark 6.4. In particular, if the sequence of average case-based entropies per unit frequency given by
A M k K k

M
, 0

1
- =

-{ }{( ) }
( ) increases to 1 very fast (or very slow), then the probabilities given by pk k

M
1={ } will form a left tail

sequence of increasing probabilities that increases quickly (or slowly).

Remark 6.5.Wenote that theorems 6.6 and 6.7while giving us a sense of existence of tails on the right and left
ends of the original probability distributions, only give us conservative estimates onwhat exactly those
probabilities could be.Wewill see below thatwe can improve this significantly using the c k1,{ } versus
c Alnk k1, 1,*{ } { } (slope of diversity) curve.

Theorem6.8.Given a probability distribution like in table 1, thenwe have the following:
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Proof.Weknow that
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Now, if
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then

p p
e e S S

1 1
.

i i

S S
i i i i

1

1, , 1i i i i1, , 1=  =  =
<

>

+
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This proves the Theorem.

Remark 6.6. If S Si i i i1, , 1<- +{ } { } for all i k K, , 1= ¼ - then p pi i 1+ for all i k K, ,= ¼ leading to a right tail.
Also, if S Si i i i1, , 1>- +{ } { } for all i k1, , 1= ¼ - , then p pi i 1+ for all i=1,K,k leading to a left tail of
probabilities. Equation (23) explicitly dictates how sharply the probabilities decay at either tail, depending on
how sharply the slopes S k k1,-{ }decay in the c k1,{ } versus c Alnk k1, 1,*{ } { } curve. Hence, this vastly improves
theorems 6.6 and 6.7.

7.Geometric distribution example

In this section, we use the geometric distribution as an example to illustrate some of the results related to the
c{1,k} versus c clnk k1, 1,*{ } { } (slope of diversity) curve. Sincemost of the results from the c{1,k} versusC{1,k} curve
(the case-based entropy curve) are subsumed by the c{1,k} versus c clnk k1, 1,*{ } { } curve, we only focus on
demonstrating the usefulness of the latter using the geometric distribution.

We consider a geometric random variableX= 1, 2, 3,... and define
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The entropyH and the diversityD can be easily calculated.
We truncate up to i= K and re-normalize the probabilities pî (so that they add up to 1) to get
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Notice that qK= 1− c{1,K}, so D D c1 .K K
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So, interestingly enough, for the geometric distributionwith infinite support, we have an explicit expression for
c AlnK K1, 1,( ){ } { } as a function of c{1,K}, and it is independent of p or q.

Let K̂ be the index corresponding to c 0.5.K1, ={ ˆ } Then,

A0.5 ln 0.5 ln 0.5 0.5 ln 0.5 0.K1, = - =( ) ( ( ) ( ){ ˆ }

This implies that A 1K1, ={ ˆ } and that D
D

c

K

K

1,

1,
={ ˆ }

{ ˆ }
. This also implies that A 1K 1, =+ ¥{ ˆ } and D.

D

c

K

K

1,

1,
=+ ¥

+ ¥

{ ˆ }

{ ˆ }

So, nomatter the choice of p and q, all geometric distributions satisfy the property that c 0.5K1, ={ ˆ } splits the
distribution into two parts, both of which have the same number of SEE types equal to the diversity of the entire
distribution as shown by figure 8.

So, the SEE types of the first half up to c= 0.5 and the second half from c= 0.5 to c= 1 are equal and equal to
D,which is the total diversity of the entire distribution. That’s an interesting result since the number of types K̂
corresponding to c 0.5K1, ={ ˆ } isfinite whichmeans there are infinitelymany types from c= 0.5 to c= 1, and yet
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D

c

D

c
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c

K

c

K1, 1,

k k1, 1,= =
+ ¥

+ ¥

{ ˆ } { ˆ }
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In fact,muchmore is true. Let y c AlnK c1, K1,
= ( ){ } { } and x= c{1,k}. Then,

y f x x x x x1 ln 1 ln= = - - -( ) ( ) ( ) ( ) is symmetric about x= 0.5 so that f (0.5+ t)=− f (0.5− t) for
0< t< 0/5.

Thismeans that for every secant line to the left of x= 0.5, we can find anothermatching secant line to the
right of x= 0.5with the same slope, as the figure illustrates. That is, for any subset of types {k1, k2} to the left of
x= 0.5, there is an equivalent subset of types {k3, k4} to the right of x= 0.5 (possibly withmore types) that have
the same number of SEE types as shown infigure 9.

Since f (c)=− f (1− c) and f x x x x x1 ln 1 ln= - - -( ) ( ) ( ) ( ), we know that
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So, in fact the D

c
value (number of SEE types) for the part of the distribution from (c1, c2) is equal to the

D

c
value from (1− c1, 1− c2). Note that if c1< c2< 0.5 then 0.5< (1− c2)< (1− c1) is on the other side of c= 0.5.

7.1. Truncated geometric distribution
Now,we look at the truncated geometric distribution: x= 1,K,N. The probabilities are normalized to add up to
1 as below:
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Let’s concentrate on the part from {1,K}. Thenwe have
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Weagain normalize the probabilities for the part {1,K} to get pi
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, for i= 1,K,K. So, all of the

formulas for {1,K} are the same as the {1,K} formulas from the previous section. Thus, for {1,N}, we replace all
formulas from {1,K}withK=N as follows:
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Hence, for the truncated and normalized geometric distribution, the formula for c AlnK K1, 1,*{ } { } is not
independent of p and q. The blue graph infigure 10corresponds toN approaching infinity, for any p and q. The
red graph corresponds toN= 8 and q= 0.7.

8. Conclusion

Given the real-world challenges ofmeasuring diversity we had two objectives for this study. First, to introduce
and justify the ratioDP/cP as ameasure of degree of uniformity of a part of a given distribution in table 1. Second,
to prove results that concretely link the case-based entropy curve and the original probability distribution (via
the slope of diversity curve), thereby (for thefirst time), establishing an explicit and concrete link between the
diversity of parts of a distribution and the original probabilities themselves.We have achieved both objectives in
this paper, and also demonstrated how to compute some of the quantities such as the c{1,k} versus c Alnk k1, 1,*{ } { }
curve for the geometric distribution, whichwe call the slope of diversity.

These two results are an important step towards concretely comparing and contrasting the degrees of
uniformity of parts of a given probability distributionwithin and across different distributions, given thatmost
real-world systems have unequal distributions, varying frequencies, and comprisemultiple diversity types with
unknown frequencies that can change. Such systems, as wementioned in the introduction, include income
distributions, economic complexity indices, ecological systems, species diversity, and ranking systems, from
genes and exposomic biological assays tomeasures of economic and health inequality. For example, returning to
theGini coefficient from the introduction, our approach allows for several advances. First, because our approach
does not conflate different distributions with the same coefficient, we can provide a unique case-based entropy
or slope of diversity curve for each and every income distribution.

Second, we can also provide, for any given country’s income distribution, the precise quantification of the
relationship between the probability of each income level (pi) and the total income diversityD for any country,
both among parts of their respective income distribution as well as thewhole using the case-based entropy and
the slope of diversity curves. TheGini index cannot do that, for example.

Third, we have also established a concrete quantitativemeans of comparing the degree of uniformity of
parts of a distribution. Such a comparison is extremely important in studying the prevalence of inequality
(as in the case of incomes, for example) inwhole distributions and their parts. A quantifiablemeasure of the
degree of uniformity (or inequality) for quantitative variables such as income and resources, will pave theway to
formulate policies that will lead to equity in distribution of resources, and alsomeasure such an achievement by
using theDP/cP ratio.

Fourth, we have closed the gap that exists in the literature on diversitymeasures by explicitly relating the
diversity of parts of a distribution to the probabilities in the original distribution.We have also shown, to repeat a
point, in theorem 5.4 that the shape of the original distribution uniquely determines the diversity of its parts and
vice-versa. Furthermore, we have also shownhow to explicitly compute the individual probabilities of the
original distribution, as in the case of income for example, from the case-based entropy curve. This is a
significant step towards linking the concept of diversity to the shape of the original distributionwhich, as we
have commented in remark 5.5, is extremely important in quantifying and locating regions in the original
distribution that aremore or less unequally distributed.
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In a sense, the two objectives of the paper are inter-twined in the followingway: Diversity (or the ratioDP/cP)
is ameasure of uniformity of a distribution, and hencewe need to justify its use and show thatDP/cP can be
computed for any part of a distribution easily, whichwas the first objective. Given the distribution of diversity in
the formof the case-based entropy curve, computation ofDP/cP, and its use as ameasure of uniformity of a given
part of a distributionwould bemeaningless unless the variation of diversity of parts in a given distribution (in the
formof the case-based entropy curve) uniquely determines the original distribution. This was the point of the
second objective. In summary, we need to knowhow tomeasure and quantify inequality within parts of a
distribution, need to knowhow to compute such a quantification, andwe also need to be reassured that there is a
one-to-one correspondence between such a computation and the variation of probabilities in the original
distribution (i.e., the shape of the original distribution). The last point is important, thinking about such
measures as theGini index, as we do notwant two different distributions that have completely different shapes
to lead to the same quantification of inequality, as it would then be difficult to pinpoint the original distribution
(or its parts) by simply studying the variation of inequality (or diversity).

We conclude by stating that in our futurework, wewill endeavor to extend the results in this paper to
continuous distributions, and also try to apply the results to improve any existingmeasures of inequality in the
context of quantitative distributions, specifically theGini index.

Data availability statement

Nonewdatawere created or analysed in this study.

Appendix. Notation

(1) K: The number of types in a distribution.

(2) DK: Diversity of the entire distribution i.e., allK types.

(3) DP: Diversity of the part P

(4) cP: Sumof probabilities (or cumulative probability) of the partP.

(5) : An ascending disjoint partition of the set of indices {1,..,K} such that every element Pi Î  satisfies the
property that i j P Pmax maxi j<  < . In otherwords, the partition preserves the ordering of the
numbers {1,..,K}. In particular, themember {i, (i+ 1),..,j} denotes the types in the distribution between
indices i and j andwill be denoted by {i, j}.

(6) DPi
: Diversity of the part of the distribution corresponding to indices in Pi Î  .

(7) c pP l P li i
= å Î : sumof probabilities of types in the part of the distribution corresponding to indices

in Pi Î  .

(8) pl i
p

c

p

p

f

f1,
l

i

l

k
i

k

l

k
i

k1, 1 1

= = =
å å= =

{ } { }
: conditional probabilities for the first i types l= 1,..,i. Same definition for

pl Pi
for any partition Pi Î  i.e., pl P

p

c

p

p

f

fi

l

Pi

l

k Pi k

l

k Pi k

= = =
å åÎ Î

.

(9) cl i
c

c

c

p1,
l

i

l

k
i

k1, 1

= =
å =

{ }
{ }

: conditional cumulative probabilities for the first i types l= 1,..,i. Same definition

for cl Pi
for any partition Pi Î  i.e., cl P

c

c

c

pi

l

Pi

l

k Pi k

= =
å Î

. So in general, whenever there is a partitionPi as a

subscript, itmeans that we are dividing the probability (or cumulative probability) in the base by cPi
.

(10) AP
C

c

D

D ci

Pi

Pi

Pi

K Pi

= =
·
: Average case-based entropy per unit cumulative probability of the part of the

distribution corresponding to indices in Pi Î  .

(11) S k k,1 2
={ } slope of the line joining c c A, lnk k k1, 1, 1,1 1 1

( ( )){ } { } { } and c c A, lnk k k1, 1, 1,2 2 2
( ( )){ } { } { } on the c{1,k} versus

c Alnk k1, 1,( ){ } { } (or slope of diversity) curve.

(12) 1 : This is the set of all probability distributions like in table 1with elements denoted by g1.

(13) 2 : This is the set of all case-based entropy curves with elements denoted by g2.

(14) 3 : This is the set of all slope of diversity curves with elemetns denoted by g3.
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