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Abstract

The literature on diversity measures, regardless of the metric used (e.g., Gini-Simpson index, Shannon
entropy) has a notable gap: not much has been done to connect these measures back to the shape of the
original distribution, or to use them to compare the diversity of parts of a given distribution and their
relationship to the diversity of the whole distribution. As such, the precise quantification of the relationship
between the probability of each type p;and the diversity D in non-uniform distributions, both among parts
of a distribution as well as the whole, remains unresolved. This is particularly true for Hill numbers, despite
their usefulness as ‘effective numbers’. This gap is problematic as most real-world systems (e.g., income
distributions, economic complexity indices, rankings, ecological systems) have unequal distributions,
varying frequencies, and comprise multiple diversity types with unknown frequencies that can change. To
address this issue, we connect case-based entropy, an approach to diversity we developed, to the shape of a
probability distribution; allowing us to show that the original probability distribution gy, the case-based
entropy curve g, and the ¢( ¢ versus the ¢y 1 *In Ay ) curve gs, which we call the slope of diversity, are
one-to-one (or injective), i.e., a different probability distribution g; gives a different curve for ¢, and gs.
Hence, a different permutation of the original probability distribution g, (that leads to a different shape) will
uniquely determine the graphs g, and g;. By proving the injective nature of our approach, we will have
established a unique way to measure the degree of uniformity of parts as measured by Dp/cp for a given part
P of the original probability distribution, and also have shown a unique way to compute the Dp/cp for
various shapes of the original distribution and (in terms of comparison) for different curves.

1. The challenge of measuring diversity

Within the natural and mathematical sciences, mathematical diversity refers to the measurement and
quantification of diversity within a given system or population using mathematical principles and tools. Over the
last several decades, while a considerable literature has developed around measuring diversity, there remains a key
challenge: regardless of the metric used, such as Gini-Simpson index, Shannon entropy, or Hill numbers, has a
notable gap, in that not much has been done to connect these measures back to the shape of the original
distribution, or to use them to compare the diversity of parts of a given distribution and their relationship to the
diversity of the whole distribution (Jost 2006, Leinster and Cobbold 2012, Chao and Jost 2015, Hsieh et al, 2016,
Pavoine etal, 2016, Jost 2019).

This gap is especially evident in the case of Hill numbers ?D, which provide a way to measure diversity for a
distribution by providing the species richness value or the number of types for an equivalent uniform
distribution that has the same entropy as the original distribution (MacArthur 1965, Hill 1973, Peet 1974,

Jost 2006, Gaggiotti et al, 2018, Jost 2019).

1.1. Hill numbers
Hill numbers (MacArthur 1965, Hill 1973, Peet 1974), provide a comprehensive framework to capture different
aspects of diversity. Hill numbers incorporate the concepts of richness, evenness, and dominance into a single
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numerical index. These indices allow for the comparison and ranking of diverse systems, such as ecological
communities, species populations, or even mathematical databases.

Hill numbers are characterized by a parameter g that favors types with lower or higher frequencies,
depending on whether 0 < g < 1orq > 1, respectively. When g = 1, ' D weighs each type proportional to its
relative frequency, ultimately resulting in e, where H is the Shannon entropy of the distribution. A more recent
book on an axiomatic approach to defining and characterizing diversity can be found in (Leinster 2021).

The interpretation of Hill numbers and mathematical diversity depends on the specific context in which they
are applied. In ecology, Hill numbers are often used to characterize biodiversity in ecological communities. They
provide a way to summarize the distribution of species abundances and assess the relative importance of rare
versus common species.

When analyzing species data using Hill numbers ?D, the values obtained can be interpreted as follows:

1. Hill number with g = 0: This represents the species richness, which counts the number of unique species
present in the community. A higher value indicates greater species richness.

2. Hill number with g = 1: This is known as the exponential of the Shannon entropy and reflects both species
richness and evenness. It captures the distribution of abundances among species, with higher values
indicating a more even distribution.

3. Hill number with g =2: Also referred to as the inverse Simpson index, it emphasizes the dominance of
abundant species. A lower value indicates greater dominance of a few dominant species, while a higher value
suggests a more equitable distribution of abundances among species.

4. Hill number with g — oo : This represents the effective number of species, which accounts for both richness
and evenness. It quantifies the diversity as if the species were equally abundant. A higher value signifies a
more diverse community.

Interpreting Hill numbers in other contexts depends on the application and the specific definition of diversity
being used. For example, in mathematical datasets, Hill numbers can be employed to assess the diversity of
numerical values, patterns, or structures. In this case, higher Hill numbers indicate a greater variety and
complexity in the dataset.

Opverall, Hill numbers provide a unified framework to measure and interpret diversity by incorporating
multiple dimensions of richness, evenness, and dominance. They enable researchers to compare and quantify
diversity across different systems, identify patterns of variation, and evaluate the impacts of disturbances or
interventions on diversity.

1.2. The challenge

Despite the usefulness of Hill numbers as ‘effective numbers,” the exact relationship between the probability of
each type in a distribution and the Hill number itself remains unexplored. Furthermore, the original notion of
diversity that was due to Hill and Jost is actually insensitive to permutations i.e., if we rearrange the probabilities
of the original distribution gj, then the diversity of the entire distribution will remain unchanged.

These issues are particularly problematic since most real-world systems have unequal distributions, varying
frequencies, and comprise multiple diversity types with unknown frequencies that can change. Such systems
include income distributions, economic complexity indices, ecological systems, species diversity, and ranking
systems, from genes and exposomic biological assays to measures of economic and health inequality. An
excellent example is the Gini coefficient. Despite being one of the most widely used measures of economic
inequality, it has several serious flaws. For our purposes, the most important is that it provides the same
coefficient for different income distributions, such that several countries can have different income distributions
but the same Gini index. As this example hopefully illustrates, the Gini index and other measures of diversity
struggle with the precise quantification of the relationship between the probability of each type p; and the
diversity D in non-uniform distributions, both among parts of a distribution as well as the whole. As a result,
while highly important, this issue remains unresolved.

1.3. Purpose of current study

To address this gap, we will explicitly connect case-based entropy, an approach to diversity that we developed, to
the shape of a probability distribution. We made initial progress on this gap in (Rajaram and Castellani 2020) by
proving an interesting result relating the probabilities p; in a distribution with K types (including ] types whose
frequencies can be changed) and the total diversity Dy. In the current paper, we will show that the case-based
entropy curve g, and the ¢(; i, versus the ¢(y xy*In Ay 1) curve g5, which we call the slope of diversity are one-to-
one (or injective), i.e., a different probability distribution g; gives a different curve for g, and g;. Hence, a
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Table 1. General

dataset with
complexity types x;
each havinga
probability p;and a
frequency f.

X P F
X1 b1 fi

X2 P2 f2
X3 D3 f

Xy pr Tr

XK )43 fx

different permutation of the original probability distribution g; (that leads to a different shape) will uniquely
determine the graphs g, and g;. By proving the injective nature of our approach, we will have established a
unique way to measure the degree of uniformity of parts as measured by Dp/cpand also have shown a unique
way to compute the Dp/cp for various shapes of the original distribution.

As our case study, we will consider a general probability distribution with a random variable X as shown in
table 1 (signifying different types or categories), where x; denotes the i — th type, with probability p; and
frequency f. We note that the random variable X under study can be quantitative as well as qualitative. For our
case study, we will ask the following question: Can we establish a relationship (direct or indirect) between the
probabilities p; and the case-based entropy curve C, as a function of the cumulative probability c? More
specifically, what if any, is a relationship between the shape of the case-based entropy curve (C. versus ¢) and the
original probability distribution shown in table 1?

2. A formal introduction to diversity

Diversity is commonly used as a measure to assess the ‘richness’ or number of types in a distribution and its
‘evenness, or equal probability of occurrence among diversity types, as reported by several studies

(MacArthur 1965, Hill 1973, Peet 1974, Jost 2006). This definition of diversity is based on the intuition that if all
types in the distribution occur with the same probability, diversity should be equal to the number of types K.
Conversely, any deviation from uniformity in probabilities will always result in a lower diversity value.

Definition 2.1. (Shannon Diversity corresponding to g = 1 for Hill numbers) Given an ordered set of types
numbered as i € N and their corresponding probabilities p;, the diversity of the entire distribution 'Dy is

defined as the number of equiprobable types needed to yield the same value of Shannon entropy H.

Shannon entropy is defined as below:
K
Hg = =) p;In(p). ey
I=1

It was shown (MacArthur 1965, Hill 1973, Peet 1974, Jost 2006, Rajaram and Castellani 2016) that definition
2.1 implies that the total diversity ' D is given by:

gz el = Tty p = S @)
- pp LT K
=1pt Yieihe
Furthermore, we denote the diversity of the first i types (or partial diversity) as 1D{ 1,ip» wherei=1,..,K. The
partial diversity up to the first i types is given by:
J 1
'Dpy,iy ; b J 3

= H—, pll‘ = i = i .
=y, )P by Sk

We note that equations (2) and (3) can be rewritten in terms of the frequencies f; as below. We will continue
to use the modified equation (4) in our exposition.

3
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Ry
Dk = ELL Dy =

S
fj J
I, f]-(”‘”’) I, fj(z“”)

(C))

In this paper, we have two objectives:

1. We make a case for the ratio Dp/cpi.e., diversity of a part to its cumulative probability as a way to measure the
degree of uniformity of the part P, and also show a way to compute this ratio for arbitrary parts from the
graph of the slope of diversity curve (c;y 4} versus c(y, ki *In Ay 1;). This will prove to be an important way to
measure the extent of uniformity of parts of a distribution.

2. We prove some results that relate the case-based entropy curve i.e. c(y 4 versus Cy,x; to the original
probability distribution, again, by using the graph of slope of diversity curve ¢{; ) versus ¢y x*In Ay k. This
will close the gap of relating the Hill numbers back to the shape of the original distribution.

The paper is organized as follows: In section 3 we lay down the foundation towards using the ratio Dp/cpasa
means to compare the degree of uniformity of parts of a distribution. In section 4, we show a way to compute
Dp/cpfor parts of a given distribution using a new curve that plots ¢y x; versus ¢(;, i, *In A {1, k}, which we call
slope of diversity. In section 5, we prove some results related to comparing the ratio Dp/cp for different parts of a
distribution. In section 6 we relate the case-based entropy curve to the original probability distribution given in
table 1. In section 7 we use the geometric distribution as an example to demonstrate some of our results. In
section 8, conclude the paper with some remarks on the results.

3. Theratio

IC)P for parts P of a distribution
>,

We recall the following two important ‘parts-to-whole’ formulae that were proved in (Rajaram and
Castellani 2020).

Theorem 3.1. Given a probability distribution similar to table 1, the diversity of the entire distribution 1Dy for some
complex system or dataset, and the diversities of disjoint parts 1D p, and their respective cumulative probabilities cp,
are related as follows:

1D : Cp;
Dg =[] (—") , ©)
PeP CPx

and

-9\
iD
QDK = Z Cpl.( Pl) . (6)

Pep Cp;

i

We note that equations (5) and (6) are simply the weighted geometric and arithmetic means (of order 1 — ¢q)

Pi

respectively of the ratio (?) Wealso note that 'Dg = lim{_,, Dg. The following corollary can be easily

proved.

Corollary 3.1. Given a probability distribution similar to table 1, let the part P = | J; P, be a disjoint union of sub-
parts P;. Then, the diversity of the part 9Dp and the diversities of disjoint sub-parts 1D p, and their respective
cumulative probabilities cp, are related as follows:

1 cp 1 cp;

Dp) Dp.)

it ) [ 1) (7)
( cp PEIP ( Cp

1—¢q (I-q)
CP(@) — Z CP,-(%) . (8)

cp pep Cp;

and

Proof. The proof is obtained by re-normalizing the probability of the type jin part P; as ﬁ] = ? and using the

formulas 5 and 6 in a recursive fashion.
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Remark 3.1. If we consider each part P; in the derivation of the above theorem to be exactly one type i.e.,
P, ={i}Vi=1,.,K,then Dp = 1 Vi = 1,...,K and equation (5) reduces to equation (2).

Remark 3.2. We can restrict ourselves to a portion of the distribution starting from / = 1 to say / = k. Then
theorem 3.1 is true for the restriction for any sub-partition Py of such a restriction. In this case, the probabilities
will have to be re-normalized as p; = py;, ;,and ¢ = ciq1,5).

We can re-imagine the given probability distribution (or, as we will see, any of its parts as well) as an abstract uniform
distribution having the same entropy (or conditional entropy of parts, if we are looking at parts). Hence, there is a close
relationship between the diversity of a distribution (or its part) to uniformity. In both theorem 3.1 and corollary 3.1
we notice the occurrence of the rat10 Dr, repeatedly, giving us a sense that this ratio should play an important part in

comparing the degree of uniformity or closeness to uniform distribution among parts of a given distribution.

From this point in the paper, we choose to focus our results for ¢ = 1 for the Hill number ?D to show our
results since the weight given to each type is proportional to the abundance of the type if g = 1. Accordingly,
we will omit the left superscript of 1 while writing the diversity D.

3.1. An abstract visualization of the part P of a distribution
Itis well known (MacArthur 1965, Hill 1973, Peet 1974, Jost 2006, Gaggiotti et al, 2018, Jost 2019) thata non-
uniform distribution with a diversity of Dy can be abstractly redrawn as a uniform distribution with Dg number
of types each having a probability of DLK. The abstract uniform distribution has the same Shannon entropy as the
original distribution, and hence has the same degree of probabilistic uncertainty as the original distribution. The
Dy number of types for the abstract equivalent distribution may no longer be an integer. We call the Dy types as
Shannon Equivalent Equiprobable (SEE) types.

In a similar way, we consider a part of a distribution P with diversity Dp and cumulative probability cp, where

= {ky, k, } is the part between indices k; and k, for example. For this part P, we can associate an equivalent

abstract uniform distribution which has Dp number of SEE types, each of which has a probability of % This
abstract equivalent uniform distribution has the same entropy as conditional entropy of the original dlstrlbutlon
given the part P. In other words, it has the same degree of uncertainty as the part P.

Hence, we have the following: Given a distribution consisting of disjoint parts P; with diversity D p, and
cumulative probability cp, so that U;P; is the entire distribution, each part P; can be redrawn as an abstract

uniform distribution with D p number of SEE types each having a probability of % ‘Wealso have that the

abstract equivalent has the same entropy as the conditional entropy of the orlglnal dlstrlbutlon given the part P;
and its total cumulative probability will also be equal to cp.. We will refer to this abstract equivalent uniform
distribution henceforth as the SEE equivalent of the part P;. More generally, as shown in figure 1, each of the
disjoint parts P; of a given distribution can be equivalently replaced with an abstract uniform distribution each
having a diversity of Dp, and a cumulative probability of cp,. As we will see, this is a very important equivalence
that allows us to compare the uniformity of the abstract equivalent SEE types of the original parts instead of the
original parts themselves. Comparing the latter is much easier because the abstract equivalent SEE types are
uniformly distributed even though the original parts themselves may not be uniform.

3.2. The case for using the ratio Dp/cp to compare degrees of uniformity

Given the conclusion from the last section, it is clear that comparing degrees of uniformity of parts of a
distribution boils down to comparing degrees of uniformity of the abstract SEE (Shannon Equivalent
Equiprobable) equivalents of its parts.

Welook at an example of a distribution where the SEE equivalents of three parts I, II, and Il are shown as in
figure 2. We assume that these three parts are the SEE equivalent types of three parts of a given distribution. The
probability values are fictitious and are used to make an important point i.e., the ratio Dp/cp for each abstract
equivalent SEE part (and hence the same ratio for the original part itself) is a measure of how much more or less
uniformly distributed a given part is compared to other parts, thereby showing that the ratio Dp/cpis a relative
measurement of degree of uniformity of parts of the original distribution.

Itis easy to calculate

D[ = 10, DH = 20, and D[H = 30.
So,
D; 10 Dy 20 Dy 30

— = =100/3, — = =50, and — = = 100,
Cr 30/100 Crr 40/100 Crr 30/100
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P1_> {k:’kz}
Pz_) {ks'kc;}

P and P, are parts.
Assume there are L parts.

DP1 DP 2

Figure 1. Parts of a general distribution along with their abstract SEE equivalents.

1
>ﬁ

I1I

Figure 2. Example showing comparison of equivalent uniform parts.

and the total diversity from theorem 3.1 is
a cr cm
30/100
— (E) (50)40/100(100)30/1()0
3

~ 54.51.

So, in part], 33.33 SEE types are assigned per unit cuamulative frequency, in part II, 50 SEE types are assigned
and in part III, 100 SEE types are assigned per unit cumulative frequency. Thus, part IIT has the most number of

SEE types per unit cumulative frequency followed by part II, followed by part I.

The main point is this: SEE types are uniformly distributed. If we are talking about the entire distribution (which has
acumulative probability of 1), then the diversity of the entire distribution (in this case D = 54.51) is an indication of the
extent of uniformity of the entire distribution. Hence, the diversity D of entire distributions can be compared to indicate
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How to compute D/c for a part of a distribution
C1,ks} — C{1,ky} = Clky+1k,}  from a case-based entropy curve.

A1) A B
/l ;ﬁ ; e

* B B

L’ — =

’,* A DK— Total Diversity Q':

Al
(0,0) k. k, k, k,
Case-Based Entropy Curve Actual Distribution

Figure 3. Case-based entropy of a part.

their degrees of uniformity. However, if we are talking about parts of a distribution (where the cumulative probability of
the given partis no longer equal to 1 but ¢ < 1), then the number of SEE types per unit cumulative frequency (which is
the same as Dp/cp) is a better indication of the degree of uniformity. We note that Dp/cp = Dif cp = 1 and hence Dp/cp
as ameasure of degree of uniformity, is a generalization of the total diversity D but for parts of a distribution.

If we think of each type having the same width(amount) of money, then part IIT has the most amount of
Shannon Equivalent Equiprobable (SEE) money per personi.e., 100 multiplied by the width of each bin. In fact,
part IIT has twice as much SEE money per person compared to part II. Since T is the largest, part IIT should be

treated as the most uniformly distributed, followed by part II followed by part I In fact, we also note that

Dy > D and hence part I11 is actually more uniformly distributed compared to the entire distribution itself.
Similarly D; < D and Dj; < D mean that parts I and IT are less uniformly distributed compared to the entire
distribution. Finally, the diversity D of the entire distribution is a measure of degree of uniformity of the entire
distribution and theorem 3.1 and corollary 3.1 say that the degree of uniformity of the entire distribution isa
weighted geometric mean of the degrees of uniformity of the parts of the distribution. In other words, the total
diversity D is a weighted geometric mean of — D D” and = D’”

We used the example above to lay down the 1ntu1t10n for why Dp/cpisa good measure of the degree of
uniformity. Now we consider a general case where a part of a distribution from say index k to k; has diversity given

by Dy, k) and a cumulative frequency of ¢, 1.} is given, as shown in figure 1. The ratio =2 - Dkl i the amount of SEE
{k1,k2}

types or bins that are assigned per unit cumulative frequency and can be used to measure degree of uniformity in
the distribution between parts. The higher the Dp/cpratio for a part, the more diversity per unit cumulative
frequency compared to another part that has alower value. Furthermore, this ratio is actually a true proportion as
faras the part {k;, k, } is concerned, since the redrawn SEE equivalent is actually uniform, and hence any portion P;

Dinwdal ¢ p, number of SEE types. The same intuition that we built using the
Clkika)

of this part will contain exactly —>2

Dy k)

Clkpka)
unit cumulative frequency and hence is a measure of the degree of uniformity of the part of the distribution from

index k; to k,. We focus on computing the ratio Dp/cp for a given part P next. Figure 3 below shows how a part of
the distribution of the type { k;, &} is mapped between the case-based entropy curve and the original distribution.

example above holds true for the general case as well i.e., the ratio —>2 will indicate the number of SEE types per

4. Computing the ratio Dp/cp for a part of a distribution

A Lorentz curve by the name of case-based entropy was introduced to compare distributions in (Rajaram and
Castellani 2016). The case-based entropy of a part P = {1, k} is defined as C;; 1, = DI‘)—I:’, where Dy 4, is the
diversity of the part Pand Dy is total diversity of K types. It is clear from the last section, that the ratio Dp/cp for a
part Pis a way to measure the degree of uniformity of the distribution in the part P. In this section, we show how
we can use the case-based entropy curve to compute the ratio Dp/cp for a given part P of a distribution.

We consider the parts denoted by indices P; = {1, k; } and P, = {1, k,}. We know the following:

D1k D1,k

and C{l,kz}

Ciky =
1 iy - Dx Lk Dy
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From equation (7) and dividing by the total diversity Dy, we have the following:

C| C C
D{ Lk} {1Lk2} B D{ Lk {Lky} D{k1+1,k2} {k1,k2)
1.k} - Dk (k) - Dk Clk+1,k} * Dx

We define the slopes of the secants on the case-based entropy curve joining the points (0, 0) and (cy; x},

D, . . . .
Ci1) by A{1 13- In other words Ay 4y = #.Usmg this, the above equation can be rewritten as:
K ¢{1,k}
ClLka) — A Lk} A Clki+1k2)
ALk = ALk A ) -
So,
€(1,k)
Alkienk) A{lykz}
{ki+1,k} ACtuky >
{Lki}
Clkyka) Lk}
( D41,k ) — DStkinka A{l,kz}
- YK ok P
Clip+ 1) * Dk Ak
. D
and solving for X2 ywe have
Clki+1,k2)

( (1,ka} )
C{k1+1,k2}
Dig1ky  PrAfig
(LK)
Clk+ 1k} A(f(k1+1,lk2})
{Lk}

Note that Dy is the total diversity and it is also known separately. In fact, everything on the right hand side of
the above equation is known.
Solving for Ay k) in the last equation above, we have:

(fu,kn) (‘(k1+1,kz))
_ ALk} ALk}
Apnk) = Al Al

where

C{1,k} Clh+1,k)

+ =1

k) ALk}
We now take the natural logarithm of both sides of the above equation to obtain a logarithmic interpolation
forumla. Thatis,

C{1,k

In (A1) = == In (A1) +
1k} k)
Lk} In (A1) = ey In (A + cik+ik) In (A 11,6)), or
iy In(Aqe) — cry In(Agey)

In (A1) = .
thrtkl (c{1Lk) — C(1kY)

C
LRI (A{k11,6,))> OF

If we plota graph of ¢(; ¢y versus ¢(1,xy - In(Ay 1)) , then the above formula is the slope of the secant line of the
curve joining the points A and B in figure 4. We note that this curve starts at (0, 0) and ends at (1, 0). We name
this curve as the slope of diversity curve.

In figure 4, points A and B have the following coordinates:

A — (1) oy In (Age))s
B — (c{1p Lk In(Aq15))-
Then In (A{k+1,k,) is the slope of the line joining A and B.

Let Sy, be the slope of the line joining (c{1,x}> {1,510 (Af1,K1)) and (¢j1,4) €(1,k} 10 (A(1,k,)))- Also, taking
exponentials, we have:

D
Dish) _ S, ©)

Clh+ 1k}
Then we have the following equivalence:
Dk < Diksks

} S, < S, <
= & Dgettirrhl = Dgedb ) & Sik-1k) = Stk Lka)-
Clky ko) Clks,ka}

This means, as shown in figure 5, that the ordering of the slopes of secants of parts of the slope of diversity
curve preserves the same ordering of the ratios of Dp/cp for the corresponding parts in the original distribution.
This means that the c;; ¢, versus ¢(y,ky*In(A;y ;) (slope of diversity) curve is a way to measure the relative degree
of uniformity of parts in the original distribution.

8
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Figure 4. Points to compute secant of c versus c¢*In A, (Slope of Diversity) curve.

Slope = §,
P -

c*In(4,)

k, k k. P

Cc—>

Figure 5. Comparing slopes on the slope of diversity curve.

Remark 4.1. We note that in the graph of slope of diversity, we use the convention that the index k = 0
corresponds to the point (0, 0) since none of the types in the distribution are included yet. And the point
~In(p,D)

1

correspondingtok = 1is ( Py ) Hence, the slope of the secant joiningk = 0 and k = 1

iS S{O,l} = —ln(plD).

We have that, Syx,_1,k) > Stk,—1,k,} means that
D{khkz} > D{k3)k4} ]
Clhyk) Clhs,ka}
For example, the part { k;, k,} has more SEE types per unit cumulative frequency than the part { k3, k4 } and

hence, is more uniformly distributed compared to the part { ks, k, }. Alternatively, we could form the ratio

St . . L . .

%, which tells us how much more or less uniformly distributed the part { ki, k, } is relative to the part
(k3—1,kq}

{ks, ky}. Hence, with the slope of diversity curve, we have definitively created a quantitative way to compare the

degree of uniformity of parts of a given distribution using the slopes of its secants.

Having established the importance of the ratio Dp/cpas a way to measure the degree of uniformity of a part
of adistribution, and created a way to compute Dp/cp, we now explore ways to compare the ratio Dp/cp for
different parts of a distribution, and its relationship to the original distribution.

5. Some results related to comparing Dp/cp for parts
In this section, we summarize our findings about comparison of the Dp/cp ratio of parts in the form of theorems.

Theorem 5.1. Let P; and P, be two parts of a probability distribution like in table 1. Then we have the following
equivalence:
Dp,

cp,

< Dp
Ap = Ap, & =2
> CP]

VA

Proof. Follows by definition of Ap and Ap,.
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Cec—

(0,0) k, k,

Figure 6. Comparing A’s to relate the Dp/cpratios.

Theorem 5.1 isillustrated in figure 6. The key point here is to note that for P, = {1,k;} and P, = {1,k,}, Ap,
and Ap, are slopes of secants on the case-based entropy curve between the points (0, 0) and (cp, Cp,) and the
points the points (0, 0) and (cp,, Cp,) respectively. So, the degree of uniformity of parts thatlook like P; = {1, k; }
and P, = {1, k, } can be directly compared from slopes of secants from the original case-based entropy curve.

However, if the parts of the type P; = {ky, k,} and P, = {ks, k,} where k; = 1 and k, = 1, then the case-based
entropy curve cannot be directly used to compare their degrees of uniformity. For these types of general
partitions that don’t start at the index 1, we need to plot slope of diversity curve like in figure 5. We summarize
this development in the previous section in the form of the following theorem:

Theorem 5.2. Let P, = {kj, k,} and P, = {k;, k4} be general disjoint parts of a probability distribution like in
table 1. Then we have the following equivalence:

D{klakz} D{k3,k4}

<
7 Clksky)

<
S{klfl,kz} f S{k3*1)k4} A k)
{ 1,82

Proof. Already explained in the previous section. We refer to figure 5 for an illustration as well.

Remark 5.1. We note that theorem 5.1 is subsumed by theorem 5.2. This is because we could choose partitions
oftheform P; = {1, kj}and P, = {1, k} and obtain the same ordering of the Dp/cp ratios for the parts P, and
P, in theorem 5.2. For such a partition {1, k}, the slope S x; is the slope of the line joining (0, 0) and

(ci1,kp €10 In Ay ). Hence, we have the following:

by In(Agk))

1k}

ik In (Agry)

{1k}

VIA

Stoky = Sto,k) S Ak = ALk

VIA

=
>

which shows that theorem 5.1 is subsumed by theorem 5.2.

We now state and prove an explicit relationship between the probabilities in the original distribution and the
slope of diversity curve. We note that this is the first time that the diversity of a distribution is directly related to
the individual probabilities in the distribution, thereby establishing a connection between the diversity and the
shape of the original distribution.

Theorem 5.3. Given a probability distribution like in table 1, we have the following:

pi = DgeSi-1h, (10)
k

Proof. We already showed the following in equation (9):

D
(kko} Dyg - eSth-1h),

Clkk)

Now, let’schoose kj = k, = k. Then, Dy, 1,y = Dixy = land cig k) = Ciik) = Py Thisimplies that
equation (9) becomes

10
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1
— =Dy eSik- LK)

or

This proves the Theorem.
Remark 5.2. We can alternatively explicitly show the relationship in the above theorem as follows:

e In(Aq ) — e In(Aqe—1y)

C{1,k) — C{Lk—1}

coondn (2o} o In (LPoxn
{1k} Dxcqiky) {Lk-1} Dieqrk—1y

Py
Dy c(1,k)/ Pr
Dkeqi,ky

Dyin) ciik-1)/ Py
Dieqik-1y

Sik—1,5) =

=In

[ 1 | D/ Py
—In|— .=
Dr \ i

[
=In R
_DK'Pk]

and exponentiating both sides gives us the result of theorem 5.3.

This means that we can completely reconstruct the original distribution simply by looking at slopes of the

form Sy, 1y forallk = 1,...,K, and computing
e~ Stk—1k)
by = Dx

This is a key reconstruction result, which is illustrated by the following graph:

Figure 7 shows that there is a one-to-one (injective) correspondence between the original distribution and
the case-based entropy curve via the slope of diversity curve. This is a new result.

It also means that two different distributions will give two different case based entropy curves that are unique
to the shape of each distribution. It also means that two different distributions will give two different slope of
diversity curves as well.

Theorem 5.4. Given a probability distribution like in table 1, let G, be the set of graphs of the original probability
distribution, G, be the set of graphs of the corresponding case-based entropy curves, and G be the set of graphs of the
corresponding slope of diversity curves, with g;, g, and gs denoting elements (graphs) in G, G, and G respectively. In
addition, let T; .y be the map from the graph G; to the graph Gy where j, k = 1, 2, 3. Then we have the following:

Tix: G =G (11)
is injective (or one-to-one).

Remark 5.3. We note that since the number of points on the original distribution curve, the case-based entropy
curve and the slope of diversity curve are equal, the map T;_x: G; —~ Gy is defined to be the natural map
between the points in the same order as they appear from left to right.

Proof.

(1) Ty Let g, glb € Gi. Wewill show below that T; ,(g") = 7]_,2(g1b) implies that g* = glb
Ti-2(g") = ﬂaz(glb) = ({1 Cliy) = (C{bl,k}’ C{bl,k}) vk
=cfin =y Vk=pf =p} Vk
Hence, T, .,(g") = Tlez(glb) =g' = glb-

This shows that the map T, _., is injective.

11
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P

Starting with our original distribution, we showed
how to compute the case-based entropy curve.

(1,1)

Pr(X=1x)

Slope = A4,

Cec—

g Orlgmal Distribution

We computed an explicit formula to go
backtop, forallk=1,...n

(0,0) g =
Case-Based Entropy Curve

To make this transition, we looked at slopes of the form A of
the line joining (0,0) and (¢, ,,, C,, ) on the case-based
entropy curve and computed (¢, *In (4., ) as a function of

(”‘k‘#.

’
c— \

The Slope of Diversity . . i

Figure 7. Reconstructing the original distribution.

(2) Let g, gzb € G,. Wewillshowbelow that T, .3(g)) = T, .3 (gzb )implies that g ' = g2b .

To3(8) = Tos(8) = (¢finys iy INAL ) = (s hup AL ) Y k.

b b b
=Lk = i and ¢y (A ) = ¢ (A ) Ve
D& D! D D!
Gw _ DPaw  _ Pha _ Diiw )

b
Dkcfiyy Dk C{bl,k} Dg Dg

=Aly = ALy

Cinky = Cipy Yk
Hence, T,_.;(g)) = T2H3(g2b) =g = gzb.
This shows that the map T5_, is injective.
(3) Let g}, g3b € Gs. Wewillshow below that T; ., (g)") = T3H1(g3b) implies that g;' = g;’ .
Toi(g) = Boa(g) = pf = py V=l = ¢ Vk

' pi
k rd k b
(1K} 1 |tk
b b
AISO, lk} = C Lk} H [ ) = C{l,k} H ) = D{l,k} Vk
i=1 i=1 A
D&, Db,
Hence, A{al,k} _ {1,k} — {1};} _ A{bl,k} vk

Dxcfigy  Dicig

And hence, (cfi 1> ¢t *In(Af 1)) = (s ¢ In(A ) V.
Hence, T;-(g;) = ,Ié*?l(gf) =g = g3h-

This shows that the map T; ., is injective.

Remark 5.4. We note that the inverse of an injective map is also injective. Hence, we could have shown that the
inverses of the maps T_,x are injective, and that would have also proved theorem 5.4. The key to any or all of
those proof steps is that both coordinates should match for two points to be equal, and that forces the uniqueness

of points because the equality of one of the coordinates (typically the x) leads to an equality of indices,

probabilities or camulative probabilities.

12
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(0.1614, 0.1468)

(0.8386, -0.1468)

Figure 8. Graph of ¢(; k; versus c(y,ky*In A(y k) for the infinite geometric distribution.

(0.1614, 0.1468)

(0.8386, -0.1468)

Figure 9. Graph of ¢(; k) versus c(1,*In A(y k) for the infinite geometric distribution showing secant lines on either side of ¢ = 0.5 that
have the same slope.

Remark 5.5. Theorem 5.4 is a significant improvement compared to the original notion of diversity as
introduced by (Hill 1973) and (Jost 2006) in its own right. This is because, the Hill numbers 9D are insensitive to
rearrangements in the original distribution. In other words, any permutation of the probabilities in the original
distribution will lead to the same value for the diversity D. This might be alright for qualitative distributions
such as for species in a forest, since in such a context, we are only interested in the diversity of the distribution
modulo permutations. However, the shape of the original probability distribution becomes extremely important
in the context of a quantitative distribution such as for income, where we are interested in quantifying and
comparing the amount of inequality (or degree of uniformity) that exists in different parts of the distribution.
Given that the graph of ¢y x) versus ¢y x*In Ay i) or slope of diversity g, € G is extremely useful to directly
read off the Dp/¢p ratios (which measure the degree of uniformity of parts) by looking at slopes of secants, such

13
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_a- x(1—q"))
1-gM

/

Corresponds to N=8 and g = 0.7

(g" In(g")

ln(l -x(1 —q”)) —xlnx —x a=a

y

0:2 04

Corresponds to N — o and for any p, g.

y=(1-x) In(l-x) -x Inx

Figure 10. Graph of ¢(, x; versus for the truncated finite (in red) and the infinite geometric distribution (in blue).

comparisons can be easily made from the graph of g, € G, indirectly by using g, € Gs.In this context,
establishing the injectivity of the maps Tj_, is an important step that allows us go back and forth between the
graphs G; and Gi. In essence, we have shown in theorem 5.4 that the shape of the original probability distribution
& € G uniquely determines the case-based entropy curve g, € G, and the slope of diversity curve g, € Gz, and
vice-versa.

6. Results relating the case-based entropy curve with the original probability distribution

In this section, we present some results that relate the case-based entropy curvei.e. c(y x; versus Cyy x curve to
the original probability distribution. The importance of these results stems from the fact that for the first time,
we have a connection between the variation of diversity of a given distribution in table 1 as measured by the case-
based entropy curve c(; x; versus Cy; x; and the slope of diversity curve ¢y x; versus the ¢(1,,*In Ay 4 curve, and
the probabilities py in the original distribution. This will achieve the objective of connecting the Hill numbers
from (Jost 2006, Leinster and Cobbold 2012, Chao and Jost 2015, Hsieh et al, 2016, Pavoine et al, 2016, Jost 2019)
to the shape of the original distribution.

Theorem 6.1. Given a probability distribution like in table 1, the average case-based entropy per cumulative
probability Ap, arerelated as follows:

[ @p)r=1. (12)

PeP
Proof. Divide equation (5) by Dx and rewriting using the fact that 3~ . pcp, = 1 we get:
1 Dp )" Dp, )"
=11 (_) =1l ( : ) = 11 @ny.
Dk pep \ cp, per \DPkep, PeP

Corollary 6.1. Given a probability distribution like in table 1, and a part P with a disjoint partition given by \J,P, the
average case-based entropy per cumulative probability Ap and Ap, are related as follows:

Ap)r = J] Ap)m (13)

PeP

Proof. This follows from dividing equation (7) in corollary 3.1 by the total diversity D.

14
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Theorem 6.2. Given a probability distribution like in table 1, we have the following:

Dy C(1,k)

[Ci1,x) (14)

VA
AN

il & [

Dyk+1),x3 C{(k+1),K}

W. efirst rewrite equation (5) for the partition given by P, = {1, k}and P, = {(k + 1), K} to get the following:

Dy C{(k+1),K}

D C(1,k} D, C{(k+1),K} D Do
Dy :( {l,k}) [(k+1),K) = Cuy = li)l,k} = oy | Do

Lk
C{1,k) C{(k+1),K} K K]
Hence, we have the following which proves the theorem:
Dy1,xy Cl(k+1),K) Dy1,xy
C D D D C
{1,k} = 1< <21;1+k1;,1<) = 1 & (Ztr;)).m = 1< {1k} = {1,k} )
Lk~ — > —— | > Dyt k) = Clak+1.K)
Cl(k+1),K} C(k+1),K}
Remark 6.1. Rearranging equation (14), we have
< Duy < cup Dy < Dig+i,xy
[Ciky = gl & = & = . (15)
> D+ k) = €1k k) 7 C(kr1K)
This means that
< Duy < Dig+n,x)
[A{l,k} ? 1] <~ [ ? .

{1k} C{(k+1),K}

This means that if the average case-based entropy per unit cumulative frequency i.e., the slope of the line joining
the points (0, 0) and (¢{y x> Cy1,43) on the case-based entropy curve is less than 1, then the portion of the original
probability distribution with indices {1, k} is less uniformly distributed compared to the portion of the original

probability distribution with indices {k + 1, K}.

Theorem 6.3. Given a probability distribution like in table 1, we have the following for any fixed k:

< >
Ciik o €k < Ce+1),k) _ U6k (16)

C, C, C C,
Dy — [ Pu I Dygyngy | _ [ Pui M Do |
{1,k C{(k+1),K) Dxcqr,xy Dy ck+1),5)

C C
N C{l,k} {1,k} C{(k+l),K} {(k+1),K} .
C{1,k} C{(k+1),K}

From the last equation above, this means the following:

C(1,k} Cl(k+1),K}
< C < C RS C >
o L {1k} 1o [ Sten 1 o [ StEenK 1
{1k} (1,k} E— —_
> CLky > C(L.k) > Cl(k+1).K) <

Proof.

Ci+1,xy | > >
ol — 1 Cla+nk)  Clk+1),K)
Ca+nky ) < <

This proves the theorem.

Theorem 6.4. Given a probability distribution like in table 1, and given a fixed index k, we have the following:

A1) =Dk
D1,k Py, Yk = (T) for any k. (17)
{1,k}

Proof. We rewrite equation (5) by using remark 3.2 restricting ourselves to a partition
Pr={1,....,(k = 1)}, P, = {k} oftheindexset {1,...,k}. Now, we rewrite equation (5) for this new partition
using the fact that py, ;) + ck-1)(, ;) = 1asbelow:

Clk=1y1 g
Dyg-ny| 1
Dy = (—

Ck—1)(1,k) (pk{l’k})l’ku,k)

15
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Ck=Dy1,5) Ck—1)
Dy, k- 1y) ‘ Apg-ny | ™
:>(D{1,k}pk(1)k} )pk“‘k’ =l = — .
Dy kyek—1y1,1 Af1ky

Remark 6.2. We remark that the following variation of equation (17) is true as well and the proof follows the
same lines and using the fact that p, k) T (1 — Wy = Lt

(1-c
Disor — | Preng i 1
k) = | ————— —
(1 - Ck){k,K} (Pk{k,K})pk‘k'“

(I =), (=),
Dy+1),k) ) e (A{(k+1),K}) e

Dy (1 — cixky Afkk)

=(Dik,k) Prik, ) YPrix) = ( (18)

Theorem 6.5. Given a probability distribution like in table 1, we have the following:

1
C{l,k}:C{l)k}Vk: ]'""K@pk = D_ Vk = 1,..,K. (19)
K

Proof.
Con=cun Vk=1,, K& Aun=1Vvk=1,. K

We use theorem 6.4 to get the following:

1
(D16 Prqaky W =1 = Priky =
D1y
1 D 1 1
op c 1 Dxe — — VYk=1,.,K.

k= = =
Duxy  DxDpky  ApkDrx Dk
In other words, the case-based entropy curve is a straight line joining (0, 0) and (1, 1) if and only if the original

distribution is uniform.

Theorem 6.6. Given a probability distribution like in table 1, we have the following:

1
Ciiky < ciky Yk > L for some L < p, < ———— Vk > M for some M (20)
DrAg,x

Proof. First, we note that
Chn<cuneAng <l1 Vk > L.
Wealso note that A(; g} = 1. This means that there exists some M > L so that
A{I,M} < A[l,(M+1))< <A{1,(k_1)] < A{l,K} =1,

or in other words, the sequence {A(; 1)} = is an increasing sequence that converges to 1, for some M > L.
Now, we have the following from equation (17):

Ak < 1Vk > M for some M > L

A1, k-1) o 1 x
:(D{l,k}pk 1.k )‘Dk“v"’ = — <1=p; < ——=p<
e Ak O Dy D1,y
o 1 DKCk 1

= = Vk>M
Dk Dy ApnDx

Going the other direction, we have:
1

pp < ———Vk>M= Dpnpip) <1 Vk>M
A Dx ’

Af1,k-1)

Ck=Dy1k)
= (Dy1k) Py ) < 1 Vk>M = ( }) <1Vk>M

Afrky

Al (-

= 2Lk} < 1= Anu-1y <Ak Vk > M.
ALk

Since Ay} = 1, we have that

Apy <1Vk>M4+1=Cuny<cury Vk>M+1,

and the sequence {Ay; x)} £y, is an increasing sequence that converges to 1. This proves the the theorem.
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Remark 6.3. In particular, if the sequence of average case-based entropies per unit frequency given by
{A(11)} F_pr1 increases to 1 very fast (or very slow), then the probabilities given by { pk}kK: a1 Will form aright
tail sequence of decreasing probabilities that decreases quickly (or slowly).

Theorem 6.7. Given a probability distribution like in table 1, we have the following:

1
Ciiky > cky Vk < L for some L < p, < ——— Vk < Mfor someM. (21)
Dy Ay

F. irst we note from remark 6.2, theorem 6.1 and theorem 6.3 that
Ciniy > ¢k € Crarnky < Cle+1,k) < Argkrnxy < 1 Vk < L.
Wealsonote that Ay gy = 1. This means that there exists some M > L so that
A{M,K} < A{(M—l),K}< <A{2,K} < A{I,K} =1,

or in other words, the sequence {A{(M, K.k} )} E(M; 18 is an increasing sequence that converges to 1, for some
M > L.Now, we have the following from remark 6.2:

Aqm-p.ky < 1Vk <M forsomeM > L

(A —cx.xy 1
) <1 = Prgxy < T
D,k

A+ 1K
é(D{k,K}pk{k,K} )Pk(k,l() — M
Afkk)

(1 — c-1) _ Dr(1 — cg-1)) 1

= Vk< M
Dy Dy Dy xy Dx Ak

=p <

Going the other direction, we have:

1
P < —————Vk <M= (P Diks k) < 1 Vk < M.

Aqk+1),5y Dx

A{k+2),K)

A=+ 1)k + 1),k
) <1Vk>M

= (Pryks 1,5 Dl k) Piosnn <1 Vk <M = (
A+ 1,59

A
:>( {(k+2),K}

) < 1= Ay, < Atgsnky Yk < M.
Al 1,k)
Since A(y,k; = 1, we have that
Agsnxy <1 VE<M+ 1= Curnrg < qarnk Yk< M+ 1,
=Cih > iy Vhk< M+ 1

and the sequence {A{+1-k)x)} M_ ,isanincreasing sequence that converges to 1. This proves the theorem.

Remark 6.4. In particular, if the sequence of average case-based entropies per unit frequency given by
{Aja-nx ) 18 increases to 1 very fast (or very slow), then the probabilities given by { p, M will form aleft tail
sequence of increasing probabilities that increases quickly (or slowly).

Remark 6.5. We note that theorems 6.6 and 6.7 while giving us a sense of existence of tails on the right and left
ends of the original probability distributions, only give us conservative estimates on what exactly those
probabilities could be. We will see below that we can improve this significantly using the ¢, k) versus

¢,k In Aqy gy (slope of diversity) curve.

Theorem 6.8. Given a probability distribution like in table 1, then we have the following:

< >
P = Piy1 & Sti-niy = Siiv1y (22)
> <
Proof. We know that
i = DyeSik-1h,
Px
Now, if
<
b; N Pivv (23)
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1 > 1 > >
— = s eSi-u = oSty & S{i—l,i} = S{i,i+1}-
b < P < <
This proves the Theorem.

Remark 6.6. If S(;1,;) < Sii1)foralli = k,...,K — Ithen p, > p, ,foralli = k,...,K leading to aright tail.
Also, if §;—1,iy > Sgiir1yforalli = 1,....,k — 1,then p, < p, | foralli=1,...,kleading to aleft tail of
probabilities. Equation (23) explicitly dictates how sharply the probabilities decay at either tail, depending on
how sharply the slopes Six_1,ky decay in the ¢y 1} versus ¢y 4 *In Ay &y curve. Hence, this vastly improves
theorems 6.6 and 6.7.

7. Geometric distribution example

In this section, we use the geometric distribution as an example to illustrate some of the results related to the
¢(1ky versus ¢y ky¥In ¢y k) (slope of diversity) curve. Since most of the results from the ¢;; ¢ versus Cy; 4 curve
(the case-based entropy curve) are subsumed by the ¢(, & versus ¢;; 4 *In ¢fy ) curve, we only focus on
demonstrating the usefulness of the latter using the geometric distribution.

We consider a geometric random variable X = 1, 2, 3,... and define

p=PX=1i)=pq"",
g - —PIn() — qln(q)’ and
p

1
qu/P) ’

The entropy H and the diversity D can be easily calculated.
We truncate up to i = K and re-normalize the probabilities p, (so that theyadd up to 1) to get

@i—1)
b= P4 _,
1—-4q
ey =1 — g%,
H H+ Kq® In(g), and
(1L,K} = — ,
(1 -4
KqK

q
D“)K} = Dq(lqu> = D(qk)qK/(lqu).

Notice that g = 1 — ¢(; x},50 Dy1.xy = D(1 — ¢y, ~0x0/00, Thus,

D
Cury = {I;K} = (1 — ! —enw/enn
A = Dury _ (A —cur
Doy C(LK)

1—c¢ K
(A1) = — = In(1 — ¢4 — In(er.x)
C{1,K}

iy In(Aqx) = A = ¢ eIn(l — ¢x) — cuxyInleqxy)-

So, interestingly enough, for the geometric distribution with infinite support, we have an explicit expression for
i,y In(Aqy ky) as afunction of ¢y ky, and it is independent of p or g.
Let K be the index corresponding to 1,8y = 0.5. Then,

(0.5)In(A;; z, = 0.5In(0.5) — 0.5In(0.5) = 0.

This implies that A(; gy = 1and that Duti — b Thisalso implies that A(g 1 o) = land Dk _ p,

LRy ClR+1,00)

So, no matter the choice of p and g, all geometric distributions satisfy the property that ¢(; z, = 0.5 splits the
distribution into two parts, both of which have the same number of SEE types equal to the diversity of the entire
distribution as shown by figure 8.

So, the SEE types of the first half up to ¢ = 0.5 and the second half from ¢ = 0.5 to ¢ = 1 are equal and equal to
D, which is the total diversity of the entire distribution. That’s an interesting result since the number of types K
corresponding to ¢y gy = 0.5is finite which means there are infinitely many types from ¢ = 0.5to c = 1, and yet
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D, _ DC(IQH,oo) -D

C1,k) (R +1,00}

C(1Lk)

In fact, much moreis true. Let y = ¢y xyIn(A,, ) and x = ¢y 1y. Then,
y=fx) =1 — x)ln(l — x) — xIn(x) is symmetric about x = 0.5 so that (0.5 + ) = — (0.5 — ¢) for
0<t<0/5.

This means that for every secant line to the left of x = 0.5, we can find another matching secant line to the
right of x = 0.5 with the same slope, as the figure illustrates. That is, for any subset of types { k, k, } to the left of
x = 0.5, there is an equivalent subset of types { k3, k4} to the right of x = 0.5 (possibly with more types) that have
the same number of SEE types as shown in figure 9.

Sincef(c)=—f(1 —¢)and f(x) = (1 — x)In(1 — x) — x In(x), we know that
fla) — f(a)

(a—a)
(- a) — (—f( - )
(a—a)
_fAd-e-f0-a

1l-0)—-0-a)

=5

So, in fact the ? value (number of SEE types) for the part of the distribution from (¢;, ¢,) is equal to the %
value from (1 — ¢;, 1 — ¢,). Note thatif¢; < ¢; < 0.5then 0.5 < (1 — ¢,) < (1 — ¢;) is on the other side of ¢ = 0.5.

7.1. Truncated geometric distribution
Now, we look at the truncated geometric distribution: x = 1,...,N. The probabilities are normalized to add up to
1 asbelow:

pg*? :
8 (1 —q")

Let’s concentrate on the part from {1, K}. Then we have
K
LK =) P
i=1
K

_ p SO gD

(1 - qN)i:I
__ p0 =45
1 —-gMHa -9

_(1-4F
l—qN.

We again normalize the probabilities for the part { 1, K} to get ﬁi = (f q_:z) Jfori=1,...,K. So, all of the

formulas for {1, K} are the same as the {1, K} formulas from the previous section. Thus, for {1, N}, we replace all
formulas from {1, K} with K = N as follows:

p. P —qnt@ _, (P )
p q’]/? ’
Dy = DgNa"/=q");
Dy = DqKq‘(/aqu); and
D KoK NgN
e _ ),

-5 a-qN

Cixy =
(1N}

Recall that

1— qK

1—gN’

1 — g8 =c0 —qY), and
gX=1— ¢ (1 — gM).

Gk} =
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So,
1*5(1,1<)(1*4N>
(1 — 1 — g™)] ano-d
Cixy = NN N
(q )(q /(1=q™)
and
C
Apxy = L
C{1,K}
N 1=k} —q™)
1 — 1 — ‘(LK a—gN
1 SIES Il ) B In(A1,x))
¢,k (gN)@/a=a™ )
1—c¢ K (l — N) N
_( - “}(1} qu) In(1 — e — qV)) — In(cy) — ﬁln(cﬂ).
Ly (1 — -
Thus,
1 - C{I,K}(l - qN) N N N
ki In(Apxy) = In(1 — ¢, (1 — g™) — ey In(exy) — ¢y —==In(g@™).
(1 —q" (1 —q"

Hence, for the truncated and normalized geometric distribution, the formula for ¢(; x;*In Ay g, is not
independent of p and q. The blue graph in figure 10 corresponds to N approaching infinity, for any p and q. The
red graph corresponds to N =8 and g = 0.7.

8. Conclusion

Given the real-world challenges of measuring diversity we had two objectives for this study. First, to introduce
and justify the ratio Dp/cpas a measure of degree of uniformity of a part of a given distribution in table 1. Second,
to prove results that concretely link the case-based entropy curve and the original probability distribution (via
the slope of diversity curve), thereby (for the first time), establishing an explicit and concrete link between the
diversity of parts of a distribution and the original probabilities themselves. We have achieved both objectives in
this paper, and also demonstrated how to compute some of the quantities such as the ¢y ¢ versus ¢(y k™ In Ay 5
curve for the geometric distribution, which we call the slope of diversity.

These two results are an important step towards concretely comparing and contrasting the degrees of
uniformity of parts of a given probability distribution within and across different distributions, given that most
real-world systems have unequal distributions, varying frequencies, and comprise multiple diversity types with
unknown frequencies that can change. Such systems, as we mentioned in the introduction, include income
distributions, economic complexity indices, ecological systems, species diversity, and ranking systems, from
genes and exposomic biological assays to measures of economic and health inequality. For example, returning to
the Gini coefficient from the introduction, our approach allows for several advances. First, because our approach
does not conflate different distributions with the same coefficient, we can provide a unique case-based entropy
or slope of diversity curve for each and every income distribution.

Second, we can also provide, for any given country’s income distribution, the precise quantification of the
relationship between the probability of each income level (p;) and the total income diversity D for any country,
both among parts of their respective income distribution as well as the whole using the case-based entropy and
the slope of diversity curves. The Gini index cannot do that, for example.

Third, we have also established a concrete quantitative means of comparing the degree of uniformity of
parts of a distribution. Such a comparison is extremely important in studying the prevalence of inequality
(as in the case of incomes, for example) in whole distributions and their parts. A quantifiable measure of the
degree of uniformity (or inequality) for quantitative variables such as income and resources, will pave the way to
formulate policies that will lead to equity in distribution of resources, and also measure such an achievement by
using the Dp/cpratio.

Fourth, we have closed the gap that exists in the literature on diversity measures by explicitly relating the
diversity of parts of a distribution to the probabilities in the original distribution. We have also shown, to repeat a
point, in theorem 5.4 that the shape of the original distribution uniquely determines the diversity of its parts and
vice-versa. Furthermore, we have also shown how to explicitly compute the individual probabilities of the
original distribution, as in the case of income for example, from the case-based entropy curve. Thisis a
significant step towards linking the concept of diversity to the shape of the original distribution which, as we
have commented in remark 5.5, is extremely important in quantifying and locating regions in the original
distribution that are more or less unequally distributed.
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In a sense, the two objectives of the paper are inter-twined in the following way: Diversity (or the ratio Dp/cp)

is a measure of uniformity of a distribution, and hence we need to justify its use and show that Dp/cp can be
computed for any part of a distribution easily, which was the first objective. Given the distribution of diversity in
the form of the case-based entropy curve, computation of Dp/cp, and its use as a measure of uniformity of a given

part

of adistribution would be meaningless unless the variation of diversity of parts in a given distribution (in the

form of the case-based entropy curve) uniquely determines the original distribution. This was the point of the
second objective. In summary, we need to know how to measure and quantify inequality within parts of a
distribution, need to know how to compute such a quantification, and we also need to be reassured that there is a
one-to-one correspondence between such a computation and the variation of probabilities in the original
distribution (i.e., the shape of the original distribution). The last point is important, thinking about such
measures as the Gini index, as we do not want two different distributions that have completely different shapes
to lead to the same quantification of inequality, as it would then be difficult to pinpoint the original distribution
(or its parts) by simply studying the variation of inequality (or diversity).

We conclude by stating that in our future work, we will endeavor to extend the results in this paper to
continuous distributions, and also try to apply the results to improve any existing measures of inequality in the
context of quantitative distributions, specifically the Gini index.

Data availability statement

No new data were created or analysed in this study.

Appendix. Notation

(6]
)
3
“)
©)

©6)
@)

®)

©

(10)

an

(12)
13)
(14

K: The number of types in a distribution.

Dy Diversity of the entire distribution i.e., all K types.

Dp: Diversity of the part P

cp: Sum of probabilities (or cumulative probability) of the part P.

‘P: An ascending disjoint partition of the set of indices { 1,..,K} such that every element P, € P satisfies the
property that i < j = max P, < max P;. In other words, the partition preserves the ordering of the
numbers { 1,..,K}. In particular, the member {i, (i + 1),..,j} denotes the types in the distribution between
indices i and j and will be denoted by {1, j}.

Dp,: Diversity of the part of the distribution corresponding to indices in P, € P.
cp, = Y_jep by sum of probabilities of types in the part of the distribution corresponding to indices
inP e P.

Py = /R |
l{l)l} €q1,i) Z;{:lpk Z;(:lfk
b no 4

Pip, for any partition P, € Pi.e., bip, = S S

: conditional probabilities for the first i types | = 1,..,i. Same definition for

ciy1,i) = —— = ——: conditional cumulative probabilities for the firsti types I = 1,..,i. Same definition
C(u,i) Ch=1Px
for ¢;p, for any partition P, € Pi.e., cip, = CC_’ =5 o o Soin general, whenever there is a partition P;as a
Pi kep; Pk

subscript, it means that we are dividing the probability (or cumulative probability) in the base by cp..

Cp, Dy, . . -
Ap = C—P’ = ﬁ: Average case-based entropy per unit cumulative probability of the part of the
P; K*CP;
distribution corresponding to indicesin P, € P.

Stk k)= slope of the line joining (¢{1,k}> {1,510 (A(1,k1)) and ({1 k) (1,6} 10 (A(1,k,})) On the ¢y &) versus
1,k 1n(Aq1,xy) (or slope of diversity) curve.

Gy: This is the set of all probability distributions like in table 1 with elements denoted by g;.
G,: This is the set of all case-based entropy curves with elements denoted by g.

Gs: This is the set of all slope of diversity curves with elemetns denoted by gs.
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