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A B S T R A C T

Modelling the mechanical behaviour of structural systems where the system size approaches that
of the material microstructure (such as in MEMS) presents challenges to the standard continuum
assumption and classical models can fail to predict important phenomena. Of the various non-
conventional continuum frameworks developed to tackle this issue, the micropolar (Cosserat)
continuum is widely acknowledged as a suitable and rigorous alternative for its ability to
naturally predict size effects by introducing characteristic length scales. This work proposes
an implementation of geometrically non-linear micropolar theory using an implicit Material
Point method, for the purpose of simulating nanoscale large-deformation problems involving
Hookean materials. The framework employs an analytically-derived consistent tangent, and is
verified with a novel benchmark problem derived using the Method of Manufactured Solutions.
Due to similarities between the methods, many aspects of the formulation could be used to
construct an Updated Lagrangian Finite Element Method.
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1. Introduction

All engineering structures are themselves made of smaller structures. The constituent units (such as metal crystals or polymer
hains) are so small and inconsequential, however, that the structure can usually be assumed to comprise completely continuous
atter: the so-called continuum assumption. This is generally a reasonable pretence, and is one of a number of simplifications made

o formulate the classical continuum theories used almost universally to model and design real-life structures. That said, when the
verall structural scale is small enough that it approaches that of the microstructure, as is the case in many contemporary miniature
ndustrial applications like microelectromechanical systems (MEMS), wearable electronics and nanoparticle technology, salient size
ffects in terms of hardness, stiffness and toughness are observed (see e.g. [1]) and conventional models are rendered invalid. A
ifferent approach is required [2]. Explicitly modelling a body as an assembly of discrete particles, however, entails significant
ifficulties, including great computational cost. A more pragmatic approach, and remaining in a familiar continuum mechanics
aradigm, is to use a non-conventional continuum theory which offers information about the material microstructure, particularly
hen it is cellular, crystalline or granular in nature [3].

The idea of a generalised continuum was first conceived for crystalline materials in the latter part of the 19th Century by
oigt [4]. Because Voigt’s theory includes couples (moments), and therefore violates the Boltzmann(-Hamel) ‘axiom’ stipulating the
ymmetry of the Cauchy stress tensor [5, p. 326], it is classified as a member of the family of non-Boltzmann formulations. Micropolar
heory is another member, and may be considered an extension of Voigt’s couple-stress elasticity. The theory was proposed in a
rimitive form by the Cosserat brothers in 1909 [6], and was further developed by Eringen, Mindlin and others over half a century
ater [7–11]. It was generally regarded as too obscure for much practical use, though, until Mühlhaus and Vardoulakis discovered its
bility to predict localised failure zones (shear bands) of finite thickness in soils [12] — at the time an open problem in geomechanics.
he regularisation of localisation problems, although outside the scope of this work, is now recognised as one of the theory’s main
otentials.

Fundamentally, the micropolar model is based on the inclusion of independent microrotations so that, in three dimensions, there
re six degrees-of-freedom: three translations and three rotations. The gradient of the microrotations, or curvature, is included as
deformation measure, classifying the theory as higher-order and weakly non-local, and requiring the existence of couple-stresses

moments or torques per unit area) for conjugacy. The theory also introduces the idea of characteristic length scales, as constants
ith the dimension of length appear in the constitutive relationship between the microrotations and couple-stresses. It is through this
echanism that the stiffness of a micropolar continuum directly depends on the relative size of the overall structure to characteristic

engths — the size effect, in other words. Although their physical meaning is the subject of debate, recent studies provide an account
f the determination of the characteristic length scales of micropolar theory and related gradient theories via homogenisation of
eterogeneous materials (see e.g. [13–16]). They are also often intuitively taken to be indicative of the size of the microstructure,
.g. the diameter of one particle within a nanoparticle assembly. The independent rotation field, which is not directly coupled to the
isplacements (or therefore to the continuum macrorotation) also particularly qualifies the theory for modelling granular media, in
hich individual particles have been observed to rotate relative to each other and exert moments [12,17]. Whereas other non-local

ormulations generally include non-rigorous dependencies or parameters which must be determined by trial and error, crucially
ll elements of micropolar theory are derived from thermodynamic principles and have a physical basis in structured, oriented
edia [13].

Numerical implementations of the micropolar continuum first emerged in the 1990s beginning with a Finite Element Method
FEM) developed by de Borst [18,19], following the renewed interest in the theory as a regularisation technique. In the decades
ince, linearised micropolar theory has been implemented within FEMs for a variety of purposes (e.g. [20–25]), but to the best of the
uthors’ knowledge only a handful of examples using the three-dimensional geometrically-exact non-linear theory exist [26–28],1
uilding on its well-established mathematical foundations [31–33]. Of these, only Erdelj et al. [28] considered purely geometric
on-linearity, formulating a Total Lagrangian (TL) FEM with the classical linear isotropic micropolar constitutive laws.

But despite the fact the FEM has become the tool of choice for analysis of solid mechanics problems, it can suffer from numerical
rrors due to mesh distortion when modelling large deformations [34]. One solution would be to remesh the entire domain, but this
sually engenders numerical difficulties, particularly surrounding projection of history and field variables and computational cost.
nstead, alternative numerical methods which are not solely mesh-based may be employed, such as various meshless or particle-based
ethods. The Material Point Method (MPM) [35] is a hybrid example of these, using a domain discretised into particles – ‘material
oints’ – which are used as the integration points for a background FE mesh. As shown in Fig. 1, the material points’ positions are
pdated in each step but the mesh is discarded and reset, essentially providing a new, undistorted grid each time – regardless of the
agnitude of the deformation – and minimising any adverse effects from mesh distortion. The MPM is therefore very well suited to

imulating large deformation problems (e.g. [36–38]), while retaining much of the familiarity and computational simplicity of the
EM.

The MPM in its original form does however possess several minor drawbacks, including the well-known cell-crossing error,
here stiffness instabilities lead to material points oscillating non-physically and exhibiting spurious stresses when moving between
ackground grid elements. A recognised solution is adoption of the Generalised Interpolation MPM (GIMPM) [39], where material
oints are no longer just points, but exert domains of influence which may extend into several grid elements. This not only reduces
scillations, but can also help alleviate integration errors arising from poorly-filled elements. The GIMPM is therefore used later in

1 Bauer et al. [29] and Grammenoudis and Tsakmakis [30] considered geometric non-linearity but made small strain assumptions.
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Fig. 1. The key numerical steps in the material point method.

some of the numerical examples in Section 4, and requires only minor modification to the calculation of the shape functions and
their derivatives — see Charlton et al. [40] for the exact formulation used.

Following an implementation of the Particle-in-Cell method (an early, less stable precursor to the MPM) [41], a micropolar MPM
first appeared only in 2022 [42]. This is an explicit method which, while very useful for highly dynamic problems, unfortunately
means a well-known lack of error control, placing restrictive limits on the size of time steps. Greatly improved numerical stability
is promised by instead employing implicit time integration, facilitating analyses with significantly fewer time or loadsteps2 and
reducing computational effort [43]. This is particularly the case for quasi-static problems where inertial effects are negligible.

Building on the preliminary work presented in [44], the basis of this article is therefore the development of an implicit
micropolar MPM, motivated by 3D large-deformation quasi-static problems involving Hookean materials, such as those observed in
the manufacture and operation of nanoscale components and assemblies. A similar approach is adopted as in [28], using the linear
stress–strain laws defined in the reference/material frame. An Updated Lagrangian (UL) numerical formulation is much more suitable
here, however, as a TL framework would require retention of previous reference configurations, nullifying one of the MPM’s key
advantages [45]. Therefore the governing equations are instead solved in the spatial frame. Microrotations are also dealt with in a
careful yet numerically efficient manner, avoiding singularities encountered by other approaches (e.g. [26]) and allowing for a more
concise consistent linearisation. The formulation is verified rigorously through the Method of Manufactured Solutions, demonstrating
the correct numerical convergence and confirming the accuracy of the consistent tangent. Additional numerical examples are given
to show that the method ably demonstrates the size effect, and can handle problems involving large rotations in three dimensions.

2. The non-linear micropolar continuum

In this section, the governing equations of non-linear micropolar theory are presented. Here, and in all that follows, lightface
characters denote scalars, and those in boldface represent vectors, matrices and all tensors of order at least one. Indicial tensor
notation is also used when necessary for the sake of clarity; in particular, lower-case Greek indices refer to material quantities, and
lower- and upper-case Latin indices refer to spatial and numerical quantities respectively. The Einstein summation convention is
employed.

2.1. Kinematics

With reference to Fig. 2, let a three-dimensional micropolar continuum occupy a volume 𝛺 in its current (deformed) configu-
ration. Every point in 𝛺 exists at a Cartesian position 𝒙 (relative to a fixed origin) which is referred to its initial position 𝑿 in the
reference volume 𝛺0 via

𝒙 = 𝑿 + 𝒖 (1)

2 For example, a torsion problem given in [42] used 8 × 105 time steps. A similar problem covered in Section 4.3 required only fifty.
3
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Fig. 2. The configurations of a micropolar continuum in a space described by a Cartesian coordinate system. Microrotational kinematics are shown in blue. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

sing the translation vector 𝒖. The deformation gradient tensor 𝑭 provides the fundamental map d𝒙 = 𝑭 d𝑿 so that

𝑭 = 𝜕𝒙
𝜕𝑿

= 𝑰 + 𝜕𝒖
𝜕𝑿

(2)

where 𝑰 is the second-order identity tensor, leading to a definition of local volume change 𝐽 = det(𝑭 ) > 0 where det(∙) denotes the
determinant.

To visualise the micropolar continuum, one may like to imagine that attached to each point in the microcontinuum is a set of
three orthonormal axes.3 These polar directors are free to rotate independently of deformation occurring at the continuum scale.

he set of rotated axes {𝒌𝑖}𝑖∈{1,2,3} in the current configuration is related to its counterpart set {𝑾 𝑖} (aligned with the Cartesian
oordinate axes of the space) in the reference configuration through the relation

𝒌𝑖 = 𝑸𝑾 𝑖, (3)

here, using ⊗ to denote the tensor product, 𝑸 =
∑3
𝑖=1(𝒌𝑖 ⊗ 𝑾 𝑖) ∈ SO(3) is a proper orthogonal transformation termed the

icrorotation tensor. The Lie group designation SO(3) (special orthogonal with three independent parameters, i.e. the 3D rotation
roup) means 𝑸 must fulfil certain well-known properties, namely 𝑸T = 𝑸−1 and det (𝑸) = +1, where (∙)T denotes matrix transpose.4
he multiplicative nature of finite rotations, exemplified by (3) (cf. the additive structure of (1)), can easily lead to confusion and
hus requires careful consideration.

Via Euler’s rotation theory [46], the 3D rotation transforming the reference axes into the current ones may also be parameterised
s a single rotation 𝜑 occurring around some axis 𝝋, where 𝜑 = ‖𝝋‖, using ‖(∙)‖ to denote the 𝐿2-norm. This axis is known simply
s the microrotation vector. The skew-symmetric tensor �̂� for which 𝝋 is the associated axial (pseudo-)vector5 follows as

�̂� = −𝒆𝝋 =
⎡

⎢

⎢

⎣

0 −𝜑3 𝜑2
𝜑3 0 −𝜑1
−𝜑2 𝜑1 0

⎤

⎥

⎥

⎦

, �̂�𝑖𝑗 = −𝑒𝑖𝑗𝑘𝜑𝑘 (4)

where 𝒆 is the third-order Levi-Civita, or permutation, tensor), such that �̂� ∈ so(3) is a Lie algebra obeying the condition �̂� = −�̂�T.
his algebra is a linearisation of the corresponding Lie group, occupying a space lying tangent to the SO(3) manifold. This
angent space can be operated in additively for plane or infinitesimal rotations, however for finite three-dimensional rotations the
ultiplicative microrotation tensor must be used to fully capture the field’s non-linearity.

A microrotation tensor can be generated from its corresponding microrotation vector using the canonical exponential map

𝑸 = exp
(

�̂�
)

=
∞
∑

𝑛=0

1
𝑛!
�̂�𝑛 (5)

r the (Euler-)Rodrigues formula [47]

𝑸 = 𝑰 +
sin𝜑
𝜑

�̂� +
1 − cos𝜑

𝜑2
�̂�2 (6)

3 The trièdre of the Cosserat brothers [6, p. 122], sometimes translated as a triad(e) of directors.
4 These conditions preserve the length, orthogonality and handedness of the three micropolar directors.
5 The (̂∙) notation is used throughout this work to indicate when a quantity is the skew-symmetric tensor formed from a vector (∙).
4
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in closed form. Several other methods are available for manipulation of finite rotations, including spectral decomposition and a
special implementation of quaternions.6 Note that the formal definitions (5) and (6) are not actually used in the present formulation,
n favour of a quaternion rotation algorithm detailed in Section 3.2.2 utilised for its notable computational efficiency [50].

.2. Deformation measures

The deformation gradient can now be decomposed multiplicatively7 into a microrotation component and a stretch component

𝑭 = 𝑸𝑼 = 𝑽 𝑸 (7)

where 𝑼 is the material stretch tensor and 𝑽 its spatial counterpart. Both stretches are generally non-symmetric. A material strain
measure is then given by

𝑬 = 𝑼 − 𝑰 = 𝑸T𝑭 − 𝑰 . (8)

hich is also known as the ‘first Cosserat deformation measure’ [51]. The corresponding spatial strain measure is obtained similarly
s

𝑮 = 𝑰 − 𝑽 −1 = 𝑰 −𝑸𝑭 −1 (9)

hich can be pulled back to recover

𝑬 = 𝑸T𝑮𝑭 . (10)

In the micropolar continuum, a second deformation metric is required to capture the energetic contribution of changes in
icrorotation. Several options are available here, but in keeping with much of the literature we choose to work with the most

natural’ [52] material second-order wryness tensor

𝜞 = −1
2
𝒆 ∶ 𝑸T 𝜕𝑸

𝜕𝑿
, 𝛤𝛾𝜋 = −1

2
𝑒𝛾𝜏𝜂𝑄𝑝𝜏

𝜕𝑄𝑝𝜂
𝜕𝑋𝜋

, (11)

where : denotes a double contraction. By relying on the rotation gradient, or curvature, the wryness tensor provides a sense of
deformation occurring around the point in question, not just immediately at it. It is this quantity – the ‘second Cosserat deformation
measure’ – which endows micropolar theory with its non-local property.

2.3. Equilibrium equations

In the quasi-static case, the balance of linear and angular momenta acting on a small (but larger in scale than that of the
microstructure) spatial element of volume in 𝛺 are given by

𝜕𝝈
𝜕𝒙

+ 𝒑 = 𝟎 (12)
𝜕𝝁
𝜕𝒙

− 𝒆 ∶ 𝝈 +𝒎 = 𝟎 (13)

where 𝒑 and 𝒎 are body force and body couple loadings which lead to a Cauchy stress 𝝈 and couple-stress 𝝁 field. Note that the
presence of couples in the angular momentum balance equation (13), which is satisfied trivially in classical continua through equality
of complementary shear stresses, means the stress tensor is not required to be symmetric in general. Eqs. (12) and (13) are coupled
with Dirichlet boundary conditions which directly set the value of the primary field variables (translation and the microrotation
vector) and Neumann boundary conditions

𝝈𝒏 = �̄� (14)

𝝁𝒏 = �̄�𝑐 (15)

where 𝒏 is the outward normal vector of the surface of 𝛺, and �̄� and �̄�𝑐 are the applied force traction and couple traction respectively.
Alternatively, by applying pull-back operations as in (10) the balance laws may be expressed in terms of material Biot-like stresses8

acting on a material element of 𝛺0, giving [28]
𝜕(𝑸𝑩)
𝜕𝑿

+ 𝑷 = 𝟎 (16)

𝜕(𝑸𝑺)
𝜕𝑿

− 𝒆 ∶ (𝑸𝑩𝑭 T) +𝑴 = 𝟎 (17)

6 For a limpid and comprehensive review readers are directed to [48] and also [49] specifically for quaternions.
7 N.B. this is not the polar decomposition conventionally performed on the deformation gradient to obtain the macrorotation 𝑹. When 𝑸 = 𝑹 (i.e. when the

microrotation follows the macrorotation exactly) then lower-order behaviour is recovered.
8 Although UL formulations usually only deal with actions on the spatial body, material stresses must be considered here to permit use of the classical
5

micropolar constitutive equations.
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Table 1
The technical constants related to the constitutive parameters introduced by micropolar theory [54].

Quantity Symbol Physical meaning Range Units

Polar ratio 𝜓 ‘Poisson’s ratio for torsion’ 0–1.5 –
Characteristic length in torsion 𝓁𝑡 Affects torsional stiffness ≥0 m
Characteristic length in bending 𝓁𝑏 Affects bending stiffness ≥0 m
Coupling number 𝑁 Degree of microrotation-displacement coupling 0–1 –

where 𝑷 and 𝑴 are body force and couple per unit of undeformed volume. The Biot-like stress 𝑩 and couple-stress 𝑺 can be obtained
from the Cauchy measures as follows:

𝑩 = 𝐽𝑸T𝝈𝑭 −T (18)

𝑺 = 𝐽𝑸T𝝁𝑭 −T. (19)

2.4. Constitutive equations

The scope of this work is limited to linear materials which obey Hooke’s law, so the classical micropolar constitutive laws for
isotropic, centrosymmetric materials are to be employed as in Neff et al. [53]. We define them only in the reference frame to ease
conservation of their objectivity. The Biot-like stresses can be obtained directly from the material strain and wryness measures as

𝑩 = 𝜆tr(𝑬)𝑰 + 𝜇(1 + 𝑎)𝑬 + 𝜇(1 − 𝑎)𝑬T = 𝑫 ∶ 𝑬 (20)

𝑺 = 𝛼tr(𝜞 )𝑰 + (𝛽 + 𝛾)𝜞 + (𝛽 − 𝛾)𝜞 T = �̃� ∶ 𝜞 (21)

where tr(∙) denotes matrix trace and 𝑫 and �̃� are fourth-order constitutive tensors which include the Lamé parameters 𝜆 and 𝜇 and
additional micropolar constants 𝑎, 𝛼, 𝛽 and 𝛾. Although these new constants do not necessarily have a direct physical significance,
they can be related to a set of engineering parameters (described in Table 1) as follows [13]:

𝑎 = 𝑁2

1 −𝑁2
(22)

𝛼 =
2𝜇𝓁2

𝑡 (1 − 𝜓)
𝜓

(23)

𝛽 = 𝜇𝓁2
𝑡 (24)

𝛾 = 𝜇(4𝓁2
𝑏 − 𝓁2

𝑡 ). (25)

Although only very limited experimental investigations have so far taken place, complete sets of these parameters have been
derived for several materials including human bone and various foams [54]. It is worth remarking that couple-stress theory (also
known as micropolar theory with constrained rotations) [55] may be recovered as a special case by setting the coupling number 𝑁
equal to unity, and further reduction to the classical Cauchy–Boltzmann continuum is possible by assigning 𝑎 = 𝛼 = 𝛽 = 𝛾 = 0 [54].

3. Numerical implementation

This section does not give a complete numerical formulation as the implementation is based heavily on that of AMPLE (‘A Material
Point Learning Environment’), modified to accommodate the additional three rotational degrees of freedom by doubling the length
of the force and solution vectors, and adapting the detMPs.m subroutine for the internal force, couple and stiffness calculations
outlined in this section. Fields for the new rotational, stress, strain and wryness state variables at material points were also added
to the structured array mpData to be used over the course of the analyses. Readers are referred to Coombs and Augarde [56] and
the associated webpages for a more thorough exposition of the general framework used.

The continuum body 𝛺 is divided into a number of Lagrangian material points which occupy a domain discretised into a
background mesh of elements joined at nodes. Multiplying strong forms (12) and (13) by a test vectors and integrating over the
volume yields corresponding weak forms, which are integrated by parts by applying the Gauss–Green theorem. The solution is
approximated with trial functions which, together with the test functions, are expressed as an interpolation of nodal quantities by
means of grid shape functions (which are convolved by a characteristic function in the GIMPM) contained in a matrix 𝑵 , leaving
the Galerkin forms of equilibrium

∫𝛺

( 𝜕𝑵
𝜕𝒙

)T
𝝈ℎ d𝛺 = ∫𝛺

𝑵T𝒑ℎ d𝛺 (26)

∫𝛺

(

( 𝜕𝑵
𝜕𝒙

)T
𝝁ℎ +𝑵T𝒆 ∶ 𝝈ℎ

)

d𝛺 = ∫𝛺
𝑵T𝒎ℎ d𝛺 . (27)

where (∙)ℎ denotes a numerical approximation. The left-hand sides represent the internal force 𝒑int and couple 𝒎int vectors while
the right-hand sides represent the external loadings 𝒑ext and 𝒎ext.
6
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3.1. Solution procedure

Solution of the discretised boundary-value problem for a fixed external load with a Newton–Raphson scheme requires an iterative
equence of consistent linearisation and incrementation of the LHSs of (26) and (27) until a convergence criterion is met. The
inearisation procedure produces a tangent stiffness matrix 𝑲 which essentially relates an increment in deformation to an increment

in force and couple, such that

𝛥𝒑int = 𝑲𝑝𝑢𝛥𝒖 +𝑲𝑝𝑤𝛥𝒘 (28)

𝛥𝒎int = 𝑲𝑚𝑢𝛥𝒖 +𝑲𝑚𝑤𝛥𝒘 (29)

where 𝛥𝒘 denotes an incremental rotation relative to the follower axes 𝒌 as oriented at the beginning of the current iteration. The
our submatrices which comprise the tangent stiffness matrix are derived fully in Appendix A, but for a single element 𝐸 they read

𝑲𝑝𝑢
𝐸 = ∫𝐸

𝑮T ∶ 𝐚 ∶ 𝑮 d𝛺 (30)

𝑲𝑝𝑤
𝐸 = ∫𝐸

𝑮T ∶ 𝐛 ∶ �̃� d𝛺 (31)

𝑲𝑞𝑢
𝐸 = ∫𝐸

�̃�T ∶ 𝐛T ∶ 𝑮 d𝛺 (32)

𝑲𝑞𝑤
𝐸 = ∫𝐸

(

�̃�T ∶ 𝐛 ∶ �̃� +𝑮T ∶
(

𝐜 ∶ 𝑮 + 𝐝 ∶ �̃�
)

)

d𝛺 (33)

here

𝐚 = 𝐽−1𝑻 ∶ 𝑫 ∶ 𝑻 T (34)

𝐛 = 𝐚 +𝜮 (35)

𝐜 = 𝐽−1𝑻 ∶ �̃� ∶ 𝑻 T (36)

nd for which it is more convenient to use index notation to define

𝑇𝑖𝑗𝛼𝛽 = 𝑄𝑖𝛼𝐹𝑗𝛽 (37)

𝛴𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑙𝜎𝑘𝑗 (38)

d𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑙𝜇𝑘𝑗 (39)

n which 𝛿𝑖𝑗 is the Kronecker delta. The matrices 𝑮 and �̃� contain the shape functions or their spatial derivatives in the forms

𝑮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁1
𝜕𝑥 0 0 ⋯

𝜕𝑁𝑛𝑛
𝜕𝑥 0 0

0 𝜕𝑁1
𝜕𝑦 0 ⋯ 0

𝜕𝑁𝑛𝑛
𝜕𝑦 0

0 0 𝜕𝑁1
𝜕𝑧 ⋯ 0 0

𝜕𝑁𝑛𝑛
𝜕𝑧

𝜕𝑁1
𝜕𝑦 0 0 ⋯

𝜕𝑁𝑛𝑛
𝜕𝑦 0 0

0 𝜕𝑁1
𝜕𝑥 0 ⋯ 0

𝜕𝑁𝑛𝑛
𝜕𝑥 0

0 𝜕𝑁1
𝜕𝑧 0 ⋯ 0

𝜕𝑁𝑛𝑛
𝜕𝑧 0

0 0 𝜕𝑁1
𝜕𝑦 ⋯ 0 0

𝜕𝑁𝑛𝑛
𝜕𝑦

0 0 𝜕𝑁1
𝜕𝑥 ⋯ 0 0

𝜕𝑁𝑛𝑛
𝜕𝑥

𝜕𝑁1
𝜕𝑧 0 0 ⋯

𝜕𝑁𝑛𝑛
𝜕𝑧 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(40)

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0 0 0

0 0 0 ⋯ 0 0 0

0 0 0 ⋯ 0 0 0

0 0 𝑁1 ⋯ 0 0 𝑁𝑛𝑛

0 0 −𝑁1 ⋯ 0 0 −𝑁𝑛𝑛

0 𝑁1 0 ⋯ 0 𝑁𝑛𝑛 0

0 −𝑁1 0 ⋯ 0 −𝑁𝑛𝑛 0

𝑁1 0 0 ⋯ 𝑁𝑛𝑛 0 0

−𝑁1 0 0 ⋯ −𝑁𝑛𝑛 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

where 𝑛𝑛 is the number of nodes affected by a material point, which is simply the number of nodes per element in the standard
MPM.
7
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The submatrices are assembled DOF-wise to make the global set of equations
{

𝒑res

𝒎res

}

=
[

𝑲𝑝𝑢 𝑲𝑝𝑤

𝑲𝑚𝑢 𝑲𝑚𝑤

]{

𝛥𝒖
𝛥𝒘

}

. (42)

his system is solved iteratively by taking the solution vector
{ 𝛥𝒖
𝛥𝒘

}

each time, updating the kinematics and stress fields accordingly,
nd checking whether the residual force 𝒑res and couple 𝒎res, where (∙)res = (∙)ext − (∙)int, are smaller than some degree of tolerance

typically of the order 10−9 when normalised by the external load.

.2. Update procedure

This section details the mapping of field variables from the nodes to, and the update of history variables at, the material points.
uantities described at grid nodes and material points are denoted with (∙)𝐻 and (∙)𝑃 respectively and, as a reminder, (̂∙) denotes

he skew-symmetric tensor formed from the components of a vector (∙) — see (4).

.2.1. Translation
The incremental translations 𝛥𝒖𝐻 are extracted from the solution vector and mapped to each material point via the shape

unctions, i.e.

𝛥𝒖𝑃 = 𝑵𝛥𝒖𝐻 . (43)

he material point’s position is then simple to update using the additive formula

𝒙𝑁+1
𝑃 = 𝒙𝑁𝑃 + 𝛥𝒖𝑃 . (44)

.2.2. Rotation
There is no perfect way to interpolate rotation parameters using conventional Lagrange polynomial interpolants [57]. This is for

number of reasons. For example, interpolating the nine individual values of the rotation tensor itself would erode its properties,
o longer guaranteeing a proper orthogonal rigid motion. A common alternative is to instead interpolate the equivalent rotation
ector; while this does ensure a rotation tensor fully adhering to the SO(3) conditions, its spatial variation unfortunately cannot
e fully captured by an isoparametric interpolation procedure based on additive contributions. This is because rotation vectors do
ot belong on a linear manifold or plane, and thus their concatenation cannot be achieved by simple addition. Instead they exist
n curvilinear space — a sphere of radius 𝜋 (or 2𝜋, depending on the definition used) [48]. More rigorous methods for rotation
nterpolation do exist, such as Spherical Linear intERPolation (SLERP) [49], but these inevitably come with added computational
ost, and generalisations beyond one-dimensional interpolation are crude (if they even exist at all). A non-standard interpolation of
he solution field would also have severe implications for the complexity of the consistent tangent and the method in general.
herefore, despite the method’s faults, the chosen approach is to use a conventional Lagrange polynomial interpolation of the
icrorotation vector in the same way that the translation vector is interpolated above, i.e.

𝛥𝒘𝑃 = 𝑵𝛥𝒘𝐻 . (45)

his means, however, that over the course of several iterations the poor interpolation is iteratively embedded into the value of
he microrotation tensor, leading to path dependency as first noted by Jelenić and Crisfield [58].9 But because imperfectly filled
lements engender integration errors (which depend on the path taken by the body through the grid) in the MPM anyway, the
dditional path dependency invoked by non-rigorous rotation interpolation is unlikely to diminish the reliability of the method by
ny significant degree. Therefore, although we acknowledge this flaw (which in the literature is usually ignored), we consider it too
inor to merit further consideration here and leave it as an open problem outside the scope of this contribution.

Clear distinction must now be drawn between the material ‘total’ rotation 𝝋, which is measured relative to the reference axes
𝑖, and the spatial ‘spin’ rotation 𝒘, which occurs relative to the rotating follower axes 𝒌𝑖. It is an increment in the latter for which

he numerical algorithm solves in each iteration and is mapped to the material points. Crucially, however, one must recognise that
new total rotation cannot be updated directly using this increment, i.e.

𝝋𝑁+1 ≠ 𝝋𝑁 + 𝛥𝒘, (46)

nd instead a multiplicative update procedure must be used as follows.10 The new rotation tensor is updated from its existing value
sing the increment 𝛥𝑸 = exp

{

(𝛥𝒘𝑃 )
}

given by the exponential mapping (5) or equivalent, as

𝑸𝑁+1 = (𝛥𝑸)𝑸𝑁 . (47)

9 See Sansour and Wagner [57] for a solution to this problem if this work is to be repurposed for a conventional Lagrangian FEM. It cannot unfortunately
e applied to the MPM as the proposed method requires storing history variables at grid nodes.
10 It is possible to formulate an approach which deals only with the total rotation vector 𝝋 and linear increments thereof (as done in [26]), but this leads

to an (even) more demanding linearisation and a cumbersome consistent tangent involving expensive evaluation of trigonometric functions. The rotation vector
8

formalism, when used alone in this way, also suffers from singularities due to loss of axis direction when passing through whole revolutions [50].
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Updating the rotation tensor in this way, however, is known to be computationally expensive, and can invoke poor conditioning
at 𝜑 ≈ 𝑛𝜋,∀ 𝑛 ∈ Z. The preferred method is via quaternions which, despite being less intuitive than rotation matrices, are a
demonstrably more efficient and robust way to represent and manipulate elements of SO(3) [49,50]. Moreover, by depending
on more than three independent parameters, the quaternion formalism does not suffer from a singularity known as gimbal lock11

experienced by some other representations of unrestrained rotation.
A quaternion  consists of a real scalar component 𝑞 and an imaginary vector component 𝒒 such that  = 𝑞 + 𝑖𝒒, where 𝑖 is the

imaginary unit. The reference form of , corresponding to the identity rotation tensor 𝑸 = 𝑰 (i.e. when there are no rotations), is

0 = 1 + 𝑖

⎧

⎪

⎨

⎪

⎩

0
0
0

⎫

⎪

⎬

⎪

⎭

(48)

and the quaternion increment is

𝛥 = 𝛥𝑞 + 𝑖𝛥𝒒 = cos
(𝛥𝑤

2

)

+ 𝑖

(

sin ( 𝛥𝑤2 )

𝛥𝑤
𝛥𝒘

)

(49)

where 𝛥𝑤 = ‖𝛥𝒘‖, using the formulae of Erdelj et al. [28] based on the work of Ibrahimbegović and co-workers [59,60]. Using ⋅
and × to denote respectively the dot and cross products, the updated quaternion is computed via the increment as

𝑁+1 =
(

𝑞𝑁𝛥𝑞 − 𝒒𝑁 ⋅ 𝛥𝒒
)

+ 𝑖
(

𝛥𝒒 × 𝒒𝑁 + 𝑞𝑁𝛥𝒒 + 𝛥𝑞𝒒𝑁
)

(50)

= 𝑞𝑁+1 + 𝑖𝒒𝑁+1. (51)

Finally, the corresponding rotation tensor can be generated from a quaternion via

𝑸 = (2𝑞2 − 1)𝑰 + 2𝑞𝒒 + 2𝒒 ⊗ 𝒒. (52)

Although not strictly required for the formulation, producing the corresponding microrotation vector 𝝋 as an output can provide
for a less abstract reification of the deformation than the microrotation tensor per se. There are several ways to achieve this. For
example, taking the matrix logarithm of 𝑸 gives the skew-symmetric tensor �̂� for which 𝝋 is the axial vector. However, this is an
expensive computation to perform and, due to the periodicity of rotations, can only return −𝜋 < 𝜑 ≤ 𝜋. Instead, the microrotation
vector may be obtained directly from the quaternion as

𝝋 =
2 arccos (𝑞)
√

1 − 𝑞2
𝒒 (53)

which, although still not bijective, has the added benefit of widening the interval to −2𝜋 < 𝜑 ≤ 2𝜋.

3.2.3. Deformation gradient
The deformation gradient tensor is updated as in the usual formulation of AMPLE [56] after the work of Charlton et al. [40]. In

brief,

𝑭𝑁+1 = (𝛥𝑭 )𝑭𝑁 (54)

where 𝛥𝑭 is the incremental deformation gradient linking the last state to the current state.

3.2.4. Wryness
The map 𝑯 which relates a spin rotation vector increment 𝛥𝒘 to its equivalent linear material increment 𝛥𝝋 such that

𝛥𝒘 = 𝑯T𝛥𝝋 (see e.g. [58]) is defined

𝑯 = 𝑰 +
1 − cos (𝛥𝑤)

(𝛥𝑤)2
𝛥𝒘 +

𝛥𝑤 − sin (𝛥𝑤)
(𝛥𝑤)3

𝛥𝒘
2
. (55)

The wryness tensor is then updated with the formula of Erdelj et al. [28],

𝜞𝑁+1 = 𝜞𝑁 +𝑸T𝑯 𝜕(𝛥𝒘)
𝜕𝒙

𝑭 (56)

or which the spatial gradient of the rotation vector increment is produced using the derivatives of the shape functions.
The material point stress update algorithm is given in Algorithm 1.

. Numerical examples

In all the following examples, the Newton–Raphson algorithm is halted when two criteria are met: when the force residual is
ess than 10−9 and the energy residual is less than 10−16. The force residual is computed by taking the Euclidean norm of the
orce/couple residual vector and dividing by the norm of the external load vector, and the energy residual is the inner product of
he force/couple residual vector and the incremental deformations (the solution vector).

11 N.B. this is distinct from the other type of singularity mentioned elsewhere in this section.
9
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Algorithm 1 Procedure for updating stress and couple-stress at the material points in iteration 𝑁 + 1.
1: Node-to-MP mapping.
1a: Extract translation and microrotation vector increments from the solution vector.
1b: Map to material points using standard or GIMPM shape functions and their derivatives computed in the previous iteration to
obtain 𝛥𝒖𝑃 , 𝛥𝒘𝑃 ,

𝜕(𝛥𝒖𝑃 )
𝜕𝒙𝑁 and 𝜕(𝛥𝒘𝑃 )

𝜕𝒙𝑁 .

2: Kinematic update procedure.
2a: Update deformation gradient:

𝑭𝑁+1 = (𝛥𝑭 )𝑭𝑁 =
(

𝑰 +
𝜕(𝛥𝒖)
𝜕𝒙𝑁

)

𝑭𝑁 .

b: Update derivatives:

𝜕(∙)
𝜕𝒙𝑁+1

=
𝜕(∙)
𝜕𝒙𝑁

(𝛥𝑭 )−1.

2c: Update quaternion using (49)–(51) and calculate the microrotation tensor with (52).
2d (optional): Compute the corresponding microrotation vector with (53).

3: Stress update procedure.
3a: Calculate material strain and wryness with (8) and (55)–(56) respectively.
3b: Obtain material Biot-like stress and couple-stress with constitutive laws (20) and (21).
3c: Push forward for spatial Cauchy stress and couple-stress:

𝝈 = 𝐽−1𝑸𝑩𝑭 T and 𝝁 = 𝐽−1𝑸𝑺𝑭 T.

4.1. Method of manufactured solutions

In the absence of many12 existing analytic benchmark problems for non-linear micropolar theory, the formulation’s accuracy and
onvergence properties are assessed by means of the Method of Manufactured Solutions (MMS). In the MMS for solid mechanics,
synthetic solution field is designed and the corresponding body force/couple and boundary conditions are generated via the full
onlinear kinematic framework and governing equations.13 Numerical accuracy is then observed by comparing the numerically-
pproximated solution of the problem with the manufactured analytical solution. To that end, the arbitrary displacement-rotation
ield

𝑢1 = ⋯ = 𝜑3 = 𝐴 sin
(

2𝜋𝑋1
)

sin
(

2𝜋𝑋2
)

sin
(

2𝜋𝑋3
)

, (57)

as chosen, where 𝑋𝑖 ∈ [0, 1] defines a unit cube domain and 𝐴 = 1
30 ensures that displacement is sufficiently small to guarantee

umerical stability. This particular trigonometric function was constructed as it is continuously and infinitely differentiable and
annot be captured exactly by polynomial interpolation. The boundary conditions consistent with (57) require fixing all translation
nd microrotation components at nil over all six sides of the domain.

In this study, the problem is simulated with a mesh discretisation of tri-linear hexahedral elements and 23 material points per
element located at their Gauss–Legendre placements. The conventional MPM is used (as opposed to the GIMPM) and the loads are
applied in a single loadstep. This effectively transforms the scheme into a finite element analysis, with the purpose of eliminating the
integration errors associated with the MPM to allow for clearer assessment of the coercivity of the core parts of the method. Although
the chosen constitutive parameters really have no relevance to the problem (as long as they are thermodynamically consistent), the
values used are: 𝜆 = 15 GPa, 𝜇 = 10 GPa, 𝑎 = 1

3 , 𝛼 = 0 N, 𝛽 = 𝛾 = 50 N. The displacement/rotation error 𝑒𝑑 and Cauchy stress error
𝑠 are computed using

𝑒𝑑 = ∫𝛺
‖(𝒅ℎ − 𝒅𝑎)‖ d𝛺 (58)

𝑒𝑠 = ∫𝛺
‖(𝒔ℎ − 𝒔𝑎)‖

‖𝒔𝑎‖
d𝛺 (59)

where (∙)ℎ and (∙)𝑎 are the numerical and analytical solutions, and 𝒅 and 𝒔 are the translation/rotation vector and stress tensors,
respectively. The resulting convergence graphs for elements of decreasing dimension ℎ are shown on log–log scales in Figs. 3(a) and

12 The analytical solution describing the response of a geometrically-nonlinear micropolar cantilever is given in [28,61], but as it would require application
f a non-conforming Neumann boundary condition (which is non-trivial in the MPM [62]), we have chosen to derive a novel benchmark problem to avoid
nnecessary complication of the derived method solely for the purpose of its own validation.
13 Expressions for the requisite body force and couple were produced using MATLAB’s Symbolic Math Toolbox™. Realistically their sheer length precludes
10

them from being listed here.
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Fig. 3. Convergence with mesh refinement of (a) translations and rotations and (b) Cauchy stress and couple-stress.

Fig. 4. Newton–Raphson convergence of the energy and normalised force residuals.

3(b). As linear elements are used, quadratic displacement and (approaching) linear stress error decay is observed, showing that the
results are consistent with the governing equations. In other words, the method solves the partial differential equations in accordance
with the non-linear framework proposed in Section 2. It is postulated that the relatively poorer convergence of the rotation and
couple-stress is a direct consequence of the poor quality of the rotation interpolation used in the method. This issue is known to
diminish on finer meshes [58], as indicated by the supralinear convergence of the couple-stress errors towards the stress errors.
Fig. 4 shows the progression of the normalised force and energy residuals in each of the analyses, demonstrating asymptotically
quadratic convergence (until being hampered by machine precision). It is well known that, when implemented fully and correctly,
the Newton–Raphson algorithm delivers this rate of asymptotic convergence in the region of the solution [63]. Crucially, therefore,
this endorses the consistency of the derived tangent.

4.2. Cantilever beam under bending

This and the following torsion example make use of a 3D GIMPM implementation with a regular hexahedral background mesh
of tri-linear elements occupied by material points which are equally spaced in each direction.

As shown in Fig. 5, an (𝐿0 = 10 m) × 1 m × 1 m beam in plane strain (i.e. with all out-of-plane deformations constrained) is
1 , 𝛼 = 0 N and 𝛽 = 𝛾 = (a) 100 kN or
11

subject to an end load of 50 kN applied in 50 equal loadsteps; 𝜆 = 3.333 MPa, 𝜇 = 5 MPa, 𝑎 = 3
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Fig. 5. Setup of the cantilever beam problem.

Fig. 6. Bending of two cantilever beams with different microstructural scales, coloured according to horizontal normal stress. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

(b) 10 MN. The bending characteristic lengths 𝓁𝑏 = (a) 0.1 m and (b) 1 m are calculated using

𝓁𝑏 =

√

𝛽 + 𝛾
4𝜇

. (60)

The grid elements are 0.5 m × 0.5 m × 1 m in size and are occupied by 43 material points each. The increased number of material
points is to minimise integration errors from poorly filled elements as the body progresses through the mesh. Roller boundaries are
applied at the root of the beam, allowing movement vertically but fixing the beam horizontally, and a pin at the beam’s mid-point
restricts motion both vertically and horizontally. All rotations are additionally fixed equal to zero along the root. The load is applied
as a set of point forces divided equally among the plane of material points nearest to the tip of the beam, forming a ‘pseudo-Neumann’
boundary condition.

This example essentially demonstrates the size effect in two microscopically small beams whose overall structural scales are
comparable to those of their constituent microstructures. This genre of problem has received particular interest recently due to
its relevance to microelectromechanical systems (MEMS) and other nanoscale industrial applications. As shown by experimental
results (see e.g. [1,64,65]), the microstructure has a greater influence when it is closer in scale to the size of the overall structure,
manifesting as a substantial stiffening and/or hardening via the Hall–Petch mechanism or similar [2]. This is reflected in the
numerical results depicted in Figs. 6 and 7, which show a much stiffer response and smaller final displacement for the beam with
the larger characteristic length. The apparent stiffening towards the end of the analysis in case (a) is due to the principal mode of
deformation transitioning from bending to axial tension.

4.3. Cantilever shaft under torsion

With reference to Fig. 8, a 5 m × 1 m × 1 m shaft is subject to an end moment of 8 × 106 kN m applied in 50 equal loadsteps;
grid elements are 0.25 m × 0.25 m × 0.25 m and are occupied by 23 material points each, 𝜆 = 3.333 MPa, 𝜇 = 5 MPa, 𝑎 = 1

3 , 𝛼 = 0
𝑁 and 𝛽 = 𝛾 = 10 MN. The corresponding torsion characteristic length is 𝓁𝑡 =

√

2 m, via

𝓁𝑡 =

√

𝛽
. (61)
12

𝜇
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Fig. 7. The load–displacement response of the two beams. The vertical displacement shown is that of the bottom-most material points at the tip of the beam.

Fig. 8. Setup of the cantilever shaft problem. The double arrowheads use a right hand rule to denote an applied couple.

The entire boundary at the root of the shaft is fully fixed, in terms of both translations and rotations. As with the cantilever
problem, the end moment is applied by dividing the total amount equally among the final 64 material points which are closest to
the shaft’s tip.

This problem was designed to verify that the method can handle rotations in excess of 2𝜋 radians without being affected either
y gimbal lock or the singularity associated with the rotation vector formalism. As shown in Fig. 9, the angle of twist does not
each an artificial cap at 2𝜋, but is able to push through this limit on the formal definition of the rotation vector. The displacement
olution remains smooth through the transition (represented by the jump in colour in Fig. 9(f) due to the periodic nature of (53))
ithout ill conditioning of the system as might otherwise be expected. This demonstrates that the method is robust even for very

arge rotations.
The rotation vector singularity does in fact appear in Fig. 9(f), however. At a complete revolution the axis of rotation becomes

ndeterminate, resulting in some of the material points at the transition showing spurious axial rotation values where the expected
esult is 𝜑𝑥 ≈ ±2𝜋. The large divergence of this representation from the actual physical behaviour here would introduce significant
rrors into any method which directly uses the rotation vector formalism in its formulation. However, any errors or ill conditioning
hat might be produced as a result of this singularity are completely avoided by our method. The rotation vector is only computed
s an output for graphical purposes and is not used in the internal force/couple calculations or kinematic update algorithm.

.4. 45◦ curved cantilever

Although the examples presented in the previous sections involve large rotations, in both cases the axis of rotation remains fixed
hroughout the analysis. This degenerates the rotation parameters to a single scalar (the rotation angle) which could be captured
y a simple linearised version of the formulation. Therefore, to validate the geometrically-exact rotation machinery described in
ection 3, the method must be tested with a problem involving large, genuinely three-dimensional rotations, i.e. one with a varying
xis of rotation. Accordingly, the 45◦ curved cantilever of Bathe and Bolourchi [66] was selected, which was originally designed
s a benchmark problem for beam analysis, but was repurposed by Erdelj et al. [28] for the nonlinear micropolar continuum. As
epicted in Fig. 10, a circular arc of radius 100 m subtending an angle of 45◦ at its centre (i.e. forming one eighth of a circle) with
13
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Fig. 9. The cantilever shaft under torsion, coloured according to the component of the microrotation vector showing the angle of rotation around the shaft’s
longitudinal axis (the 𝑥-axis).

a 1 m × 1 m square cross-section is loaded in 15 equal loadsteps with an end load of 600 N pulling in an out-of-plane direction.
The other end of the cantilever is fully fixed in both translation and rotation. As for the material parameters, these are kept the
same as in [28] in order to allow for a more valid comparison with the analytical result of [67]: 𝜆 = 0 Pa, 𝜇 = 5 MPa, 𝑎 = 50505.1

5×106 ,
𝛼 = 0, 𝛽 = 12500 and 𝛾 = 37500, corresponding to 𝑁 = 0.1, 𝓁𝑏 = 𝓁𝑡 = 0.05m and 𝜓 = 1, as well as a Young’s modulus of 10 MPa
and a Poisson’s ratio of 0. However, as the analytical solution in [67] assumes a classical, albeit geometrically-exact, mechanical
formulation, exact convergence will never be observed and the micropolar response will always differ slightly due to size effects,
regardless of a careful selection of parameters.

Additionally, for the purpose of comparison, this example was also tested in a FEM developed from the same framework described
above for the MPM — essentially a UL version of the method presented in [28]. Unfortunately, as shown in Fig. 11 a direct
comparison between the two methods is impossible due to significant differences in discretisation procedures: in the FEM, the arch
is discretised into a number of hexahedrons by subdividing it in the circumferential, radial and out-of-plane directions; in the MPM,
the entire domain is seeded with material points, and any which lie outside the extremities of the arch are discarded. Moreover,
the end loading is achieved in the FEM by integrating an equivalent constant traction of 600 Pa over the end surface of the arch; in
14
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Fig. 10. Setup of the 45◦ curved cantilever.

Fig. 11. Illustrative discretisations of the 45◦ curved cantilever; neither discretisation shown is actually used in the analysis. In the MPM example (a), the
background grid is composed of elements of dimensions ℎ3 filled with 23 material points each. In the FEM example (b), the arch is discretised into a mesh of
4 × 2 × 2 elements. Comparison of mesh size is possible by determining the element diameter ℎ̄ for each case as shown.

Table 2
Results obtained using the FEM with trilinear hexahedral elements. The displacements are calculated by averaging the nodal solution
over the end of the cantilever.
No. elements 𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑒𝑑 ℎ̄ CPU time (s)

64 × 1 × 1 −14.40 8.52 43.40 14.21 1.87 7.9
128 × 2 × 2 −20.04 11.64 50.05 4.96 0.94 153.8
256 × 4 × 4 −22.18 12.83 52.14 1.75 0.47 5425.0
Analytical soln. [67] −23.30 13.64 53.21 – – –

the MPM the load is applied as a set of point forces on the plane of material points closest to the free end of the cantilever, as with
the previous examples. A crude comparison between the methods is made by measuring the diameter ℎ̄ of either the finite element
or the MPM grid cell: the longest vertex-to-vertex distance, which is equivalently the diameter of the sphere circumscribed about
the element. This allows for observation of the two methods’ relative performance in terms of ℎ-convergence towards the analytical
solution as well as the incurred computational cost, as given in Tables 2 and 3, where the displacement error 𝑒𝑑 is calculated with
(58). The MPM example with the finest mesh is also depicted in Fig. 12, showing both the initial and final states of the cantilever.

Although a convergence order of between one and two is observed for both methods (see Fig. 13), the MPM implementation
15

produces an end displacement roughly an order of magnitude closer to the analytical solution for a comparable element size. This
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Table 3
Results obtained using the MPM with 43 MPs per grid cell. The displacements are calculating by averaging the solution across the end
MPs (the same MPs to which the load was applied).
Grid cell dims. (m) 𝑢𝑥 𝑢𝑦 𝑢𝑧 𝑒𝑑 ℎ̄ CPU time (s)

2 × 2 × 2 −22.00 16.57 48.10 6.03 3.46 90.1
1 × 1 × 1 −23.52 14.27 52.08 1.31 1.73 792.7
0.5 × 0.5 × 0.5 −23.67 13.74 53.09 0.40 0.87 23 736.5
Analytical soln. [67] −23.30 13.64 53.21 – – –

Fig. 12. Undeformed and final configurations of the MPM analysis with the 0.5× 0.5× 0.5 mesh size, coloured according to 𝑧−displacement. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is likely due to poorly filled grid cells in the MPM contributing a lower stiffness than designed, leading to a larger displacement
response than the equivalent FEA — the same effect achieved with reduced integration in the conventional FEM. As reflected in the
listed CPU times, the MPM does require greater computational resources to analyse a similar mesh size as many more integration
points must be iterated over, and an expensive element search must be conducted at the start of each loadstep to determine the
locations of the material points relative to the grid. For this specific case, however, the MPM actually delivers a more accurate
result with a coarser mesh in less time: for example, an error norm of 1.31 took the MPM just 792.7 s to produce, whereas the FEM
result with an error norm of 1.75 took 5425.0 s – almost seven times as long. It must be emphasised here though that because the
problems solved by the two implementations differ slightly, both from each other due to necessary differences in setup, and from
the problem solved analytically in [67], any conclusions drawn from this comparison must not be taken as definitive or absolute.
But this analysis does demonstrate that the MPM formulation is capable of handling large, three-dimensional rotations at least as
competently as the FEM, and in some circumstances is able to deliver more accurate displacement results with a coarser mesh size,
with a lower computational cost.

5. Conclusion

A new numerical framework for geometrically-exact micropolar elasticity has been presented. The non-linear kinematics are
based on the work of Steinmann [31], Neff [32] and others and the constitutive laws are those used in classical micropolar elasticity
for linear materials. Although the numerical implementation developed is an implicit MPM, qualifying this work particularly for
large deformation problems, many aspects (for example, the consistent tangent or rotation update algorithm) could be used in an
Updated Lagrangian FEM formulation.

The method was verified rigorously using the MMS, showing good convergence towards the analytical solutions and proving
coercivity. Moreover the Newton–Raphson convergence was observed to be asymptotically quadratic, validating the consistent
linearisation of the internal force and couple with respect to incremental deformations presented in Appendix A. The differing
16
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Fig. 13. Convergence of the displacement error norms for the FEM and MPM implementations with decreasing element size.

esponses of two microscopic cantilevers with different characteristic bending lengths show that the method can simulate scenarios
here the stiffness of a structure can be varied simply by modifying its size relative to its constituent microstructure. This is an

mportant result as it demonstrates that the method has promise for modelling devices and structures exhibiting prominent size
ffects — something which conventional models cannot reproduce, yet is crucial for the accelerating industrial trend towards
iniaturisation. A second numerical example showed torsion of a cantilever shaft beyond a full revolution without hitting any

rtificial limits on the rotation, or showing signs of any obvious ill conditioning of the system. The final example of a cantilever
ith an initial curvature also demonstrated a large rotation with a changing rotation axis. Together, these two examples prove that

he method can robustly handle very large, three-dimensional rotations without encountering the difficulties or singularities suffered
y some other formulations.

Although the number of benefits of a purely elastic micropolar MPM are perhaps limited, this work is a necessary stepping stone
o any future, genuinely useful implementations. For example, the method could be extended to include elasto-plasticity, where size
ffects become even more pronounced, with subsequent application to geotechnical problems, for which micropolar theory and the
PM are both acknowledged to show particular promise. Other work may also like to focus on addressing the limitations of this

ontribution, particularly the issues surrounding the interpolated rotation and its associated path dependency.
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ppendix A. Linearisation of internal force and couple

In this appendix, the analytical consistent linearisation of the internal force and couple vectors with respect to incremental
eformations is presented as comprehensively as possible using index notation due to its highly intricate and tortuous nature. The
ollowing well-known results are used:

𝑎 𝛿 = 𝑎 (A.1)
17
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𝜕𝑎𝑖𝑗
𝜕𝑎𝑘𝑙

= 𝛿𝑖𝑘𝛿𝑗𝑙 (A.2)

𝜕𝑎−1𝑖𝑗
𝜕𝑎𝑘𝑙

= −𝑎−1𝑖𝑘 𝑎
−1
𝑙𝑗 (A.3)

𝜕 det (𝒂)
𝜕𝑎𝑖𝑗

= det (𝒂) 𝑎−1𝑗𝑖 . (A.4)

For quantities described with both upper- and lower-case indices, e.g. (∙)𝐴𝑎, these refer to a node number and direction/component
respectively.

A.1. Linearisation of internal force with respect to translations

Through application of the formula d𝛺 = 𝐽 d𝛺0 and the chain rule,

𝐾𝑝𝑢
𝐼𝑖𝐽𝑗 =

𝜕𝑝int
𝐼𝑖

𝜕𝑢𝐽𝑗
(A.5)

= ∫𝛺0

𝜕
𝜕𝑢𝐽𝑗

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

d𝛺0 (A.6)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

𝜕𝐹𝑚𝜃
𝜕𝑢𝐽𝑗

d𝛺0 (A.7)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

𝜕
𝜕𝑢𝐽𝑗

(

𝜕(𝑋𝑚 + 𝑢𝑚)
𝜕𝑋𝜃

)

d𝛺0 (A.8)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

𝜕
𝜕𝑢𝐽𝑗

(

𝛿𝑚𝜃 +
𝜕(𝑁𝐻𝑢𝐻𝑚)

𝜕𝑋𝜃

)

d𝛺0 (A.9)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

) 𝜕(𝑁𝐻𝛿𝐻𝐽 𝛿𝑗𝑚)
𝜕𝑋𝜃

d𝛺0 (A.10)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

𝜕𝑁𝐽
𝜕𝑥𝑠

𝜕𝑥𝑠
𝜕𝑋𝜃

𝛿𝑗𝑚 d𝛺0 (A.11)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

𝜕𝑁𝐽
𝜕𝑥𝑠

𝐹𝑠𝜃𝛿𝑗𝑚 d𝛺0 . (A.12)

Then by the product rule

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

= 𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

)

𝐽𝜎𝑖𝑟 +
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕(𝐽𝜎𝑖𝑟)
𝜕𝐹𝑚𝜃

(A.13)

where
𝜕

𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

)

= 𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑋𝜌

𝐹−1
𝜌𝑟

)

(A.14)

=
𝜕𝑁𝐼
𝜕𝑋𝑠

𝜕𝐹−1
𝜌𝑟

𝜕𝐹𝑚𝜃
(A.15)

= −
𝜕𝑁𝐼
𝜕𝑋𝜌

𝐹−1
𝜌𝑚 𝐹

−1
𝜃𝑟 (A.16)

= −
𝜕𝑁𝐼
𝜕𝑥𝑚

𝐹−1
𝜃𝑟 (A.17)

such that (A.13) now becomes

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕(𝐽𝜎𝑖𝑟)
𝜕𝐹𝑚𝜃

−
𝜕𝑁𝐼
𝜕𝑥𝑚

𝐽𝜎𝑖𝑟𝐹
−1
𝜃𝑟 . (A.18)

Meanwhile, substitution of the Biot-like stress definition (18), constitutive Eq. (20) and strain (8) leads to
𝜕(𝐽𝜎𝑖𝑟)
𝜕𝐹𝑚𝜃

= 𝜕
𝜕𝐹𝑚𝜃

(

𝑄𝑖𝛼𝐵𝛼𝛽𝐹𝑟𝛽
)

(A.19)

= 𝑄𝑖𝛼

( 𝜕𝐵𝛼𝛽
𝜕𝐹𝑚𝜃

𝐹𝑟𝛽 + 𝐵𝛼𝛽
𝜕𝐹𝑟𝛽
𝜕𝐹𝑚𝜃

)

(A.20)

= 𝑄𝑖𝛼

(

𝜕
𝜕𝐹𝑚𝜃

(

𝐷𝛼𝛽𝛾𝜋𝐸𝛾𝜋
)

𝐹𝑟𝛽 + 𝐵𝛼𝛽𝛿𝑟𝑚𝛿𝛽𝜃

)

(A.21)

= 𝑄𝑖𝛼

(

𝜕
𝜕𝐹𝑚𝜃

(

𝐷𝛼𝛽𝛾𝜋 (𝑄𝑖𝛾𝐹𝑖𝜋 − 𝛿𝛾𝜋 )
)

𝐹𝑟𝛽 + 𝐵𝛼𝜃𝛿𝑟𝑚

)

(A.22)

= 𝑄𝑖𝛼

(

𝐷𝛼𝛽𝛾𝜋𝑄𝑖𝛾
𝜕𝐹𝑖𝜋 𝐹𝑟𝛽 + 𝐵𝛼𝜃𝛿𝑟𝑚

)

(A.23)
18
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= 𝑄𝑖𝛼
(

𝐷𝛼𝛽𝛾𝜋𝑄𝑖𝛾𝛿𝑖𝑚𝛿𝜋𝜃𝐹𝑟𝛽 + 𝐵𝛼𝜃𝛿𝑟𝑚
)

(A.24)

= 𝑄𝑖𝛼
(

𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾𝐹𝑟𝛽 + 𝐵𝛼𝜃𝛿𝑟𝑚
)

(A.25)

which can be substituted into (A.18) for

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜎𝑖𝑟

)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼
(

𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾𝐹𝑟𝛽 + 𝐵𝛼𝜃𝛿𝑟𝑚
)

−
𝜕𝑁𝐼
𝜕𝑥𝑚

𝐽𝜎𝑖𝑟𝐹
−1
𝜃𝑟 (A.26)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾 +
𝜕𝑁𝐼
𝜕𝑥𝑚

(

𝑄𝑖𝛼𝐵𝛼𝜃 − 𝐽𝜎𝑖𝑟𝐹−1
𝜃𝑟

)

(A.27)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾 +
𝜕𝑁𝐼
𝜕𝑥𝑚

(

𝑄𝑖𝛼𝐵𝛼𝜃 − 𝐽 (𝐽−1𝑄𝑖𝛼𝐵𝛼𝛽𝐹𝑟𝛽 )𝐹−1
𝜃𝑟

)

(A.28)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾 +
𝜕𝑁𝐼
𝜕𝑥𝑚

(

𝑄𝑖𝛼𝐵𝛼𝜃 −𝑄𝑖𝛼𝐵𝛼𝜃
)

(A.29)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾 . (A.30)

And finally, the expression for tangent stiffness is

𝐾𝑝𝑢
𝐼𝑖𝐽𝑗 = ∫𝛺0

𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑚𝛾
𝜕𝑁𝐽
𝜕𝑥𝑠

𝐹𝑠𝜃𝛿𝑗𝑚 d𝛺0 (A.31)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃
𝜕𝑁𝐽
𝜕𝑥𝑠

d𝛺 (A.32)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

a𝑝𝑢𝑖𝑟𝑗𝑠
𝜕𝑁𝐽
𝜕𝑥𝑠

d𝛺 (A.33)

where

a𝑝𝑢𝑖𝑟𝑗𝑠 = 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃 (A.34)

= 𝐽−1𝑇𝑖𝑟𝛼𝛽𝐷𝛼𝛽𝛾𝜃𝑇𝑗𝑠𝛾𝜃 (A.35)

is the tangent modulus, with

𝑇𝑖𝑟𝛼𝛽 = 𝑄𝑖𝛼𝐹𝑟𝛽 . (A.36)

A.2. Linearisation of internal force with respect to rotations

Since microrotations have no effect on volume change (i.e. 𝜕𝐽
𝜕𝑤𝑠

= 0), the evolution of the domain size need not be considered.
Hence,

𝐾𝑝𝑤
𝐼𝑖𝐽𝑗 =

𝜕𝑝int
𝐼𝑖

𝜕𝑤𝐽𝑗
(A.37)

= ∫𝛺
𝜕

𝜕𝑤𝐽𝑗

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝜎𝑖𝑟

)

d𝛺 (A.38)

= ∫𝛺
𝜕

𝜕𝑄𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝜎𝑖𝑟

)

𝜕𝑄𝑚𝜃
𝜕𝑤𝐽𝑗

d𝛺 (A.39)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝑠

𝜕𝑤𝑠
𝜕𝑤𝐽𝑗

d𝛺 (A.40)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝑠

𝜕(𝑁𝐻𝑤𝐻𝑠)
𝜕𝑤𝐽𝑗

d𝛺 (A.41)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝑠

(

𝑁𝐻𝛿𝐻𝐽 𝛿𝑠𝑗
)

d𝛺 (A.42)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝑗

𝑁𝐽 d𝛺 . (A.43)

Then
𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

= 𝜕
𝜕𝑄𝑚𝜃

(

𝐽−1𝑄𝑖𝛼𝐵𝛼𝛽𝐹𝑟𝛽
)

(A.44)

= 𝐽−1
(

𝜕𝑄𝑖𝛼
𝜕𝑄𝑚𝜃

𝐵𝛼𝛽 +𝑄𝑖𝛼
𝜕𝐵𝛼𝛽
𝜕𝑄𝑚𝜃

)

𝐹𝑟𝛽 (A.45)

= 𝐽−1
(

𝛿𝑖𝑚𝛿𝛼𝜃𝐵𝛼𝛽 +𝑄𝑖𝛼
𝜕

𝜕𝑄𝑚𝜃

(

𝐷𝛼𝛽𝛾𝜋𝐸𝛾𝜋
)

)

𝐹𝑟𝛽 (A.46)

= 𝐽−1
(

𝛿𝑖𝑚𝐵𝜃𝛽 +𝑄𝑖𝛼𝐷𝛼𝛽𝛾𝜋
𝜕 (

𝑄𝑘𝛾𝐹𝑘𝜋 − 𝛿𝛾𝜋
)

)

𝐹𝑟𝛽 (A.47)
19
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= 𝐽−1
(

𝛿𝑖𝑚𝐵𝜃𝛽 +𝑄𝑖𝛼𝐷𝛼𝛽𝛾𝜋
𝜕𝑄𝑘𝛾
𝜕𝑄𝑚𝜃

𝐹𝑘𝜋

)

𝐹𝑟𝛽 (A.48)

= 𝐽−1 (𝛿𝑖𝑚𝐵𝜃𝛽 +𝑄𝑖𝛼𝐷𝛼𝛽𝛾𝜋𝛿𝑘𝑚𝛿𝛾𝜃𝐹𝑘𝜋
)

𝐹𝑟𝛽 (A.49)

= 𝐽−1𝛿𝑖𝑚𝐵𝜃𝛽𝐹𝑟𝛽 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝜃𝜋𝐹𝑚𝜋 . (A.50)

The derivative of the microrotation tensor with respect to the spatial microrotation vector increment from the follower axes is
obtained as (see Appendix B)

𝜕𝑄𝑚𝜃
𝜕𝑤𝑗

= 𝑒𝑚𝑗𝑛𝑄𝑛𝜃 (A.51)

which can be multiplied by (A.50) to give
𝜕𝜎𝑖𝑟
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝑗

= (𝐽−1𝛿𝑖𝑚𝐵𝜃𝛽𝐹𝑟𝛽 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝜃𝜋𝐹𝑚𝜋 )𝑒𝑚𝑗𝑛𝑄𝑛𝜃 (A.52)

= (𝐽−1𝛿𝑖𝑚𝑄𝑛𝜃𝐵𝜃𝛽𝐹𝑟𝛽 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝜃𝜋𝑄𝑛𝜃𝐹𝑚𝜋 )𝑒𝑚𝑗𝑛 (A.53)

= (𝛿𝑖𝑚𝜎𝑛𝑟 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝜃𝜋𝑄𝑛𝜃𝐹𝑚𝜋 )𝑒𝑚𝑗𝑛 (A.54)

to be substituted into (A.43) for

𝐾𝑝𝑤
𝐼𝑖𝐽𝑗 = ∫𝛺

𝜕𝑁𝐼
𝜕𝑥𝑟

(

𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽𝐷𝛼𝛽𝜃𝜋𝑄𝑛𝜃𝐹𝑚𝜋 + 𝛿𝑖𝑚𝜎𝑛𝑟
)

𝑒𝑚𝑗𝑛𝑁𝐽 d𝛺 (A.55)

= ∫𝛺
𝜕𝑁𝐼
𝜕𝑥𝑟

a𝑝𝑤𝑖𝑟𝑛𝑚𝑒𝑛𝑚𝑗𝑁𝐽 d𝛺 . (A.56)

Conveniently,

a𝑝𝑤𝑖𝑟𝑛𝑚 = a𝑝𝑢𝑖𝑟𝑛𝑚 + 𝛿𝑖𝑚𝜎𝑛𝑟. (A.57)

A.3. Linearisation of internal couple with respect to translations

𝐾𝑚𝑢
𝐼𝑖𝐽𝑗 =

𝜕𝑚int
𝐼𝑖

𝜕𝑢𝐽𝑗
(A.58)

= ∫𝛺
𝜕

𝜕𝑢𝐽𝑗

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝜇𝑖𝑟 +𝑁𝐼𝑒𝑖𝑟𝑛𝜎𝑟𝑛

)

d𝛺 (A.59)

= ∫𝛺0

𝜕
𝜕𝑢𝐽𝑗

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟 +𝑁𝐼𝑒𝑖𝑟𝑛𝐽𝜎𝑟𝑛

)

d𝛺0 (A.60)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟 +𝑁𝐼𝑒𝑖𝑟𝑛𝐽𝜎𝑟𝑛

)

𝜕𝐹𝑚𝜃
𝜕𝑢𝐽𝑗

d𝛺0 (A.61)

= ∫𝛺0

𝜕
𝜕𝐹𝑚𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟 +𝑁𝐼𝑒𝑖𝑟𝑛𝐽𝜎𝑟𝑛

)

𝜕𝑁𝐽
𝜕𝑥𝑠

𝐹𝑠𝜃𝛿𝑗𝑚 d𝛺0 (A.62)

= ∫𝛺0

(

𝜕
𝜕𝐹𝑗𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟

)

+𝑁𝐼𝑒𝑖𝑟𝑛
𝜕(𝐽𝜎𝑟𝑛)
𝜕𝐹𝑗𝜃

)

𝜕𝑁𝐽
𝜕𝑥𝑠

𝐹𝑠𝜃 d𝛺0 (A.63)

where, following (A.18),

𝜕
𝜕𝐹𝑗𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟

)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕(𝐽𝜇𝑖𝑟)
𝜕𝐹𝑗𝜃

−
𝜕𝑁𝐼
𝜕𝑥𝑗

𝐽𝜇𝑖𝑟𝐹
−1
𝜃𝑟 . (A.64)

Using the definition of Biot-like couple-stress (19),
𝜕(𝐽𝜇𝑖𝑟)
𝜕𝐹𝑗𝜃

= 𝜕
𝜕𝐹𝑗𝜃

(

𝑄𝑖𝛼𝑆𝛼𝛽𝐹𝑟𝛽
)

(A.65)

= 𝑄𝑖𝛼𝑆𝛼𝛽
𝜕𝐹𝑟𝛽
𝜕𝐹𝑗𝜃

(A.66)

= 𝑄𝑖𝛼𝑆𝛼𝛽𝛿𝑟𝑗𝛿𝛽𝜃 (A.67)

= 𝑄𝑖𝛼𝑆𝛼𝜃𝛿𝑟𝑗 (A.68)

so that (A.64) becomes

𝜕
𝜕𝐹𝑗𝜃

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝐽𝜇𝑖𝑟

)

=
𝜕𝑁𝐼
𝜕𝑥𝑟

𝑄𝑖𝛼𝑆𝛼𝜃𝛿𝑟𝑗 −
𝜕𝑁𝐼
𝜕𝑥𝑗

𝐽𝜇𝑖𝑟𝐹
−1
𝜃𝑟 (A.69)

=
𝜕𝑁𝐼 (

𝑄𝑖𝛼𝑆𝛼𝜃 − 𝐽𝜇𝑖𝑟𝐹−1
𝜃𝑟

)

(A.70)
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a

=
𝜕𝑁𝐼
𝜕𝑥𝑗

(

𝐽𝜇𝑖𝑟𝐹
−1
𝜃𝑟 − 𝐽𝜇𝑖𝑟𝐹−1

𝜃𝑟
)

(A.71)

= 0. (A.72)

From (A.63), and using (A.25),

𝑁𝐼𝑒𝑖𝑟𝑛
𝜕(𝐽𝜎𝑟𝑛)
𝜕𝐹𝑗𝜃

𝐹𝑠𝜃 = 𝑁𝐼𝑒𝑖𝑟𝑛
(

𝑄𝑟𝛼
(

𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑛𝛽 + 𝐵𝛼𝜃𝛿𝑛𝑗
))

𝐹𝑠𝜃 (A.73)

= 𝑁𝐼𝑒𝑖𝑟𝑛
(

𝑄𝑟𝛼𝐹𝑛𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃 +𝑄𝑟𝛼𝐵𝛼𝜃𝛿𝑛𝑗𝐹𝑠𝜃
)

(A.74)

= 𝑁𝐼𝑒𝑖𝑟𝑛
(

𝑄𝑟𝛼𝐹𝑛𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃 + 𝐽𝛿𝑛𝑗𝜎𝑟𝑠
)

(A.75)

nd, putting everything together,

𝐾𝑚𝑢
𝐼𝑖𝐽𝑗 = ∫𝛺

(

𝑁𝐼𝑒𝑖𝑟𝑛
(

𝑄𝑟𝛼𝐹𝑛𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃 + 𝐽𝛿𝑛𝑗𝜎𝑟𝑠
)) 𝜕𝑁𝐽

𝜕𝑥𝑠
d𝛺0 (A.76)

= ∫𝛺

(

𝑁𝐼𝑒𝑖𝑟𝑛
(

𝐽−1𝑄𝑟𝛼𝐹𝑛𝛽𝐷𝛼𝛽𝛾𝜃𝑄𝑗𝛾𝐹𝑠𝜃 + 𝛿𝑛𝑗𝜎𝑟𝑠
)) 𝜕𝑁𝐽

𝜕𝑥𝑠
d𝛺 (A.77)

= ∫𝛺
𝑁𝐼𝑒𝑖𝑟𝑛a𝑚𝑢𝑟𝑛𝑗𝑠

𝜕𝑁𝐽
𝜕𝑥𝑠

d𝛺 (A.78)

and

a𝑚𝑢𝑟𝑛𝑗𝑠 = a𝑝𝑤𝑗𝑠𝑟𝑛. (A.79)

A.4. Linearisation of internal couple with respect to rotations

𝐾𝑚𝑤
𝐼𝑖𝐽𝑗 =

𝜕𝑚int
𝐼𝑖

𝜕𝑤𝐽𝑗
(A.80)

= ∫𝛺
𝜕

𝜕𝑤𝐽𝑗

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝜇𝑖𝑟 +𝑁𝐼𝑒𝑖𝑟𝑛𝜎𝑟𝑛

)

d𝛺 (A.81)

= ∫𝛺

(

𝜕𝑁𝐼
𝜕𝑥𝑟

𝜕𝜇𝑖𝑟
𝜕𝑤𝐽𝑗

+𝑁𝐼𝑒𝑖𝑟𝑛
𝜕𝜎𝑟𝑛
𝜕𝑄𝑚𝜃

𝜕𝑄𝑚𝜃
𝜕𝑤𝐽𝑗

)

d𝛺 . (A.82)

Then,
𝜕𝜇𝑖𝑟
𝜕𝑤𝐽𝑗

= 𝜕
𝜕𝑤𝐽𝑗

(

𝐽−1𝑄𝑖𝛼𝑆𝛼𝛽𝐹𝑟𝛽
)

(A.83)

= 𝐽−1
(

𝜕𝑄𝑖𝛼
𝜕𝑤𝐽𝑗

𝑆𝛼𝛽 +𝑄𝑖𝛼
𝜕𝑆𝛼𝛽
𝜕𝑤𝐽𝑗

)

𝐹𝑟𝛽 (A.84)

where
𝜕𝑄𝑖𝛼
𝜕𝑤𝐽𝑗

=
𝜕𝑄𝑖𝛼
𝜕𝑤𝑠

𝜕𝑤𝑠
𝜕𝑤𝐽𝑗

(A.85)

= (𝑒𝑖𝑠𝑛𝑄𝑛𝛼)
𝜕𝑁𝐻𝑤𝐻𝑠
𝜕𝑤𝐽𝑗

(A.86)

= 𝑄𝑛𝛼𝑒𝑖𝑗𝑛𝑁𝐽 (A.87)

and
𝜕𝑆𝛼𝛽
𝜕𝑤𝐽𝑗

= 𝜕
𝜕𝑤𝐽𝑗

(

�̃�𝛼𝛽𝛾𝜋𝛤𝛾𝜋
)

(A.88)

= �̃�𝛼𝛽𝛾𝜋
𝜕𝛤𝛾𝜋
𝜕𝑤𝐽𝑗

(A.89)

which are substituted back into (A.84) to give

𝜕𝜇𝑖𝑟
𝜕𝑤𝐽𝑗

= 𝐽−1
(

𝑄𝑛𝛼𝑆𝛼𝛽𝑒𝑖𝑗𝑛𝑁𝐽 +𝑄𝑖𝛼�̃�𝛼𝛽𝛾𝜋
𝜕𝛤𝛾𝜋
𝜕𝑤𝐽𝑗

)

𝐹𝑟𝛽 (A.90)

= 𝜇𝑛𝑟𝑒𝑖𝑗𝑛𝑁𝐽 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽�̃�𝛼𝛽𝛾𝜋
𝜕𝛤𝛾𝜋
𝜕𝑤𝐽𝑗

. (A.91)

A discretisation of the Gâteaux derivative of the wryness tensor [57],

𝛿𝛤𝛾𝜋 = 𝑄𝑗𝛾
𝜕(𝛿𝑤𝑗 ) (A.92)
21
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R

= 𝑄𝑗𝛾
𝜕(𝑁𝐽 𝛿𝑤𝐽𝑗 )

𝜕𝑋𝜋
(A.93)

= 𝑄𝑗𝛾
𝜕𝑁𝐽
𝜕𝑋𝜋

𝛿𝑤𝐽𝑗 (A.94)

can be rearranged to yield the straightforward result
𝜕𝛤𝛾𝜋
𝜕𝑤𝐽𝑗

= 𝑄𝑗𝛾
𝜕𝑁𝐽
𝜕𝑋𝜋

= 𝑄𝑗𝛾
𝜕𝑁𝐽
𝜕𝑥𝑛

𝐹𝑛𝜋 (A.95)

so that (A.91) becomes
𝜕𝜇𝑖𝑗
𝜕𝑤𝐽𝑗

= 𝜇𝑛𝑟𝑒𝑖𝑗𝑛𝑁𝐽 + 𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽�̃�𝛼𝛽𝛾𝜋𝑄𝑗𝛾𝐹𝑛𝜋
𝜕𝑁𝐽
𝜕𝑥𝑛

. (A.96)

Combining this with result (A.54) and substituting into (A.82) gives

𝐾𝑚𝑤
𝐼𝑖𝐽𝑗 = ∫𝛺

(

𝑁𝐼𝑒𝑖𝑟𝑛
(

𝛿𝑟𝑚𝜎𝑠𝑛 + 𝐽−1𝑄𝑟𝛼𝐹𝑛𝛽𝐷𝛼𝛽𝛾𝜋𝑄𝑠𝛾𝐹𝑚𝜋
)

𝑒𝑚𝑗𝑠𝑁𝐽

+ 𝜕𝑁𝐼
𝜕𝑥𝑟

(

𝐽−1𝑄𝑖𝛼𝐹𝑟𝛽�̃�𝛼𝛽𝛾𝜋𝑄𝑗𝛾𝐹𝑛𝜋
𝜕𝑁𝐽
𝜕𝑥𝑛

+ 𝜇𝑛𝑟𝑒𝑖𝑗𝑛𝑁𝐽

)

)

d𝛺
(A.97)

= ∫𝛺

(

𝑁𝐼𝑒𝑖𝑟𝑛𝑎
𝑚𝑤1
𝑟𝑛𝑠𝑚𝑒𝑠𝑚𝑗𝑁𝐽 +

𝜕𝑁𝐼
𝜕𝑥𝑟

(

𝑎𝑚𝑤2𝑖𝑟𝑗𝑛
𝜕𝑁𝐽
𝜕𝑥𝑛

+ 𝑎𝑚𝑤3𝑖𝑟𝑛𝑠 𝑒𝑛𝑠𝑗𝑁𝐽

))

d𝛺 (A.98)

where

𝑎𝑚𝑤1𝑟𝑛𝑠𝑚 = 𝑎𝑝𝑤𝑟𝑛𝑠𝑚 (A.99)

𝑎𝑚𝑤2𝑖𝑟𝑗𝑛 = 𝐽−1𝑇𝑖𝑟𝛼𝛽�̃�𝛼𝛽𝛾𝜋𝑇𝑗𝑛𝛾𝜋 (A.100)

𝑎𝑚𝑤3𝑖𝑟𝑛𝑠 = 𝛿𝑖𝑠𝜇𝑛𝑟. (A.101)

Appendix B. Partial derivative of the microrotation tensor with respect to the spatial microrotation vector

The first variation of the microrotation tensor 𝛿𝑸 in the direction of an incremental rotation 𝛿𝒘 is obtained by taking the Gâteaux
derivative

𝛿𝑸 = d
d𝜖

((𝛥𝑸)𝑸) |𝜖=0 (B.1)

= d
d𝜖

(

exp
(

𝜖𝛿𝒘
)

𝑸
)

|𝜖=0 (B.2)

= 𝛿𝒘 exp
(

𝜖𝛿𝒘
)

𝑸|𝜖=0 (B.3)

= 𝛿𝒘𝑸 (B.4)

which in index notation is

𝑄𝑚𝜃 = 𝑒𝑚𝑗𝑛(𝛿𝑤𝑗 )𝑄𝑛𝜃 . (B.5)

This implies the partial derivative
𝜕𝑄𝑚𝜃
𝜕𝑤𝑗

= 𝑒𝑚𝑗𝑛𝑄𝑛𝜃 . (B.6)
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