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Abstract
The continuous application of artificial intelligence (AI) technologies in online education has led to significant progress,

especially in the field of Intelligent Tutoring Systems (ITS), online courses and learning management systems (LMS). An

important research direction of the field is to provide students with customised learning trajectories via student modelling.

Previous studies have shown that customisation of learning trajectories could effectively improve students’ learning

experiences and outcomes. However, training an ITS that can customise students’ learning trajectories suffers from cold-

start, time-consumption, human labour-intensity, and cost problems. One feasible approach is to simulate real students’

behaviour trajectories through algorithms, to generate data that could be used to train the ITS. Nonetheless, implementing

high-accuracy student modelling methods that effectively address these issues remains an ongoing challenge. Traditional

simulation methods, in particular, encounter difficulties in ensuring the quality and diversity of the generated data, thereby

limiting their capacity to provide intelligent tutoring systems (ITS) with high-fidelity and diverse training data. We thus

propose Sim-GAIL, a novel student modelling method based on generative adversarial imitation learning (GAIL). To the

best of our knowledge, it is the first method using GAIL to address the challenge of lacking training data, resulting from the

issues mentioned above. We analyse and compare the performance of Sim-GAIL with two traditional Reinforcement

Learning-based and Imitation Learning-based methods using action distribution evaluation, cumulative reward evaluation,

and offline-policy evaluation. The experiments demonstrate that our method outperforms traditional ones on most metrics.

Moreover, we apply our method to a domain plagued by the cold-start problem, knowledge tracing (KT), and the results

show that our novel method could effectively improve the KT model’s prediction accuracy in a cold-start scenario.
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1 Introduction

Intelligent tutoring systems (ITS) are increasingly incor-

porating artificial intelligence (AI) technologies, including

machine learning and deep learning, which could effec-

tively offer customised learning trajectories for each stu-

dent based on their prior knowledge and learning activities

[1]. Research in cognitive science has shown that there is a

strong relationship between, amongst others, the sequence

of learning materials and learning outcomes [2]. In a tra-

ditional online learning platform, there is only one single

static linear learning trajectory provided to students. In this

one-size-fits-all approach, students may lose their motiva-

tion and even drop out of the course, due to anxiety or

boredom encountered in the learning process [3]. Research

on customised learning trajectories for students has been
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emerging in the ITS field. However, developing an ITS that

can provide students with customised learning trajectories

requires a large amount of data for training the system,

which is time-consuming and costly [4], long known to be

requiring a large amount of manual labour from education

providers (instructors, authors, etc.) [5]. Although many

mature ITSs have sufficient data to train algorithms, a large

number of emerging ITSs are still suffering from a lack of

training data in the early stages of development, also

known as the cold start problem [6].

To tackle these challenges, previous studies have pro-

posed various methods for simulating student learning

trajectories (i.e., generating massive student learning

behavioural data) that can be used to train an ITS. Early

simulated student behaviour proposals stemmed from the

aim at automatic validation of educational interventions via

a sandbox method [7]. More recently, Jarboui et al. [8]

attempted to model student trajectory sequences into a

Markov Decision Process, but in real educational scenarios,

only a few ITS can provide all the feature data consistent

with a Markov Decision Process (e.g., the reward function

of the ITS agent). Zimmer et al. [9] defined reward func-

tions to build reinforcement learning agents to generate

student trajectories, but this method requires building dif-

ferent reward functions for different datasets, which makes

it difficult to generalise. Besides, humans’ psychological

responses to learning trajectories and reward mechanisms

are difficult to simulate. This leads to circumstances where

student simulation methods may not be able to simulate

student learning trajectories sufficiently. Anderson

et al. [10] proposed a student simulation method based on

behavioural cloning (BC), the simplest form of Imitation

Learning, which aims to solve the abovementioned prob-

lems where the reward is sparse and hard to define [11].

Whilst promising, BC-based methods only learn from the

few features collected in student data, and the actions that

algorithms are able to model can be very limited.

Motivated by the gap in prior literature identified above,

the research question of this paper is: How to build an

efficient student simulation method that can generate

massive student learning data, which can be used for ITS

training?

To answer this research question, we propose Sim-GAIL,

a generative adversarial imitation learning (GAIL)

approach to student modelling. Our Sim-GAIL method can

be used to generate simulated student data to solve the lack

of data and cold-start problems in ITS training.

Furthermore, to showcase its efficiency, we compare our

Sim-GAIL with the two main student modelling methods

used in the ITS field, the RL-based and the BC-based

student modelling approach, using data from the very

recent and largest ITS dataset, EdNet [12]. We extract

action and state features to train the models. We analyse

and compare performance using action distribution evalu-

ation, cumulative reward evaluation (CRE), and two off-

line-policy evaluation (OPE) methods, which include

importance sampling (IS) and Fitted Q Evaluation (FQE).

Moreover, we apply our method’s generated data in an ITS

cold-start scenario. The experimental results show that our

method outperforms the two traditional RL-based and BC-

based baseline methods and could improve the training

efficiency of the ITS in a cold-start scenario.

The main contributions of this work lie in the following

three aspects:

1. We propose Sim-GAIL, a student modelling approach,

to generate simulation data for ITS training.

2. It is the first method, to the best of our knowledge, that

uses Generative Adversarial Imitation Learning

(GAIL) to implement student modelling to address

the challenge of lacking training data and the cold-start

problem.

3. The experiments demonstrate that a trained Sim-GAIL

could simulate real student learning trajectories very

well. Our method outperforms traditional RL-based

and BC-based methods on most metrics and can

improve the training efficiency in cold-start scenarios.

Thus, the advantages of Sim-GAIL include its ability to

effectively generate data resembling real student beha-

viours, address the cold-start problem, demonstrate supe-

rior performance on various metrics, efficiently converge to

an optimal policy, and offer scalability and generality

across different datasets and applications.

This paper is structured as follows. Section 2 introduces

the background of reinforcement learning, imitation

learning (including behavioural cloning), and student

modelling. Section 3 demonstrates the dataset, data pre-

processing, and model architecture. Section 4 outlines the

experiments and baseline models. Section 5 discusses the

evaluation methods and the experimental results based on

action distribution, offline policy (OP) evaluation, expected

cumulative rewards (ECR) evaluation, and knowledge

tracing (KT). Section 6 discusses our findings and future

works. Section 7 draws conclusions.

2 Background and literature review

Before analysing current competitors of the proposal for

student modelling for generating training data presented in

this paper, we show the current state of the underlying

methodologies: Markov decision process, reinforcement

learning, imitation learning, and finally, the method at the

basis of our proposal, generative adversarial imitation

learning.
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2.1 Markov decision process and reinforcement
learning

The Markov decision process (MDP) is the standard

method for sequential decision-making (SDM) [13]. The

sequential decision-making models can generally be seen

as an instance of the Markov decision process. Reinforce-

ment learning is also typically regarded as an MDP [14].

Therefore, in this section, we introduce MDP and then

reinforcement learning.

2.1.1 Markov decision process (MDP)

MDP is a mathematical model of sequential decision used

to generate stochastic policies and rewards, achievable by

an agent in an environment where the system state exhibits

Markov properties [15]. MDPs are represented as a set of

interacting objects, namely agents and environments, with

components including states, actions, policies, and rewards.

In an MDP model, the agent observes the present state of

the environment and takes actions on the environment in

accordance with the policy, thereby changing the state of

the environment and getting rewards. The ultimate goal of

the agent is to reach the maximum cumulative reward,

which is achieved using a reward function [16]. Figure 1

shows the structure of the MDP.

2.1.2 Reinforcement learning (RL)

RL is a type of machine learning method that enables an

agent to learn a policy by taking different actions in an

interactive environment, in order to maximise cumulative

rewards. It could be defined as the tuple of ðS;A;P;RÞ,
where S is defined as the state of the environment, A rep-

resents actions of the agent, P : S�A� S ! ½0; 1� repre-
sents the transition probabilities of actions from the current

state to the next state and R : S�A� S ! R denotes the

reward function. The goal of an RL agent is to achieve

maximum cumulative rewards. However, the drawback of

traditional RL methods lies in its computational overhead,

brought by repeated interactions between the agent and the

environment.

2.2 Imitation learning (IL)

Different from RL, where the agent learns by interacting

with the environment to obtain the maximum rewards, IL is

a method of learning policy that involves emulating the

behaviour of experts’ trajectories [17], instead of leverag-

ing an explicit reward function as in RL.

2.2.1 Behavioural cloning (BC)

BC considers the learning of policy under supervised

learning settings, leveraging state-action pairs [18, 19].

Albeit simple and effective, BC suffers from the heavy

reliance on extremely large amounts of data [20, 21],

without which a distributional mismatch, often referred to

as covariate shift [22, 23], would occur, due to com-

pounding errors and stochasticity in the environment dur-

ing test time.

2.2.2 Apprenticeship learning (AL)

Different from BC, AL instead tries to identify features of

the expert’s trajectories that are more generalisable and to

find a policy that matches the same feature expectations

with respect to the expert [24]. Its goal is to find a policy

that performs no worse than the expert across a class of

cost functions. The main limitation of AL is that it cannot

imitate the expert trajectory well, due to the restricted class

of cost functions. Specifically, when the true cost function

does not lie within the cost function classes, the agent

cannot be guaranteed to outperform the expert.

Fig. 1 Framework of the

Markov decision process
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2.3 Generative adversarial imitation learning
(GAIL)

GAIL addresses the drawbacks of RL and AL effectively

[20], by borrowing the idea of Generative Adversarial

Networks (GANs) [25]. It is derived from a type of Imi-

tation Learning, called Maximum Causal Entropy Inverse

Reinforcement Learning (MaxEntIRL) [26].

Figure 2 shows the mechanism of GAIL. Integrating

GANs into imitation learning allows for the Generator

never to be exposed to real-world examples, enabling

agents to learn only from experts’ demonstrations. In

GAIL, the Discriminator is trained with the objective of

distinguishing the generated trajectories from real trajec-

tories, while the Generator, on the other hand, attempts to

imitate the real trajectories, to fool the Discriminator into

thinking it is actually one of them.

2.4 Student modelling

As the traditional one-size-fits-all approach can no longer

satisfy student learning needs, it leads to increased

demands for customised learning [27, 28]. Various student

modelling methods have been proposed, which are gener-

ally classified as integrating expert knowledge-based or

data-driven methods [29, 30]. Knowledge-based methods

refer to utilising human knowledge to address issues that

would normally require human intelligence [7, 31]. Data-

driven methods simulate students’ learning trajectories

through massive student learning records data [6, 32, 33].

2.4.1 Expert knowledge-based methods

The majority of the studies in this field involve building

different forms of student models, to train a reinforcement

learning (RL) agent [34]. Glesias et al. proposed a Markov

Decision Process based on expert knowledge, to train stu-

dent models [35]. Doroud et al. [34] suggested an RL-

based agent method rooted in cognitive theory, to optimise

the sequencing of the knowledge components (KCs). The

reward function of this method is based on pre- and post-

test scores, taken as a metric, and termed Normalised

Learning Gain (NLG). However, this metric needs evalu-

ation by human participants, which is excessively human

Fig. 2 Mechanism of generative

adversarial imitation learning
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resource-intensive. Yudelson et al. [36] proposed a ‘Stu-

dent Simulation’ method based on Bayesian Knowledge

Tracing (BKT), which could train a ‘sim student’ to imitate

real students’ mastery of different knowledge. Segal et al.

suggested a student simulation method based on the Item

Response Theory (IRT) [37], which could respond to dif-

ferent reactions to courses at different difficulty levels [38].

Azhar et al. [39] introduced an application of reinforce-

ment learning (RL) for optimising the learning sequence

modelling of online learning materials, which is an end-to-

end pipeline to automatically derive and evaluate robust

representations of students’ interactions and policies for

content sequencing in online education.

2.4.2 Data-driven methods

Compared with integrating expert knowledge-based meth-

ods, data-driven methods could better simulate real stu-

dents’ learning trajectories and more effectively reduce

biases [13]. There have been some studies [40–42] aiming

to build student simulation methods based on data-driven

MDP approaches. For example, Beck et al. proposed a

population student model (PSM) based on a linear regres-

sion model that could simulate the probability of the stu-

dent’s correct response [43]. However, this method

requires a high-quality dataset from real ITS platforms.

Limited by the quantity of high-quality datasets, the pre-

vious data-driven model struggled to keep up with the

expanding requirements of ITS development. Li et al.

proposed a student behaviour simulation method based on

a Decision Transformer, to generate student behaviour data

for ITS training [6, 33]. Emond et al. [44] proposed an

adaptive instructional system (AIS) as a self-improvement

system. It presented a methodological approach that

incorporates three concurrent research activities: Bayesian

networks modelling of learning processes, knowledge

elicitation from expert instructors, and the use of simulated

learners and tutors for exploring AIS design options. On

the other hand, with the further development of ITS

research, more and more high-quality datasets, such as

EdNet [12], have been published in recent years, which can

be used to achieve a high-quality data-driven student

simulations. However, collecting data like the EdNet

dataset is extremely time-consuming and labour-intensive.

How to improve the effectiveness of ITS with small data

volumes or in a cold-start scenario is still a problem that

needs to be addressed.

3 Method

In this section, we introduce the methodology for the

research described in this paper. First, we describe the

EdNet dataset we use, in Sect. 3.1. In Sect. 3.2, we show

how we preprocess the data in EdNet, to obtain the features

we need. We then articulate the framework of our SIM-

GAIL method in Sect. 3.3.

3.1 Dataset

We adopt EdNet [12], the largest dataset in the ITS field,

for our experiments. This dataset comprises students’

interaction log data with an ITS, which can be used to

extract the state and action representation. EdNet is a

massive benchmark dataset of interactions between stu-

dents and a MOOC learning platform called SANTA.1

SANTA is a TOEIC (Test of English for International

Communication) learning platform in South Korea, and the

EdNet dataset was collected by Riiid! AI Research.2 There

are 131,417,236 interaction logs collected from 784,309

students in 13,169 exercises over two years, as shown in

Table 1. The interaction logs for each student are recorded

in an independent CSV (Comma-Separated Values) file.

EdNet is a four-layer hierarchical dataset, structured from

KT1 to KT4, according to the granularity of interactive

actions. KT1 only contains simple information, such as

question and answer pairs and elapsed time. Based on the

information in KT1, to provide correlation information

between student behaviour and question-and-answer

sequences, EdNet adds detailed action records to KT2,

such as watching video lectures and reading articles. In

KT3, actions such as choosing response options and

reviewing explanations are added to KT2, which can be

used to infer the influence of different learning activities on

students’ knowledge states. KT4 includes the finest

detailed action information, such as purchasing courses,

and pausing and playing video lectures, which could be

used to investigate the impact of sparse key actions on

overall learning outcomes.

3.2 Data preprocessing

The problems involving decision-making processes are

transformed into MDPs in general [8] (see Sect. 2.1.1). In

this experiment, we view the students’ sequential decision-

making trajectories as a Markov Decision Process.

Extracting the action space and state space of the real

students’ data is essential for building an effective student

simulation method using MDP. Next, we show how we

1 https://www.aitutorsanta.com.
2 https://www.riiid.co.
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explore the data and extract the action space and state

space.

3.2.1 Action space

There are 13,169 questions, 1021 lectures, and 293 kinds of

skills in EdNet [12]. However, there are no criteria for

Table 1 Statistics of the EdNet

Number of interactions 131,417,236

Number of students 784,309

Number of exercises 13,169

Fig. 3 Analysis of the action distribution of the EdNet dataset

Table 2 State feature

representation
State feature Description

‘correct_so_far’ The ratio of correct responses

‘av_time’ The cumulative average of the elapsed time

‘av_fam’ Average familiarity of all parts

‘topic_fam’ Familiarity with the current part

‘prev_correct’ Numbers of correct answers in previous responses

‘steps_in_part’ Counts of student learning steps

‘lects_consumed’ Numbers of lectures a student has learnt
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separating these courses into different parts. Bassen et al.

[4] proposed a method to group knowledge concepts, based

on the assumption that each part was grouped by domain

experts’ experience. Inspired by this method, we divide the

lectures and questions space of the agent into 7 groups.

However, as the division into 7 groups is of a too coarse

granularity for the action space, we further use the method

proposed in [38], and divide the difficulty of the questions

from 1 to 4 by the answer correctness rate, obtained by

comparing the students answer logs and the correct

answers. Some lectures lack a difficulty ranking and are

therefore assigned a default difficulty value of 0. Hence, all

action spaces are divided into 5 difficulty levels, with 7

groups, and thus 35 action types in total. Figure 3 shows

the distribution of the 35 types of actions in EdNet. In each

group, the action types include 4 questions from difficulty

levels 1 to 4, and 1 lecture. Taking Group 1, for example,

actions 1 to 4 correspond to questions with different dif-

ficulty levels, and action 5 corresponds to lectures where

the difficulty level cannot be defined, which is set as 0. As

shown in Fig. 3, the rest of the groups follow this pattern.

3.2.2 State space

EdNet records the interaction data for each student with the

system, in separate CSV files, via UNIX timestamps.

Therefore, most of the state features obtained from EdNet

are longitudinal and temporal. Previous works have shown

that different state feature choices could make a large

difference in the performance of the algorithms [40, 45].

We select state features that are widely chosen in similar

simulated student works [4, 35, 40, 42]. Transitions

between these selected states represent students’ learning

trajectories. Table 2 shows the features we select from

EdNet: ‘correct_so_far’ is the proportion of the correct

answer to the number of all activities attempted; ‘av_time’

is the cumulative average of the elapsed time spent on each

action; ‘av_fam’ denotes the average familiarity of the 7

groups; ‘topic_fam’ denotes the familiarity with the current

group; ‘prev_correct’ denotes the number of correct

answers in the previous group; and ‘steps_in_part’ counts

student learning steps in the current group. Compared to

previous works [4, 40], we select more state features,

which could potentially simulate the students’ trajectories

in real situations more effectively.

3.3 Sim-GAIL model architecture

Our Sim-GAIL model is built upon generative adversarial

imitation learning (GAIL) [20], which aims to solve the

problem of Imitation Learning of having difficulty in

dealing with constant regularisation and not being able to

match occupancy measures in large environments. Equa-

tion (1) demonstrates the optimal negative log loss, dis-

tinguishing between the pair: state p and action pE.

w�
GA qp � qpE

� �
¼ max

D2ð0;1ÞS�A
Ep½logðDðs; aÞÞ�

þ EpE ½logð1� Dðs; aÞÞ�;
ð1Þ

where wGA� is the average of the real trajectories’ data, and

D is the discriminative classifier. Using causal entropy H as

the policy regulariser, the following procedure can be

derived:

minimise
p

w�
GA qp � qpE

� �
� kHðpÞ ¼ DJS qp; qpE

� �

� kHðpÞ:
ð2Þ

This equation combines imitation learning (IL) and gen-

erative adversarial networks (GAN) [25]. Generator S

generates trajectories that are passed to Discriminator D.

The Generator’s goal is to make it less likely for the Dis-

criminator to differentiate the real trajectories and those

generated by the Generator, whilst the Discriminator’s goal

is to distinguish between them. The Generator achieves the

best learning effect when the Discriminator fails to

Fig. 4 The Sim-GAIL pipeline
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recognise the generated trajectories. Lastly, qpE in Eq. (1)

is the occupancy measure of the real trajectories.

Ep½logðDðs; aÞÞ� þ EpE ½logð1� Dðs; aÞÞ� � kHðpÞ ð3Þ

There is a function approximation of p and D. TRPO [46]

is used to find a saddle point ðp;DÞ, which decreases the

value of Expression (3). To decrease the expected cost, we

use the cost function cðs; aÞ ¼ logDðs; aÞ. As classified by

Discriminator, the cost function will move toward real

trajectories-like regions of the state-action space, to

achieve the training goal of Discriminator.

Figure 4 shows the pipeline of Sim-GAIL. Real student

data from EdNet is processed by the methods introduced in

Sect. 3.2 and fed into the GAIL module (middle part) to

create a simulation policy that could be used for training

the ‘sim student’ (right part). The middle part is described

in Algorithm 1. We start by initialising the policy h and

Discriminator D. At each iteration, we sample real student

trajectories from the dataset and update the Discriminator

parameters using the Adam gradient [47]. Then, we take a

policy update step using the TRPO rule, to decrease the

expected cost [46]. At last, we take a KL-constrained

natural gradient step, to train the Discriminator.

4 Experiments

In this section, we introduce the experimental setup in our

Sim-GAIL method and the two baseline methods that serve

as comparator.

4.1 Sim-GAIL

In order to simulate the real student learning behaviour on a

real platform, we build a simulator, to play back the real

student learning trajectories from EdNet, selected using a

stochastic policy. Specifically, we first sample the real

student trajectories from Ednet. The state includes

‘correct_so_far’, ‘ave_time’, ‘av_fam’, ‘topic_fam’,

‘pre_correct’, ‘step_in_part’, and ‘lects_consumed’. Then,

a subset of the trajectories is randomly picked and con-

trolled with the policy. After that, for each student’s tra-

jectory, a set of action-state pairs, are extracted from the

observation policy. The policy outputs a student action,

responding to the state feature at each timestamp. In this

way, we created the simulation that represents the ground-

truth policy, used to train other methods on.

For the experimental setup, we use an auto-encoder to

process the data. Sim-GAIL is implemented using the

PyTorch framework. We train the model on the seven

features mentioned before using the 1000 students’ inter-

action logs.

4.2 Baseline models

Among the few studies that could be selected as baseline

methods, the current state-of-the-art top performers so far

are the Behavioural Cloning based method proposed by

Torabi [48] and the Reinforcement Learning-based method

proposed by Kumar [49]. Therefore, we use these two

methods as the baselines for the experiments.

4.2.1 Behavioural cloning (BC)

The first baseline is the behavioural cloning (BC)-based

method, proposed by Torabi [48]. This model has shown

good performance in the task of simulating users’ beha-

viour from observations. Similarly, we employ a mixture

regression (MR) approach [50], which is a Gaussian mix-

ture of the actions and states, to process the data features.

For fairness of the comparison, we use the same action-

state pair data to train the Sim-GAIL and BC-methods,

with data extracted from EdNet (see Sect. 4.1). The

supervised learning method is applied to train the policy

and Adam optimisation [47], with a batch size of 128.
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4.2.2 Reinforcement learning (RL)

The second baseline is the reinforcement learning (RL)-

based method proposed by Kumar [49], which uses the

conservative Q-learning (CQL) approach. EdNet does not

contain any students’ prior- or post-test scores. Hence, we

use the method proposed by Azharet al. [51] to build a

reward function, based on the historical logs of students’

scores. More specifically, we use the correctness of the

students’ responses as the reward function. If a student’s

response is correct, a positive reward will be given;

otherwise, a negative reward will be provided. Moreover,

we integrate the difficulty levels of the questions. We set

the rewards from 1 to 4, based on the difficulty level of the

activity. Thus, if the student’s responses match the correct

answers, they get a positive reward of 1 to 4; and if no, they

receive a negative reward of � 1 to � 4. The Dynamic

Programming (DP) [52] method is used to train the model.

More specifically, we utilise a Policy Iteration (PI) method

to train the agent. This process could be separated into two

repeated stages: the first is evaluating the value of every

state in the finite MDP according to the current policy. The

second is using the Bellman Optimality equation [53] to

make the policy iteration based on the current policy.

5 Evaluation

Our evaluation includes two parts: The first part compares

the Sim-GAIL with the two baseline models, and the sec-

ond part uses Knowledge Tracing models to evaluate the

effect of the Sim-GAIL.

In the first part of the evaluation, to better evaluate Sim-

GAIL and its performance relative to traditional models,

we develop our own comprehensive evaluation framework.

Since the most critical elements for a Markov Decision

Process are action, reward, and policy, as shown in Fig. 1,

we build a novel framework, to evaluate the efficiency of

Sim-GAIL and two baseline models from these three

aspects, respectively. In particular, we identify action dis-

tribution, to evaluate the action, expected cumulative

rewards, to evaluate the reward, and offline policy, to

evaluate the policy. The first metric, the action distribution,

is the similarity of distributions between the generated

Fig. 5 Action distribution of the Sim-GAIL model
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actions and the real actions from the historical (ground-

truth) data. We compare this metric amongst Sim-GAIL,

the BC-based method, and the RL-based method with the

original data, by using the Kullback–Leibler divergence

method, which is generally used to measure the difference

between two distributions [54]. Second, we compare the

expected cumulative rewards (ECR) for each of these three

methods. Third, we use two off-line policy evaluation

(OPE) methods, including Importance Sampling (IS) and

Fitted Q Evaluation (FQE), to compare the policy of these

three methods. Our comprehensive and nuanced evaluation

framework is aimed at delivering a more detailed and

informative assessment of Sim-GAIL and its performance

relative to traditional models.

In the second part of the evaluation, we use three state-

of-the-art Knowledge Tracing models to evaluate Sim-

GAIL, to test whether our method could be efficaciously

applied in a real-world cold-start scenario. We apply the

generated data to a widely used ITS technique called

knowledge tracing (KT) to verify the effectiveness of our

model. KT could be used to predict the students’ next

actions, based on their historical behavioural trajectories

[6]. We apply the generated data in three state-of-the-art

KT models, i.e., SSAKT, SAINT, and LTMTL, to test if

the generated data mixed with the original data could

improve their accuracy, when training on only a small set

of student data.

5.1 Action distribution evaluation

As mentioned in Sect. 3.2, we obtain the action distribution

of EdNet by allocating the 35 actions into seven groups,

resulting in five actions per group, as shown in Fig. 3. We

can observe that actions 21, 22, 23, and 24 have higher

frequencies than other actions. This pattern also appears in

the action distribution generated by Sim-GAIL (shown

in Fig. 5). The major difference in action distributions

between the real data from EdNet and those generated by

Sim-GAIL is that action 25 (i.e., one of the lecture actions)

in the latter is not close to the average value of 0. In

addition, action 26 in Sim-GAIL also exhibits a higher

frequency. Figure 6 shows the action distribution of the

simulated students generated by the RL-based method. The

highest frequencies fall into groups 5 and 6, while group 6

Fig. 6 Action distribution of the reinforcement learning-based model
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Fig. 7 Action distribution of the behavioural cloning-based model

Fig. 8 Comparison of different models’ actions distribution
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contains most of the high-frequency actions. Unlike the

action distribution of real data, the clustering of each group

can not be clearly identified in the action distribution of the

RL-based method. Figure 7 shows the action distribution

of the simulated students generated by the behavioural

cloning (BC)-based method. Within this distribution,

actions in group 6 illustrate the highest frequencies, indi-

cating that actions in group 6 are the most frequent ones.

Figure 8 compares the action distribution amongst the data

generated by these three different student simulation

methods. We can see that the BC-based method outper-

forms the RL-based method in this metric, and the action

Table 3 Kullback–Leibler divergence of action distribution

Model Sim-GAIL RL BC

KL value 0.297 0.408 0.391

Fig. 9 Action distribution of the

state feature ‘topic_fam’ from

simulated students generated by

three different methods. The

horizontal axis is the value of

‘topic_fam’ 1–4, the vertical

axis is the normalised counts of

the actions, the orange bar

represents the lecture

consumption, and the blue bar

represents questions, from easy

to difficult. The difficulty is

represented by hue strength
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distribution of Sim-GAIL generated data is closest to the

real data’s distribution.

Moreover, we use the Kullback–Leibler divergence

(KL) method to measure whether the action distribution

generated by these three methods conforms to the real

action distribution from EdNet. Table 3 shows the KL

values of the distribution of the actions generated by these

three methods and that of the real actions, respectively. The

KL value between the action distribution of the data gen-

erated by Sim-GAIL; and the action distribution of the real

data (ground truth) is the lowest (0.297), which suggests

that the action distribution generated by Sim-GAIL is the

closest to the real action distribution. Thus, it performs the

best in this metric. The result also shows that the BC-based

method (0.391) performs worse than Sim-GAIL but better

than the RL-based method (0.408) in this metric.

The state ‘topic_fam’ represents a student’s familiarity

with the current topic. It is an important indicator that can

reflect a student’s mastery of knowledge. We compare the

action distribution of the state value ‘topic_fam’ from

simulated students generated by three different methods,

which is shown in Fig. 9. From left to right is the

distribution of simulated student actions in the state of

‘topic-fam’ generated by Sim-GAIL, RL-based method,

and BC-based method. It can be seen that data generated by

the RL-based method is the most distributed in the most

difficulty-level actions (the darkest bar in each figure).

Within this policy generated by RL, the method could

obtain the highest rewards in the short term. However, the

distribution of actions in the lecture (the orange bar) is

minimal. Such a distribution does not match the real

learning trajectories of students, because students need to

learn new knowledge through attending lectures. The BC-

based method has a more average distribution of actions on

all difficulty-level actions. However, the distributions of

lecture actions are unstable, which is also inconsistent with

the real students’ learning trajectories. The action distri-

bution of the simulated student method based on Sim-

GAIL is the most in line with the real students’ trajectories

action distribution, and the counts of students’ actions

between lectures and questions are relatively stable. This

indicates that the simulated students generated by the Sim-

GAIL method can balance the data distribution and optimal

policy to achieve a better simulation effect.

Fig. 10 Expected cumulative

rewards evaluation
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5.2 Expected cumulative rewards evaluation

Expected cumulative rewards (ECR) represents the average

of the expected cumulative rewards under a given policy

[55]. ECR could effectively reflect the cumulative reward

obtained by the method, which is a crucial indicator of the

effect of the method. The equation for computing ECR is:

ECR ¼ Es0 �D;p�Q s0; p
� s0ð Þð Þ; ð4Þ

where the Qðs0; aÞ function is the ‘action value’ of the

action a selected by policy p in the initial state s0. In this

experimental setting, we set ECR to be simply equal to the

unique initial state value ECR ¼ Vp� s0ð Þ. We calculate the

cumulative rewards for 100 rounds over 1000 steps starting

from the initial state. The results of the expected cumula-

tive rewards evaluation are shown in Fig. 10, and a higher

ECR indicates better performance.

The ECR of Sim-GAIL grows the fastest among the

three methods, suggesting its superior ability to accumulate

rewards in the early stages of the simulation. This rapid

growth could be attributed to the generative nature of the

GAIL algorithm, which enables efficient exploration and

exploitation of the simulation environment, leading to

higher rewards. After 200 steps, Sim-GAIL’s ECR reaches

a plateau at around 400, indicating that the model has

learned an optimal policy and further exploration does not

significantly increase the total rewards. This illustrates the

model’s ability to converge to an optimal solution quickly,

a key advantage in scenarios where computational resour-

ces or time are limited.

The RL method exhibits a slower ECR growth rate

compared to Sim-GAIL. This could be due to the inherent

challenge in reinforcement learning of balancing explo-

ration and exploitation. Although RL eventually stabilises

at a cumulative reward of approximately 290 after 500

steps, this indicates its lower efficiency compared to Sim-

GAIL. BC displays the slowest ECR growth rate, stabil-

ising at around 240 after 400 steps. This slower growth and

lower final ECR compared to Sim-GAIL and RL reflect the

limitations of the BC method, which may not fully capture

the complex dynamics of the simulation environment.

These observations indicate that Sim-GAIL outperforms

the traditional RL and BC methods in terms of ECR growth

rate and final ECR value, highlighting the effectiveness of

the GAIL approach in this context. This superior perfor-

mance underscores the novelty and potential of our pro-

posed Sim-GAIL as a powerful tool for generating

simulated student data for ITS training.

5.3 Offline policy evaluation

As a robust policy evaluation method that does not require

human participation, the offline policy evaluation (OPE) is

often used to evaluate reinforcement learning (RL), which

has shown great potential in decision-making tasks, such as

robotics [56] and games [57]. In these tasks, RL optimal

Table 4 Importance sampling evaluation results

Model OIS PDIS WIS

Behavioural cloning 6.59E?01 3.96E?01 0.970

Reinforcement learning 3.86E-02 3.25E?05 3.841

Sim-GAIL 7.35E-02 8.07E?03 4.753

Fig. 11 Initial state value estimate of the FQE

Fig. 12 The FQE-loss
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strategies could be evaluated in either the environment or

the simulator. There are various ways of evaluation, such

as maximum cumulative reward, optimal policy, and

evaluating the score in games, and the score could be high

or low, and a high score indicates a better performance

[58]. However, in human-participating tasks, evaluation

becomes very difficult. First, human subjectivity may lead

to bias in the results. Second, the simulator cannot consider

every feature in a complex environment. Finally, experi-

ments, where humans are involved, may make the evalu-

ation process expensive, time-consuming, and resource-

intensive. The OPE methods [59] were proposed to address

these problems, where the evaluation of the policy is only

based on the collected historical offline log data. They are

mainly applied in scenarios where online interactions

involve high-risk and expensive settings, such as stock

trading, medical recommendation, and educational systems

[60]. In this paper, we employed a combination of two OPE

methods: the Importance Sampling (including three vari-

ants, OIS, WIS, and PIS) [61] and the Fitted Q Evaluation

method [62], which allows for testing the policy perfor-

mance of the three models.

5.3.1 Importance sampling

As one of the OPE methods, importance sampling (IS) is

used in situations where it is difficult to sample directly

from the original data distribution. It is a method that uses a

simple and collectable distribution to calculate the expec-

ted value of the desired distribution [61]. There are many

works using IS to evaluate the target policy (the policy

derived from the RL algorithms) and the behaviour policy

(the policy used to gather the data) when dealing with

MDPs [63, 64]. However, the basic IS method may suffer

from high variance, due to the huge difference between

those two policies. In our experiment, we used three IS

methods: the general IS (i.e., ordinary importance sampling

(OIS)) and two variants of the general IS, including

weighted importance sampling (WIS) and per-decision

importance sampling (PDIS). WIS employs a weighted

average to mitigate the variance [65]. The Per-Decision

Importance Sampling modifies the sampling ratio and

makes the reward dependent only upon the previous action

in each timestamp [62]. The combination of the three

methods can better observe the policy distribution of the

generated data.

Table 4 shows the results of the Importance Sampling

evaluation. On the OIS criteria, the BC-based method

outperforms the RL-based method but is worsen than Sim-

GAIL. On the PDIS criteria, the Sim-GAIL method out-

performs both RL-based and BC-based methods and the

BC-based method performs better than the RL-based

method. Sim-GAIL outperforms the other two baseline

models, and the RL-based method performs better than the

BC-based method on the WIS criteria. In summary, Sim-

GAIL outperforms the other baseline models on every

criterion.

5.3.2 Fitted Q evaluation

The FQE algorithm regards the MDP as a supervised

learning problem. This method uses a function approxi-

mator to fit the Q function under a specified policy, based

on the observation of the dataset [62].

Figure 11 shows the Fitted Q Evaluation results on the

initial state. Sim-GAIL outshines the other two methods,

affirming its superior performance. This is likely due to the

strengths of the GAIL approach, which efficiently captures

Fig. 13 Pairwise AUC comparisons of the three KT models trained on

only original students’ data (SAINT, SSAKT, LTMTL, in grey) and

trained on the mixed dataset (SAINT*, SSAKT*, LTMTL*, in red).

On the horizontal axis, 500, 1000,...,2500 indicate that the grey curve

model uses the original dataset, and (1000),(2000),...,(5000) indicate

that the red curve model uses the mixed dataset
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the complex dynamics of the environment and generates

more robust policies. Sim-GAIL’s ISV peaks in the third

epoch, indicating rapid learning and optimisation. Despite

subsequent oscillations, Sim-GAIL’s performance consis-

tently surpasses that of RL and BC methods, showcasing its

robustness and stability. The RL method exhibits better

ISV performance than the BC method. Both methods show

a steady increase, with their maximum ISV reached in the

9th epoch. However, their peak performance still falls short

of Sim-GAIL’s average level, underscoring the superior

efficiency and effectiveness of Sim-GAIL. In summary,

Fig. 11 highlights the efficacy of Sim-GAIL in terms of

policy quality and learning speed, as evidenced by its

superior Fitted Q Evaluation results. This underscores the

potential of Sim-GAIL as an efficient and robust approach

for generating simulated student data for ITS training.

Figure 12 shows the FQE loss of the three methods.

Sim-GAIL’s FQE loss increases rapidly, peaking in the

third and fourth epochs. It then swiftly declines but starts to

ascend again after the fifth epoch. This rapid fluctuation

reflects the model’s active learning and adaptation process.

In contrast, RL and BC methods exhibit relatively stable,

slower FQE loss growth. In particular, RL shows moderate

growth, while BC displays the slowest growth. This slower

and more stable growth could be indicative of a more

conservative learning process compared to Sim-GAIL.

Despite generating the highest Qðs0; pðs0ÞÞ values, Sim-

GAIL also incurs higher and less stable validation loss

compared to the RL and BC methods. This suggests that

while Sim-GAIL is efficient in learning and optimising the

policy, it may overfit the training data, leading to higher

validation loss. While Sim-GAIL outperforms RL and BC

methods overall, the results also indicate a need for

parameter tuning to reduce the loss, highlighting an area

for further improvement in Sim-GAIL’s implementation.

In summary, Fig. 12 underscores the dynamic and effi-

cient learning capability of Sim-GAIL, as well as the need

for further tuning to optimise its performance. Despite the

higher and less stable validation loss, Sim-GAIL’s overall

superiority in generating higher Q-values reaffirms its

potential as a robust tool for generating simulated student

data for Intelligent Tutoring System training.

5.4 Evaluation using knowledge tracing (KT)
models

Knowledge tracing (KT) is an emerging research direction

and has been widely applied in intelligent educational

applications, where students’ historical trajectories are used

to model and predict their knowledge states [31]. However,

the lack of student interaction data in the early stage of

using a system, known as the cold-start problem, limits the

performance of KT models. It has been one massive

obstacle to the development and application of KT. In this

experiment, we applied the original data and the data

generated from the Sim-GAIL method to the state-of-the-

art KT models to test whether our model could improve the

performance of KT models in a cold-start scenario. This in

turn proves the efficiency of our proposed Sim-GAIL

method’s ability to simulate and generate students’ his-

torical trajectory data.

In the KT research area, there is a Riiid Answer Cor-

rectness Prediction Competition on Kaggle,3 which com-

pares the state-of-the-art KT models using the EdNet

dataset. The current top three models in this competition

are SAINT, SSAKT, and LTMTI.4 The prediction com-

petition provides a dataset of 2500 students to train the KT

model. Therefore, we assume that the volume of 2500

students is sufficient for KT models to get good prediction

performances. Thus, in our experiments, we considered the

case of a data size of no more than 2500. Therefore, we

selected datasets of sizes 500, 1000, 1500, 2000, and 2500

student records. Each student record contains the student’s

sequence of discrete learning actions. In our experiment,

we first used Sim-GAIL to generate simulated data whose

size is equal to the original data size, and then we mixed it

with the original real data to build a new dataset. After that,

we fed this mixed dataset into the 3 KT models, respec-

tively. For example, in the case of the original data size

being equal to 500, we input the 500 student records to

Sim-GAIL, which generated equally-sized (i.e., 500) sim-

ulated student records. Then, we mixed these 500 gener-

ated student records with the original 500 student records,

to build a new dataset of size 1000. This new mixed dataset

was finally used to train the KT models. We compared the

performance of the KT models between using this mixed

dataset and using only the original data. The metric we

used here is AUC.

Figure 13 shows the pairwise AUC comparisons of the

three KT models trained on only the original students’ data

(SAINT, SSAKT, and LTMTL; in grey) and trained on the

mixed dataset (SAINT*, SSAKT*, and LTMTL*; in red).

The curves of SSAKT* and LTMTL* are constantly higher

than the curves of SSAKT and LTMTL in all the cases, i.e.,

1000, 2000, 3000, 4000, and 5000 sizes of the mixed

dataset. The curve of SAINT* is higher than the curve of

SAINT in the cases of 1000, 2000, and 3000 sizes of data.

Although the curve of SAINT* is very close to SAINT in

the cases of 5000 sizes of data, the former still outperforms

the latter. In all those three pairwise comparisons, espe-

cially in the cases of smaller data sizes (1000, 2000, and

3000), obviously, training on mixed data (a combination of

3 https://www.kaggle.com/code/datakite/riiid-answer-correctness.
4 http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.

com.

24384 Neural Computing and Applications (2023) 35:24369–24388

123

https://www.kaggle.com/code/datakite/riiid-answer-correctness
http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com


the original and generated data) could improve the KT

models. The graphical representation of these results would

likely show an upward trend for all KT models, demon-

strating that the accuracy of the KT models can be

improved with more data and iterations. The lines repre-

senting the training on mixed data would be above those of

the original KT models, indicating our method’s superior

performance. This suggests that the data generated by our

Sim-GAIL method can help improve the KT models,

especially in cold-start scenarios, where the size of the

available data is small.

6 Discussions and future work

6.1 Result analysis

From the results of the experiment, we observe that Sim-

GAIL outperforms the baseline methods on the metrics of

Action Distribution Evaluation, Expected Cumulative

Rewards Evaluation, and Offline Policy Evaluation. The

satisfying fit simulation results may come from the fact that

there is no need to define a reward function for Sim-GAIL,

compared with other baseline models. Defining reward

functions manually may be too complex to fit the real

student trajectories’, thus a reward function built by algo-

rithms instead of humans might result in a better policy

[20]. The results of the evaluation using the KT models

show that Sim-GAIL could be applied to real-world edu-

cational scenarios and improve the efficiency of current

educational technologies. More specifically, our method

could effectively alleviate the cold-start problem of KT

models.

Our Sim-GAIL method outperforms the baseline models

on every metric. The RL-based method outperforms the

BC-based method in terms of offline policy evaluation.

This indicates that a suitable setting of the reward function

could generate better policies. This result is also reflected

in the distribution of ‘topic_fam’ actions. The policy gen-

erated by the RL-based method places more emphasis on

high-difficulty and high-reward actions. Such a policy

works well for obtaining higher cumulative rewards, but it

does not match the action distribution of real students’

trajectories. Besides, the distribution of ‘lecture’ actions

whose default reward value is 0, is very small and unstable.

Thus, the action distribution generated by the RL-based

method is inconsistent with the action distribution of real

students’ trajectories. The BC-based method outperforms

the RL-based method in action distribution, but is worse in

offline policy evaluation. This suggests that, although the

BC-based method can render the action distribution more

aligned with the real action distribution, it is difficult to

obtain a better learning policy. Therefore, Sim-GAIL is a

more advanced student simulation method than those two

traditional ones. Besides, as Sim-GAIL does not require a

dedicated reward function to fit different datasets, com-

pared with traditional student simulation methods, our

method could be easily transferred and applied to another

ITS.

In the evaluation using KT models, we apply our

method to three different state-of-the-art KT models. The

results indicate that our method could improve training

efficiency in cold-start scenarios. In Fig. 13, every KT

model trained on the mixed data (a combination of the

original data and the data generated by our Sim-GAIL

method) performs better in each group. The results suggest

that it could improve training efficiency in small-sized data

scenarios, proving that it could alleviate the cold-start

problem in the early stages of ITS development. For

instance, in the above experiments, every KT* model

performs better when the original data size is smaller than

2000. After the data size is larger than 2000, the perfor-

mance of using the original dataset (KT) is close to that of

using a mixed dataset (KT*), but the KT* still outperforms

the KT.

6.2 Advantages

Our proposed model, Sim-GAIL, brings several significant

advantages to the field of student modelling for intelligent

tutoring systems (ITS). A fundamental strength of Sim-

GAIL lies in its underlying mechanism, that of generative

adversarial imitation learning (GAIL), which endows the

model with the capacity to generate new data instances that

closely resemble actual student behaviour data. This gen-

erative modelling capability of Sim-GAIL is crucial for

creating a rich, diverse dataset needed for effective ITS

training. Additionally, Sim-GAIL offers a solution to a

common issue encountered in the early stages of ITS

development - the cold-start problem. The ability to gen-

erate simulated student data allows Sim-GAIL to effec-

tively tackle this problem, accelerating the training process

of ITS.

In terms of performance, Sim-GAIL has demonstrated

superiority over traditional reinforcement learning (RL)

and behavioural cloning (BC) based methods across vari-

ous metrics, including action distribution evaluation,

cumulative reward evaluation, and offline-policy evalua-

tion. This implies that Sim-GAIL can simulate student

behaviours with higher accuracy and effectiveness. Fur-

thermore, the efficiency of Sim-GAIL is evident from the

rapid convergence to an optimal policy whilst simulating

real student learning trajectories, providing a significant

advantage in scenarios where computational resources or

time are limited.
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Beyond these, the scalability and generality of Sim-

GAIL further enhance its appeal. As a data-driven model,

Sim-GAIL does not rely on expert knowledge for defining

the reward function, which contrasts with some RL-based

methods. This attribute allows Sim-GAIL to scale and

generalise across different datasets and applications,

seamlessly.

In essence, Sim-GAIL represents a novel, effective, and

efficient approach to student modelling. By offering a

promising tool for generating simulated student data, Sim-

GAIL contributes to enhancing the efficacy of ITS training.

6.3 Limitations

The limitations of this work mainly lie in the following

aspects. First, our work adopts a general state representa-

tion method from other studies [4, 51], where Sim-GAIL

outperforms other baseline methods on most metrics. As

discussed in Sect. 3.2, the selection of state representation

may impact the models’ performance. However, the

experimental design of our work does not consider the

potential impact of different state combinations on various

methods. Second, in the experiments of evaluation using

KT models, when a KT model moves beyond the cold-start

stage and has sufficient data, the increase in the amount of

simulated data may lead to a decrease in the prediction

accuracy of the KT model, which may be the bias caused

by Sim-GAIL not considering all the features of student

actions.

6.4 Future work

While our proposed Sim-GAIL method shows promising

results in student simulation for Intelligent Tutoring Sys-

tems (ITS), there are several avenues for future exploration

and improvement.

Fine-grained simulations In our current implementation,

Sim-GAIL focuses on generating simulated student beha-

viour data at a coarse level. Future work can explore

methods to capture more fine-grained details, such as stu-

dents’ cognitive processes, metacognitive strategies, and

affective states. Incorporating these aspects could lead to

more accurate and comprehensive student modelling.

Adaptive simulation Currently, Sim-GAIL generates

simulated student data based on predefined models. Future

research can investigate methods to make the simulation

adaptive, allowing sim students to learn and evolve based

on feedback from the ITS. This adaptive simulation

approach can provide more dynamic and personalised

student trajectories.

Transfer learning and generalisation Sim-GAIL has

been evaluated on the EdNet dataset, but its generalis-

ability to other domains and datasets remains an open

question. Future work can explore transfer learning tech-

niques to enhance the model’s ability to generalise across

different educational contexts and datasets, enabling wider

applicability of Sim-GAIL in various ITS settings.

Human-in-the-loop simulations Although Sim-GAIL

offers an efficient alternative to collecting real student data,

it is crucial to acknowledge the limitations of fully

replacing human students with sim-students. Future

research can investigate human-in-the-loop simulation

methods, where sim students are combined with real stu-

dent interactive data, allowing for iterative refinement and

validation of the simulated trajectories.

By pursuing these future research directions, we can

further enhance Sim-GAIL’s capabilities and contribute to

the advancement of student modelling techniques in the

field of Intelligent Tutoring Systems.

7 Conclusion

In this study, we have introduced Sim-GAIL, a pioneering

student simulation method founded on the generative

adversarial imitation learning (GAIL) algorithm. It stands

as the first of its kind that trains ITS using simulated stu-

dent behaviour data, effectively addressing the challenges

of high-cost, resource-intensive real student data collec-

tion, and the cold-start problem encountered during early-

stage ITS training. Sim-GAIL demonstrates superior per-

formance in comparison with traditional Reinforcement

Learning-based and Imitation Learning-based methods,

marking a significant advancement in state-of-the-art stu-

dent modelling for Intelligent Tutoring Systems.

Our student simulation method, Sim-GAIL, leverages

the EdNet dataset and outperforms the baseline methods: a

Reinforcement Learning method based on Conservative

Q-learning and an Imitation Learning method based on

Behavioural Cloning. We have thoroughly evaluated our

method from four aspects: action distribution discrepancy

based on the Kullback–Leibler divergence, reward function

using expected cumulative rewards (ECR), and two offline

policy evaluation (OPE) methods—Importance Sampling

and Fitted Q Evaluation. Our results convincingly

demonstrate that Sim-GAIL outperforms the baseline

models in all these aspects.

Further, we have applied Sim-GAIL to state-of-the-art

knowledge tracing models and observed a noticeable

improvement in their performance, especially in cold-start

scenarios. This underlines Sim-GAIL’s efficiency in sim-

ulating and generating students’ historical trajectory data,

further emphasising its novelty and potential to contribute

to the field of student modelling for Intelligent Tutoring

Systems.
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Moving forward, research can explore fine-grained

simulations, adaptive simulation techniques, transfer

learning and generalisation, and human-in-the-loop simu-

lations, to enhance Sim-GAIL’s capabilities in student

modelling even further, as discussed in Sect. 6. This study

paves the way for these future endeavours by providing a

robust, novel method for generating simulated student data

for ITS training.
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