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Regulatory controls of duplicated gene 
expression during fiber development in 
allotetraploid cotton

Jiaqi You1,5, Zhenping Liu1,5, Zhengyang Qi1,5, Yizan Ma    1,5, Mengling Sun1, 
Ling Su1, Hao Niu1, Yabing Peng1, Xuanxuan Luo1, Mengmeng Zhu1, 
Yuefan Huang1, Xing Chang1, Xiubao Hu1, Yuqi Zhang1, Ruizhen Pi1, Yuqi Liu1, 
Qingying Meng1, Jianying Li    1, Qinghua Zhang1, Longfu Zhu    1, Zhongxu Lin    1, 
Ling Min    1, Daojun Yuan1, Corrinne E. Grover    2, David D. Fang3, 
Keith Lindsey    4, Jonathan F. Wendel    2, Lili Tu    1  , Xianlong Zhang    1   & 
Maojun Wang    1 

Polyploidy complicates transcriptional regulation and increases 
phenotypic diversity in organisms. The dynamics of genetic regulation of 
gene expression between coresident subgenomes in polyploids remains 
to be understood. Here we document the genetic regulation of fiber 
development in allotetraploid cotton Gossypium hirsutum by sequencing 
376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 
genes comprising 36 genetic modules that control staged fiber development 
and uncover genetic components governing their partitioned expression 
relative to subgenomic duplicated genes (homoeologs). Only about 
30% of fiber quality-related homoeologs show phenotypically favorable 
allele aggregation in cultivars, highlighting the potential for subgenome 
additivity in fiber improvement. We envision a genome-enabled breeding 
strategy, with particular attention to 48 favorable alleles related to fiber 
phenotypes that have been subjected to purifying selection during 
domestication. Our work delineates the dynamics of gene regulation during 
fiber development and highlights the potential of subgenomic coordination 
underpinning phenotypes in polyploid plants.

The significance of polyploidy in plants has long been recognized, with 
respect to both species diversification and implications for genetic 
improvement during plant breeding1–5. The genome-wide redundancy 
conferred by whole genome duplication increases genetic diversity and 
provides additional avenues for evolving functionality, thereby increas-
ing biological complexity6,7. Duplicated genes in polyploid organisms, 
or homoeologs, are coordinated in several ways, mediating gene dosage 

effects, gene balance, interaction between cis- and trans-acting factors 
and rewiring of gene expression networks8–13. Unequal contribution 
of the expression of each homoeologous gene to the total expression 
level (that is, biased homoeolog expression) has been observed in many 
allopolyploid plants14–17. Homoeologous expression bias reflects one 
aspect of duplicate gene coordination, which is thought to be associ-
ated with increased variation and hence adaptive potential. The many 
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data were generated, with an average depth of 15.6× (Supplementary  
Table 1). Accessions were sampled at different developmental stages, 
including ovules on the day the flower opens (0 days postanthesis (DPA)) 
and fibers at five timepoints spanning elongation to secondary cell wall 
synthesis (4, 8, 12, 16 and 20 DPA). A total of 2,215 RNA-sequencing 
(RNA-seq) data samples were generated (with 41 failing to sample), 
with an average of 40 million read pairs for each sample (Fig. 1a and 
Supplementary Table 2). Principal component analysis showed that 
samples from the same timepoint clustered together, and samples from 
adjacent development stages were closely associated, indicating a con-
tinuous developmental trajectory (Fig. 1b and Extended Data Fig. 1a,b).

A total of 49,860 genes were transcribed (fragments per kilobase 
of transcript per million mapped reads (FPKM) > 0.1 in at least 5% acces-
sions) during cotton fiber development, including 24,486 in the At 
subgenome and 25,238 in the Dt subgenome (Fig. 1c, Extended Data  
Fig. 1c and Supplementary Table 3), of which 12,875 were expressed at 
one to five timepoints (Extended Data Fig. 1d). Of note is the observa-
tion that 20,189 homoeologous gene pairs (2n = 40,378) were expressed 
(Extended Data Fig. 1e and Supplementary Tables 3 and 4), of which 
79.6% (n = 16,081) showed expression bias (expression level fold change 
≥2 between two homoeologs in ≥ 5% accessions) toward the At (BiasA) 
or Dt (BiasD) subgenome in at least one timepoint (Fig. 1d), including 
3,256 pairs with stable direction of expression bias at all timepoints 
(Extended Data Fig. 1f).

Genetic regulation of dynamic gene expression
Using both RNA-seq data in fiber development and genome resequenc-
ing data for each accession, we considered the impact of genetic vari-
ants on gene expression. We used eQTL mapping to identify cis- (within 
1 megabase (Mb) of each gene on either side) and trans- (>1 Mb apart 
or on a different chromosome) regulatory variants (eVariants) that are 

complexities of duplicate gene cis- and trans-interactions in biological 
networks, however, have only recently begun to be elucidated8,10,12,13,17. 
A particularly promising research avenue is the mapping of expression 
quantitative trait loci (eQTL) for genome-wide discovery of genetic 
regulatory variants that influence gene expression.

Allotetraploid ‘upland’ cotton, Gossypium hirsutum L., which 
originated following an interspecific hybridization event between two 
diploid ancestors (genome type AA and DD) approximately 1–2 mil-
lion years ago18, is the dominant source of natural renewable fiber for 
textiles. Cotton ‘fibers’ are single-celled epidermal ovular trichomes 
with modular expression and phenotypic stages encompassing ini-
tiation, primary wall synthesis, secondary wall synthesis and matu-
ration19. As a vital economic commodity, cotton fiber development 
has been extensively studied, and many genetic loci and functional 
genes responsible for fiber development have been discovered20–26. 
However, our understanding of how the co-existing At and Dt subge-
nomes genetically coordinate the dynamic development of the fiber is 
limited. Accordingly, few breeding practices consider the interactions 
of genetic effects due to the two subgenomes, which have unique 
transcriptional and biochemical suites of interactions8,10,12,13. Here 
we present a genetic regulation analysis of dynamic gene expression 
in developing fibers across a suite of highly diversified G. hirsutum 
accessions and uncover the genetic components that may optimize 
homoeologous gene expression for unlocking the potential for  
fiber improvement.

Results
Gene expression atlas in fiber development
To uncover the genetic regulation of gene expression in fiber devel-
opment, we collected 376 diverse G. hirsutum accessions for genome 
and transcriptome analysis. A total of 13.5 Tb of genome resequencing 

−0.02

0.010

0 DPA
4 DPA

8 DPA

12 
DPA

16
 DPA

20
 DPA

0.015
0.020

0.025

0

0.02

PC 1

PC
 2

a b

49,860 (71.0%)

24,486
(34.8%)

25,238
(36.0%)

136
(0.2%)

10,060
(14.3%)

9,892
(14.1%)

387
(0.6%)

20,339 (29.0%)

No measurable
expression

Expression
observed

Cotton genome

At

Dt

Sca

c d

0 DPA
(370)

4 DPA
(362)

8 DPA (372) 12 DPA (371) 16 DPA (371) 20 DPA (369)

10 mm

10 mm

10 mm

10 mm 10 mm
10 mm

0 DPA
4 DPA
8 DPA
12 DPA
16 DPA
20 DPA

10,662

10,070

10,381

12,674

9,717

8,624

eQTL counts

Cis
eGene type

Trans
Cis and trans 

e

20 DPA

16 DPA

12 DPA

8 DPA

4 DPA

0 DPA

0 5,000 10,000

0

4

8

12

G
en

e 
pa

ir 
co

un
ts

 (×
10

3 ) BiasD BiasN Bidirect biasBiasA

Fig. 1 | Gene expression atlas and genetic regulation during fiber 
development. a, Samples used for RNA-seq in fiber development. The samples 
include ovules at 0 DPA and fibers at 4 DPA, 8 DPA, 12 DPA, 16 DPA and 20 
DPA. The sample number of each stage is shown in parentheses. b, Principal 
component analysis (PCA) plots of the first two components for 2,215 RNA-
seq samples. c, The number of genes expressed (dark gray outside line) or not 
expressed (lighter gray outside line) in all RNA-seq samples. d, The number of 

expressed homoeologous genes in each timepoint. Red, homoeologous genes 
with expression bias toward the At (BiasA); blue, homoeologous genes with 
expression bias toward the Dt (BiasD); gray, homoeologous genes without 
expression bias (BiasN); purple, homoeologous genes with expression bias 
toward the At and Dt (bidirect bias). e, The number of eQTLs and distribution of 
eGenes that had cis-eQTL, trans-eQTL or both. At, the At subgenome; Dt, the Dt 
subgenome; Sca, genes in unanchored scaffolds.
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associated with differences in gene expression. We leveraged approxi-
mately 2.7 million SNPs with a minor allele frequency (MAF) > 0.05 in 
conjunction with the 45,545 genes exhibiting expression variation 
across all stages (64.8% of the predicted transcriptome) in the eQTL 
mapping (Supplementary Figs. 1 and  2). In total, 53,854 cis-eQTLs were 
identified for 18,637 genes (23.8–28.4% of cis-eQTLs overlapped with 
open chromatin20) and 23,811 trans-eQTLs were identified for 10,391 
genes (eGenes, that is, genes whose expression is associated with one 
or more eQTL), with the largest number of eGenes (12,674, or 55.1%) 
identified at 12 DPA, because of the presence of a few eQTL hotspots 
(that is, local chromosomal regions that were associated with transcrip-
tional regulation of more than three genes) at this timepoint (Fig. 1e 
and Supplementary Table 5).

To compare the sharing of eQTL and further understand the dif-
ferences in genetic regulation between stages, we collated eQTLs from 
all stages and distinguished regulatory mechanisms that were found in 
only one stage (stage-specific) or at least two stages (stage-shared; Sup-
plementary Figs. 3 and 4). We found that stage-shared eQTLs showed 
larger effects than stage-specific eQTLs, and genes with stage-shared 
eQTLs had a higher proportion of cis-eQTLs than stage-specific eGenes 
(Extended Data Fig. 2a,b). For each cis-eQTL, we assessed sharing 
among stages by comparing local false sign rate (LFSR) and magni-
tude, which represented the metrics for eQTL significance and effect 
estimates27. In this analysis, 27,102 (50.2%) cis-eQTLs that were shared 
among six timepoints had significant signals in the comparison of LFSR, 
of which only 11,072 had detected effects (fold change of magnitude ≤2 
between different timepoints), suggesting many stage-shared eQTLs 
(LFSR ≤ 0.05) showed variable effect magnitude during fiber develop-
ment (Extended Data Fig. 2c). In terms of the effect magnitude esti-
mates for eQTLs that are shared between timepoints, the vast majority 
(91.1%) showed consistent effect direction (Extended Data Fig. 2d).

Fine-mapping of fiber quality associations
We decoded the genetics of fiber quality-related traits by integration 
of genome-wide association study (GWAS) and eQTL data. A total of 18 
QTLs were identified, including five for fiber length (FL), six for fiber 
strength (FS), four for fiber elongation (FE) rate and three for fiber 
uniformity (FU; Fig. 2a and Supplementary Fig. 5), of which nine were 
previously uncharacterized (Supplementary Table 6). This result was 
partially verified by an F2 population (Supplementary Fig. 6). Then, 
two complementary methods, including a transcriptome-wide asso-
ciation study (TWAS) and a colocalization analysis28,29, were used to 
prioritize causal genes for fiber quality-related traits. Using TWAS, 
1,255 genes (false discovery rate (FDR) < 0.05) were identified across 
the whole genome (311 for FL, 655 for FS, 877 for FE and 308 for FU;  
Fig. 2a, Supplementary Fig. 7 and Supplementary Table 7). Specifically, 
43 genes were prioritized as candidate genes for 17 GWAS QTLs using 
TWAS (Supplementary Table 8). As proof, genetic knockout of a TWAS 
gene (Ghir_D10G004160) showed that FL became significantly shorter 
(Extended Data Fig. 3a,b and Supplementary Figs. 8 and 9). Using two 

colocalization strategies, summary-data-based Mendelian randomi-
zation (SMR) and coloc29,30, we also identified 14 fiber quality-related 
genes (3 for FL, 4 for FS, 6 for FE and 4 for FU) in nine GWAS QTLs (Fig. 2b, 
Extended Data Fig. 3c, Supplementary Figs. 10 and 11 and Supplemen-
tary Table 8), 11 of which overlapped with genes in the TWAS analysis. 
Of note is the observation that 1,243 of the 1,258 genes from TWAS and 
colocalization analysis maintained the same effect on fiber quality 
traits in fiber development.

On chromosome D05, we identified a QTL that is significantly 
related to FL, for which BB2 (Ghir_D05G007220) is characterized as 
a causal gene (Fig. 2c). BB2 encodes an E3 ubiquitin ligase, which was 
found to be related to cell proliferation and elongation in Arabidopsis31,  
and positively regulates FE after 12 DPA. Based on the expression pat-
tern of BB2, all cotton accessions were divided into eight different 
groups, with groups 2, 3, 4 and 5 including 94.4% of accessions (Fig. 2d). 
From group 2 to group 5, the expression pattern of BB2 was gradually 
delayed, and the median FL value of the corresponding accessions 
gradually increased (Fig. 2e). This result indicates that the expression 
pattern of group 5 (highly expressed from 8 DPA to 16 DPA) is condu-
cive to FE, probably coinciding with the extended FE period. Similar 
to the analysis for BB2, we investigated the expression patterns for all 
1,258 genes from TWAS and colocalization analysis in all accessions 
and defined ‘favorable’ expression patterns as those in accessions 
with favorable fiber quality traits, such as longer or stronger fiber. 
We found 158 FL, 196 FS, 349 FE and 148 FU-related genes exhibited 
favorable expression patterns in the accessions with favorable traits 
(Extended Data Figs. 3d and 4a). From short-fiber to long-fiber acces-
sions, the number of genes with favorable expression patterns tended 
to increase in accessions with longer fiber (Pearson coefficient: 0.621, 
P < 2.2 × 10−16; Extended Data Fig. 4b,c). Similar observations were 
found for other traits (Extended Data Fig. 4d–f).

We next explored the genetic effect of regulatory variants asso-
ciated with genes in TWAS and colocalization analysis. Most of the 
loci showed moderate effects with a median FL of 0.48 mm, FS of 
1.14 cN tex−1, FE of 0.04% and FU of 0.36% (Fig. 2f,g). We found that 534 
genes showed pleiotropic effects (Extended Data Fig. 4g), such as the 
regulatory variant of Ghir_D06G018130 that contributed to both FS and 
FE with very large effects (FS: 2.30 cN tex−1; FE: 0.07%). We delineated 
the growth trend of heritability by considering different numbers of 
trait-related loci through random sampling. The estimated heritability 
grew smaller as the number of loci increased, in a logarithmic manner 
(Fig. 2h). The phenotypic variance explained by the integration of TWAS 
and colocalization genes was much more than could be explained by 
just considering GWAS loci (Fig. 2i).

Regulatory modules underpinning fiber quality
Because one eQTL may regulate multiple eGenes and one gene may 
also be regulated by multiple eQTLs, this relationship becomes more 
complicated when considering the presence of eQTL hotspots. We iden-
tified 406 eQTL hotspots that regulated 4,689 genes across five fiber 

Fig. 2 | Fine-mapping of fiber quality associations. a, Manhattan plot of the 
genome-wide association study (top panel) and transcriptome-wide association 
study (bottom panel) for fiber quality. Significant QTLs are labeled. Significance 
thresholds of P = 3.76 × 10−7 (one-sided F test) and FDR = 0.05 (P value of two-
sided Student’s t test corrected by FDR) were used, respectively. b, Phenotypic 
effects (TWAS z score or correlation between expression and phenotype) of  
FL/FS-related candidate genes. Strategies are shown at the left, with illustrative 
color ranges. Positive z scores or correlations are shown in orange and negative 
values in purple. Significant genes are marked with ‘check mark.’ c, Regional 
association plots for FL (top row) and eQTLs for gene Ghir_D05G007220 (BB2) at 
12 DPA and 20 DPA. Chromosomal location and gene position were labeled at the 
bottom. The lead SNPs are highlighted with a purple diamond. Boxplots on the 
right panel show fiber length and BB2 expression for accessions with different 
genotypes (n = 154 versus 215; two-sided Wilcoxon rank-sum test; centerline, 

median; box limits, first and third quartiles; whisker, 1.5× interquartile range).  
d, Expression profiles of Ghir_D05G007220 (BB2) in 340 accessions were divided 
into eight expression groups. The figure shows the four larger expression groups. 
Heatmaps showing normalized FPKM in each accession at each timepoint. 
Line charts showing the mean expression of accessions at each timepoint. The 
arrow points to the timepoint with the highest mean expression. e, Boxplot for 
fiber length of accessions with different expression patterns (n = 16 versus 88 
versus 108 versus 109; two-sided Student’s t test; centerline, median; box limits, 
first and third quartiles; whisker, 1.5× interquartile range). f,g, Dot plot for the 
genetic effect of variants associated with FL/FS-related candidate genes. X axis 
indicates the variants sorted by genetic effect. Y axis indicates the genetic effect 
of variants. The representative variants and regulated genes are labeled. h, The 
heritability accumulation accompanying the increase of genetic variants. i, The 
heritability is explained by only GWAS loci and both GWAS loci and eQTLs.
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developmental timepoints (Fig. 3a), including 283 timepoint-specific 
hotspots and 123 timepoint-shared hotspots, of which nine representa-
tive large hotspots were found to regulate a variable number of genes 
in fiber development ranging from 4 (Hot292 at 4 DPA) to 1,546 genes 
(Hot369 at 12 DPA; Fig. 3b). The eQTL/hotspot–eGene relationships 
constituted a comprehensive genetic network (Fig. 3c and Supple-
mentary Tables 9 and 10j). We found that the in-degree distribution 
of this network followed a linear trend in the log scale (r2 = 0.7691, 
P = 2.37 × 10−7), which is a landmark of scale-free networks (Fig. 3c and 
Extended Data Fig. 4h)32. In this network, all nodes (eQTLs/hotspots or 
eGenes) were clustered into 36 modules according to the connectivity 
between nodes.

Each module shows diverse heritability for four traits (Fig. 3d). We 
identified 23 FL, 25 FS, 26 FE and 25 FU-related modules with heritability 
≥0.05 for each trait (Supplementary Table 10). For example, module 
25 shows the highest heritability for FL and FE and module 24 shows 
the highest heritability for FS. This indicates that modules may differ 
with respect to phenotypic effects, possibly because different modules 
are controlled by different regulatory factors such as transcriptional 
factors (Extended Data Fig. 4i)33. In all modules, 35.3–57.4% of eQTLs 
regulated candidate genes at a specific timepoint, 11.8–38.2% of eQTLs 
had steady regulatory effects on candidate genes at all timepoints and 
the other eQTLs (16.8–37.3%) showed variable regulation at two to four 
timepoints (Extended Data Fig. 4j).
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To examine the dynamic effect of modules on FL, the eight 
modules (heritability >0.05 and FL-related gene counts ≥5) with 
higher interpretation (normalized r2) to FL were tabulated (Fig. 3e). 
For example, genes in module 29 are mainly involved in regulation 
at the early elongation stage (4–8 DPA), such as Ghir_D02G002150 
that encodes a xyloglucan endotransglucosylase/hydrase involved 
in primary cell wall extension34. The genes in module 1 are mainly 
involved in regulation at a later elongation stage (16–20 DPA), includ-
ing Ghir_A10G008020, which encodes a plant glycogen-like starch 
initiation protein that has a role in secondary cell wall biosynthesis 
(Fig. 3e)35.

To investigate the extent of favorable allele aggregation in each 
module, we divided cotton accessions into three categories by their 
FL, that is, a long-fiber group (31.08 ± 0.68 mm), an intermediate-fiber 
group (28.85 ± 0.80 mm) and a short-fiber group (26.31 ± 0.82 mm). 
Among the 436 loci associated with FL, 129 show a higher favorable 
allele frequency (>0.2) in the long-fiber group compared with the 
short-fiber group, and these loci are enriched in modules 1, 23, 25 and 
36 (Fisher’s exact test, P < 0.05; Fig. 3f). Accordingly, modules 1 and 25 
have a very high heritability to FL, representing strong candidates for 
prioritization in cotton breeding (Fig. 3g).

Genetic effects on homoeologous expression bias
In polyploid cotton, subgenomic expression bias occurs for a number 
of homoeologous genes; however, the cis- or trans-transcriptional regu-
latory controls of this bias are not well understood. To investigate the 
genetic basis of expression bias of homoeologous genes, we performed 

GWAS using bias fraction score as a phenotype (Supplementary Fig. 12). 
A total of 14,133 significant associations (bias-eQTLs) were detected for 
4,026 homoeologous gene pairs during fiber development.

To explore the possibility that bias-eQTLs contribute to homoeolo-
gous expression bias, we compared the genetic effects of eQTLs in one 
subgenome with those of bias-eQTLs for homoeologous genes, after 
discovering that eQTLs were significantly enriched for homoeologous 
pairs exhibiting expression bias (17,828, 48.1% versus 6,225, 29.3%; 
Fig. 4a and Supplementary Fig. 13). We observed that 2,658 gene pairs 
with 5,350 significant signals that were detected in both the eQTL and 
bias–eQTL analyses tended to have a wider pattern of expression bias 
in different accessions and their cis-regulatory regions had a higher 
proportion of variance for expression bias (Extended Data Fig. 5a,b). 
Of the 5,350 bias-eQTLs, 4,846 (90.5%) were colocalized with eQTLs for 
one of their homoeologous genes, and the number of variants in genic 
regions showed noticeable differences (Extended Data Fig. 5c). This 
suggests that variants in the transcriptional regulation region for one 
copy of homoeologous gene may result in dysregulation of expression 
and lead to expression bias. Of note is the observation that for gene 
pairs with bias-eQTLs identified at each stage, 8% (6.2–9.3%) of them 
are TWAS genes. There is an association between the variation of their 
homoeologous expression and FL change (Fig. 4b), suggesting that 
some homoeologous pairs with biased expression were implicated in 
the regulation of traits.

To further interrogate the impact of genetic variants on the dynam-
ics of expression bias during fiber development, we clustered the 2,658 
gene pairs into three groups (switched, time-dependent and dominant) 
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according to the number of accessions belonging to the patterns of 
expression bias (Extended Data Fig. 5d; Methods). Gene pairs belonging 
to the switched group exhibit changes in the direction of expression 
bias at different stages, which had relatively low correlation of genetic 
effects of eQTLs across stages (Fig. 4c). The dominant group shows 
a higher proportion of shared eQTLs, indicating that eQTLs often 
contribute to this shared expression pattern (Fig. 4d). Interestingly, 
compared with gene pairs with nonswitched bias of direction, more 
gene pairs in the switched group had trans-eQTLs instead of cis-eQTLs 
(Fig. 4e). This may suggest that trans-eQTLs were prone to mediate 
the dynamics of expression bias direction and cis-eQTLs were more 
likely to contribute to stable direction of expression bias during fiber 
development. In addition, by constructing a co-expression network 
of 16,081 homoeologous genes with expression bias, we found that 
homoeologous genes in the switched group have lower network con-
nectivity that probably represents simpler regulatory relationships 
(Extended Data Fig. 5e–j and Supplementary Table 11). These findings 
may facilitate further understanding of the genetic regulatory dynam-
ics underlying the expression bias of homoeologous genes.

Subgenomic coordination of genetic effect on fiber quality
Fiber quality-related genes were identified in both subgenomes; how-
ever, the genetic contribution of their homoeologous copies to fiber 
quality is not well understood. In this study, we found that a very small 
proportion of both homoeologous copies (0.8%, 2 of 241) were identi-
fied as candidate genes for FL in the TWAS and colocalization analysis. 
Similar results were obtained for FS (2.7%, 14 of 518), FE (3.7%, 26 of 
700) and FU (0.8%, 2 of 240). We identified pseudoregulatory sites by 
mapping the significant SNPs of each candidate gene to the sequences 
flanking the homoeologous gene (2 Mb upstream and downstream) in 
the other subgenome. This analysis showed that few pseudoregulatory 
sites (2 of 2,442) for the four fiber-quality traits are mutated in the 
population (Extended Data Fig. 6a–d).

Due to the relative paucity of regulatory variants, we evaluated 
the contribution of the homoeologous gene of each candidate gene 
by comparing their expression levels. For each gene that positively 
regulates fiber quality, we assume the candidate gene and its homoe-
ologous gene have similar regulatory effects when the candidate gene is 
associated with a trait-beneficial genotype and the homoeologous gene 
has higher or no differences in expression level (favorable expression). 
Based on this, the contribution of each homoeologous gene pair to 
fiber quality was grouped into the following four models: (1) favorable 
homoeologous pairs, with both favorable genotype and expression; (2) 
only favorable genotype with unfavorable expression of its homoeolo-
gous gene; (3) only favorable expression that has unfavorable genotype 
of candidate gene and (4) unfavorable homoeologous pairs (Methods). 
We found that 29.5% of the 133 homoeologous pairs that positively 
regulate FL have favorable expression, 34.9% do not, 3.1% lack a favora-
ble genotype and 32.6% lack both favorable genotype and expression 
(Fig. 5a). Among the 106 homoeologous pairs that negatively regulate 
FL, 27.5% have the favorable state, 19.6% show decreased expression of 
homoeologous genes, 8.8% do not have a favorable genotype and 44.1% 
lack both favorable genotypes and expression levels (Fig. 5b). These 
data show that the majority (67.5–75.8%) of homoeologous genes might 
be further optimized for fiber improvement (Extended Data Fig. 6e–g). 
At the module level, module 31 appears to be relatively optimized with 
respect to homoeologous gene expression, indicating that most mod-
ules might be promising targets for improvement through optimizing 
both homoeologs (Fig. 5c and Supplementary Figs. 14–16).

To assess the impact of aggregating homoeologous pairs with 
favorable genotype or expression on fiber quality traits, we counted 
the number of gene pairs represented by the four models above in 
each accession. For FL, we observed that the number of gene pairs 
categorized as favorable homoeologous pairs in long-fiber acces-
sions became generally larger than in short-fiber accessions (Fig. 5d). 

We also found that 81.6% of the TWAS signals (308) corresponding to 
231 homoeologous pairs showed changes of expression bias fraction 
score between accessions with favorable and unfavorable genotypes  
(Fig. 5e). Interestingly, by counting the bias levels of homoeologous 
pairs in each accession, we found that with the aggregation of favorable 
genotypes in long-fiber accessions, the expression bias exhibited the 
following two patterns: either fewer gene pairs (Fig. 5f) or more gene 
pairs (Fig. 5g) showed biased expression. The former implicates that 
only one subgenome has favorable genotypes and the latter might 
result from neither of subgenomes having favorable genotypes in 
short-fiber accessions. Similar patterns were observed for the other 
three traits (Extended Data Fig. 7a–c). These results suggest that the 
targeted utilization of both subgenomes may enhance the potential for 
fiber improvement and that aggregation of favorable genotypes has led 
to changes in the transcriptional regulation of homoeologous genes.

Genomic design for fiber quality improvement
To expand insight into the aggregation of favorable alleles for fiber 
improvement, we evaluated the effect of domestication selection on 
fiber quality-associated loci. In this analysis, 3,552 cotton accessions, 
including 332 landraces and 3,220 cultivars, were collected (Supple-
mentary Table 12)20,23,36,37. A library of favorable alleles was constructed 
using the fiber quality-associated loci and these 3,552 accessions  
(Fig. 6a). Overall, cultivars aggregated more favorable alleles compared 
with landraces (Extended Data Fig. 8a,b and Supplementary Table 13), 
providing indirect ex post facto confirmation of the utility of focusing 
on the regulation of homoeologs related to fiber traits.

We calculated the sharing ratio of favorable alleles in 3,220 modern 
cultivars and grouped the trait-associated loci into four categories, 
C1–C4. From C1 to C4, the utilization level of favorable alleles in modern 
cultivars increased (Fig. 6b–d and Extended Data Fig. 8c,d). We also 
compared the differences of the four categories between cultivars and 
landraces (Fig. 6e and Extended Data Fig. 8e). Based on the differences 
in allele frequency (>0.6), we identified 91 selectively favorable alleles 
in cultivars (Supplementary Table 14). We also identified 48 loci for 
which the favorable alleles were under purifying selection, indicating 
that human selection did not always lead to the aggregation of favora-
ble alleles (Fig. 6f). We observed no linkage drag effects for the loci 
under purifying selection, and the effect of these loci was no different 
to that of preferentially aggregated loci in cultivars (Supplementary  
Fig. 17). Nevertheless, we found that many of the genes corresponding 
to the loci under purifying selection showed pleiotropic effects (27/48; 
Supplementary Table 14). For example, Ghir_A01G013620, encoding 
a nicotinamide adenosine dinucleotide (phosphate) (NAD(P))-linked 
oxidoreductase superfamily protein, was characterized as a representa-
tive candidate for fiber development. The expression of this gene at 4 
and 8 DPA was positively correlated with FL, FS and FE (Fig. 6f,g). This 
type of functional implication suggests that future fiber improvement 
efforts should consider enabling the use of these alleles.

A strong linear relationship was observed between the total num-
ber of favorable alleles and the phenotype, indicating that combining 
favorable alleles in elite lines is an effective way to design favorable 
cotton cultivars (Extended Data Fig. 9a). Ridge regression was used 
to estimate the overall effect of the trait-associated loci (Extended 
Data Fig. 9b,c). The correlation coefficient between predicted and 
observed values for FL reached 0.77, indicating these loci are predictive  
(Fig. 6h). The accuracy of the model was evaluated using an external 
GWAS cohort (n = 1,040)37, and the correlation coefficient reached 
0.47, which was similar to the accuracy of ridge regression best linear 
unbiased prediction (rrBLUP) by using the SNP set filtered through 
linkage disequilibrium (LD) clumping method (GWAS P value thresh-
old = 0.001; Fig. 6i and Supplementary Fig. 18)38. We also predicted the 
best value of FL, which was 35.55 mm, much longer than the normally 
field-produced 28 mm fibers. The distance of the 376 accessions to the 
predicted best FL ranged from 2.88 mm to 11.64 mm (Fig. 6j).
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Because the expression of the homoeologous copies of trait- 
associated candidate genes may affect the phenotypes, we hold the 
view that fiber quality-related traits can be further improved by modi-
fying the expression of homoeologous genes. To estimate the overall 

contribution of homoeologous gene expression, we integrated the 
expression of the homoeologous genes that were correlated with 
fiber quality-related traits in at least one developmental stage into 
the predictive model. This gave an increased prediction accuracy of 
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Fig. 6 | Genomic design for fiber quality improvement. a, Phylogenetic tree 
and genotypes of fiber-related loci in 332 cotton landraces and 3,220 cultivars. 
b, Trait-associated loci were grouped into four categories according to their 
favorable allele frequency in the modern cultivar population. c, Number of  
loci in four categories with different sharing ratios of favorable allele for FL.  
d, Heritability of the SNPs in each of the four categories for FL. e, Comparison 
of favorable allele frequency in the four categories between landrace and 
cultivar population. The frequency difference above 0.6 was highlighted in 
green and yellow. f, Favorable allele frequency of loci that were highlighted in 
green color in e. g, Comparison of fiber traits (FL, FS and FE) and expression 
levels of Ghir_A01G013620 in accessions with different genotypes (CC and AA). 
Two-sided Wilcoxon rank-sum test. Centerline, median; box limits, first and third 
quartiles; whiskers, 1.5× interquartile range. h, Correlation between real FL values 
and FL breeding value (BV) estimates calculated by ridge regression. i, Model 
predictability tested by applying the training model in a to an external dataset 

(1,040 accessions) for FL. j, Distance of real FL (blue dots) and FL BV estimates 
(red dots) of the accessions to the estimated best value of FL. k, The number 
of FL-associated genes and the number of the homoeologous genes whose 
expression was correlated or not correlated with FL. l, Fivefold cross-validated 
prediction accuracy using ridge regression model based on two predictive sets. 
One contains genotype and the other contains both genotype and the expression 
of corresponding homoeologous genes. Hundred replications were run. Circle, 
mean; error bar, mean ± s.e. m, Genomic-guided donor parent selection. The 
heatmap (left) shows the level of genetic improvement. Each row represents 
the accession to be improved and each column represents the donor. Right, 
the utilization level of FL/FS-associated loci in the eight genetic modules or the 
homoeologous genes corresponding to these loci of S161 and S003. The loci or 
the homoeologous genes of S161 that could be improved by S003 were listed at 
the bottom.
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8% for FL, 10% for FS, 5% for FE and 6% for FU (Fig. 6k,l and Extended 
Data Fig. 9d). These data pinpoint the importance of the involvement 
of homoeologous genes and expression levels in genomic breeding.

To enable genomic design for FL and FS improvement, we evalu-
ated the trait-associated loci, as well as the state of utilization of the 
corresponding homoeologous genes that could be improved by other 
accessions (Fig. 6m and Supplementary Tables 15–18). As a proof of 
concept, we present the improvement degree matrix of 18 cotton acces-
sions to clarify the donor parent selection process. The accessions S003 
and S265 would be the most commonly used donor parents in the first 
crossing. S161 could be improved at up to 165 loci by S003 for FL and 
381 loci for FS, and as a consequence, the genomic-estimated breeding 
value could be increased by 7.9% for FL and 26.7% for FS. We also present 
the degree of utilization of S161 and S003, considering both genetic 
modules and homoeologous genes. A total of 80 and 197 loci (or the 
homoeologous genes) of S161 could be improved by S003 in the eight 
genetic modules for FL and FS, respectively (Fig. 6m).

Discussion
Precise spatiotemporal regulation of gene expression by both 
cis-regulatory sequences and trans-acting factors is required for devel-
opmental programs in higher organisms39. In this study, we character-
ized potential cis- and trans-regulatory variants of gene expression 
across different stages of cotton fiber development by eQTL mapping, 
which provides a rich resource for the community to identify genetic 
regulatory components associated with fiber quality. We show that a 
large proportion of eQTLs showed stage-dependent regulatory effects, 
similar to the increasing number of observations that many regulatory 
variants are not associated with gene expression at a steady state21,40–42. 
This finding suggests that the genetic effect of genes on fiber quality 
should be evaluated at a specific developmental stage. Future studies 
might explore the functional implications of cis-eQTLs represented 
by variants in transcription factor binding sites, and also ascertain 
whether key transcriptional factors are mutated in trans-eQTLs, the 
latter requiring the implementation of a cotton Encyclopedia of DNA 
Elements project43.

In polyploid cotton, the effect of cis- and trans-interactions that 
lead to both intrasubgenomic and intersubgenomic interactions on 
the expression of duplicated (homoeologous) genes is largely unre-
solved8,13. We show that the transcriptional dysregulation mediated 
by cis-regulatory variants in a certain subgenome may give rise to 
homoeologous expression bias. This phenomenon may be addressed 
further from an evolutionary viewpoint to understand the phyloge-
netic timing and extent of homoeologous gene expression divergence 
relative to both polyploidization and cotton domestication. We fur-
ther show that widespread partitioned expression of homoeologous 
genes during fiber development is accompanied by only 30.2% of fiber 
quality-related homoeologous copies with both favorable aggrega-
tions during breeding. This suggests the exciting prospect that fiber 
quality may be improved through subgenome optimization, harness-
ing genomic modifications of genetic regulatory loci associated with 
homoeologous expression partitioning. This study highlights that 
the dissection of the genetic basis of agronomic traits or identifica-
tion of functional genes should consider subgenomic counterparts 
in polyploid crops. We note that although we do not provide experi-
mental evidence demonstrating that subgenome optimization in 
breeding programs actually has improved fiber quality, we point to 
this important consideration here. In summary, genetic dissection of 
the regulation of homoeologous expression partitioning may lead to 
both fundamental and applied advances with respect to polyploidy 
and crop improvement.
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Methods
Plant materials
A population of upland cotton (G. hirsutum) containing 376 diverse 
accessions was cultivated in the field at Huanggang (114°55′22″E, 
30°34′19″N), Hubei, China in 2019. Three replicates of each accession 
were cultivated on three separate plots. Cotton leaf samples of each 
accession from one plant were collected for genomic DNA extraction 
using the cetyltrimethylammonium bromide (CTAB) method44. Cotton 
bolls were marked on the day of flowering (0 DPA) for transcriptomic 
analysis. Ovules at 0 DPA and developing fibers at 4, 8, 12, 16 and 20 
DPA were collected from at least ten cotton bolls of different plants 
in two rows and stored in liquid nitrogen until RNA extraction (see 
below). Mature cotton fibers were collected from each plant for fiber 
quality measurement.

DNA sequencing and SNP calling
Purified genomic DNA was sonicated to about 250–300 bp, followed 
by pair-end repairing. Resequencing libraries were constructed fol-
lowing manufacturer protocols for the MGISEQ-T7 platform (Pair-end 
150 bp reads; including 373 new DNA sequencing data and three pub-
lished DNA sequencing data20: accession S112, SRR4018975; S123, 
SRR4018977; S280, SRR4018974). Fastp software (v0.23.0) was used 
to trim the adapter sequence and remove low-quality reads45. Variant 
calling was accomplished following the Sentieon pipeline (License 
201808.07)46. In brief, Sentieon invoked BWA to align the clean sequenc-
ing reads to TM-1 reference genome47 following customized parameter 
(mem -M -K 10000000)48. SAMtools (v1.9) was used to eliminate dupli-
cated and low-quality reads alignment49. We performed SNP calling 
in two different ways. First, Sentieon Haplotyper algorithm (--algo 
Haplotyper --genotype_model multinomial --emit_conf 30 --call_conf 
30) was used to process variant calling for each sample. The global 
variation file (GVCF) for each sample was generated by GVCFtyper 
algorithm (–algo GVCFtyper –emit_mode gvcf) in Sentieon, followed by 
joint calling to merge all variations into an integrated VCF file. Only the 
variations identified by both algorithms and covered by more than five 
sequencing reads were regarded as high confident and were retained.

RNA sequencing and data analysis
For the cotton ovule and fiber samples, RNA was extracted using the 
RNAprep Pure Plant Kit (polysaccharides and polyphenolics-rich). In 
total, 2 μg RNA was used to construct sequencing libraries using VAHTS 
Universal V6 RNA-seq Library Prep Kit (Vazyme, NRM604-02) that were 
sequenced on an MGISEQ-2000 platform (pair-end 150 bp reads). After 
removing adaptors and clipping low-quality bases with Trimmomatic 
(v0.36), clean reads were mapped to the reference genome of TM-1 
using HISAT2 (v2.1.0)50,51. SAMtools (v1.9) was used to remove PCR 
duplicates and reads with mapping quality less than 20 (ref. 49). The 
remaining reads were used to calculate the expression level (FPKM) of 
genes with StringTie (v2.1.4)52.

Expression bias analysis of homoeologous genes
For each accession at each stage, the expression change of homoe-
ologous gene pairs was defined if at least one gene was expressed 
(FPKM > 0.1) and both genes exhibited an expression difference of 
at least twofold, which was tested under different conditions (Sup-
plementary Table 3). For each expressed homoeologous gene pair 
in all accessions, if the number of accessions with expression bias (at 
the single accession level) was greater than 5% of all accessions, this 
gene pair was identified as biased homoeologous gene pair. For each 
homoeologous gene pair with biased expression, we compared the 
expression level at each timepoint between the At and the Dt in all 
accessions using a two-sided Wilcoxon rank-sum test and corrected 
the P value using the Benjamini–Hochberg method. Homoeologous 
gene pairs with expression bias in at least 5% accessions and FDR ≤ 0.05 
were considered biased homoeologous gene pairs at the population 

level. In this analysis, we classified the expression bias of gene pairs 
into two kinds, that is, bias-At and bias-Dt, with observed expression 
bias toward the At or Dt subgenome. For gene pairs showing expression 
bias toward the At or Dt subgenome in less than 5% of samples or with 
two bias directions, they were defined as bias-N or bidirectional-bias, 
respectively. In total, we identified 29,690 gene pairs categorized 
as bias-At, 31,604 as bias-Dt and 1,667 as bidirectional-bias in all six 
timepoints of fiber development.

Peer factors for eQTL mapping
To account for the hidden batch effect and other global confounders, 
we used the probabilistic estimation of expression residuals (PEER, 
v1.3) method to estimate hidden covariates for gene expression levels 
for each stage53. This method can also increase the detection power 
of eQTL mapping by accounting for these covariates in the analysis. 
A set of PEER factors were tested, and the number of PEER factors 
was selected to maximize the number of mapped eGenes. Due to the 
similar number of samples at each timepoint, 20 PEER factors were 
chosen in six timepoints for the correction of hidden covariates (Sup-
plementary Fig. 1).

Cis-eQTL mapping
To identify eQTL for genes in fiber development, genes with low expres-
sion levels (FPKM < 0.1) in more than 95% of samples were filtered, 
and the expression levels of remaining genes of all samples from a 
given stage were normalized using an inverse normal transformation. 
Cis-eQTL mapping was performed using FastQTL (v7)54, and the top 
three genetic principal components and 20 PEER factors were used as 
covariates52. By testing the association with variants within ±1 Mb of the 
transcription start site (TSS) for each gene, an adaptive permutation was 
used with the setting --permute 1000 10000. The significant variant– 
gene associations were identified by applying gene level nominal  
P value thresholds corresponding to FDR < 0.05. The significant SNP 
with the strongest association signal was defined as the lead SNP for 
each association. We subsequently performed a forward–backward 
stepwise regression analysis to identify multiple independent cis-eQTL 
signals for a given expression phenotype. The stepwise regression 
procedure was implemented in the conditionally independent QTL 
module of the software tensorQTL (v1.0.5), as described previously55.

Trans-eQTL mapping
For trans-eQTL mapping, we used the same covariates as for cis-eQTL 
analysis. The FAST-LMM (v0.2.32) program was used to perform GWAS 
of each gene and the whole genomic SNPs (MAF > 0.05)56. Variant–gene 
pairs with P value less than 3.76 × 10−7 were considered significant, and 
the significant variants for each eGene were grouped into clusters with 
a maximum distance of 10 kb between two consecutive SNPs, and only 
those clusters with more than three SNPs were considered as a putative 
eQTL. We identified a total of 46,749 significant variant–gene asso-
ciations in six stages, of which 22,938 had target eGenes with variants 
within ±1 Mb of the genic region. Because the corresponding variants 
were highly correlated with variants identified in FastQTL, we only kept 
the variant–gene associations where the variants were found out of the 
1 Mb region of the eGene.

Comparison of eQTL effect between stages
To estimate the cross-stage activity of cis-eQTLs, we used Multivariate 
Adaptive SHrinkage (as implemented in the R package mashr (v0.2.45)) 
for all cis-eVariant–gene pairs across stages27. This analysis was per-
formed using the β coefficients and s.e. of each eQTL as input, and nine 
SNPs were randomly selected from the ±1 Mb region of each eGene.  
A total of 575,820 variant–gene pairs were used to fit the MASHR model. 
Effect size estimates and LFSR (that is, LFSR) outputted by mash were 
used as metrics of cis-eQTL magnitude and significance. An LFSR ≤ 0.05 
was used as the threshold of significant cis-eQTL activity. To estimate 
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the activity of trans-eQTL across stages and test the robustness of 
mash, we used a meta-analysis approach as implemented in MetaSoft 
(v2.0.1) to calculate the posterior probability and m value that the eQTL 
effect exists in each stage57. An m value ≥ 0.9 was used as the threshold 
of significant eQTL activity. To assess the stage specificity of eQTL, we 
paid attention to significant eQTL identified at different stages that 
may be in the same LD genomic interval. To reduce duplicate statistics, 
significant eQTLs for each gene were merged based on the lead SNPs 
with r2 ≥ 0.6 and distance ≤100 kb. For each eQTL, we focused on its lead 
SNP, and the effect of stage-shared eQTL was defined as the average 
effect of lead SNP in all stages.

Detection of bias–eQTL
To identify significant variants associated with the expression bias of 
homoeologous gene pairs, the expression bias level in each accession 
of each stage was quantified into a biased score as shown below. The 
association between SNPs and bias score was performed using the 
factored spectrally transformed linear mixed models (FAST-LMM) 
program (Supplementary Fig. 12)56.

Bias score = At − Dt
At + Dt

We applied a strict filter of homoeologous genes with expression 
bias—biased expression was present in at least 5% but no more than 95% 
of all samples, and the expression of the homoeologous genes differed 
by twofold change of FPKM. After filtering, an average of 5,579-6,563 
homoeologous gene pairs in each stage were used for GWAS analysis. 
We clustered the significant SNPs according to the method described 
previously58. SNP clusters were further merged based on LD (r2 ≥ 0.6) 
and distance (≤100 kb) in the genome. Across six timepoints, a total of 
14,133 bias-eQTLs were identified for 4,026 homoeologous gene pairs. 
Genes regulated by eQTLs were significantly enriched in homoeologous 
genes with expression bias, so we compared the effect of all bias-eQTLs 
to their effect in eQTL analysis. The effect size was estimated by the β 
coefficient and s.e. of lead SNP in each bias–eQTL. When calculating 
the effect of bias–eQTL in regulating the expression of Dt-subgenomic 
genes, the effect value is correspondingly multiplied by −1.

Analysis of heritability of gene expression
To estimate the variance of expression bias level explained by different 
genomic regions, genome-wide SNPs were divided into LD-friend SNPs 
(that is, target SNPs that are in significant LD) of cis-SNPs and trans-SNPs 
according to the eQTLs of each homologous gene pair. For LD-friend 
SNPs, GCTA-LDF (v1.94.0) was performed with parameters --ld-wind 100 
and --ld-sig 0.05 to search for SNPs that are in LD with the lead SNP59,60. 
Cis-SNPs and trans-SNPs are distinguished according to whether the 
distance between SNP and TSS is more than 1 Mb. Each set was used to 
build a kinship matrix using the direct method and --power −0.25 in 
LDAK (v5.2)61. Considering the fact that different genome regions have 
different LD levels, the LDAK weightings model was used to equalize 
the tagging of SNPs in the genome. The genetic variance was then 
calculated for these SNPs using the restricted maximum likelihood 
(REML) model and –mgrm61.

Genome-wide association analysis
For GWAS, we used a total of 2,658,921 high-quality SNPs (MAF > 0.05) 
from the 376 accessions. Association analysis was carried out using 
a linear mixed model implemented in FAST-LMM for four fiber 
quality-related traits, including FL, strength, elongation and uniform-
ity. The population structure was inferred using STRUCTURE software 
(k = 3, SNP number = 5,000) and included in the model as covariates. 
The kinship matrix was calculated based on all SNPs using FAST-LMM56. 
The threshold for genome-wide significance was set as 3.76 × 10−7 (1/n, 
where n is the total number of genomic SNPs). The significant SNPs were 

first grouped into one locus if two adjacent SNPs were within a 20-kb 
interval. Consecutive loci were further merged into a single locus if 
SNPs with the lowest P values in each of the adjacent loci were located 
in LD regions (r2 ≥ 0.6).

TWAS and colocalization analysis
To identify associations between gene expression and fiber 
quality-related traits, we conducted TWAS using the FUSION pack-
age28. Briefly, we constructed a standard binary PLINK format file for 
each gene using SNPs within 500 kb on either side of the gene bound-
ary with the integration of log-transformed expression data. Then, 
the script FUSIONcompute_weights.R (https://github.com/gusevlab/
fusion_twas) in the FUSION package28 was used to compute the expres-
sion weights for each gene, taking the binary PLINK format file as 
input. Five models (BLUP, BSLMM, LASSO, Elastic Net and top SNPs) 
were used in this step and the effect sizes from these models acted 
as weights. The script FUSION.test.R (https://github.com/gusevlab/
fusion_twas) was run to perform the typical TWAS analysis, with the 
computed gene expression weights, GWAS summary statistics and 
an LD reference panel that was constructed using the SNPs matching 
the GWAS SNPs. We considered genes with corrected P values < 0.05 
as significant associations.

To detect the shared causal variants between eQTL and GWAS 
signals, we performed a colocalization analysis of cis-eQTLs from 
five fiber developmental stages and GWAS loci of four fiber quality 
traits using coloc29. The cis-eGenes within 1 Mb of the GWAS loci were 
extracted for colocalization analysis. The function coloc.abf was used 
to calculate posterior probabilities for PP.H4 that shows both traits 
(gene expression and GWAS phenotype) share a single causal variant. 
A cis-eGene was defined as having evidence of colocalization when the 
posterior probability of colocalization (PP.H4) was higher than 0.8. 
We implemented SMR approach to test if an eGene is associated with 
a trait through eQTL30. SMR (v1.03) implements the heterogeneity in 
dependent instruments (HEIDI)-outlier test to distinguish causality or 
pleiotropy from linkage. SMR associations were declared significant if 
the Bonferroni-corrected SMR P < 0.05 and HEIDI-outlier test P > 0.05.

Definition of biased expression pattern in fiber development
To analyze the dynamic expression bias of homoeologous genes,  
we explored whether the direction (the At or Dt subgenome) of expres-
sion bias in each accession was consistent over six timepoints. For each 
gene pair, all cotton accessions were classified into the following eight 
classes according to the biased expression patterns in fiber develop-
ment: class 1 indicates accession with the same bias direction across 
six timepoints; class 2 indicates accession with the same bias direction 
across five timepoints while having no bias in the remaining timepoint; 
class 3 indicates accession with the same bias direction across four 
timepoints while having no bias in the remaining timepoints; class 4 
indicates accession with the same bias direction across three timepoints 
while having no bias in the remaining timepoints; class 5 indicates 
accession with the same bias direction across two timepoints while 
having no bias in the remaining timepoints; class 6 indicates accession 
with bias at a specific timepoint while having no bias in the remaining 
timepoints; class 7 indicates homoeologous genes had balanced expres-
sion in all six timepoints (without expression bias) or class 8 indicates 
the direction of expression bias is different in at least two timepoints. 
For each gene pair, the number of accessions in each classification was 
counted. According to the number of accessions in each classification, 
2,658 gene pairs were sorted using unsupervised hierarchical clustering 
(Extended Data Fig. 5d). For the gene pairs of the switched cluster, most 
of their accessions are presented in the bias expression of class 8. For the 
gene pairs of the dominant cluster, most of their accessions show the 
same bias direction across six timepoints (class 1). For the gene pairs of 
time-dependent cluster, most of their accessions have no bias expression  
in at least one timepoint (classes 2–7).
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Genetic network construction
To explore the regulatory landscape of candidate genes during fiber 
development, we used eQTLs to constitute a genetic network that 
integrated regulatory relationships from all timepoints. This network 
was composed of eQTLs, eQTL hotspots and candidate genes identi-
fied in TWAS or colocalization analysis. To describe the dynamic eQTL 
regulation, eQTLs in all timepoints were merged when the distance 
between lead SNPs was less than 50 kb and r2 was greater than 0.6. 
We obtained 16,914 merged eQTLs from 53,854 cis-eQTLs and 23,811 
trans-eQTLs from six timepoints. eQTL hotspots were identified using 
the HOT_SCAN program at six timepoints62 and then merged when the 
distance between adjacent hotspots was less than 20 kb. We identified 
a total of 463 hotspots across six timepoints and 406 hotspots across 
five fiber developmental timepoints. The visualization and module 
division of the network was accomplished by the built-in program in 
Gephi (v0.9.5)63. The principle of modularization was to maximize the 
connectivity between nodes in the same module and minimize the 
connectivity between nodes in the different modules. Each module con-
sists of a collection of genes related to fiber quality (TWASFDR < 0.05 or  
COLOCPP. H4 > 0.8). Modules with heritability ≥0.05 and gene counts ≥5 
were used for multiple regression of gene expression to phenotypic 
values across timepoints. For each module, the degree of correlation 
between gene expression and phenotype at a given timepoint was indi-
cated by the magnitude of the normalized r2 value. We identified 129 loci 
with higher favorable allele frequency (>0.2) in the top 50 accessions 
with the longest fiber. To determine whether the modules were enriched 
for the 129 loci, one-sided Fisher’s exact test was performed in R.

Conception of subgenome coordination model
In this study, favorable genotypes refer to those identified by TWAS 
or colocalization analysis and corresponding to higher trait values. 
For candidate genes that positively regulate phenotype, favorable 
expressions refer to cases where homoeologous genes have higher 
expression than candidate genes (with twofold expression change) 
or no differences. For candidate genes that negatively regulate pheno-
type, favorable expressions refer to cases where homoeologous genes 
have lower expression than candidate genes (with twofold expres-
sion change) or no differences. We classified the status of a pair of 
homoeologous genes in all accessions into the following four models: 
favorable homoeologous pairs, only favorable genotype, only favora-
ble expression and unfavorable homoeologous pairs. Based on the 
above classification, a pair of homoeologous genes in accessions at all 
timepoints was classified—(1) favorable homoeologous pair, judged as 
favorable homoeologous pair in ≥50% accessions at all timepoints; (2) 
only favorable genotype, judged as favorable homoeologous pair or 
only favorable genotype in ≥50% accessions at all timepoints but did 
not meet the first condition; (3) only favorable expression, judged as 
favorable homoeologous pair or only favorable expression in ≥50% 
accessions at all timepoints but did not meet the first condition; (4) 
unfavorable homoeologous pairs, the remaining gene pairs that did 
not meet the above three conditions.

Heritability estimation
To evaluate how the heritability changes when considering more 
trait-related SNPs, we first took subsets from all SNPs at different sizes 
by using the sample() function in R and then used the LDAK-Thin model 
to estimate the heritability contributed by these SNP subsets61. The 
LDAK-Thin assumes the expected heritability contributed by an SNP 
is higher for SNPs in regions with lower levels of LD and for those with 
higher MAF. The process of thinning the genetic variants cameters 
‘--window-kb 100 and --window-prune 0.98.’ Kinship matrix was calcu-
lated for each SNP subset using the main argument ‘--calc-kins-direct’ 
by setting the power equal to 0.25. Heritability contributed by each 
kinship matrix was estimated separately using a generalized REML 
solver that was included in LDAK61.

Genomic prediction using ridge regression
In this study, ridge regression, a linear regression with penalty, was 
used to reduce overfitting64. The predictor variables were the number 
of superior alleles at each locus, encoded as 0, 1 or 2. The responding 
variable was the real phenotype. The function cv.glmnet() in glmnet 
package in R was used to fit the ridge regression model by setting α 
equal to 1 and the cross-validation will be automatically performed. 
The value of λ (regularization parameter) that gives cross-validated 
minimum mean error was selected to obtain the model coefficients65.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw sequencing data generated in this paper have been deposited 
into the National Center for Biotechnology Information database (Bio-
Project ID: PRJNA917453 for DNA-resequencing data and PRJNA891378 
for RNA-seq data).

Code availability
All software used in the study are publicly available on the Internet as 
described in the Methods and Reporting Summary.
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Extended Data Fig. 1 | Gene expression atlas in fiber development.  
a, Proportion of gene expression variance explained by differences among 
accessions. Orange band represents 95% confidence interval for the fitted 
regression. b, Proportion of gene expression variance explained by differences 
among developmental timepoints. Blue band represents 95% confidence interval 
for the fitted regression. c, Heatmaps of gene expression in all accessions in 
ovules (0 DPA) and fibers (4 DPA, 8 DPA, 12 DPA, 16 DPA, 20 DPA). Genes were 

sorted by proportion of accessions with observed expression. d, Venn diagram 
showing the number of genes expressed in one to six timepoints. e, The 
number of expressed homoeologous gene pairs. f, The number of expressed 
homoeologous gene pairs with steady expression bias. Brown, expression bias 
towards the At (BiasA); blue, expression bias towards the Dt (BiasD); gray, without 
expression bias (BiasN).
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Extended Data Fig. 3 | Candidate genes identified by TWAS and colocalization 
analysis. a, Exon-intron structure and mutant sites of Ghir_D10G004160. 
GhMYB-CR1 and GhMYB-CR2 represent two different mutant types. The red 
shadow represents insertions; blue shadow represents deletions. WT, wild type. 
b, Comparison of fiber length in two years (2020 and 2021) between WT and 
mutants (GhMYB-CR1 and GhMYB-CR2) (n = 3 in each year; two-sided Student’s 
t-test; error bar, mean ± SD). c, Phenotypic effects (TWAS z-score or correlation 

between expression and phenotype) of FE/FU-related candidate genes. 
Strategies are shown at the left, with illustrative color ranges. Positive z-score or 
correlation are shown in orange and negative values in purple. Significant betas 
are marked with ‘check mark.’ d, Expression patterns of 1,258 candidate genes 
in 340 accessions were divided into 12 groups. Heatmap showing normalized 
FPKM in each accession at each timepoint. Line charts showing mean values of 
accessions at each timepoint.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Correlations of expression pattern with fiber quality 
and characterization of eQTL hotspots and genetic modules. a, The counts 
of candidate genes with/without favorable expression patterns for four fiber 
quality-related traits. b, Heatmap showing FL-related genes with (lighter orange) 
or without (dark orange) favorable expression patterns in 340 cotton accessions. 
The 340 accessions are sorted by fiber length. Bar plot indicates mean counts of 
adjacent accessions. c, Correlation (cor) of fiber length (mm) and the cumulative 
number of genes with favorable expression patterns. Two-sided Student’s t-test. 
The gray band represent 95% confldence interval for the fitted regression.  
d–f, Heatmap showing FS/FE/FU-related genes with (lighter color) or without 

(dark color) favorable expression pattern in 340 accessions. Cotton accessions 
are sorted by values of FS/FE/FU. The right panel shows correlation between 
values of FS/FE/FU and cumulative number of genes with favorable expression 
pattern. Two-sided Student’s t-test. The gray band represent 95% confldence 
interval for the fitted regression. g, Venn diagram showing the number of genes 
identified for four fiber quality traits. h, Graph diagram showing eQTL-eGene 
connections within and between modules. Each module is represented as a circle 
with size proportional to the number of nodes. i, Gene ontology enrichment 
(biological process) of candidate genes from 15 modules (one-sided Fisher’s 
exact test). j, Stack bar plot of eQTL distribution in 36 modules.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization of homoeologous expression bias 
and its dynamics across stages. a, Comparison of the coefficient of variation 
for bias score in different expression bias patterns. ‘non-QTL’ indicates gene 
pairs without significant eQTL and bias-eQTL. ‘Bias/eQTL’ shows gene pairs 
with one eQTL or bias-eQTL. ‘Bias&eQTL’ indicates gene pairs with both eQTL 
and bias-eQTL. b, Genetic variance partitioning for a gene pair using intra- and 
inter-subgenomic SNPs (within 1 Mb up- or downstream of TSS). c, Density map 
showing the coefficient of variation (CV) of gene expression for gene pairs with 
different genetic regulatory patterns. The boxplot shows the count of SNPs in 
gene body and flanking regions (1 kb up- and downstream) (two-sided Wilcoxon 
rank sum test; center line, median; box limits, first and third quartiles; whisker, 
1.5×interquartile range). d, Distribution of the number of accessions belonging 
to each dynamic bias pattern. Rows contain 8 categories of dynamic bias 
patterns (Methods) and columns are gene pairs with bias-eQTL. e, The dynamics 

of homoeologous gene expression patterns was shown in a co-expression 
network. Nodes were colored for 16 co-expression clusters (left panel). The 
co-expression network was colored for expression bias (colored by average 
relative bias ratio; right panel). f, Dynamic expression bias and expression level 
(FPKM) of co-expression cluster 8 (n = 915 genes in different subgenomes at 
6 timepoints; center line, median; box limits, first and third quartiles; whisker, 
1.5× interquartile range). g, Dynamic expression bias and expression level 
(FPKM) of co-expression cluster 1 (n = 646 genes in different subgenomes at 6 
timepoints; center line, median; box limits, first and third quartiles; whisker, 
1.5× interquartile range). h, Enrichment of gene pairs with three bias patterns 
in co-expression clusters. The odd ratio and P-values for enrichment of clusters 
were calculated based on a one-sided Fisher’s exact test. i, Distribution of edge 
numbers in co-expression clusters that were enriched by switched, time-
dependent, and dominant gene pairs.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of subgenomic coordination on 
FS, FE, and FU. a–d, FL/FS/FU/FE-associated SNPs and genotypes of pseudo-
regulatory sites in the other subgenome. e, 246 homoeologous gene pairs 
and 258 pairs with positive and negative regulation on fiber strength (FS), 
respectively. Heatmap shows the classification of 246 positive and 258 negative 

gene pairs in 340 accessions at five timepoints. f, 127 homoeologous gene pairs 
and 111 pairs with positive and negative regulation on fiber uniformity (FU), 
respectively. g, 337 positive homoeologous gene pairs and 337 pairs with positive 
and negative regulation on fiber elongation rate (FE), respectively.
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Extended Data Fig. 7 | Relationships between homoeologous expression and 
three fiber quality-related traits. a, Proportional distribution of four types of 
homoeologous genes in accessions that were sorted by fiber strength. The pie 
chart shows the ratio of gene pairs with different patterns of bias score change. 
The boxplots indicate gene pairs that show a significant difference in bias score 
(two-sided Wilcoxon rank sum test; center line, median; box limits, first and third 
quartiles; whisker, 1.5× interquartile range). The right panel shows correlation 

between the number of gene pairs with biased expression, the number of 
favorable loci, and fiber strength, the gray band represent 95% confldence 
interval for the fitted regression. b, Proportional distribution of four types 
of homoeologous genes in accessions that were sorted by FE. c, Proportional 
distribution of four types of homoeologous genes in accessions that were  
sorted by FU.
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Extended Data Fig. 8 | Characterization of regulatory variants in cultivar and 
landrace populations. a, Distribution of the number of loci which aggregated 
favorable alleles in landrace and cultivar populations. b, Distribution of favorable 
allele frequency in landrace and cultivar populations. c, Number of variants in 4 

categories with different sharing ratios of favorable allele for FS, FE and FU.  
d, Heritability of the variants in each of the 4 categories for FS, FE and FU.  
e, Comparison of the 4 categories between landrace and cultivar populations. 
The frequency differences above 0.6 were highlighted in yellow and green.
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Extended Data Fig. 9 | Predictive model and accuracy assessment for fiber-
quality traits. a, Correlation between the favorable allele number and fiber-
quality traits. b, Correlation between the observed and predicted values for FL, 
FE and FU, respectively. Predictions were performed using ridge regression based 
on the inferred regulatory variants. c, Model predictability tested by applying the 
trained model in an external dataset (with 1,040 accessions) for FS. d, Fivefold 

cross-validated prediction accuracy using ridge regression model based on two 
predictive sets for 3 fiber quality-related traits (FS, FE and FU). One only contains 
genotype of trait-associated loci and the other contains both genotype and the 
expression of corresponding homoeologous gene copy. 100 replications were 
run. Circle, mean; error bar, mean ± SE.
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