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Polyploidy complicates transcriptional regulation and increases
phenotypic diversity in organisms. The dynamics of genetic regulation of
gene expression between coresident subgenomes in polyploids remains
tobe understood. Here we document the genetic regulation of fiber
developmentin allotetraploid cotton Gossypium hirsutum by sequencing
376 genomes and 2,215 time-series transcriptomes. We characterize 1,258
genes comprising 36 genetic modules that control staged fiber development
and uncover genetic components governing their partitioned expression
relative to subgenomic duplicated genes (homoeologs). Only about

30% of fiber quality-related homoeologs show phenotypically favorable
allele aggregationin cultivars, highlighting the potential for subgenome
additivity in fiber improvement. We envision a genome-enabled breeding
strategy, with particular attention to 48 favorable alleles related to fiber
phenotypes that have been subjected to purifying selection during
domestication. Our work delineates the dynamics of gene regulation during
fiber development and highlights the potential of subgenomic coordination
underpinning phenotypes in polyploid plants.

Thesignificance of polyploidy in plants has long been recognized, with
respect to both species diversification and implications for genetic
improvement during plant breeding'~. The genome-wide redundancy
conferred by whole genome duplicationincreases genetic diversity and
provides additional avenues for evolving functionality, thereby increas-
ingbiological complexity®”. Duplicated genes in polyploid organisms,
orhomoeologs, are coordinated in several ways, mediating gene dosage

effects, genebalance, interaction between cis-and trans-acting factors
and rewiring of gene expression networks® ", Unequal contribution
ofthe expression of each homoeologous gene to the total expression
level (thatis, biased homoeolog expression) has been observed in many
allopolyploid plants™ . Homoeologous expression bias reflects one
aspect of duplicate gene coordination, which is thought to be associ-
ated withincreased variation and hence adaptive potential. The many
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Fig.1| Gene expression atlas and genetic regulation during fiber
development. a, Samples used for RNA-seq in fiber development. The samples
include ovules at 0 DPA and fibers at 4 DPA, 8 DPA, 12 DPA, 16 DPA and 20

DPA. The sample number of each stage is shown in parentheses. b, Principal
component analysis (PCA) plots of the first two components for 2,215 RNA-

seq samples. ¢, The number of genes expressed (dark gray outside line) or not
expressed (lighter gray outside line) in all RNA-seq samples. d, The number of
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expressed homoeologous genes in each timepoint. Red, homoeologous genes
with expression bias toward the At (BiasA); blue, homoeologous genes with
expression bias toward the Dt (BiasD); gray, homoeologous genes without
expression bias (BiasN); purple, homoeologous genes with expression bias
toward the Atand Dt (bidirect bias). e, The number of eQTLs and distribution of
eGenes that had cis-eQTL, trans-eQTL or both. At, the At subgenome; Dt, the Dt
subgenome; Sca, genes in unanchored scaffolds.

complexities of duplicate gene cis-and trans-interactions in biological
networks, however, have only recently begun to be elucidated®'%'>1>7,
Aparticularly promising research avenue is the mapping of expression
quantitative trait loci (eQTL) for genome-wide discovery of genetic
regulatory variants that influence gene expression.

Allotetraploid ‘upland’ cotton, Gossypium hirsutum L., which
originated following aninterspecific hybridization event between two
diploid ancestors (genome type AA and DD) approximately 1-2 mil-
lionyears ago'®, is the dominant source of natural renewable fiber for
textiles. Cotton ‘fibers’ are single-celled epidermal ovular trichomes
with modular expression and phenotypic stages encompassing ini-
tiation, primary wall synthesis, secondary wall synthesis and matu-
ration'. As a vital economic commodity, cotton fiber development
has been extensively studied, and many genetic loci and functional
genes responsible for fiber development have been discovered?® .
However, our understanding of how the co-existing At and Dt subge-
nomes genetically coordinate the dynamic development of the fiber is
limited. Accordingly, few breeding practices consider the interactions
of genetic effects due to the two subgenomes, which have unique
transcriptional and biochemical suites of interactions®'*'>"*>, Here
we present a genetic regulation analysis of dynamic gene expression
in developing fibers across a suite of highly diversified G. hirsutum
accessions and uncover the genetic components that may optimize
homoeologous gene expression for unlocking the potential for
fiberimprovement.

Results

Gene expression atlasin fiber development

To uncover the genetic regulation of gene expression in fiber devel-
opment, we collected 376 diverse G. hirsutum accessions for genome
and transcriptome analysis. Atotal of 13.5 Tb of genome resequencing

datawere generated, with an average depth of 15.6x (Supplementary
Table1). Accessions were sampled at different developmental stages,
includingovules onthe day the flower opens (0 days postanthesis (DPA))
and fibers at five timepoints spanning elongation to secondary cell wall
synthesis (4, 8,12, 16 and 20 DPA). A total of 2,215 RNA-sequencing
(RNA-seq) data samples were generated (with 41 failing to sample),
with an average of 40 million read pairs for each sample (Fig. 1a and
Supplementary Table 2). Principal component analysis showed that
samples from the same timepoint clustered together, and samples from
adjacent development stages were closely associated, indicating a con-
tinuous developmental trajectory (Fig.1b and Extended DataFig. 1a,b).

Atotal 0f 49,860 genes were transcribed (fragments per kilobase
oftranscript per millionmappedreads (FPKM) > 0.1in atleast 5% acces-
sions) during cotton fiber development, including 24,486 in the At
subgenome and 25,238 in the Dt subgenome (Fig. 1c, Extended Data
Fig.1cand Supplementary Table 3), of which 12,875 were expressed at
oneto five timepoints (Extended Data Fig. 1d). Of note is the observa-
tionthat 20,189 homoeologous gene pairs (2n = 40,378) were expressed
(Extended Data Fig. 1e and Supplementary Tables 3 and 4), of which
79.6% (n=16,081) showed expression bias (expression level fold change
>2 between two homoeologsin > 5% accessions) toward the At (BiasA)
or Dt (BiasD) subgenome in at least one timepoint (Fig. 1d), including
3,256 pairs with stable direction of expression bias at all timepoints
(Extended DataFig. 1f).

Genetic regulation of dynamic gene expression

UsingbothRNA-seqdatain fiber development and genome resequenc-
ing data for each accession, we considered the impact of genetic vari-
antsongene expression. We used eQTL mapping to identify cis- (within
1megabase (Mb) of each gene on either side) and trans- (>1 Mb apart
oronadifferent chromosome) regulatory variants (eVariants) thatare
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associated with differencesin gene expression. We leveraged approxi-
mately 2.7 million SNPs with a minor allele frequency (MAF) > 0.05 in
conjunction with the 45,545 genes exhibiting expression variation
across all stages (64.8% of the predicted transcriptome) in the eQTL
mapping (Supplementary Figs.1and 2).Intotal, 53,854 cis-eQTLs were
identified for 18,637 genes (23.8-28.4% of cis-eQTLs overlapped with
open chromatin®’) and 23,811 trans-eQTLs were identified for 10,391
genes (eGenes, that is, genes whose expressionis associated with one
or more eQTL), with the largest number of eGenes (12,674, or 55.1%)
identified at 12 DPA, because of the presence of a few eQTL hotspots
(thatis, local chromosomal regions that were associated with transcrip-
tional regulation of more than three genes) at this timepoint (Fig. 1e
and Supplementary Table 5).

To compare the sharing of eQTL and further understand the dif-
ferencesingenetic regulation between stages, we collated eQTLs from
allstages and distinguished regulatory mechanisms that were foundin
only one stage (stage-specific) or at least two stages (stage-shared; Sup-
plementary Figs. 3 and 4). We found that stage-shared eQTLs showed
larger effects than stage-specific eQTLs, and genes with stage-shared
eQTLshad ahigher proportion of cis-eQTLs than stage-specificeGenes
(Extended Data Fig. 2a,b). For each cis-eQTL, we assessed sharing
among stages by comparing local false sign rate (LFSR) and magni-
tude, whichrepresented the metrics for eQTL significance and effect
estimates?. In this analysis, 27,102 (50.2%) cis-eQTLs that were shared
amongsix timepoints had significant signals in the comparison of LFSR,
of whichonly 11,072 had detected effects (fold change of magnitude <2
between different timepoints), suggesting many stage-shared eQTLs
(LFSR £ 0.05) showed variable effect magnitude during fiber develop-
ment (Extended Data Fig. 2c). In terms of the effect magnitude esti-
mates for eQTLs that are shared between timepoints, the vast majority
(91.1%) showed consistent effect direction (Extended Data Fig. 2d).

Fine-mapping of fiber quality associations

We decoded the genetics of fiber quality-related traits by integration
of genome-wide association study (GWAS) and eQTL data. A total of 18
QTLs were identified, including five for fiber length (FL), six for fiber
strength (FS), four for fiber elongation (FE) rate and three for fiber
uniformity (FU; Fig. 2a and Supplementary Fig. 5), of which nine were
previously uncharacterized (Supplementary Table 6). This result was
partially verified by an F, population (Supplementary Fig. 6). Then,
two complementary methods, including a transcriptome-wide asso-
ciation study (TWAS) and a colocalization analysis®®*’, were used to
prioritize causal genes for fiber quality-related traits. Using TWAS,
1,255 genes (false discovery rate (FDR) < 0.05) were identified across
the whole genome (311 for FL, 655 for FS, 877 for FE and 308 for FU;
Fig.2a, Supplementary Fig.7 and Supplementary Table 7). Specifically,
43 genes were prioritized as candidate genes for 17 GWAS QTLs using
TWAS (Supplementary Table 8). As proof, genetic knockout of a TWAS
gene (Ghir_D10G004160) showed that FL became significantly shorter
(Extended DataFig.3a,b and Supplementary Figs. 8 and 9). Using two

colocalization strategies, summary-data-based Mendelian randomi-
zation (SMR) and coloc®?°, we also identified 14 fiber quality-related
genes (3forFL,4 forFS, 6 for FEand 4 for FU) in nine GWAS QTLs (Fig. 2b,
Extended DataFig. 3¢, Supplementary Figs.10 and 11 and Supplemen-
tary Table 8), 11 of which overlapped with genes in the TWAS analysis.
Ofnoteisthe observationthat1,243 of the 1,258 genes from TWAS and
colocalization analysis maintained the same effect on fiber quality
traitsin fiber development.

On chromosome D05, we identified a QTL that is significantly
related to FL, for which BB2 (Ghir_D05G007220) is characterized as
acausal gene (Fig. 2c). BB2 encodes an E3 ubiquitin ligase, which was
found to berelated to cell proliferation and elongation in Arabidopsis™,
and positively regulates FE after 12 DPA. Based on the expression pat-
tern of BB2, all cotton accessions were divided into eight different
groups, withgroups 2, 3,4 and Sincluding 94.4% of accessions (Fig. 2d).
From group 2 to group 5, the expression pattern of BB2 was gradually
delayed, and the median FL value of the corresponding accessions
graduallyincreased (Fig.2e). Thisresultindicates that the expression
pattern of group 5 (highly expressed from 8 DPA to 16 DPA) is condu-
cive to FE, probably coinciding with the extended FE period. Similar
to the analysis for BB2, we investigated the expression patterns for all
1,258 genes from TWAS and colocalization analysis in all accessions
and defined ‘favorable’ expression patterns as those in accessions
with favorable fiber quality traits, such as longer or stronger fiber.
We found 158 FL, 196 FS, 349 FE and 148 FU-related genes exhibited
favorable expression patterns in the accessions with favorable traits
(Extended DataFigs. 3d and 4a). From short-fiber to long-fiber acces-
sions, the number of genes with favorable expression patterns tended
toincreaseinaccessions with longer fiber (Pearson coefficient: 0.621,
P<2.2x107%; Extended Data Fig. 4b,c). Similar observations were
found for other traits (Extended Data Fig. 4d-f).

We next explored the genetic effect of regulatory variants asso-
ciated with genes in TWAS and colocalization analysis. Most of the
loci showed moderate effects with a median FL of 0.48 mm, FS of
1.14 cN tex™", FEof 0.04% and FU of 0.36% (Fig. 2f,g). We found that 534
genes showed pleiotropic effects (Extended Data Fig. 4g), such as the
regulatory variant of Ghir_ D06G018130 that contributed toboth FSand
FE with very large effects (FS: 2.30 cN tex™; FE: 0.07%). We delineated
the growth trend of heritability by considering different numbers of
trait-related locithrough random sampling. The estimated heritability
grew smaller asthe number of lociincreased, inalogarithmic manner
(Fig.2h). The phenotypicvariance explained by the integration of TWAS
and colocalization genes was much more than could be explained by
just considering GWAS loci (Fig. 2i).

Regulatory modules underpinning fiber quality

Because one eQTL may regulate multiple eGenes and one gene may
also be regulated by multiple eQTLs, this relationship becomes more
complicated when considering the presence of eQTL hotspots. We iden-
tified 406 eQTL hotspots that regulated 4,689 genes across five fiber

Fig. 2| Fine-mapping of fiber quality associations. a, Manhattan plot of the
genome-wide association study (top panel) and transcriptome-wide association
study (bottom panel) for fiber quality. Significant QTLs are labeled. Significance
thresholds of P=3.76 x 107 (one-sided F test) and FDR = 0.05 (P value of two-
sided Student’s t test corrected by FDR) were used, respectively. b, Phenotypic
effects (TWAS zscore or correlation between expression and phenotype) of
FL/FS-related candidate genes. Strategies are shown at the left, with illustrative
color ranges. Positive zscores or correlations are shown in orange and negative
valuesin purple. Significant genes are marked with ‘check mark. ¢, Regional
association plots for FL (top row) and eQTLs for gene Ghir_DO5G007220 (BB2) at
12 DPA and 20 DPA. Chromosomal location and gene position were labeled at the
bottom. The lead SNPs are highlighted with a purple diamond. Boxplots on the
right panel show fiber length and BB2 expression for accessions with different
genotypes (n =154 versus 215; two-sided Wilcoxon rank-sum test; centerline,

median; box limits, first and third quartiles; whisker, 1.5x interquartile range).

d, Expression profiles of Ghir_D05G007220 (BB2) in 340 accessions were divided
into eight expression groups. The figure shows the four larger expression groups.
Heatmaps showing normalized FPKM in each accession at each timepoint.

Line charts showing the mean expression of accessions at each timepoint. The
arrow points to the timepoint with the highest mean expression. e, Boxplot for
fiber length of accessions with different expression patterns (n = 16 versus 88
versus 108 versus 109; two-sided Student’s ¢ test; centerline, median; box limits,
firstand third quartiles; whisker, 1.5x interquartile range). f,g, Dot plot for the
genetic effect of variants associated with FL/FS-related candidate genes. X axis
indicates the variants sorted by genetic effect. Y axis indicates the genetic effect
of variants. The representative variants and regulated genes are labeled. h, The
heritability accumulation accompanying the increase of genetic variants. i, The
heritability is explained by only GWAS loci and both GWAS loci and eQTLs.
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Fig.3|eQTL hotspots and genetic network of genes associated with fiber
quality. a, Line chart showing the number of genes regulated by eQTL hotspots
ateachtimepoint. Red point, the total number of regulated genes across five
timepoints. b, Bubble plot showing the variable number of genes regulated by
nine hotspotsin fiber development. Point size, the scaled number of regulated
genes in each timepoint; line size, the scaled number of genes that were
coregulated between adjacent timepoints. ¢, Genetic network of fiber-related
genes. The node color represents the module to which it belongs. Hexagon
node, eQTL hotspot; circular, candidate genes; square, eQTL. The edge is used
to connect hotspots/eQTLs with genes. Line plot, distribution of node in-degree

values (one-sided Ftest). d, The counts of genes, eQTLs and hotspots (top) in 36
modules and module heritability of four fiber quality-related traits (bottom).

e, Analysis of dynamicinterpretation (normalized r?) of fiber length in eight
modaules at five timepoints. The expression patterns of four representative
genes are shown with line plots. f, A total of 129 loci with higher favorable allele
frequency (>0.2) in the accessions with the longest fiber (n = 50) compared with
the accessions with the shortest fiber (n = 50). Centerline, median; box limits,
firstand third quartiles; whisker, 1.5x interquartile range. g, Module enrichment
analysis of the 129 lociin f (one-sided Fisher’s exact test).

developmental timepoints (Fig. 3a), including 283 timepoint-specific
hotspotsand 123 timepoint-shared hotspots, of which nine representa-
tive large hotspots were found to regulate a variable number of genes
infiber development ranging from 4 (Hot292 at 4 DPA) to 1,546 genes
(Hot369 at 12 DPA; Fig. 3b). The eQTL/hotspot-eGene relationships
constituted a comprehensive genetic network (Fig. 3c and Supple-
mentary Tables 9 and 10j). We found that the in-degree distribution
of this network followed a linear trend in the log scale (r?=0.7691,
P=2.37x107), whichis alandmark of scale-free networks (Fig. 3cand
Extended DataFig. 4h)*. In this network, all nodes (eQTLs/hotspots or
eGenes) were clustered into 36 modules according to the connectivity
between nodes.

Eachmodule shows diverse heritability for four traits (Fig. 3d). We
identified23FL,25FS, 26 FE and 25 FU-related modules with heritability
>0.05 for each trait (Supplementary Table 10). For example, module
25 shows the highest heritability for FL and FE and module 24 shows
the highest heritability for FS. This indicates that modules may differ
withrespect to phenotypic effects, possibly because different modules
are controlled by different regulatory factors such as transcriptional
factors (Extended Data Fig. 4i)*. In all modules, 35.3-57.4% of eQTLs
regulated candidate genes at aspecific timepoint, 11.8-38.2% of eQTLs
had steady regulatory effects on candidate genes atall timepoints and
the other eQTLs (16.8-37.3%) showed variable regulation at two to four
timepoints (Extended Data Fig. 4j).
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Fig. 4| Geneticregulation ofhomoeologous expression bias. a, The

circular diagram shows the proportion of homoeologous gene pairs that were
characterized as eGenes and non-eGenes. The inner circle shows homoeologous
pairs with expression bias, and the outer circle indicates gene pairs without
expression bias. b, The number of TWAS genes present in the bias-eQTL

gene pairs. Boxplots on the right panel show fiber length and homoeologous
expression bias level at 20 DPA for the two haplotypes (n = 85 versus 280; two-
sided Wilcoxon rank-sum test; centerline, median; box limits, first and third
quartiles; whisker, 1.5x interquartile range). ¢, The heatmap on the left shows

switched, time-dependent and dominant bias patterns for 2,658 gene pairs
across stages. The heatmap on the right indicates the correlation (Spearman
coefficient) of the eQTL effect for 2,658 gene pairs between stages. d, Histogram
shows asignificant difference (based on one-sided Fisher’s exact test) in the
proportion of gene pairs showing dominant expression bias with shared eQTLs
or without shared (nonshared) eQTLs. e, Histogram indicates a significant
difference (based on one-sided Fisher’s exact test) in the proportion of gene pairs
with switched expression bias in specific cis-eQTLs and trans-eQTLs.

To examine the dynamic effect of modules on FL, the eight
modules (heritability >0.05 and FL-related gene counts >5) with
higher interpretation (normalized r?) to FL were tabulated (Fig. 3e).
For example, genes in module 29 are mainly involved in regulation
at the early elongation stage (4-8 DPA), such as Ghir_D02G002150
thatencodes a xyloglucan endotransglucosylase/hydrase involved
in primary cell wall extension®. The genes in module 1 are mainly
involvedinregulationat alater elongation stage (16-20 DPA), includ-
ing Ghir_A10G008020, which encodes a plant glycogen-like starch
initiation proteinthat hasarolein secondary cell wall biosynthesis
(Fig.3e)™.

To investigate the extent of favorable allele aggregation in each
module, we divided cotton accessions into three categories by their
FL,thatis, along-fiber group (31.08 + 0.68 mm), anintermediate-fiber
group (28.85 + 0.80 mm) and a short-fiber group (26.31+ 0.82 mm).
Among the 436 loci associated with FL, 129 show a higher favorable
allele frequency (>0.2) in the long-fiber group compared with the
short-fiber group, and these loci are enriched in modules 1,23, 25and
36 (Fisher’'sexact test, P < 0.05; Fig. 3f). Accordingly, modules1and 25
have avery high heritability to FL, representing strong candidates for
prioritization in cotton breeding (Fig. 3g).

Genetic effects on homoeologous expression bias

In polyploid cotton, subgenomic expression bias occurs foranumber
ofhomoeologous genes; however, the cis- or trans-transcriptional regu-
latory controls of this bias are not well understood. To investigate the
genetic basis of expression bias of homoeologous genes, we performed

GWAS usingbias fraction score as a phenotype (Supplementary Fig.12).
Atotal of 14,133 significant associations (bias-eQTLs) were detected for
4,026 homoeologous gene pairs during fiber development.

Toexplore the possibility that bias-eQTLs contribute to homoeolo-
gous expression bias, we compared the genetic effects of eQTLsinone
subgenome with those of bias-eQTLs for homoeologous genes, after
discovering thateQTLs were significantly enriched for homoeologous
pairs exhibiting expression bias (17,828, 48.1% versus 6,225, 29.3%;
Fig.4aand Supplementary Fig.13). We observed that 2,658 gene pairs
with 5,350 significant signals that were detected inboth theeQTL and
bias-eQTL analyses tended to have a wider pattern of expression bias
in different accessions and their cis-regulatory regions had a higher
proportion of variance for expression bias (Extended Data Fig. 5a,b).
Ofthe 5,350 bias-eQTLs, 4,846 (90.5%) were colocalized with eQTLs for
one of theirhomoeologous genes, and the number of variants ingenic
regions showed noticeable differences (Extended Data Fig. 5c). This
suggests that variantsin the transcriptional regulation region for one
copy of homoeologous gene may resultin dysregulation of expression
and lead to expression bias. Of note is the observation that for gene
pairs with bias-eQTLs identified at each stage, 8% (6.2-9.3%) of them
are TWAS genes. There is an association between the variation of their
homoeologous expression and FL change (Fig. 4b), suggesting that
some homoeologous pairs with biased expression were implicated in
the regulation of traits.

Tofurtherinterrogate theimpactof genetic variants on the dynam-
ics of expression bias during fiber development, we clustered the 2,658
gene pairsinto three groups (switched, time-dependent and dominant)
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according to the number of accessions belonging to the patterns of
expression bias (Extended Data Fig. 5d; Methods). Gene pairs belonging
to the switched group exhibit changes in the direction of expression
bias at different stages, which had relatively low correlation of genetic
effects of eQTLs across stages (Fig. 4c). The dominant group shows
a higher proportion of shared eQTLs, indicating that eQTLs often
contribute to this shared expression pattern (Fig. 4d). Interestingly,
compared with gene pairs with nonswitched bias of direction, more
gene pairsinthe switched group had trans-eQTLs instead of cis-eQTLs
(Fig. 4e). This may suggest that trans-eQTLs were prone to mediate
the dynamics of expression bias direction and cis-eQTLs were more
likely to contribute to stable direction of expression bias during fiber
development. In addition, by constructing a co-expression network
of 16,081 homoeologous genes with expression bias, we found that
homoeologous genes in the switched group have lower network con-
nectivity that probably represents simpler regulatory relationships
(Extended DataFig. 5e-jand Supplementary Table 11). These findings
may facilitate further understanding of the genetic regulatory dynam-
icsunderlying the expression bias of homoeologous genes.

Subgenomic coordination of genetic effect on fiber quality
Fiber quality-related genes were identified inboth subgenomes; how-
ever, the genetic contribution of their homoeologous copies to fiber
quality isnot well understood. In this study, we found that a very small
proportion of both homoeologous copies (0.8%, 2 of 241) were identi-
fied as candidate genes for FLin the TWAS and colocalization analysis.
Similar results were obtained for FS (2.7%, 14 of 518), FE (3.7%, 26 of
700) and FU (0.8%, 2 of 240). We identified pseudoregulatory sites by
mapping the significant SNPs of each candidate gene to the sequences
flanking the homoeologous gene (2 Mb upstream and downstream) in
the other subgenome. This analysis showed that few pseudoregulatory
sites (2 of 2,442) for the four fiber-quality traits are mutated in the
population (Extended Data Fig. 6a-d).

Due to the relative paucity of regulatory variants, we evaluated
the contribution of the homoeologous gene of each candidate gene
by comparing their expression levels. For each gene that positively
regulates fiber quality, we assume the candidate gene and its homoe-
ologous gene have similar regulatory effects when the candidate gene is
associated withatrait-beneficial genotype and the homoeologous gene
has higher or no differences in expression level (favorable expression).
Based on this, the contribution of each homoeologous gene pair to
fiber quality was grouped into the following four models: (1) favorable
homoeologous pairs, with both favorable genotype and expression; (2)
only favorable genotype with unfavorable expression of its homoeolo-
gous gene; (3) only favorable expression that has unfavorable genotype
of candidate gene and (4) unfavorable homoeologous pairs (Methods).
We found that 29.5% of the 133 homoeologous pairs that positively
regulate FL have favorable expression, 34.9% do not, 3.1%lack a favora-
ble genotype and 32.6% lack both favorable genotype and expression
(Fig.5a). Among the 106 homoeologous pairs that negatively regulate
FL,27.5% have the favorable state, 19.6% show decreased expression of
homoeologous genes, 8.8% do not have afavorable genotype and 44.1%
lack both favorable genotypes and expression levels (Fig. 5b). These
datashow that the majority (67.5-75.8%) of homoeologous genes might
be further optimized for fiberimprovement (Extended DataFig. 6e-g).
Atthe module level, module 31appearsto berelatively optimized with
respect tohomoeologous gene expression, indicating that most mod-
ules might be promising targets forimprovement through optimizing
both homoeologs (Fig. 5c and Supplementary Figs. 14-16).

To assess the impact of aggregating homoeologous pairs with
favorable genotype or expression on fiber quality traits, we counted
the number of gene pairs represented by the four models above in
each accession. For FL, we observed that the number of gene pairs
categorized as favorable homoeologous pairs in long-fiber acces-
sions became generally larger than in short-fiber accessions (Fig. 5d).

We also found that 81.6% of the TWAS signals (308) corresponding to
231 homoeologous pairs showed changes of expression bias fraction
score between accessions with favorable and unfavorable genotypes
(Fig. 5e). Interestingly, by counting the bias levels of homoeologous
pairsineachaccession, we found that with the aggregation of favorable
genotypes in long-fiber accessions, the expression bias exhibited the
following two patterns: either fewer gene pairs (Fig. 5f) or more gene
pairs (Fig. 5g) showed biased expression. The former implicates that
only one subgenome has favorable genotypes and the latter might
result from neither of subgenomes having favorable genotypes in
short-fiber accessions. Similar patterns were observed for the other
three traits (Extended Data Fig. 7a-c). These results suggest that the
targeted utilization of both subgenomes may enhance the potential for
fiberimprovement and that aggregation of favorable genotypes hasled
to changesin the transcriptional regulation of homoeologous genes.

Genomic design for fiber quality improvement

To expand insight into the aggregation of favorable alleles for fiber
improvement, we evaluated the effect of domestication selection on
fiber quality-associated loci. In this analysis, 3,552 cotton accessions,
including 332 landraces and 3,220 cultivars, were collected (Supple-
mentary Table12)?°***%¥_ Alibrary of favorable alleles was constructed
using the fiber quality-associated loci and these 3,552 accessions
(Fig. 6a). Overall, cultivars aggregated more favorable alleles compared
withlandraces (Extended Data Fig. 8a,b and Supplementary Table 13),
providing indirect ex post facto confirmation of the utility of focusing
onthe regulation of homoeologs related to fiber traits.

We calculated the sharing ratio of favorable alleles in 3,220 modern
cultivars and grouped the trait-associated loci into four categories,
C1-C4.From Clto C4, the utilization level of favorable allelesinmodern
cultivars increased (Fig. 6b-d and Extended Data Fig. 8c,d). We also
compared the differences of the four categories between cultivars and
landraces (Fig. 6e and Extended Data Fig. 8e). Based on the differences
inallele frequency (>0.6), we identified 91selectively favorable alleles
in cultivars (Supplementary Table 14). We also identified 48 loci for
whichthe favorable alleles were under purifying selection, indicating
thathumanselection did not always lead to the aggregation of favora-
ble alleles (Fig. 6f). We observed no linkage drag effects for the loci
under purifying selection, and the effect of these loci was no different
to that of preferentially aggregated loci in cultivars (Supplementary
Fig.17). Nevertheless, we found that many of the genes corresponding
tothelociunder purifying selection showed pleiotropic effects (27/48;
Supplementary Table 14). For example, Ghir_A01G013620, encoding
anicotinamide adenosine dinucleotide (phosphate) (NAD(P))-linked
oxidoreductase superfamily protein, was characterized asarepresenta-
tive candidate for fiber development. The expression of this gene at 4
and 8 DPA was positively correlated with FL, FS and FE (Fig. 6f,g). This
type of functionalimplication suggests that future fiberimprovement
efforts should consider enabling the use of these alleles.

Astronglinear relationship was observed between the total num-
ber offavorable alleles and the phenotype, indicating that combining
favorable alleles in elite lines is an effective way to design favorable
cotton cultivars (Extended Data Fig. 9a). Ridge regression was used
to estimate the overall effect of the trait-associated loci (Extended
Data Fig. 9b,c). The correlation coefficient between predicted and
observed valuesfor FLreached 0.77,indicating these lociare predictive
(Fig. 6h). The accuracy of the model was evaluated using an external
GWAS cohort (n=1,040)”, and the correlation coefficient reached
0.47, which was similar to the accuracy of ridge regression best linear
unbiased prediction (rrBLUP) by using the SNP set filtered through
linkage disequilibrium (LD) clumping method (GWAS P value thresh-
old = 0.001; Fig. 6i and Supplementary Fig.18)*. We also predicted the
best value of FL, which was 35.55 mm, much longer than the normally
field-produced 28 mm fibers. The distance of the 376 accessions to the
predicted best FL ranged from 2.88 mm to 11.64 mm (Fig. 6j).

Nature Genetics | Volume 55 | November 2023 | 1987-1997

1993


http://www.nature.com/naturegenetics

Article

https://doi.org/10.1038/s41588-023-01530-8

a Genes positively regulate fiber length

Favorable
homoeologous pairs

= wa
i
z &
Favorable
genotyp
Only favorable genotype
% [ )
Favorable 3
genotype ®

Only favorable expression

[ %o\o
= G

Unfavorable

genotype  ynfavorable
homoeologous pairs

T~ o~
-
Unfavorable
genotype

Homoeologous genes . Candidate genes .
y1Bua) Jaqly @1e)nBal Ajaanisod siied auab gg|

(] FL-related modules
m24 (11)

36.4%

d e

m1(28)

e

50.0%

m21(9)

()
‘ 44.4%
18.2%

300 A

200 +

TWAS loci

100

0 100 200 300
Accessions rank (FL)

. Unfavorable
ho

moeologous pairs Only favorable genotype

B homg:(\)/ﬁ)rable ) Only favorable expression

gous pairs
Fig. 5| Relationships between homoeologous expression and fiber quality.
a, Atotal of 133 homoeologous gene pairs positively regulate fiber length. Red,
favorable homoeologous pairs (homoeologous gene pairs with both favorable
genotype and favorable expression). Yellow, homoeologous gene pairs with
only favorable genotype of the candidate gene. Light blue, homoeologous gene
pairs with only favorable expression. Dark blue, unfavorable homoeologous
pairs (homoeologous gene pairs without either favorable genotype or favorable
expression). Heatmap shows the classification of 133 gene pairs in 340 accessions
at five timepoints. b, A total of 106 homoeologous genes negatively regulate
fiber length. The classification is the same asin a. ¢, Pie charts of the states of
homoeologous genes in eight FL-related modules. The number of FL-related
genesisshownin the parentheses for each module. d, Proportional distribution

100 4 pe2dgxip™

= 075 9 . B o®
© Bias gene »

0.50 100 | ® Favorablesite «%¢ e [

i [ ]
. Bias ratio decrease 0.25 s
183
.

[ Bias ratio unchange

[l Bias ratio increase ol 183 188
Unfavorable Favorable
allele allele 50
sample sample

b Genes negatively regulate fiber length

Favorable
homoeologous pairs
VAN AN
o -
Favorable

genotype
Only favorable genotype

27.5%

' " g oy g |
LTI A O O ‘H‘HII[
e 1 \

19.6%

. 1 “ll?llll!ll
i i Jult! bl
m-wr v. ‘,‘ FP[‘ “’

Favorable
genotype
Only favorable expression

BA oS
.
Unfavorable

genotype Unfavorable
homoeologous pairs

8.8%

44.1%
yibua) Jaquy a1e)nBal Ajaanebau siied auab 9QL

VAR

TR
KX

i

Unfavorable
genotype

m25 (4) m29 (3) m31(6) m34 (8

X XXX

1.00 +

-

125 1 © Bias gene °
o

@ Favorable site

. °

P<425x10“

100
é °
ol 15 185 50

Unfavorable Favorable
allele allele
sample sample 25.0 27.5 30.0 32.5

Fiber length (mm)

0.75 4

0.50 -

Bias ratio

Counts

0.25 4

Bias ratio

Counts

25.0 27.5 30.0 325
Fiber length (mm)

of four types of homoeologous genes in accessions that were sorted by FL from
short tolong. e, Comparison of bias score of gene pairs in samples with favorable
and unfavorable alleles. The pie chart shows the ratio of gene pairs with different
patterns of bias score change. The boxplots indicate gene pairs that show a
significant difference in bias score. Centerline, median; box limits, first and third
quartiles; whisker, 1.5x interquartile range. f,g, Correlation between the number
of gene pairs with biased expression, the number of favorable loci and fiber
length. Panel f shows the accumulation in a single accession of 155 gene pairs
that show adecrease in bias score in e. Panel g shows the accumulationin asingle
accession of 153 gene pairs that show anincrease in bias score in e. The gray band
represents 95% confidence interval for the fitted regression.

Because the expression of the homoeologous copies of trait-
associated candidate genes may affect the phenotypes, we hold the
view that fiber quality-related traits can be furtherimproved by modi-
fying the expression of homoeologous genes. To estimate the overall

contribution of homoeologous gene expression, we integrated the
expression of the homoeologous genes that were correlated with
fiber quality-related traits in at least one developmental stage into
the predictive model. This gave an increased prediction accuracy of
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8% for FL, 10% for FS, 5% for FE and 6% for FU (Fig. 6k,| and Extended
DataFig. 9d). These data pinpoint the importance of the involvement
of homoeologous genes and expression levels in genomic breeding.

To enable genomic design for FL and FS improvement, we evalu-
ated the trait-associated loci, as well as the state of utilization of the
corresponding homoeologous genes that could be improved by other
accessions (Fig. 6m and Supplementary Tables 15-18). As a proof of
concept, we present theimprovement degree matrix of 18 cotton acces-
sionsto clarify the donor parent selection process. The accessions SO03
and S265 would be the most commonly used donor parentsin the first
crossing. S161 could be improved at up to 165 loci by SO03 for FL and
381lociforFS,and asaconsequence, the genomic-estimated breeding
value could beincreased by 7.9% for FL and 26.7% for FS. We also present
the degree of utilization of S161 and S003, considering both genetic
modules and homoeologous genes. A total of 80 and 197 loci (or the
homoeologous genes) of S161 could be improved by SO03 in the eight
genetic modules for FL and FS, respectively (Fig. 6m).

Discussion

Precise spatiotemporal regulation of gene expression by both
cis-regulatory sequences and trans-acting factorsis required for devel-
opmental programs in higher organisms®. In this study, we character-
ized potential cis- and trans-regulatory variants of gene expression
across different stages of cotton fiber development by eQTL mapping,
which provides arich resource for the community to identify genetic
regulatory components associated with fiber quality. We show that a
large proportion of eQTLs showed stage-dependent regulatory effects,
similar to theincreasing number of observations that many regulatory
variants are not associated with gene expression atasteady state?***%,
This finding suggests that the genetic effect of genes on fiber quality
should be evaluated at aspecific developmental stage. Future studies
might explore the functional implications of cis-eQTLs represented
by variants in transcription factor binding sites, and also ascertain
whether key transcriptional factors are mutated in trans-eQTLs, the
latter requiring the implementation of a cotton Encyclopedia of DNA
Elements project®.

In polyploid cotton, the effect of cis- and trans-interactions that
lead to both intrasubgenomic and intersubgenomic interactions on
the expression of duplicated (homoeologous) genes is largely unre-
solved®". We show that the transcriptional dysregulation mediated
by cis-regulatory variants in a certain subgenome may give rise to
homoeologous expression bias. This phenomenon may be addressed
further from an evolutionary viewpoint to understand the phyloge-
netic timing and extent of homoeologous gene expression divergence
relative to both polyploidization and cotton domestication. We fur-
ther show that widespread partitioned expression of homoeologous
genes during fiber developmentisaccompanied by only 30.2% of fiber
quality-related homoeologous copies with both favorable aggrega-
tions during breeding. This suggests the exciting prospect that fiber
quality may be improved through subgenome optimization, harness-
ing genomic modifications of genetic regulatory loci associated with
homoeologous expression partitioning. This study highlights that
the dissection of the genetic basis of agronomic traits or identifica-
tion of functional genes should consider subgenomic counterparts
in polyploid crops. We note that although we do not provide experi-
mental evidence demonstrating that subgenome optimization in
breeding programs actually has improved fiber quality, we point to
this important consideration here. In summary, genetic dissection of
the regulation of homoeologous expression partitioning may lead to
both fundamental and applied advances with respect to polyploidy
and crop improvement.
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Methods

Plant materials

A population of upland cotton (G. hirsutum) containing 376 diverse
accessions was cultivated in the field at Huanggang (114°55’22"E,
30°34’19”N), Hubei, Chinain 2019. Three replicates of each accession
were cultivated on three separate plots. Cotton leaf samples of each
accession from one plant were collected for genomic DNA extraction
using the cetyltrimethylammonium bromide (CTAB) method**. Cotton
bolls were marked on the day of flowering (O DPA) for transcriptomic
analysis. Ovules at O DPA and developing fibers at 4, 8,12,16 and 20
DPA were collected from at least ten cotton bolls of different plants
in two rows and stored in liquid nitrogen until RNA extraction (see
below). Mature cotton fibers were collected from each plant for fiber
quality measurement.

DNA sequencing and SNP calling

Purified genomic DNA was sonicated to about 250-300 bp, followed
by pair-end repairing. Resequencing libraries were constructed fol-
lowing manufacturer protocols for the MGISEQ-T7 platform (Pair-end
150 bp reads; including 373 new DNA sequencing data and three pub-
lished DNA sequencing data®: accession S112, SRR4018975; S123,
SRR4018977; S280, SRR4018974). Fastp software (v0.23.0) was used
to trim the adapter sequence and remove low-quality reads®. Variant
calling was accomplished following the Sentieon pipeline (License
201808.07)*. In brief, Sentieon invoked BWA to align the clean sequenc-
ingreads to TM-1reference genome* following customized parameter
(mem-M-K10000000)*, SAMtools (v1.9) was used to eliminate dupli-
cated and low-quality reads alignment*’. We performed SNP calling
in two different ways. First, Sentieon Haplotyper algorithm (--algo
Haplotyper --genotype_model multinomial --emit_conf 30 --call_conf
30) was used to process variant calling for each sample. The global
variation file (GVCF) for each sample was generated by GVCFtyper
algorithm (-algo GVCFtyper -emit_mode gvcf) in Sentieon, followed by
jointcalling to merge all variationsinto anintegrated VCF file. Only the
variations identified by both algorithms and covered by more than five
sequencingreads were regarded as high confident and were retained.

RNA sequencing and data analysis

For the cotton ovule and fiber samples, RNA was extracted using the
RNAprep Pure Plant Kit (polysaccharides and polyphenolics-rich). In
total, 2 pg RNA was used to construct sequencing libraries using VAHTS
Universal V6 RNA-seq Library Prep Kit (Vazyme, NRM604-02) that were
sequenced onan MGISEQ-2000 platform (pair-end 150 bp reads). After
removing adaptors and clipping low-quality bases with Trimmomatic
(v0.36), clean reads were mapped to the reference genome of TM-1
using HISAT2 (v2.1.0)°°*', SAMtools (v1.9) was used to remove PCR
duplicates and reads with mapping quality less than 20 (ref. 49). The
remaining reads were used to calculate the expression level (FPKM) of
genes with StringTie (v2.1.4)%.

Expression bias analysis of homoeologous genes

For each accession at each stage, the expression change of homoe-
ologous gene pairs was defined if at least one gene was expressed
(FPKM > 0.1) and both genes exhibited an expression difference of
at least twofold, which was tested under different conditions (Sup-
plementary Table 3). For each expressed homoeologous gene pair
in all accessions, if the number of accessions with expression bias (at
the single accession level) was greater than 5% of all accessions, this
gene pair was identified as biased homoeologous gene pair. For each
homoeologous gene pair with biased expression, we compared the
expression level at each timepoint between the At and the Dt in all
accessions using a two-sided Wilcoxon rank-sum test and corrected
the Pvalue using the Benjamini-Hochberg method. Homoeologous
gene pairs with expressionbiasin at least 5% accessionsand FDR < 0.05
were considered biased homoeologous gene pairs at the population

level. In this analysis, we classified the expression bias of gene pairs
into two kinds, that is, bias-At and bias-Dt, with observed expression
biastoward the At or Dt subgenome. For gene pairs showing expression
bias toward the At or Dt subgenome in less than 5% of samples or with
two bias directions, they were defined as bias-N or bidirectional-bias,
respectively. In total, we identified 29,690 gene pairs categorized
as bias-At, 31,604 as bias-Dt and 1,667 as bidirectional-bias in all six
timepoints of fiber development.

Peer factors for eQTL mapping

To account for the hidden batch effect and other global confounders,
we used the probabilistic estimation of expression residuals (PEER,
v1.3) method to estimate hidden covariates for gene expression levels
for each stage®. This method can also increase the detection power
of eQTL mapping by accounting for these covariates in the analysis.
A set of PEER factors were tested, and the number of PEER factors
was selected to maximize the number of mapped eGenes. Due to the
similar number of samples at each timepoint, 20 PEER factors were
choseninsix timepointsfor the correction of hidden covariates (Sup-
plementary Fig.1).

Cis-eQTL mapping

Toidentify eQTL for genesinfiber development, genes with low expres-
sion levels (FPKM < 0.1) in more than 95% of samples were filtered,
and the expression levels of remaining genes of all samples from a
given stage were normalized using aninverse normal transformation.
Cis-eQTL mapping was performed using FastQTL (v7)**, and the top
three genetic principal componentsand 20 PEER factors were used as
covariates®. By testing the association with variants within +1 Mb of the
transcriptionstartsite (TSS) for each gene, anadaptive permutation was
used with the setting --permute 1000 10000. The significant variant-
gene associations were identified by applying gene level nominal
Pvalue thresholds corresponding to FDR < 0.05. The significant SNP
with the strongest association signal was defined as the lead SNP for
each association. We subsequently performed a forward-backward
stepwise regression analysis to identify multiple independent cis-eQTL
signals for a given expression phenotype. The stepwise regression
procedure was implemented in the conditionally independent QTL
modaule of the software tensorQTL (v1.0.5), as described previously™.

Trans-eQTL mapping

For trans-eQTL mapping, we used the same covariates as for cis-eQTL
analysis. The FAST-LMM (v0.2.32) program was used to perform GWAS
of each gene and the whole genomic SNPs (MAF > 0.05)*. Variant-gene
pairs with Pvalue lessthan3.76 x 107 were considered significant, and
the significant variants for each eGene were grouped into clusters with
amaximum distance of 10 kb between two consecutive SNPs, and only
those clusters with more than three SNPs were considered as a putative
eQTL. We identified a total of 46,749 significant variant-gene asso-
ciationsin six stages, of which 22,938 had target eGenes with variants
within 1 Mb of the genic region. Because the corresponding variants
were highly correlated with variantsidentified in FastQTL, we only kept
the variant-gene associations where the variants were found out of the
1Mbregion of the eGene.

Comparison of eQTL effect between stages

Toestimate the cross-stage activity of cis-eQTLs, we used Multivariate
Adaptive SHrinkage (asimplemented in the R package mashr (v0.2.45))
for all cis-eVariant-gene pairs across stages®. This analysis was per-
formed usingthe f coefficientsands.e. of eacheQTL asinput,and nine
SNPs were randomly selected from the +1 Mb region of each eGene.
Atotal of 575,820 variant-gene pairs were used to fit the MASHR model.
Effect size estimates and LFSR (thatis, LFSR) outputted by mash were
used as metrics of cis-eQTL magnitude and significance. An LFSR < 0.05
was used as the threshold of significant cis-eQTL activity. To estimate
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the activity of trans-eQTL across stages and test the robustness of
mash, we used ameta-analysis approach asimplemented in MetaSoft
(v2.0.1) to calculate the posterior probability and m value that the eQTL
effect exists in each stage®. An mvalue > 0.9 was used as the threshold
of significanteQTL activity. To assess the stage specificity of eQTL, we
paid attention to significant eQTL identified at different stages that
may beinthe same LD genomic interval. To reduce duplicate statistics,
significant eQTLs for each gene were merged based on the lead SNPs
with?> 0.6 and distance <100 kb. For each eQTL, we focused onits lead
SNP, and the effect of stage-shared eQTL was defined as the average
effect oflead SNP in all stages.

Detection of bias-eQTL

To identify significant variants associated with the expression bias of
homoeologous gene pairs, the expression biaslevel in each accession
of each stage was quantified into a biased score as shown below. The
association between SNPs and bias score was performed using the
factored spectrally transformed linear mixed models (FAST-LMM)
program (Supplementary Fig.12)%.

At — Dt
At + Dt

Bias score =

We applied astrict filter of homoeologous genes with expression
bias—biased expression was presentin atleast 5% butno more than 95%
ofallsamples, and the expression of the homoeologous genes differed
by twofold change of FPKM. After filtering, an average of 5,579-6,563
homoeologous gene pairs in each stage were used for GWAS analysis.
We clustered the significant SNPs according to the method described
previously*®. SNP clusters were further merged based on LD (* > 0.6)
and distance (<100 kb) in the genome. Across six timepoints, a total of
14,133 bias-eQTLs were identified for 4,026 homoeologous gene pairs.
Genesregulated by eQTLs were significantly enrichedinhomoeologous
genes with expression bias, so we compared the effect of all bias-eQTLs
to their effect in eQTL analysis. The effect size was estimated by the
coefficient and s.e. of lead SNP in each bias-eQTL. When calculating
the effect of bias-eQTL in regulating the expression of Dt-subgenomic
genes, the effect value is correspondingly multiplied by -1.

Analysis of heritability of gene expression

To estimate the variance of expression bias level explained by different
genomicregions, genome-wide SNPs were divided into LD-friend SNPs
(thatis, target SNPs that arein significant LD) of cis-SNPs and trans-SNPs
according to the eQTLs of each homologous gene pair. For LD-friend
SNPs, GCTA-LDF (v1.94.0) was performed with parameters --Id-wind 100
and --1d-sig 0.05 to search for SNPs that are in LD with the lead SNP*°°,
Cis-SNPs and trans-SNPs are distinguished according to whether the
distance between SNP and TSS is more than1 Mb. Each set was used to
build a kinship matrix using the direct method and --power —0.25 in
LDAK (v5.2)°". Considering the fact that different genome regions have
different LD levels, the LDAK weightings model was used to equalize
the tagging of SNPs in the genome. The genetic variance was then
calculated for these SNPs using the restricted maximum likelihood
(REML) model and -mgrm®’.

Genome-wide association analysis

For GWAS, we used atotal of 2,658,921 high-quality SNPs (MAF > 0.05)
from the 376 accessions. Association analysis was carried out using
a linear mixed model implemented in FAST-LMM for four fiber
quality-related traits, including FL, strength, elongation and uniform-
ity. The population structure was inferred using STRUCTURE software
(k=3, SNP number =5,000) and included in the model as covariates.
Thekinship matrix was calculated based on all SNPs using FAST-LMM*.
The threshold for genome-wide significance was setas 3.76 x 107 (1/n,
where nisthe total number of genomic SNPs). The significant SNPs were

first grouped into one locus if two adjacent SNPs were within a 20-kb
interval. Consecutive loci were further merged into a single locus if
SNPs with the lowest Pvaluesin each of the adjacent loci were located
inLD regions (r*> 0.6).

TWAS and colocalization analysis

To identify associations between gene expression and fiber
quality-related traits, we conducted TWAS using the FUSION pack-
age’. Briefly, we constructed a standard binary PLINK format file for
each gene using SNPs within 500 kb on either side of the gene bound-
ary with the integration of log-transformed expression data. Then,
the script FUSIONcompute_weights.R (https://github.com/gusevlab/
fusion_twas) in the FUSION package? was used to compute the expres-
sion weights for each gene, taking the binary PLINK format file as
input. Five models (BLUP, BSLMM, LASSO, Elastic Net and top SNPs)
were used in this step and the effect sizes from these models acted
as weights. The script FUSION.test.R (https://github.com/gusevlab/
fusion_twas) was run to perform the typical TWAS analysis, with the
computed gene expression weights, GWAS summary statistics and
an LD reference panel that was constructed using the SNPs matching
the GWAS SNPs. We considered genes with corrected P values < 0.05
as significant associations.

To detect the shared causal variants between eQTL and GWAS
signals, we performed a colocalization analysis of cis-eQTLs from
five fiber developmental stages and GWAS loci of four fiber quality
traits using coloc”. The cis-eGenes within 1 Mb of the GWAS loci were
extracted for colocalization analysis. The function coloc.abfwas used
to calculate posterior probabilities for PP.H4 that shows both traits
(gene expression and GWAS phenotype) share a single causal variant.
Acis-eGene was defined as having evidence of colocalization when the
posterior probability of colocalization (PP.H4) was higher than 0.8.
We implemented SMR approach to test if an eGene is associated with
atrait through eQTL*°. SMR (v1.03) implements the heterogeneity in
dependentinstruments (HEIDI)-outlier test to distinguish causality or
pleiotropy fromlinkage. SMR associations were declared significantif
the Bonferroni-corrected SMR P < 0.05 and HEIDI-outlier test P> 0.05.

Definition of biased expression patternin fiber development
To analyze the dynamic expression bias of homoeologous genes,
we explored whether the direction (the At or Dt subgenome) of expres-
sionbiasin each accession was consistent over six timepoints. For each
gene pair, all cotton accessions were classified into the following eight
classes according to the biased expression patterns in fiber develop-
ment: class 1indicates accession with the same bias direction across
six timepoints; class 2 indicates accession with the same bias direction
across five timepoints while having no bias in the remaining timepoint;
class 3 indicates accession with the same bias direction across four
timepoints while having no bias in the remaining timepoints; class 4
indicatesaccessionwith the same bias direction across three timepoints
while having no bias in the remaining timepoints; class 5 indicates
accession with the same bias direction across two timepoints while
having no biasin the remaining timepoints; class 6 indicates accession
with bias at a specific timepoint while having no bias in the remaining
timepoints; class 7 indicates homoeologous genes had balanced expres-
sionin all six timepoints (without expression bias) or class 8 indicates
the direction of expression bias is different in at least two timepoints.
For each gene pair, the number of accessions in each classification was
counted. According to the number of accessions in each classification,
2,658 gene pairs were sorted using unsupervised hierarchical clustering
(Extended Data Fig. 5d). For the gene pairs of the switched cluster, most
oftheiraccessions are presented in the bias expression of class 8. For the
gene pairs of the dominant cluster, most of their accessions show the
same bias direction across six timepoints (class 1). For the gene pairs of
time-dependent cluster, most of their accessions have nobias expression
inatleast one timepoint (classes 2-7).
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Genetic network construction

To explore the regulatory landscape of candidate genes during fiber
development, we used eQTLs to constitute a genetic network that
integrated regulatory relationships from all timepoints. This network
was composed of eQTLs, eQTL hotspots and candidate genes identi-
fiedin TWAS or colocalization analysis. To describe the dynamic eQTL
regulation, eQTLs in all timepoints were merged when the distance
between lead SNPs was less than 50 kb and r? was greater than 0.6.
We obtained 16,914 merged eQTLs from 53,854 cis-eQTLs and 23,811
trans-eQTLs fromsix timepoints.eQTL hotspots were identified using
the HOT_SCAN program atsix timepoints®*and then merged when the
distance betweenadjacent hotspots waslessthan 20 kb. We identified
atotal of 463 hotspots across six timepoints and 406 hotspots across
five fiber developmental timepoints. The visualization and module
division of the network was accomplished by the built-in programin
Gephi (v0.9.5)%*. The principle of modularization was to maximize the
connectivity between nodes in the same module and minimize the
connectivity between nodes in the different modules. Eachmodule con-
sists of a collection of genesrelated to fiber quality (TWAS;pz < 0.050r
COLOC;p 144 > 0.8). Modules with heritability >0.05 and gene counts =5
were used for multiple regression of gene expression to phenotypic
values across timepoints. For each module, the degree of correlation
between gene expression and phenotype atagiven timepoint was indi-
cated by the magnitude of the normalized r* value. We identified 129 loci
with higher favorable allele frequency (>0.2) in the top 50 accessions
with thelongest fiber. To determine whether the modules were enriched
forthe 129 loci, one-sided Fisher’s exact test was performedinR.

Conception of subgenome coordination model

In this study, favorable genotypes refer to those identified by TWAS
or colocalization analysis and corresponding to higher trait values.
For candidate genes that positively regulate phenotype, favorable
expressions refer to cases where homoeologous genes have higher
expression than candidate genes (with twofold expression change)
ornodifferences. For candidate genes that negatively regulate pheno-
type, favorable expressions refer to cases where homoeologous genes
have lower expression than candidate genes (with twofold expres-
sion change) or no differences. We classified the status of a pair of
homoeologous genesin all accessions into the following four models:
favorable homoeologous pairs, only favorable genotype, only favora-
ble expression and unfavorable homoeologous pairs. Based on the
above classification, a pair of homoeologous genesin accessions at all
timepoints was classified—(1) favorable homoeologous pair, judged as
favorable homoeologous pairin >50% accessions at all timepoints; (2)
only favorable genotype, judged as favorable homoeologous pair or
only favorable genotype in >50% accessions at all timepoints but did
not meet the first condition; (3) only favorable expression, judged as
favorable homoeologous pair or only favorable expression in >50%
accessions at all timepoints but did not meet the first condition; (4)
unfavorable homoeologous pairs, the remaining gene pairs that did
not meet the above three conditions.

Heritability estimation

To evaluate how the heritability changes when considering more
trait-related SNPs, we first took subsets from all SNPs at different sizes
by using the sample() functioninRand then used the LDAK-Thin model
to estimate the heritability contributed by these SNP subsets®’. The
LDAK-Thin assumes the expected heritability contributed by an SNP
is higher for SNPs in regions with lower levels of LD and for those with
higher MAF. The process of thinning the genetic variants cameters
‘--window-kb100 and --window-prune 0.98. Kinship matrix was calcu-
lated for each SNP subset using the main argument ‘--calc-kins-direct’
by setting the power equal to 0.25. Heritability contributed by each
kinship matrix was estimated separately using a generalized REML
solver that was included in LDAK®'.

Genomic prediction using ridge regression

In this study, ridge regression, a linear regression with penalty, was
used to reduce overfitting®*. The predictor variables were the number
of superior alleles at each locus, encoded as 0,1 or 2. The responding
variable was the real phenotype. The function cv.glmnet() in gimnet
package in R was used to fit the ridge regression model by setting o
equal to 1and the cross-validation will be automatically performed.
The value of A (regularization parameter) that gives cross-validated
minimum mean error was selected to obtain the model coefficients®.

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequencing data generated in this paper have been deposited
into the National Center for Biotechnology Information database (Bio-
ProjectID: PRINA917453 for DNA-resequencing dataand PRJNA891378
for RNA-seq data).

Code availability
Allsoftware used in the study are publicly available on the Internet as
described in the Methods and Reporting Summary.
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Extended Data Fig. 4 | Correlations of expression pattern with fiber quality
and characterization of eQTL hotspots and genetic modules. a, The counts
of candidate genes with/without favorable expression patterns for four fiber
quality-related traits. b, Heatmap showing FL-related genes with (lighter orange)

or without (dark orange) favorable expression patterns in 340 cotton accessions.

The 340 accessions are sorted by fiber length. Bar plot indicates mean counts of
adjacentaccessions. ¢, Correlation (cor) of fiber length (mm) and the cumulative
number of genes with favorable expression patterns. Two-sided Student’s ¢-test.
The gray band represent 95% confldence interval for the fitted regression.

d-f, Heatmap showing FS/FE/FU-related genes with (lighter color) or without

(dark color) favorable expression patternin 340 accessions. Cotton accessions
are sorted by values of FS/FE/FU. The right panel shows correlation between
values of FS/FE/FU and cumulative number of genes with favorable expression
pattern. Two-sided Student’s ¢-test. The gray band represent 95% confldence
interval for the fitted regression. g, Venn diagram showing the number of genes
identified for four fiber quality traits. h, Graph diagram showing eQTL-eGene
connections within and between modules. Each module is represented as a circle
with size proportional to the number of nodes. i, Gene ontology enrichment
(biological process) of candidate genes from 15 modules (one-sided Fisher’s
exacttest). j, Stack bar plot of eQTL distribution in 36 modules.
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Extended DataFig. 5| Characterization of homoeologous expression bias
and its dynamics across stages. a, Comparison of the coefficient of variation
for bias score in different expression bias patterns. ‘non-QTL’ indicates gene
pairs without significant eQTL and bias-eQTL. ‘Bias/eQTL shows gene pairs
with one eQTL or bias-eQTL. ‘Bias&eQTL’ indicates gene pairs with both eQTL
and bias-eQTL. b, Genetic variance partitioning for a gene pair using intra- and
inter-subgenomic SNPs (within 1 Mb up- or downstream of TSS). ¢, Density map
showing the coefficient of variation (CV) of gene expression for gene pairs with
different genetic regulatory patterns. The boxplot shows the count of SNPs in
gene body and flanking regions (1 kb up- and downstream) (two-sided Wilcoxon
rank sum test; center line, median; box limits, first and third quartiles; whisker,
1.5xinterquartile range). d, Distribution of the number of accessions belonging
to each dynamic bias pattern. Rows contain 8 categories of dynamic bias
patterns (Methods) and columns are gene pairs with bias-eQTL. e, The dynamics

of homoeologous gene expression patterns was shown in a co-expression
network. Nodes were colored for 16 co-expression clusters (left panel). The
co-expression network was colored for expression bias (colored by average
relative bias ratio; right panel). f, Dynamic expression bias and expression level
(FPKM) of co-expression cluster 8 (n = 915 genes in different subgenomes at

6 timepoints; center line, median; box limits, first and third quartiles; whisker,
1.5xinterquartile range). g, Dynamic expression bias and expression level
(FPKM) of co-expression cluster1(n = 646 genes in different subgenomes at 6
timepoints; center line, median; box limits, first and third quartiles; whisker,
1.5xinterquartile range). h, Enrichment of gene pairs with three bias patterns
in co-expression clusters. The odd ratio and P-values for enrichment of clusters
were calculated based on a one-sided Fisher’s exact test. i, Distribution of edge
numbersin co-expression clusters that were enriched by switched, time-
dependent, and dominant gene pairs.
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Extended DataFig. 6 | Characterization of subgenomic coordination on gene pairsin 340 accessions at five timepoints. f, 127 homoeologous gene pairs
FS, FE,and FU. a-d, FL/FS/FU/FE-associated SNPs and genotypes of pseudo- and 111 pairs with positive and negative regulation on fiber uniformity (FU),
regulatory sitesin the other subgenome. e, 246 homoeologous gene pairs respectively. g, 337 positive homoeologous gene pairs and 337 pairs with positive
and 258 pairs with positive and negative regulation on fiber strength (FS), and negative regulation on fiber elongation rate (FE), respectively.

respectively. Heatmap shows the classification of 246 positive and 258 negative
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Data exclusions  NA

Replication All attempts at replication for RNA-Seq experiment of GhMYB mutants were successful. All the experiments for replication were performed
independently.

Randomization  Thisis not relevant to our study.

Blinding This is not relevant to our study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.
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quantitative experimental, mixed-methods case study).
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studies involving existing datasets, please describe the dataset and source.
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Data collection
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predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
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what criteria were used to decide that no further sampling was needed.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.
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Reproducibility
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any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,
describe the data and its source.

Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Describe the data collection procedure, including who recorded the data and how.

Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which
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If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Field work, collection and transport

Field conditions
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Access & import/export

Disturbance

Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pame any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
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Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.
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say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.
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Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.
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Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
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transformation OR indicate that data were not normalized and explain rationale for lack of normalization.
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Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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