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Energetic perspective on emergent inductance exhibited by
magnetic textures in the pinned regime
Soju Furuta1, Samuel Harrison Moody2, Kyohei Kado3, Wataru Koshibae4 and Fumitaka Kagawa1,4✉

Spatially varying magnetic textures can exhibit electric-current-induced dynamics as a result of the spin-transfer torque effect.
When such a magnetic system is electrically driven, an electric field is generated, which is called the emergent electric field. In
particular, when magnetic-texture dynamics are induced under the application of an AC electric current, the emergent electric field
also appears in an AC manner, notably, with an out-of-phase time profile, thus exhibiting inductor behavior, often called an
emergent inductor. Here we show that the emergent inductance exhibited by magnetic textures in the pinned regime can be
explained in terms of the current-induced energy stored in the magnetic system. We numerically find that the inductance values
defined from the emergent electric field and the current-induced magnetization-distortion energy, respectively, are in quantitative
agreement in the so-called adiabatic limit. Our findings indicate that emergent inductors retain the basic concept of conventional
inductors; that is, the energy is stored under the application of electric current.
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INTRODUCTION
Strong coupling between conduction-electron spin and under-
lying spin texture forms the basis of rich phenomena, such as
electric-current-induced dynamics of the spin system via the spin-
transfer-torque (STT) effect1–3 and the spin-dynamics-induced
electromotive force (spin motive force or emergent-electric field
(EEF))4–8. Although obtaining a general expression for the EEF is
difficult, a concise form is available for a specific situation; that is,
the magnetic texture is slowly varying in space, and the
conduction-electron spins are always parallel to the local magnetic
moments of the magnetic texture. In this limit, often referred to as
the adiabatic limit, electron transport under the influence of the
magnetic texture is described by introducing the effective U(1)
gauge field, which results in the emergent magnetic field and
EEF4. The EEF, which is the focus of this study, can be described in
the following equation4,5:

eiðr; tÞ ¼ _

2jejmðr; tÞ � ½∂imðr; tÞ ´ ∂tmðr; tÞ�; (1)

where e(> 0) is the elementary charge, m(r, t) is the unit vector of
the local magnetic moment at position r and time t, and ∂i
(i= x, y, z) and ∂t denote the spatial and time derivatives,
respectively. When the conduction-electron spins are not fully
polarized, the so-called spin-polarization factor P is further
considered for the resulting electric field5,8. As explicitly expressed
in this equation, the EEF can appear only when the magnetic
texture is time evolving.
Recently, the interplay between the STT and EEF has attracted

much attention as a source of a new class of inductors, often
called an emergent inductor9–14. To understand the emergent
inductor under the application of an AC electric current, it is still
instructive to consider the dynamics of a magnetic system under a
DC electric current. In the following, we focus on the so-called
pinned regime15–17, in which a magnetic system does not exhibit
a steady flow under a DC electric current18–24. When a DC current
(let j be the current density) is applied, a magnetic texture starts to

deform as a result of the STT effect, but its dynamics are only
transient and eventually stop at t→∞ by definition of the pinned
regime; thus, ∂tm= 0 at the final state, and hence, no EEF appears:
We will illustrate the case of a helical magnetic texture in the
Results section. In the linear-response regime, the change in the
local magnetization direction at the final state, δm, is elastic and
proportional to j; i.e., δm∝ j.
The situation under an AC electric current, jðtÞ ¼ j0 sinωt, can

be considered in a similar way. As long as the linear and low-
frequency response regimes are considered, δm(t) is proportional
to the instantaneous value of j(t). In this limit, the magnetization
has an in-phase response to the applied AC current:
δmðtÞ / jðtÞ ¼ j0 sinωt. Note that as a natural consequence of
the application of an AC current, the current-induced dynamics
persist, and thus ∂tδm remains finite even in the pinned regime;
∂tδm / j0ω cosωt ¼ djðtÞ=dt, and this is an out-of-phase response
to the applied AC current. Thus, an out-of-phase linear-response
EEF can appear because m⋅(∂im × ∂tδm) is finite, and it is
expressed as

eiðtÞ ¼ ~L
djðtÞ
dt

; (2)

where ~L is a normalized inductance (the unit is Henry meter, H m,
which we may term “inductivity”, in analogy to the terminology of
resistivity) defined in the linear-response and low-frequency
regimes. By multiplying the sample length ℓ with both sides of
Eq. (2) and inserting I= Aj, where I and A, respectively, represent
the applied current and the sample cross-section area, one can
obtain a standard equation describing the self-induction phenom-
enon:

V ¼ L
dI
dt

; (3)

where L � ~Lðℓ=AÞ and V represents the self-induction coefficient
and the inductive counter-electromotive force, respectively. This
voltage-current relation in the inductor defines L. In general, L is
frequency dependent and may be represented by a complex
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number, L*(ω), the imaginary part of which describes the phase
delay of the voltage response from dI/dt.
Nevertheless, as long as one considers the low-frequency

regime such that Re L�ðωÞ � Im L�ðωÞ is satisfied, the inductance
can be taken as a constant real number. In this case, the electric
work required to supply a current to the inductor (assume I= 0 for
t ≤ 0) is calculated from Eq. (3) as follows:Z t

0
dt0Iðt0ÞVðt0Þ ¼

Z t

0
dt0

d
dt0

1
2
LIðt0Þ2

� �

¼ 1
2
LIðtÞ2:

(4)

This electric work, 12 LIðtÞ2, should be positive, and as is clear from
the derivation, it is nondissipative in nature; thus, given energy
conservation, the corresponding energy can be viewed as stored
in the inductor in the circuit. Alternatively, the electric work done
by the external power supply can also be viewed as stored in the
energy of the whole system; thus, the energy increase of the
whole system, ΔEsystem(I(t)), satisfies ΔEsystemðIðtÞÞ ¼ 1

2 LIðtÞ2.
In a classical inductor made of a coil, it can be shown

analytically that ΔEsystem(t) is equal to the magnetic-field energy,
1
2

R
dVHðtÞ � BðtÞ. Thus, at least for the case of the classical

inductors, the value of L in the low-frequency regime can be
defined in two ways: One is from the electric response due to the
electromagnetic induction (EMI), and LEMI is given by
VðtÞ ¼ LEMI

dIðtÞ
dt ; the other is from the energy increase of the

whole system, and Lenergy is given by ΔEsystemðtÞ ¼ 1
2 LenergyIðtÞ2.

Although the two definitions of L are based on different
perspectives, they result in the same value, LEMI= Lenergy.
In the case of emergent inductors, the microscopic mechanism

is based on quantum mechanics, and it is thus quite different from
that of classical inductors. Nevertheless, Eq. (3) remains valid for
describing the electric response of emergent inductors, and
energy conservation should invariably hold. Therefore, it is
expected that the value of L of the emergent inductor in the
low-frequency regime can be defined also in terms of ΔEsystem.
However, to the best of the authors’ knowledge, the emergent
inductance has never been discussed from such an energetic
perspective, although the energetic implications of Eq. (1) have
been discussed by Barnes and Maekawa5.
In this paper, we address this issue numerically using

micromagnetic software. We consider a magnetic system in a
pinned regime and perform micromagnetic simulations for the
current-induced dynamics of a magnetic texture; then, we
calculate the time evolutions of the voltage due to EEF, Ve(t),
and the energy increase of the magnetic system, ΔE(t), according
to Eq. (1) and our model spin-Hamiltonian (see below),
respectively. We can thus numerically derive LEMI and Lenergy
and, by comparing the two values, test the energetic perspective
on the emergent inductor.
By investigating the energetic perspective, we also aim to gain

insight into the meaning of negative emergent inductance, an
intriguing issue reported in past experimental studies10,11,14 and
theoretical studies12,13. The term “negative inductance” immedi-
ately evokes many questions: Is the negative emergent inductor
really stable, even though the negative inductance is known to be
unstable (Supplementary Note 1)? Similarly, does the negative
inductance mean that the current-supplied state of the material
has a lower energy than that of the zero-current state? Or does the
emergent inductance no longer have an energetic meaning, even
though electrodynamics textbooks state that the energy definition
is fundamental for inductance25? It is known that complex
impedance at low frequencies can be analyzed by assuming an
appropriate equivalent circuit consisting of positive, real-valued
circuit elements, R (resistance), L (inductance), and C (capacitance).
However, in what cases does negative L need to be introduced
beyond this well-established framework? Since these fundamental

questions remain unanswered, the physical meaning of the
negative inductance remains unclear.

RESULTS
Models
Simulating an emergent inductance using micromagnetic soft-
ware has the following limitations. First, in calculating the
magnetic-texture dynamics under the electric current and
resulting EEF, we should take the spatial derivative of the
magnetic texture, ∂im(r). It follows that, for our approach to be
valid, the magnetic texture that we consider should be slowly
varying in space. To minimize this problem, in this study, we
restrict ourselves to long-period helical magnetic textures.
Second, although the real system is ultimately an electron-spin-

coupled system, we consider a Hamiltonian and an equation of
motion, both of which describe the magnetic subsystem only.
Thus, we can calculate the current-induced energy increase ΔE(t)
only for the local magnetic moments, which is not, strictly
speaking, equal to ΔEsystem(t) when an energy increase in the
electronic subsystem is not negligible.
Third, our calculation of the EEF is based on Eq. (1). As long as a

slowly varying magnetic texture is considered, one can describe
electron transport properties by introducing a gauge field, which
has in general SU(2) symmetry22. By taking the adiabatic limit, the
SU(2) gauge field reduces to a U(1) gauge field: Eq. (1) is thus
derived. Conversely, when the system deviates from the adiabatic
limit, the use of Eq. (1) becomes less justified.
Note that the first issue is, in principle, avoidable by considering

a sufficiently slowly varying magnetic texture and increasing
numerical efforts. In contrast, the other two issues are more
fundamental and thus unavoidable as long as the approach is
based on the spin-only Hamiltonian and Eq. (1), which is the
formalism for the adiabatic limit.
In this study, we consider long-period helical magnetic textures

that are stabilized by the Dzyaloshinskii–Moriya (DM) interaction. We
consider both a clean system without any disorder and dirty systems
including randomly distributed disorder. Our model Hamiltonian is:

H ¼
Z

d3r
a3

J
2
ð∇mÞ2 þ Dm � ð∇ ´mÞ

� �

�P
k2Λ

Z
Vk

d3r K impðmk � nimp;kÞ2
(5)

where J is the exchange stiffness, D is the DM interaction and a is
the lattice constant. When examining a randomness effect, we
introduce the last term of Eq. (5): Kimp(> 0) represents the
magnetic-easy-axis anisotropy along a randomly chosen direction,
nimp,k, at the kth cell (the cell volume Vk is 33 nm3), and Λ is a set of
random numbers.
When simulating the current-induced dynamics of a given

helical magnetic structure, we insert the spin Hamiltonian into the
following Landau–Lifshitz–Gilbert (LLG) equation26:

dmrðtÞ
dt

¼ � γ

1þ α2
dH
dmr

´mr � αγ

1þ α2
mr ´

dH
dmr

´mr

� �� �

þ 1
1þ α2

ð1þ βαÞmr ´ ½mr ´ ðu � ∇Þmr�f
þ ðβ� αÞ½mr ´ ðu � ∇Þmr�g;

(6)

where u represents the spin drift velocity, α is the Gilbert damping
constant, β is a dimensionless constant that characterizes the
nonadiabatic electron spin dynamics, and γ( > 0) is the gyromag-
netic ratio; u is related to the electric current density j by
u ¼ PμB

2eMsð1þβ2Þ j, where μB is the Bohr magneton and Ms is the

saturation magnetization. When implementing the micromagnetic
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simulation, we use the open software MuMax3 (https://
mumax.github.io/download.html)27. We choose the following
parameter set: J/(2a3)= 1.8 × 10−11 J m−1, D/a3= 2.8 × 10−3 J m−2,
Kimp= 1.0 × 106 J m−3, Ms= 2.45 × 105 Am−1, P= 1, and α= 0.04.
In the following simulation, we apply a current density of a
sufficiently small magnitude so that the magnetic system is
certainly in a pinned regime.
As shown below, we find that with respect to the input AC

electric current, jðtÞ ¼ j0 sinωt, the output AC emergent voltage,
Ve(t) is / j0ω cosωt, and the time-evolving energy-increase of the
magnetic system, ΔE(t) is / ðj0 sinωtÞ2. From these observations,
LEMI and Lenergy are derived from the following equations:

VeðtÞ ¼ hexðtÞiℓ ¼ LEMI
dIðtÞ
dt

¼ ~LEMI
ℓ

A

� �
dIðtÞ
dt

; (7)

ΔEðtÞ ¼ 1
2
LenergyIðtÞ2 ¼ 1

2
~Lenergy

ℓ

A

� �
IðtÞ2; (8)

where 〈⋯〉 denotes a spatially averaged value.

Clean systems
As one of the simplest systems, we first study the following quasi-
one-dimensional system: the system size is 243 × 18 × 1
(ℓ= 243 × 3 nm and A= 18 × 1 × 32 nm2) under the periodic
boundary condition, including no disorder. In such a clean system,
the spin system exhibits a pristine helical structure with the yz helical
plane (Fig. 1a, which illustrates the case of right-handed chirality).
When β= 0 in Eq. (6) and the electric current is below a threshold
value (in the present system,≈ 5.0 × 1012 Am−2), the spin system is
in the so-called intrinsic pinning regime19,21,22; namely, when a DC
current is applied at t= 0, the helical texture starts to deform along
the current direction, and after ~1 ns, static and elastic tilting along
the x direction is realized, forming a conical state with a net
magnetization (Fig. 1b–d): In addition, the position at which the local

magnetic moment exhibits the maximum mz is slightly displaced
and stopped (Fig. 1e). In contrast, when β is finite, the helical texture
exhibits a steady flow for arbitrary small current density because of
the absence of any disorder18,19,24, and thus in the clean system, the
magnetic-texture dynamics in a pinned regime, which is a focus of
this study, is realized only when β= 0. When an AC electric current is
applied, magnetic moment tilting occurs within the pinned regime
toward the+x and−x directions alternatingly with time, yielding an
alternating electric field according to Eq. (1).
For such a pristine helical magnetic texture, the current-induced

dynamics in the pinned regime can be analytically derived within
the framework of Eq. (6) with β= 0. Thus, assuming Eq. (1) for the
EEF, the microscopic expression for LEMI can be derived as
reported in previous theoretical studies9,12 (see also Supplemen-
tary Note 2). The result is

LEMI ¼ P_
2jej

� �2 a3

J
ℓ

A
¼ ~LEMI

ℓ

A
: (9)

Similarly, the energy increase, ΔE, can also be derived (for the
derivation, see Supplementary Note 2); then, by assuming the
energy conservation (ΔE ¼ 1

2 LenergyI
2), the expression of Lenergy can

be obtained:

Lenergy ¼ P_
2jej

� �2 a3

J
ℓ

A
¼ ~Lenergy

ℓ

A
: (10)

Thus, we find ~LEMI ¼ ~Lenergy analytically for the case of the intrinsically
pinned helical magnetic texture (β= 0). This agreement means that
the energy increase of the magnetic system is equal to the work
done by the external power supply against the inductive counter-
electromotive force due to the EEF, and is consistent with the first
law of thermodynamics. By substituting J/(2a3)= 1.8 × 10−11 Jm−1

into Eqs. (9) or (10), we obtain ~L ¼ 3:006 ´ 10�21 Hm. This value can
be used to test the validity and accuracy of our numerical approach.
To numerically derive the value of the emergent inductance, we

calculate Ve(t) and ΔE(t) for the AC current-induced helical-texture
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Fig. 1 Schematics for a helical magnetic texture and its distortion under the application of an electric current. a Pristine helical magnetic
structure with right-handed chirality under zero electric current. b, c Illustration of the current-induced distortion of the helical magnetic
structure under rightward (b) and leftward (c) electric currents at steady state. d Time profile of mx under a DC current application. The tilting
direction of helical magnetism shown in b and c is reversed for a helical magnetic structure with left-handed chirality (not shown). e Time
profile of the translational displacement, which is defined with respect to the position at which the local moment exhibits the maximum mz. In
b–e, a relatively large current density, 2.0 × 1012 Am−2, is used to obtain a large distortion, just for clarity, but it is still lower than the critical
current density, ≈5.0 × 1012 Am−2. In the present case, mx is uniform in space.
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dynamics. When jðtÞ ¼ j0 sinωt with j0= 5.0 × 1010 Am−2 and
ω/2π= 50 MHz is applied (Fig. 2a), the emergent voltage exhibits
VeðtÞ ¼ Ve;0 cosωt (Fig. 2b). We further confirm that Ve,0 is
proportional to both ω and j0 (Fig. 2c and d, respectively). These
observations are consistent with the behavior expressed by Eq. (7),
representing a numerical demonstration of the emergent inductor
consisting of a helical magnetic structure. We also find that ΔE(t)
changes according to ΔEðtÞ ¼ ΔE0sin2ωt (Fig. 2e), and the
amplitude ΔE0 is proportional to I20 ¼ ðAj0Þ2 (Fig. 2f), consistent
with ΔE(t)∝ j(t)2, as expressed by Eq. (8). From these behaviors, we
obtain ~LEMI ¼ 2:98 ´ 10�21 H m and ~Lenergy ¼ 2:96 ´ 10�21 H m. The
relative error δ, defined by δ ¼ j~LEMI � ~Lenergyj=~Lenergy, is <1%,
leading us to conclude that ~LEMI ¼ ~Lenergy is confirmed within the
numerical error. Furthermore, these numerical results have an
error of <2% within the theoretical value, ~L ¼ 3:006 ´ 10�21 Hm,
supporting the validity of our numerical approach.

Dirty systems
To see the universality of LEMI= Lenergy, it is helpful to numerically
examine disordered helical textures in dirty systems. To this end,
we prepare a two-dimensional system (the system size is
243 × 243 × 1; i.e., ℓ= 243 × 3 nm and A= 243 × 1 × 32 nm2),
introduce the disorder cells (the density is 3%), and impose
open-boundary conditions. In such a dirty system, the helical
textures remain in a pinning regime even for finite β (often
referred to as an extrinsic pinning regime19,20,23) as long as the
applied electric current is below a threshold value (in the present
system, ≈ 5.0 × 1012 Am−2 for β= 0 and ≈ 1.5–2.0 × 1012 Am−2 for

finite β (0.02 ≤ β ≤ 0.08)); hence, in dirty systems, LEMI and Lenergy
exhibited by the magnetic-texture dynamics in a pinned regime
can be examined for both β= 0 and β > 0. Note that because of
the presence of disorder, the spin texture can adopt various
metastable states. Here, we show four different examples of
metastable helical textures, each of which are shown in Fig. 3a–d:
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e Time profile of the energy increase of the magnetic system.
f Amplitude of the oscillating magnetic-system energy as a function
of current square, I20. In a, b, e the data in the first half cycle (gray
hatched) are excluded from the analysis to analyze a system that is
sufficiently settled for a steady-state cycle under an AC current.
These results are obtained in the clean system, and the qualitatively
same results are also obtained in the dirty systems.
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S. Furuta et al.

4

npj Spintronics (2023)     1 



The helical q-vector of the three systems (Fig. 3a–c) forms
approximately 0°, 20°, and 45° with the AC current direction along
the horizontal direction, respectively, whereas the highly dis-
ordered helix shown in Fig. 3d has no specific q-vector.
For the dirty systems, similar to the case of the clean system, we

obtain VeðtÞ / dðAjðtÞÞ
dt and ΔE(t)∝ (Aj(t))2; thus, ~LEMI and ~Lenergy are

derived separately. Figure 3e–h summarizes the results for the
four systems. We find that for all magnetic systems, ~LEMI � ~Lenergy
invariably holds within 2% relative error for β= 0, whereas such a
good agreement is not seen for finite β. Parenthetically, among
the three helical structures shown in Fig. 3a–c, the inductivity is
maximized when the helical q-vector is parallel to the current
direction, consistent with the fact that the STT is most effective
when the current is along the magnetic modulation direction.

DISCUSSION
Our numerical observations suggest that as long as a slowly varying
magnetic texture in a pinned regime is considered, the limitations
discussed in the Models section play a minor role at β= 0. The
implications of these observations are that at β= 0, (i) the EEF can
be well described by Eq. (1), which is the formalism derived in the
adiabatic limit, and (ii) the EEF described by Eq. (1) is also consistent
with the current-induced magnetic-texture dynamics described by
Eq. (6) in terms of the energy conservation. Although there is some
controversy about the physical meaning of β26,28–31, some
microscopic approaches indicate that the adiabatic limit corre-
sponds to β= 026,28,30, and it was discussed31–34 that Eq. (1) is valid
only for β= 0. Our numerical observations appear to be consistent
with this theoretical argument.
In the three dirty systems with a different oblique angle of the

helical q-vector and one highly disordered helical texture in which
the q-vector is ill-defined, we observe a tendency that as β increases,
the agreement between ~LEMI and ~Lenergy worsens and ~Lenergy
becomes larger than ~LEMI; i.e., for finite β, the increase of the
magnetic system energy due to current appears to exceed the work
done by the external power supply, and the present framework
does not conserve energy [but the relative error is still <12% at the
highest β(=0.08) for the magnetic textures considered in this study].
Thus, it appears that in order to satisfy ~Lenergy ¼ ~LEMI at finite β, the
EEF must be greater than that given by Eq. (1). In this context, we
note that several theoretical studies have led to an additional
correction term, �β _

2jej ∂tm � ∂imð Þ, on the right-hand side of Eq. (1),
that was derived using a different perspective31–34. However, it can
be shown both analytically and numerically that adding this term
further decreases ~LEMI (Supplementary Note 2 and Fig. S1); in fact, it
was the contribution of this correction term that led to the
possibility of negative inductance in the previous theoretical study12.
Thus, ~Lenergy and ~LEMI are still inconsistent, even though they should
be equivalent if Eq. (2) holds. This discrepancy implies that the
emergent inductance at finite β is ill-defined, at least in the present
framework (see also ref. 35). It remains a challenge for the future to
establish a theoretical framework that self-consistently describes the
energy and voltage response associated with the interplay between
electric current and magnetic textures, especially for finite β.
Given these things, it appears also challenging to quantitatively

describe the EEF, for instance, in nonslowly varying spin textures and
in systems that deviate from the adiabatic limit. Nevertheless, our
observations raise a new perspective on this issue; that is, for a given
spin system, whether inductor behavior can emerge is equivalent to
whether the system can store energy by applying an electric current.
For instance, if the magnetic structure exhibits some elastic
deformation under current, it is necessarily accompanied by some
increase in the magnetic energy; accordingly, when the applied
current is time-varying, the energy is stored or released in response
to the current variations, and this behavior is equivalent to inductor.

It could be said that there can be as many mechanisms for emergent
inductors as there are mechanisms for storing energy by means of
electric current. Thus, it would be an interesting direction to explore
the emergent inductor function that is beyond the current-induced
spin reorientation, which is the mechanism considered thus far. In
general, the calculation of energy in a nonequilibrium steady state
under current involves subtle issues, but elastic magnetic-structure
deformations in a pinned regime appear to be well described by the
Hamiltonian of an equilibrium system.
The energetic perspective discussed so far is a way of thinking

that by no means allows for a negative inductance, even though
the literature reports negative emergent inductance10–14. For our
conclusion to be coherent, we have to explain this apparent
contradiction while maintaining our standpoint that physically
meaningful inductance must be positive. In this context, we
emphasize that in the standard equivalent circuit analysis, the
observation of negative Im ZðωÞ proportional to ω does not imply
negative L, especially when Re ZðωÞ is finite: This misunderstanding
about the definition of inductance is at the root of the confusion.
For instance, in the previous experiments10,11, the authors observed
the following complex impedance Z(ω) at a given current density:

ZðωÞ ¼ RDC þ iω
η

1þ iωτ
ðη<0Þ; (11)

where the three parameters, RDC, η, and τ, denote the DC
resistance, a constant related with the magnitude of Im ZðωÞ, and
the time constant, respectively. Thus, the result, ZðωÞ�RDC

iω ¼ η
1þiωτ

with η < 0, was interpreted as the realization of negative
inductance with a Debye-like frequency dependence. However,
in terms of the standard equivalent circuit analysis, this Z(ω) [Eq.
(11)] is fully reproduced by an equivalent circuit shown in Fig. 4,
which is comprised of three positive-valued elements, Ra, Rb, and
C, that are chosen to satisfy Ra+ Rb= RDC, CRb= τ, and
CR2b ¼ �η> 0. Thus, the observation of Eq. (11)-type Z(ω) with
negative η is usually interpreted as the indication of a stray
capacitance involved in the circuit, rather than a superficial
negative inductance. In fact, we experimentally find that within a
microfabricated sample, the system exhibits a background signal
of Im ZðωÞ

ω � �400 nΩ s, which superficially corresponds to a
(fictitious) negative inductance, ≈−400 nH (for details, see Sup-
plementary Note 3 and Fig. S2). Considering that the elimination
of the background is generally not straightforward, it should be
noted that Im ZðωÞ in the experiment is prone to be affected by
this relatively large negative-L-like signal.
To conclude, we propose an energetic definition of the self-

inductance coefficient, L, in the low-frequency regime for so-called
emergent inductors and investigate its validity numerically for the
case of helical magnetic textures in a pinned regime. The
inductance defined from the energy increase of the magnetic
system under current and that from the emergent electric field are
found to agree with each other within the numerical errors,
especially for the case of slowly varying spin textures and β= 0.
Although our numerical approach appears to be less justified for
finite β and nonslowly varying spin textures, we conclude that the

Rb

C

Ra

Fig. 4 An equivalent circuit that can reproduce superficial
negative inductance with Debye-like frequency dispersion,
ZðωÞ ¼ RDC þ iω η

1þiωτ with η < 0. The Z(ω) can be reproduced by
choosing Ra(> 0), Rb(> 0), and C(> 0) to satisfy Ra+ Rb= RDC, CRb= τ,
and CR2b ¼ jηj.
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main concept of inductors in which energy is stored and released
under a time-varying electric current should hold for any spin-
based inductor. Conversely, if a magnetic system is capable of
storing energy under current by changing the magnetic texture,
the system potentially behaves as an inductor. Toward a
microscopic understanding of emergent inductors, a comprehen-
sive consideration of not only the emergent electric field but also
energy will be important. Additionally, the emergent electric field
beyond the linear response regime is an interesting subject, which
may be more relevant to the experiments reported thus far.

DATA AVAILABILITY
The data used in this work are available from the corresponding author upon
reasonable request.
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