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Machine Learning Execution Time in Asset Pricing

Abstract

In the fast-paced world of finance, where timely decisions can yield substantial gains or
losses, machine learning models with time-consuming training and prediction may miss
crucial market timing opportunities. This study examines the machine learning model
execution time including both training and prediction phases, in empirical asset pricing.
We conduct a comprehensive analysis of machine learning execution time, examining
ten models and introducing two strategies to save time: feature reduction and the
reduction of time observations. Our findings reveal that XGBoost stands out as a top
performer, demonstrating relatively low execution times compared to other machine
learning models, with exceptional accuracy, boasting an out-of-sample R2 of 0.78 and
a Sharpe ratio of 1.76. Furthermore, feature reduction and shorter time observations
reduce execution time by as much as 18 times while also slightly enhancing investment
performance. This research underscores the vital interplay between model accuracy and
execution time to make accurate and prompt investment decisions in practice.
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I. Introduction

Recent studies highlight the improved precision in return predictability when incorporating

machine learning methods into financial predictions (Gu et al. (2020); Bianchi et al. (2021);

Bali et al. (2021)). While accuracy has often been the primary focus in evaluating machine

learning models in asset pricing, an equally critical factor that deserves attention is the

machine learning model execution time. The concept of execution time, in the context of

machine learning implementation, encompasses the temporal duration required to complete

the entire lifecycle of a machine learning model. This includes critical phases, including

model training, hyperparameter optimization, and evaluation during testing. To facilitate

comprehension, we split this time into two main parts: training time and prediction time.

Time is an invaluable resource in the fast-paced world of finance, where timely decisions

can lead to substantial gains or losses. The rapid evolution of financial markets demands

real-time responses, and machine learning models that consume excessive time for training

and prediction might miss critical market timing opportunities. Machine learning models

that exhibit prolonged times may compromise the timeliness of decision-making, rendering

their valuable insights less actionable.

Beyond market timing, the execution time of machine learning models carries economic

implications. The cost of time encompasses multiple dimensions, including labor costs

for analysts and the expenses associated with running resource-intensive computations.

For example, high-performance computing (HPC) services often entail charges based on

processing time, making efficient algorithms financially prudent. By optimizing the time,

financial institutions can mitigate the financial burden associated with prolonged computation,

ensuring that computational resources are used effectively.

There are a large number of characteristics in empirical asset pricing, as is common

in measuring equity risk premiums (e.g., De Bondt and Thaler (1985); Fama and French

(1992); Jegadeesh and Titman (1993); Amihud (2001); Ang et al. (2006); Daniel and Titman
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(2006)). The high dimensionality of financial data can amplify the computational burden,

potentially leading to resource-intensive processes that hinder real-time decision-making. By

accounting for machine learning execution times, researchers and practitioners can strike a

balance among accuracy, efficiency, and profitability, ultimately creating models that generate

valuable predictions while responding swiftly to evolving market dynamics.

This paper conducts a comprehensive evaluation of machine learning execution time in

empirical asset pricing. We conduct a comparable analysis of execution time for a diverse set

of machine learning models. Additionally, we investigate two strategies to reduce execution

time: first, by reducing the number of characteristics, and second, by reducing training and

prediction time observations.

Given the extensive list of stock-level characteristics and the prolonged time periods,

we use a high-performance computing (HPC) cluster boasting 64 CPU cores and 1 TB of

memory to execute machine learning algorithms and estimate execution times. To ensure

robustness and statistical reliability, each algorithm is executed five times, and the resulting

execution times is subjected to statistical analysis using standard deviations. This rigorous

approach provides insights into the consistency and variability of execution times, shedding

light on the computational efficiency and stability of these algorithms in return predictability.

We implement ten distinct machine learning algorithms, using a comprehensive set of

monthly stock-level characteristics. Among these algorithms, XGBoost exhibits the highest

predictive performance, as evident from its superior out-of-sample R2 and mean squared errors.

Additionally, the long-short portfolio constructed using XGBoost demonstrates the highest

Sharpe ratio, attaining a remarkable 1.76. While linear, lasso, and ridge regressions exhibit

the shortest training times, each requiring less than 0.4 seconds, XGBoost also showcases

a relatively efficient training time of 26.51 seconds, significantly outperforming random

forest (1221.14 seconds) and gradient boosting (270.49 seconds). In terms of prediction time,

XGBoost is similar to regression models. These results highlight the primary tradeoff between

investment performance and training time lies between XGBoost and regression models.
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However, despite regressions’ advantage in training time, their lower predictive accuracy and

inferior investment performance suggest that regressions may not be the ideal choice in real

investment decisions.

We narrow our attention to XGBoost as our primary machine learning model due to

its superior predictive accuracy and investment performance compared to other models.

To further enhance the time efficiency of machine learning algorithms, we employ our first

method: reducing the number of characteristics based on their importance in prediction.

Notably, characteristics such as the 52-week high, supplier momentum, maximum return

over a month, and idiosyncratic risk are identified as having the highest importance, while

others like unexpected R&D increases and spinoffs are found unimportant and consequently

removed from consideration.

Our feature reduction approach reveals that training time and prediction time exhibit a

consistent decrease after removing less important characteristics. Remarkably, as we reduce the

number of characteristics to only 31 (with importance exceeding 0.5), training time decreases

approximately fivefold, while prediction times decrease around fourfold. In particular, this

reduction in characteristics also improves the investment performance, highlighting the

significance of identifying crucial stock-level characteristics for return predictability. This

not only contributes to save machine learning execution time but also enhances investment

performance.

In line with existing literature on feature selection (Kelly et al. (2019); Feng et al. (2020);

Freyberger et al. (2020); Kozak et al. (2020)), our approach emphasizes the importance of

feature reduction. However, our motivation is distinct; we prioritize feature reduction not only

to enhance machine learning execution time but also to augment investment performance.

Furthermore, we investigate the reduction of time observations to enhance machine

learning time efficiency. Our findings illustrate that employing the most recent four years of

monthly data observations results in a remarkable 18-fold reduction in training time and a

threefold reduction in prediction times compared to using a historical dataset spanning six
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decades. Interestingly, the Sharpe ratio exhibits a slight improvement when employing recent

four-year observations in contrast to the longer 60-year dataset. This suggests that data

spanning six decades may not hold significant practical value for training machine learning

models. Instead, shorter time periods prove to be more informative, indicating that financial

practitioners should consider training models within shorter time frames, enabling timely

predictions and responses to evolving market dynamics.

This paper makes a substantial contribution to the literature on asset pricing (e.g., Fama

and French (2008); Hou et al. (2018)) and the application of machine learning techniques

in finance (e.g., Bryzgalova et al. (2019); van Binsbergen et al. (2020); Israel et al. (2020)).

There are also some recent studies on machine learning in asset pricing. In particular, Gu et al.

(2020) examine machine learning methodologies in empirical asset pricing and demonstrated

their superior predictive performance when compared to traditional linear models. Bianchi

et al. (2021) investigate the predictability of bond returns and found that extreme trees and

neural networks exhibit exceptional forecasting capabilities in this context. Furthermore, Bali

et al. (2021) illustrate the advantages of nonlinear machine learning models in predicting

option returns and also highlight the enhanced predictive accuracy achieved by incorporating

both option and stock characteristics. However, these studies have commonly overlooked the

critical dimension of time in the training and prediction phases, thereby limiting the practical

applicability of their findings. In this regard, our research stands as a pioneering effort by

emphasizing the importance of execution time considerations in implementing prediction

models.

Our finding reveals that the XGBoost machine learning model exhibits a distinct advantage

in terms of execution time without compromising predictive accuracy. Moreover, we introduce

two efficient methods aimed at time-saving: eliminating redundant characteristics and reducing

the time observations in the training dataset. Our primary contribution is to document

the significance of execution time as the financial landscape increasingly harnesses machine

learning’s potential for predicting asset prices. While accuracy remains paramount, a model’s
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ability to deliver timely forecasts can significantly influence its practical applicability and

impact on decision-making. By factoring in the training and prediction times of machine

learning models, researchers and practitioners can find the most appropriate model that

unlock actionable insights while navigating the intricacies of real-time decision-making.

The remainder of this paper is structured as follows. Section II provides an overview of

our methodology and details about the data used. Section III presents the findings related to

machine learning execution times using different models. Section IV analyzes the the impact

of different numbers of characteristics on execution time. Section V shows the execution time

using different time observations. Section VI offers concluding remarks. Additional details

and information can be found in the Appendix.

II. Data And Methodology

II.1. Data

The monthly equity returns are obtained from the Center for Research in Security Prices

(CRSP) database. We include all U.S. firms that are listed on the NYSE, AMEX, and

NASDAQ. The sample period spans from March 1957 to December 2022, covering 65 years.

We use the 1-month Treasury-bill rate from CRSP as a proxy for the risk-free rate, from

which we compute the equity excess returns.

We use 209 firm-level predictive characteristics as features to predict stock returns, which

include almost all signals in the cross-sectional stock returns literature.1

II.2. Handling Missing Value

A significant number of observations are missing in the dataset of firm-level characteristics.

Handling missing values is an essential data preprocessing procedure to address the absence of

information within a dataset, which involves systematically identifying and replacing missing
1The 209 firm-level characteristics are constructed by Chen and Zimmermann (2022) and are available

from https://www.openassetpricing.com/data.
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data points with appropriate values to maintain the dataset’s completeness and integrity

(Emmanuel et al. (2021)).

We deployed the k-Nearest Neighbors (k-NN) imputation technique to handle the missing

values in the dataset. This approach is based on proximity-based imputation, whereby

missing values in a multi-dimensional feature space are estimated using data from their closest

neighbours. This technique is chosen for its ability to capture the underlying structure and

relationships within the dataset, particularly when the missingness mechanism is believed to

be not completely random (Jönsson and Wohlin (2004)). By applying k-NN imputation, we

aim to minimize the impact of missing data on the subsequent machine learning algorithms’

performance, which ensures that the imputed values are derived from a coherent and data-

driven estimation process, thereby preserving the integrity of the finance dataset for subsequent

analysis.

II.3. Sample splitting

We split the dataset into two principal subsets: a training set and a testing set. We employ

the Pareto Principle, the 80/20 rule, to determine the ratio between the training and testing

sets (Sanders (1987)). The training set, equal to 80% of the whole data set, forms the

cornerstone of model training, allowing ML algorithms to understand the underlying data

patterns and relationships deeply. Conversely, the testing set, the rest of the data, 20%,

concealed from the models during training, is important to evaluate model performance and

to make accurate predictions out-of-sample. We measure an ML model’s predictive power by

using the test dataset to construct out-of-sample R2 and mean squared error.

II.4. Machine Learning Execution Time

Execution time in the machine learning implementation quantifies the computational resources

and efficiency demanded by the machine learning algorithm when confronted with a specific

dataset and task (Miu and Missier (2012)). In this study, our primary objective is to examine
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the temporal aspects of machine learning execution, covering both the training and testing

phases. We measure the training time and prediction time for each machine learning model.

For robustness and statistical reliability, we executed each algorithm five times, analyzing

the resulting execution times and calculating standard deviations. This rigorous approach

allowed us to assess the consistency and variability in execution times, providing valuable

insights into the computational efficiency and stability of these algorithms.

II.5. Method

Let denote Ri,t+1 denote the excess return of an asset i at t + 1,

Ri,t+1 = Et(Ri,t+1) + ϵi,t+1, (1)

where

Et(Ri,t+1) = g∗(zi,t). (2)

Our goal is to construct a representation of Et(Ri,t+1) using input variables that optimise

its ability to explain realized Ri,t+1 out of sample. Let zi,t denote the N-dimensional vector of

stock-level characteristics (input variables). We assume that the conditional expected return

denoted as g∗(.) is a function of these characteristics. The following sections will briefly

outline each machine learning model’s function.

II.6. Linear Regression, Lasso Regression, and Ridge Regression

II.6.1. Linear Regression

Linear regression (LR) is a supervised and widely utilized machine learning algorithm deployed

in different areas for modelling and predicting quantitative relationships between variables.

This algorithm has gained prominence due to its simplicity, interpretability, and computational

efficiency. LR characterizes the relationship between a dependent variable (target) and one

or more independent variables (features) by fitting a linear equation to the observed data.
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Mathematically, it can be expressed as:

Y = β0 + β1X1 + β2X2 + . . . + βnXn + ε, (3)

where Y represents the dependent variable, the quantity we aim to predict based on certain

factors. The intercept term, β0, signifies the baseline value of Y when all independent

variables (X1, X2, . . . , Xn) are zero, establishing the starting point of the linear relationship.

The coefficients (β1, β2, . . . , βn) are associated with the independent variables and measure how

much Y changes for a unit change in each respective X variable while keeping others constant.

These coefficients reveal the strength and direction of the relationships. X1, X2, . . . , Xn are

the independent variables, the features or attributes influencing Y . Lastly, ε denotes the error

term, representing unexplained variability and the difference between the model’s predictions

and actual observations of Y .

LR has several benefits for financial modelling. Its simplicity and ease of interpretation

are its main advantages. Financial analysts can evaluate the influence of each independent

variable on the dependent variable using the transparent coefficients that LR offers, enabling a

deeper comprehension of financial relationships. Additionally, LR is computationally effective,

making it appropriate for real-time applications and massive financial datasets, both of

which are essential in the dynamic world of finance. LR has several drawbacks, though. It

is predicated on the idea that variables have linear relationships with one another, which

may not always be the case, given how complicated and nonlinear financial markets are.

Additionally, its forecast accuracy could be constrained when dealing with complex patterns

and high-dimensional data, necessitating more advanced machine learning algorithms for

better performance in specific financial modelling scenarios. However, being aware of these

benefits and drawbacks enables financial professionals to employ LR in financial research and

forecasting jobs confidently.
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II.6.2. Lasso Regression

Lasso regression, short for Least Absolute Shrinkage and Selection Operator Regression, has

gained prominence in finance for its ability to handle high-dimensional datasets and mitigate

the issue of multicollinearity. Lasso regression is a linear regression technique enhanced

with L1 regularization, which minimizes the sum of squared residuals, akin to traditional

linear regression, but with an added penalty term proportional to the absolute values of

the coefficients. The objective function of Lasso Regression can be expressed as Tishbirani

(1996):

min
β0,β1,...,βn

 1
2N

N∑
i=1

(Yi − (β0 + β1Xi1 + β2Xi2 + . . . + βnXin))2 + λ
n∑

j=1
|βj|

 , (4)

where Yi represents the dependent variable, the target or outcome variable of interest. The

variables Xi1, Xi2, . . . , Xin collectively denote the independent variables, where Xi1 signifies the

first independent variable, Xi2 the second, and so on up to Xin. These independent variables,

or features or predictors, predict the dependent variable. The coefficients β0, β1, . . . , βn

correspond to the coefficients associated with these independent variables, indicating the

weights assigned to each independent variable within the linear combination used to predict

Yi. Additionally, λ is employed as the regularization parameter, a pivotal element in Lasso

regression, controlling the degree of regularization applied to the model. This parameter

significantly influences the trade-off between bias and variance and determines the sparsity of

coefficient estimates.

Lasso regression has several benefits for data modelling and analysis. Its main advantage

is that it can simultaneously do feature selection and parameter estimation. Lasso efficiently

finds and prioritises the most important characteristics by promoting sparsity in the coefficient

estimates, improving model interpretability and lowering overfitting. Furthermore, Lasso

regression may automatically pick a subset of the most insightful variables, which can assist

in avoiding multicollinearity concerns when working with high-dimensional datasets. Lasso
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does have certain restrictions, though. It has a propensity to randomly choose one variable

from a set of strongly correlated predictors, which could result in biased coefficient estimates

and miss significant correlations. Furthermore, selecting the regularisation parameter λ

can be challenging, requiring careful tuning for optimal model performance. Despite these

drawbacks, Lasso regression remains a valuable tool in various fields, balancing interpretability

and predictive accuracy.

II.6.3. Ridge Regression

Ridge Regression (RR), a regularised linear regression method, plays a pivotal role in financial

modelling as it can address multicollinearity and overfitting. RR extends the conventional

linear regression by introducing L2 regularisation, which minimises the sum of squared

residuals while adding a penalty term proportional to the square of the coefficients (James

et al. (2013)).

The objective function of RR can be expressed as:

min
β0,β1,...,βn

 1
2N

N∑
i=1

(Yi − (β0 + β1Xi1 + β2Xi2 + . . . + βnXin))2 + λ
n∑

j=1
β2

j

 , (5)

where Yi is the target variable. Xi1, Xi2, . . . , Xin are predictors. β0, β1, . . . , βn are their

respective coefficients. λ is the regularization parameter governing model complexity.

RR is a modelling approach that has several benefits. It excels at managing multicollinear-

ity and introduces L2 regularisation to increase the stability of coefficient estimations. RR

is reliable for datasets with many predictors since this regularisation technique efficiently

reduces overfitting. It also provides some degree of robustness against noisy variables, which

helps provide more resilient modelling results. RR’s disadvantage, however, is that it cannot

do variable selection because it keeps all predictors, which may make the model more difficult

to interpret.
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II.7. Support Vector Machine

Support Vector Machine (SVM) is a powerful supervised learning algorithm commonly used in

classification and regression (Bhavsar and Panchal (2012)). It is popular in various domains,

from computer science and engineering to finance, healthcare, and natural language processing.

In finance, it is used for diverse purposes, including fraud detection, credit risk assessment,

and stock price prediction. It also aims to find a hyperplane that best separates data points

belonging to different classes or predicts values as accurately as possible.

The objective of SVM, particularly in the case of binary classification, is to find a

hyperplane that maximizes the margin between two classes while minimizing classification

errors. The following equation defines the decision boundary:

w · x + b = 0, (6)

Where; w represents the weight vector that defines the hyperplane’s orientation, x represents

the feature vector of the data point, while b is the bias term. The goal is to find w and

b so that the margin between the hyperplane and the nearest data points of each class is

maximized. This margin is crucial for the algorithm’s ability to generalize well to new data.

The decision function for classification is given as follows:

f(x) = sign(w · x + b) (7)

Here, the SVM aims to find w and b that maximise the margin between the two classes

while minimising the classification error.

SVM is a prominent ML technique for tackling complex classification and regression

problems. SVM is very useful for datasets with many predictors because it handles high-

dimensional feature spaces. Moreover, SVM can identify the optimal hyperplane that

maximizes the margin between different classes. This skill enhances its generalization

capabilities and reduces the risk of overfitting. In addition, SVM is robust to outliers in the
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data, as it primarily relies on support vectors near the decision boundary. Notably, SVM

can effectively address non-linear relationships by applying kernel functions, which allows it

to capture intricate patterns in the data. However, SVM has some drawbacks, such as its

computational cost, particularly when dealing with large datasets.

II.8. Random Forest

Random Forest (RF) is a versatile and widely used ensemble supervised machine learning

method for classification and regression tasks, renowned for its robustness and ability to

handle complex datasets. In an RF, multiple decision trees are constructed, each trained on

a bootstrapped subset of the data with random feature selection (Svetnik et al. (2003)). The

final prediction is made by aggregating the predictions of all individual trees, often through

a majority vote (for classification) or averaging (for regression). This ensemble approach

mitigates overfitting, improves model generalization, and can handle high-dimensional data.

RF is applied in various domains, including computer vision, natural language processing,

biology, and finance (Al-Hashedi and Magalingam (2021)).

An illustration of the formula for a Random Forest prediction is:

Ŷ = 1
N

N∑
i=1

fi(X), (8)

where Ŷ represents the predicted outcome, N is the number of trees in the forest, and fi(X)

is the prediction of the i − th tree in the forest for input features X.

RF is particularly important in finance because it applies to various financial tasks, such as

credit scoring to assess the creditworthiness of borrowers, fraud detection to identify unusual

patterns in transactions, portfolio optimisation to make investment decisions, and stock price

prediction. Its ability to handle large financial datasets, identify relevant features, and make

accurate predictions makes it a valuable tool for financial analysts and institutions.

Numerous benefits of RF include feature importance estimates, strong predictive per-

formance, and resistance against overfitting. High-dimensional data can be handled, and
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complicated relationships can be captured. Additionally, compared to other methods, it just

needs minor hyperparameter tuning. There are restrictions to take into account, though.

RF models might not be as easy to interpret as simpler models and can be computationally

expensive. When model complexity rises, comprehending the underlying decision-making

process may not be easy. Additionally, even while it lessens overfitting, it may still be vulner-

able to data noise. Careful consideration of the number of trees and other hyperparameters

is required for optimal performance.

II.9. Neural Networks

Neural Networks (NNs), also known as artificial neural networks (ANNs), are a class of

ML models inspired by the structure and functioning of the human brain. NNs consist

of interconnected nodes organized into layers: an input layer, one or more hidden layers,

and an output layer. Each connection between nodes has a weight, and each node applies

an activation function to the weighted sum of its inputs (Guresen and Kayakutlu (2011)).

NNs are used for various ML tasks, including classification, regression, image and speech

recognition, natural language processing, and more.

A straightforward feedforward neural network has the following formula, where f stands

for the activation function:

Ŷ = f(W (2) · f(W (1) · X + b(1)) + b(2)), (9)

where Ŷ symbolizes the predicted outcome, X corresponds to the input data, W (1) and W (2)

denote the weight matrices for the hidden and output layers, respectively, and b(1) and b(2)

represent the bias vectors associated with the hidden and output layers, respectively.

NNs offer a wide range of important applications in finance. Notably, they are used in

algorithmic trading, where they can quickly react to market changes and analyse large amounts

of previous data, enabling automated, data-driven trading methods. In risk assessment, where

they model and forecast various risk categories, such as market, credit, and operational risk,
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neural networks are also crucial. They play a vital role in fraud detection by spotting odd

trends or abnormalities in user behaviour or transaction patterns and protecting financial

institutions from fraud. NNs are also a key component of credit scoring models, offering

a more precise assessment of creditworthiness by considering a wider range of factors and

patterns in applicants’ financial histories.

NNs provide several benefits, such as their capacity to handle high-dimensional data,

simulate complicated relationships, and adapt to different tasks. They eliminate the need

for intensive feature engineering since they can automatically extract pertinent features

from unprocessed data. Deep NNs with many hidden layers can also learn hierarchical

representations, enabling them to handle tasks that get more difficult as they get more

complicated. However, there are problems with NNs. To avoid overfitting, they frequently

require a lot of data, especially deep NNs; they demand a lot of computer power. It can be

hard to comprehend why a specific prediction was made since NNs models’ interpretability is

sometimes constrained. Training NNs can be time-consuming, and hyperparameter tuning

can be complicated. Nevertheless, they are an important instrument in the finance sector

due to their capacity to handle complex financial issues and enhance decision-making.

We use the following neural networks from one to five hidden layers. The first is an

architecture with one hidden layer of 32 neurons (NN1-32). The second has 1 hidden layer of

100 neurons (NN1-100); NN2-32 has 2 hidden layer of 32 and 16 neurons; NN3-32 has three

hidden layers of 32, 16, and 8 neurons; NN4-32 has four hidden layers of 32, 16, 8, and 4

neurons; NN5-32 has five hidden layers of 32, 16, 8, 4, and 2 neurons; and finally, NN5-100

has five hidden layer of 100 neurons for each hidden layer.

II.10. Decision Tree

Decision Tree (DT) is a class of supervised ML algorithms employed for classification and

regression applications. It is frequently used in many fields, such as engineering, finance,

marketing, and healthcare, and they are straightforward but effective decision-making tools.
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In a DT, the nodes stand in for features or attributes, the branches for decision rules, and

the leaves for results or class labels. The method chooses the feature that, given a set of

criteria, provides the best split at each tree node as it is formed through a recursive process

(Kotsiantis (2013)). As interpretable models, DT is useful for comprehending and elucidating

decision-making. The formula for a simple decision tree can be represented as follows:

For classification:

ŷ = f(feature_split). (10)

For regression:

ŷ = average(target_values_in_leaf_node), (11)

where feature_split indicates how the data is divided at each decision node based on a specific

feature and its threshold, while target_values_in_leaf_node represents the actual values or

class labels of the target variable associated with the data points in a leaf node, which are

used to make predictions.

DT holds significant importance and wide applicability in finance, where it is commonly

deployed for tasks such as credit risk assessment, fraud detection, portfolio management, and

options pricing. DT assist in evaluating the creditworthiness of borrowers by considering

various financial attributes and credit history. Furthermore, DT is crucial in identifying

potentially fraudulent transactions by recognizing patterns that deviate from the norm. In

portfolio management, it aids in asset allocation and investment decisions. Additionally,

DT provides a structured framework for evaluating complex financial derivatives in options

pricing.

DT provide several benefits, including the capacity to handle both category and numerical

data, ease of use, and interpretability. It can be used for classification and regression

applications and is robust to outliers. However, DT has drawbacks, including a propensity
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to overfit complicated datasets if not carefully pruned. When some classes predominate,

it might also produce biassed trees. The proper ratio of depth to complexity must be

maintained for best results. Nevertheless, DTs are useful tools in industries like finance,

where decision-making and model comprehension rely heavily on simplicity and clarity.

II.11. K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised machine learning algorithm for classification and

regression applications. Fundamentally, KNN generates predictions based on the majority

class or mean of the values of its K-nearest feature space data points. It is predicated on

the fact that related data points typically fall into the same category or have comparable

numerical values. KNN classifies new data points by locating the K-nearest neighbours

using a distance metric, such as Euclidean distance, and either determining the mean of

these neighbours’ labels or values (for regression) or giving the class label by majority vote

(Imandoust and Bolandraftar (2013)). KNN is adaptable and useful in many fields, including

healthcare for disease prediction, recommendation systems for making product or content

suggestions, and anomaly detection for finding anomalies in data.

The formula for KNN can be represented as follows, where N represents the set of

K-nearest neighbors:

For classification:

Ŷ = arg max
(∑

i∈N

I(Yi = y)
)

. (12)

For regression:

Ŷ = 1
K

∑
i∈N

Yi, (13)

where Ŷ represents the predicted class label, N denotes the set of K-nearest neighbors, Yi

signifies the class label of the i-th nearest neighbor, and y corresponds to the class label
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being predicted for the given data point. Additionally, I(âŃĚ) is an indicator function that

equals 1 if the condition inside is true and 0 otherwise. This equation encapsulates the core

mechanism of the KNN classification algorithm, where the predicted class is determined by

identifying the class label that appears most frequently among the K-nearest neighbors.

KNN is used in finance for stock price forecasting, fraud detection, and credit scoring. By

taking into account historical information from comparable borrowers, it aids in determining a

person’s creditworthiness. KNN uses established patterns of fraudulent behaviour to compare

unexpected transaction patterns to identify fraud. KNN can forecast future stock price

movements by examining historical price and volume data.

KNN is a useful tool for short categorization assignments due to its simplicity and

convenience. Because it is non-parametric, it can easily handle data with intricate decision

boundaries. However, its fundamental drawback is its sensitivity to the number of neighbours

(K) and the distance metric. KNN can also be computationally expensive, particularly with

big datasets. It performs optimally when data is equally distributed among classes or when

class imbalances are adequately managed.

II.12. Gradient Boosting

Gradient Boosting (GB) represents a formidable ensemble machine learning technique that

assembles a predictive model by composing a collection of weak learners, typically decision

trees (Zhang and Haghani (2015)). This process involves sequential training iterations to

rectify errors introduced by preceding models within the ensemble. The amalgamation of

predictions generated by these weak learners culminates in forming a robust and highly

accurate final model. The foundational principle underpinning GB revolves around the

iterative refinement of model parameters to optimize a designated loss function, such as

mean squared error in regression or log loss in classification tasks. Its manifold applications

encompass diverse domains, including predictive modelling, recommendation systems, and

anomaly detection, underscoring its versatility and practicality in real-world problem-solving
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contexts.

The formula for the gradient boosting update step can be represented as follows:

Fm(x) = Fm−1(x) + λ · hm(x), (14)

where; Fm(x) symbolizes the ensemble model at the m-th iteration, Fm−1(x) represents the

ensemble model after the m − 1-t iteration, λ serves as the learning rate, determining the

magnitude of each iteration’s step, and hm(x) corresponds to the weak learner introduced in

the m-th iteration. These elements are integral components within the framework of GB,

orchestrating the iterative refinement of the predictive model’s parameters to optimize its

performance.

In finance, GB is pivotal in critical endeavours, including credit risk assessment, stock price

forecasting, and algorithmic trading. Its proficiency lies in its adeptness at modelling intricate

financial data, discerning nonlinear relationships, and enhancing predictive precision. In the

domain of credit risk assessment, GB emerges as an indispensable tool, capable of evaluating

the creditworthiness of borrowers through a comprehensive analysis of diverse contributing

factors. In stock price forecasting, it leverages historical market data to anticipate future

price movements, facilitating informed investment decisions. Furthermore, GB is invaluable

in algorithmic trading in identifying nuanced trading signals and patterns and formulating

data-driven, judicious trading strategies.

GB presents numerous notable advantages, encompassing heightened predictive accuracy,

adaptability to diverse data types, and proficiency in handling missing values and outliers.

Its comparative resistance to overfitting positions it favourably against certain alternative

algorithms, underscoring its robustness and applicability across a broad spectrum of problem

domains. Nonetheless, it is pertinent to acknowledge that GB necessitates substantial

computational resources and meticulous hyperparameter optimization. Additionally, its

performance may be susceptible to the influence of noisy data and outliers, warranting

careful consideration and preprocessing. Notwithstanding these challenges, the algorithm’s
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demonstrable prowess and versatility render it an invaluable asset in finance and other arenas

where precise predictive modelling is a cornerstone.

II.13. XGBoost

XGBoost, short for eXtreme Gradient Boosting, addresses a prominent inefficiency in this

technique. Specifically, it enhances efficiency by optimising the process of evaluating potential

splits for branch creation, particularly when dealing with many features, which could result

in an extensive number of potential splits. XGBoost mitigates this inefficiency by analysing

the feature distribution across all data points within a leaf node and leveraging this insight

to narrow the search space for possible feature splits (Sagi and Rokach (2021)).

XGBoost is extensively employed in credit risk assessment, stock price prediction, and

algorithmic trading in finance. It excels in modelling intricate financial data, enhancing

predictive accuracy, and contributing to improved risk management. XGBoost evaluates

borrowers’ creditworthiness using a comprehensive set of factors for credit risk assessment. In

stock price forecasting, it analyses historical market data to predict future price movements,

aiding investment decisions. In algorithmic trading, XGBoost identifies trading signals and

patterns, enabling data-driven trading strategies and effective risk management.

XGBoost boasts advantages, including high predictive accuracy, computational speed,

and handling of missing data effectively. Its robustness against overfitting, achieved through

regularization techniques, allows it to capture intricate data relationships. However, tuning

XGBoost’s hyperparameters can be computationally intensive, especially with large datasets.

Its complex model structure limits interpretability compared to simpler models. Nonetheless,

its predictive power and versatility make XGBoost a valuable tool in finance and other

domains where accurate predictive modelling is crucial.
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III. Execution Time by Difference Machine Learning Models

In this section, we begin our analysis by assessing the predictive performance of different

machine learning models. Subsequently, we examine the investment performance, and finally,

we investigate the execution time of these machine learning models.

We use a benchmark setting comprising 10 machine learning models that incorporate all

209 characteristics from 2000 to 2022.2

We use out-of-sample R2 and mean squared error as indicators of predictive performance.

Figure I depicts the R2 for diverse machine learning models. The upper graph shows the

R2 in descending order. XGBoost and gradient boosting exhibit the highest out-of-sample

R2, both surpassing the 0.7 threshold. Conversely, random forest, linear regression, ridge

regression, and decision tree models yield slightly lower R2. Lasso regression, support vector

machine, and K-nearest neighbors models yield substantially lower R2, which is around zero.

Interestingly, neural networks display substantial negative out-of-sample R2. The lower

graph within Figure I reveals that neural networks with a single hidden layer exhibit the least

negative R2. As the number of hidden layers increases, R2 ascend, albeit they diminish with

an increase in the number of neurons. However, even the most proficient neural network model

(NN5-32) still records a substantial negative R2. This result indicates that our set of 209

characteristics does not facilitate effective stock return prediction using neural networks. Our

finding of neural networks is inconsistent with Gu et al. (2020), which find neural networks

perform the best.

Another measure of the machine learning models’ performance is the mean squared error

(MSE). It evaluates the average squared difference between the observed and predicted values.

Figure II presents the MSE result that is similar to Figure I. Among the models examined,

Lasso regression, k-nearest neighbors, and support vector machine exhibit the highest MSE

values, exceeding 0.02, indicating comparatively weaker predictive performance. In contrast,
2The choice of the 2000 to 2022 time period is arbitrary, yet we will analyze both the entire time frame

and distinct sub-periods in forthcoming sections.
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Figure I: R-Squared For Different Models

This figure plots the R2 corresponding to different machine learning models. The upper panel presents data
for all machine learning algorithms, excluding neural networks, while the lower panel provides information on
neural networks with varying layers and neurons. The sample period is from January 2000 to December 2022.

0.2 0.0 0.2 0.4 0.6 0.8
R2

K-Nearest Neighbors

Support Vector Machine

Lasso Regression

Decision Tree

Ridge Regression

Linear Regression

Random Forest

Gradient Boosting

XGBoost

M
od

el

-0.2246

-0.0012

0.0015

0.3631

0.5941

0.6112

0.6926

0.7344

0.7813
R2 for Different ML Algorithms

1.0 0.8 0.6 0.4 0.2 0.0 0.2
R2 1e6

(32, 16, 8, 4, 2)

(32, 16, 8, 4)

(100, 100, 100, 100, 100)

(32, 16, 8)

(32, 16)

(32,)

(100,)

La
ye

r

-109.60

-171.71

-744.86

-1981.05

-121187.01

-320853.83

-1018137.11

R2 for Different Neural Networks Layers

21



Random forest, decision tree, gradient boosting, linear regression, and ridge regression display

lower MSE values, surpassing 0.02 but remaining below 0.03. Notably, the XGBoost model

emerges as the most favorable option, demonstrating the lowest MSE at 0.01, signifying

its superior predictive power. Conversely, neural networks yield significantly higher MSE

values across various layers, underscoring their limited ability in return predictability. In

the subsequent analyses, we exclude neural networks from consideration due to their limited

predictive capability.

Up to this point, we have conducted a comparative analysis of various machine learning

models using R2 and MSE as performance metrics. To gain a more comprehensive under-

standing of the performance of these machine learning algorithms in the context of return

predictability, we delve into the investment performance of portfolios constructed by these

different machine learning models.

Our approach involves the creation of portfolios that leverage machine learning forecasts

to make stock selections. On a monthly basis, each machine learning method is employed to

predict stock returns for the subsequent month. These predictions are then used to sort the

stocks into deciles, resulting in the formation of ten distinct portfolios, each based on the

predicted excess returns generated by a specific machine learning model. These portfolios are

equal-weighted and subject to monthly updates.

We construct a long-short portfolio strategy, which buys stocks with the highest predicted

returns (decile 10) and sells those with the lowest predicted returns (decile 1). This approach

allows us to evaluate the investment performance of these machine learning models in a

practical context.

We analyze the Sharpe ratio for the long-short portfolios, which is a widely used metric to

measure risk-adjusted returns. Figure III provides an overview of the Sharpe ratios associated

with different machine learning models during the period spanning January 2000 to December

2022.

Notably, XGBoost exhibits the highest Sharpe ratio, closely trailed by random forest,
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Figure II: Mean Squared Errors For Different Models

This figure plots the Mean Squared Errors corresponding to different machine learning models. The upper
panel presents data for all machine learning algorithms, excluding neural networks, while the lower panel
provides information on neural networks with varying layers and neurons. The sample period is from January
2000 to December 2022.
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decision tree, ridge regression, and gradient boosting, all of which surpass a Sharpe ratio

of 1.75. These models showcase remarkably similar performance in this regard. Linear

regression, while still performing well, gives a slightly lower Sharpe ratio of 1.54. K-nearest

neighbors, with a Sharpe ratio of 0.78, offer respectable performance but fall short of their

counterparts. In contrast, support vector machine, lasso regression, and neural network lag

behind, displaying comparatively lower Sharpe ratios. This analysis provides valuable insights

into the risk-adjusted returns achieved by each machine learning model.

Figure III: Sharpe Ratio For Different Machine Learning Models

The figure presents the Sharpe ratios of equally-weighted long-short portfolios corresponding to different
machine learning models. The sample period is from January 2000 to December 2022.
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In conclusion, the investment performance of long-short portfolios constructed using

machine learning models aligns with the statistical performance evaluated through R2 and

MSE metrics. Specifically, XGBoost stands out as the top-performing model in terms

of statistical measures and also delivers the highest economic contribution to investment

performance. Gradient boosting and random forest also exhibit favorable performance in

both statistical and economic terms.

We proceed to examine the execution time required for predicting returns using various

machine learning models. Figure IV provides an ascending order depiction of training and
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prediction times for these models. Linear regression, lasso regression, and ridge regression

exhibit very short training and prediction times, both falling below 0.5 seconds. K-nearest

neighbors display an exceptionally brief training time but a significantly longer prediction

time. Decision tree boasts a reasonable training time along with a short prediction time.

XGBoost, the most accurate model, presents a moderately short training time of 26.5123

seconds and a concise prediction time of 0.0332 seconds. In contrast, the second-best model,

gradient boosting, demonstrates a considerably longer training time (270.4945 seconds)

but a prediction time similar to XGBoost (0.0343 seconds). Lastly, random forest incurs

an extremely protracted training time, while support vector machine experiences notably

extended prediction times.3

In summary, XGBoost outperforms gradient boosting in terms of both R2 and overall

execution time. While random forest and decision tree exhibit reasonably high R2, their

training and prediction times are suboptimal. The primary trade-off between predictive

performance and execution time emerges between XGBoost and regression models (linear and

ridge). XGBoost surpasses regressions by at least 0.16 in terms of R2, yet the training times

of regression models are significantly shorter than XGBoost. This positions regression models

as viable choices in achieving a balance between accuracy and time efficiency. However, given

the considerably lower R2 and Sharpe ratios exhibited by linear models in comparison to

XGBoost, our subsequent analyses concentrate on XGBoost, offering two methods to enhance

its time efficiency within the asset pricing framework.

3Due to the poor predictive performance of neural networks, we exclude neural networks in this analysis.
The training and prediction time for neural networks can be found in the Appendix A.1.
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Figure IV:
Training Time And Prediction Time For Different Machine Learning Models

This figure shows the training time and prediction time for different machine learning models excluding
neural networks. The sample period is from January 2000 to December 2022.
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IV. Reducing The Number of Characteristics

Having established XGBoost as the optimal machine learning model for return predictability,

we employ XGBoost for further analyses aimed at enhancing training and prediction efficiency.

Various strategies can be employed to optimize machine learning models for time efficiency.

One such approach involves the reduction of characteristics to improve algorithmic efficiency.

Figure V illustrates that the majority of characteristics have minimal contribution to

equity return prediction. Out of the 209 input variables, only 15 exhibit an importance score

exceeding 1. Therefore, it is prudent to consider reducing the number of characteristics as

a means to enhance machine learning execution time. We implement this reduction based

on specific importance criteria. Initially, we utilize all 209 input variables, subsequently

removing characteristics with importance scores below various thresholds, including 0, 0.1-0.2,

0.2-0.3, 0.35, 0.4, and 0.5. This stepwise reduction allows us to investigate the impact of

fewer characteristics on both time efficiency and predictive performance.

Figure V: Feature Importance By XGBoost

This figure shows the feature importance by XGBoost. The sample period is from January 2000 to December
2022.
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Figure VI displays the training time and prediction time for the top-performing machine

learning model, XGBoost, as the number of input variables is varied from those with an

importance score exceeding 0.5 to all variables. Training time exhibits an increasing trend

with the inclusion of more characteristics. For datasets containing fewer than 57 variables
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with an importance score greater than 0.26, the training time remains under 10 seconds,

signifying a relatively rapid process. When 106 variables with an importance score higher

than 0.2 are included, the training time extends to 17.48 seconds. Incorporating variables

with an importance score below 0.1 further extends the training time to approximately 25

seconds. The standard deviation of training time also demonstrates growth with the number

of characteristics, ranging from 0.75 seconds for variables with an importance score exceeding

0.5 to 3.34 seconds for all variables.

The prediction time illustrated in Figure VI follows a pattern akin to the training

time. Prediction times remain below 0.02 seconds for datasets comprising variables with an

importance score exceeding 0.24. As more features are incorporated, prediction times range

from 0.03 seconds to 0.04 seconds. This aligns with the observation from the benchmark

models in Figure IV, where prediction times are notably shorter than training times.

Figure VII shows the out-of-sample R2 obtained through the reduction of the number of

characteristics, guided by their importance levels. To facilitate a more intuitive observation

of the slight differences between R2, we employ a logarithmic scale for data visualization.

Notably, as we include only the important characteristics, there is a discernible increase

in R2, albeit of modest magnitude. This observation underscores the beneficial impact of

reducing irrelevant characteristics within machine learning models, ultimately enhancing their

predictive performance.

We next present the Sharpe ratio achieved by XGBoost while systematically reducing the

number of characteristics in Figure VIII. We use a logarithmic scale for data visualization as

well. The results show that as less important characteristics are removed, the Sharpe ratios

tend to increase slightly. However, the differences among the Sharpe ratios remain minimal.

For instance, the Sharpe ratio for the 209 variables is 1.7447, while the Sharpe ratio for the

31 variables is 1.7714, indicating a mere difference of 0.0267. The Sharpe ratio exhibits a

pattern akin to that observed in the R2.

Finally, we use regression analysis to quantitatively assess the impact of saved machine
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Figure VI: Execution Time by Reducing The Number of Characteristics

This figure shows the training and prediction times employing the optimal machine learning model,
XGBoost, while varying the number of characteristics. The number of characteristics increases with the
importance level. The sample period is from January 2000 to December 2022.
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Figure VII: R-Squared by Reducing The Number of Characteristics

This figure shows the R-Squared using the best machine learning model XGBoost. The sample period is from
January 2000 to December 2022. The number of characteristics is different.

7.25 × 10
1

7.3 × 10
1

7.35 × 10
1

7.4 × 10
1

7.45 × 10
1

R2

> 0.5 (31 vars.)
> 0.4 (35 vars.)

> 0.35 (38 vars.)
> 0.3 (45 vars.)

> 0.29 (47 vars.)
> 0.28 (50 vars.)
> 0.27 (56 vars.)
> 0.26 (57 vars.)
> 0.25 (63 vars.)
> 0.24 (67 vars.)
> 0.23 (75 vars.)
> 0.22 (83 vars.)
> 0.21 (98 vars.)
> 0.2 (106 vars.)

> 0.19 (118 vars.)
> 0.18 (129 vars.)
> 0.17 (139 vars.)
> 0.16 (148 vars.)
> 0.15 (154 vars.)
> 0.14 (167 vars.)
> 0.13 (174 vars.)
> 0.12 (178 vars.)
> 0.11 (189 vars.)
> 0.1 (193 vars.)

> 0 (199 vars.)
All (209 vars.)

Im
po

rta
nc

e 
le

ve
l

0.7478
0.7442

0.7428
0.7419

0.7411
0.7400

0.7394
0.7380

0.7377
0.7360

0.7343
0.7339

0.7330
0.7308
0.7307

0.7292
0.7288

0.7286
0.7278

0.7275
0.7274

0.7269
0.7267

0.7261
0.7248

0.7242

R2 on Reduced Input Variables for the Best ML Model, XGBoost

30



Figure VIII: Sharpe Ratio by Reducing The Number of Characteristics

This figure shows the Sharpe ratios of equally-weighted long-short portfolios using the best machine learning
model XGBoost. The sample period is from January 2000 to December 2022. The number of characteristics
is different.

1.745 × 10
0

1.75 × 10
0

1.755 × 10
0

1.76 × 10
0

1.765 × 10
0

1.77 × 10
0

Log Sharpe ratio

All (209 vars.)
> 0 (199 vars.)

> 0.1 (193 vars.)
> 0.11 (189 vars.)
> 0.12 (178 vars.)
> 0.13 (174 vars.)
> 0.14 (167 vars.)
> 0.15 (154 vars.)
> 0.16 (148 vars.)
> 0.17 (139 vars.)
> 0.18 (129 vars.)
> 0.19 (118 vars.)
> 0.2 (106 vars.)
> 0.21 (98 vars.)
> 0.22 (83 vars.)
> 0.23 (75 vars.)
> 0.24 (67 vars.)
> 0.25 (63 vars.)
> 0.26 (57 vars.)
> 0.27 (56 vars.)
> 0.28 (50 vars.)
> 0.29 (47 vars.)

> 0.3 (45 vars.)
> 0.35 (38 vars.)

> 0.4 (35 vars.)
> 0.5 (31 vars.)

Im
po

rta
nc

e 
le

ve
l

1.7447
1.7562

1.7575
1.7579

1.7584
1.7601

1.7604
1.7604

1.7632
1.7639

1.7646
1.7656

1.7661
1.7662
1.7662

1.7668
1.7680

1.7684
1.7690
1.7692

1.7696
1.7704

1.7707
1.7709
1.7709

1.7714

Sharpe Ratio on Reduced Input Variables for the Best ML Model, XGBoost

31



learning time on out-of-sample R2 and the Sharpe ratio. In Table I, our results reveal that

by reducing the number of characteristics, a one standard deviation decrease in training time

corresponding to a increase of 0.376 in out-of-sample R2. However, this effect is insignificant

for prediction time. A similar pattern emerges for the Sharpe Ratio, where a one standard

deviation decrease in training time (prediction time) is associated with a significant increase

of 0.878 (0.912) in the Sharpe Ratio. Given that execution time is predominantly comprised

of training time, as demonstrated in Figure VI, these training time results align with the

overall execution time outcomes. Consequently, our results underscore the dual benefits of

feature reduction in enhancing both time efficiency and investment performance, emphasizing

the importance of feature shrinking strategies that are well discussed in the literature (e.g.,

Kelly et al. (2019); Feng et al. (2020); Freyberger et al. (2020)).

Table I: Impacts by Reducing The Number of Characteristics

This table shows the impacts of saved machine learning time on out-of-sample R2 and the Sharpe ratio by
reducing the number of characteristics. The best machine learning model XGBoost is used in this analysis.
Sharpe ratio is calculated using equally-weighted long-short portfolios. The sample period is from January
2000 to December 2022. The training time, prediction time, and execution time are standardized. They
depend on the different number of characteristics.

Out-of-sample R2 Sharpe Ratio

Training Time -0.376 -0.878
(-2.03) (-9.15)

Prediction Time -0.212 -0.912
(-1.09) (-11.10)

Execution Time -0.376 -0.878
(-2.03) (-9.15)

Observations 27 27 27 27 27 27
R-squared 0.141 0.045 0.141 0.770 0.831 0.770
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V. Reducing The Time Observations

We also explore an alternative method to enhance algorithm efficiency, which involves limiting

the number of time observations. Utilizing the optimal machine learning model, XGBoost,

and all 209 characteristics, we vary the number of time observations used for training and

prediction data. Figure IX shows the training time and prediction time across different time

observation periods. It is evident that the training time increases as the number of years

included in the dataset grows. Notably, when utilizing data from the most recent 4 years, the

training time for XGBoost is a mere 7.35 seconds, with a standard deviation of 0.66 seconds.

Subsequently, as the training period extends, the training time exhibits a consistent upward

trend, eventually stabilizing at 130 seconds when spanning from 1970 to 2022, encompassing

over 50 years of data.

The prediction time also experiences an increase with the extension of the training period,

albeit to a lesser extent compared to training times. For instance, the prediction time using

XGBoost from 2018 to 2022 is a mere 0.03 seconds, while expanding the training period

to cover data from 1960 to 2022 results in a prediction time of 0.08 seconds. In summary,

reducing the number of time observations can notably decrease training times while having a

less pronounced impact on prediction times.

We finally evaluate the investment performance to gain insights into how altering the

time observation periods affects investment outcomes. Figure X shows the Sharpe ratios

corresponding to different training and prediction time observations. The graph exhibits a

U-shaped pattern. Specifically, the Sharpe ratio is 1.7632 when considering the entire time

period, but it declines as the oldest time periods are removed. The Sharpe ratios begin to

rise again when the time horizon encompasses the recent three decades (1990-2022). This

upward trend continues until the most recent four years (2018-2022), with a Sharpe ratio

of 1.8027. Notably, this value surpasses the Sharpe ratio computed using the time span of

1960-2022. This finding suggests that employing machine learning with shorter time periods
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Figure IX: Execution Time by Reducing Time Observations

This figure shows the training time and prediction time utilizing the optimal machine learning model
XGBoost with all 209 input variables. The sample period is different.
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for training and prediction can lead to even higher investment performance. Conversely, a

more extensive time period also offers advantages over a median time period in terms of

investment performance.

Figure X: Sharpe Ratio by Reducing Time Observations

This figure shows the Sharpe ratios of equally-weighted long-short portfolios constructed using the best
machine learning model, XGBoost, with all 209 input variables. The sample period is different.
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VI. Conclusion

This paper highlights the critical role of machine learning model execution time in empirical

asset pricing. Our study offers a comprehensive evaluation of execution time across various

models and introduces two time-saving strategies: feature reduction and a reduction in time

observations. Notably, XGBoost emerges as a top-performing model, combining high accuracy

with relatively low execution time compared to other nonlinear models. Furthermore, our

findings underscore the interplay between model accuracy and execution time in enabling

good investment decisions.

For future studies, exploring additional time-efficient algorithms and assessing execution

time in different financial contexts could yield valuable insights. Additionally, future research

may explore the daily data for forecasting the next day’s equity returns. In this context, the

temporal efficiency of machine learning algorithms becomes more pivotal, given the necessity

for swift investment decision-making based on the predictions generated from daily trading

data.
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Figure A.1: Training Time And Prediction Time For Neural Networks

This figure shows the training time and prediction time for neural networks. The sample period is from
January 2000 to December 2022.
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