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Summary

We present a numerical method for modelling and simulation of transport and disper-
sion of phosphogypsum in the Jorf Lasfar coastal zone located on the Atlantic Ocean
at Morocco. The governing equations consist of the well-established barotropic ocean
model including the barometric pressure, friction terms, Coriolis and wind stresses.
To model transport and dispersion of phosphogypsum we consider an advection-
diffusion equation with an anisotropic dispersion tensor and source terms. As a
numerical solver, we propose a novel multilevel adaptive semi-Lagrangian finite ele-
ment method. The proposed method combines the modified method of characteristics
to deal with convection terms, the finite element discretization to handle complex
geometries, a projection-based algorithm to solve the Stokes problem, and an adap-
tive L2-projection using quadrature rules to improve the efficiency and accuracy of
the method. Numerical results are presented to demonstrate the high resolution of
the proposed method and to confirm its capability to provide accurate and efficient
simulations for transport and dispersion of phosphogypsum in the Jorf Lasfar coastal
zone.
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1 INTRODUCTION

Jorf Lasfar hosts one of the largest industrial plants for phosphate transformation being Africa’s largest mineral port and it is a
deep-sea port with a diverse, energy-intensive mineral function. It is a commercial port and a hub for phosphate, fertilizers, and
other chemicals. Jorf Lasfar is located 17 km from the city of El Jadida and 120 km from Casablanca, it enjoys great connectivity
and a back-country rich in diverse resources, see Figure 1. In addition to the OCP plants, Jorf Lasfar accommodates a thermal
power plant and hydrocarbon storage units. The main industrial objective is to transform the phosphate rock into phosphate-
based fertilizers, phosphoric acid or other phosphate derivatives. Through this production process, a considerable amount of a
by-product called phosphoGypsum (PG) is generated, see1. According to2, for every ton of produced phosphoric acid, five tons
of the PG are generated. For this reason, despite the tremendous efforts undertaken to reuse the PG in agriculture, in the cement
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industry, and road building, the huge amount of PG produced cannot be totally injected into the aforementioned industries.
Therefore, managers have decided to release their waste in the high seas3, which has various non-negligible environmental and
ecological impacts, especially on the touristic areas near the industrial plant. The release of PG at the Jorf Lasfar site affects a
large distance along the coastline and beaches, especially in the region of Doukkala at the middle of Morocco. This includes the
touristic zone of El Jadida, which is considered one of the busiest beaches during the summer. Furthermore, other sea-related
activities happening in this particular area including fishing are severely harmed by the release of PG. While a major part of past
studies were dedicated to assess the risk of PG on the fauna and the flora in the neighborhood4,5,1, to the best of our knowledge,
few attention was given to the impact of the oceanic circulation on the transport and the dispersion of PG in the high seas and
near coastlines. According to a new initiative of the United Nations called the Ocean Decade, much effort should be made in
order to enhance sustainability for the oceans6. Monitoring activities such as PG release are therefore of the utmost importance
within this framework. Based on the study reported in7, modeling of ocean dynamics in order to monitor and predict the ocean
state and its impact on waste dispersion such as PG is an important ingredient within this context. The present work aims at
addressing this particular issue for the case of PG release at Jorf Lasfar and also modeling pollution transport in the ocean is very
challenging for different reasons. In fact, oceanic circulation encompasses several complex physical mechanisms happening at
different time and space scales that are hardly modelled with the same level of accuracy, see8,9,10 among others. Developing
accurate numerical tools to predict the state of the ocean is therefore still at the state-of-art, see11.

In general, an ocean model solves the incompressible Navier-Stokes equations equipped with a class of oceanic source terms12,
whereas the dispersion of pollutants is described using an advection-diffusion equation, see for example13. Finite element meth-
ods have largely been used as the main numerical method in order to solve these equations, compare14 among others. When
using finite element methods, one can distinguish between two general methods namely Eulerian and Lagrangian techniques.
Both methods have been extensively used for numerical simulations of complex flows. However, the Eulerian-base finite el-
ement methods fail to achieve good accuracy when dealing with some specific flow conditions such as sharp fronts, shocks,
vortex shedding, and boundary layers. Furthermore, because of the stability conditions, this class of methods struggles with
convection-dominated problems such as oceanic flows. On the other hand, Galerkin-characteristics finite element methods al-
low to overcome the previously stated difficulties within a good accuracy, see for instance14. In the current work, the governing
equations consist of the well-established barotropic ocean model including bathymetric forces, Coriolis effects, friction terms,
eddy-diffusion, and wind stresses. To model the transport and dispersion of phosphogypsum, an advection-diffusion equation
involving an anisotropic dispersion tensor and a source term is considered. The coupled flow and transport model yields a sys-
tem with the property that the convective terms are distinctly more dominant than the diffusive terms, especially when certain
nondimensional parameters exceed some threshold values. As examples of these parameters, we mention the Peclet number
for advection-diffusion equations and the Reynolds number for the incompressible Navier-Stokes equations. At high values of
these numbers, the convective term is known to be a source of computational difficulties and nonphysical oscillations. The goal
of this research is to develop a stable, reliable, and accurate numerical method capable of producing accurate solutions to the
coupled flow and transport system in the Jorf Lasfar coastlines. It should be stressed that it is difficult to validate numerical
results for the transport and dispersion of phosphogypsum against measurements from field experiments. The main difficulties
lie essentially in the empirical formulas needed to close the transport and dispersion of the phosphogypsum model and also in
the calibration of the parameters involved in the flow modelling. Therefore, the solutions are first assessed over some bench-
mark examples and then, simulations are compared qualitatively against remote sensing observation data. It should be stressed
that semi-Lagrangian methods for fluids have been widely used in the area of computational fluid dynamics. The basic concept
behind these semi-Lagrangian finite element techniques is to reformulate the governing equations using the Lagrangian coordi-
nates defined by the characteristic curves associated with the problem under consideration. Indeed, semi-Lagrangian approaches
combine the advection term and time derivative into a directional derivative along the characteristic curves, which is consid-
ered a characteristic time-stepping method. Thus, the advantage of the semi-Lagrangian schemes is the property that they are
CFL-condition free. This fact means that we can exceed time steps imposed by the CFL stability requirement in Eulerian-based
methods, which results in a significant reduction in time truncation errors and saves execution time.

The main objective of the current study lies in investigating a multilevel adaptive enriched semi-Lagrangian finite element
method for the numerical simulation of transport and dispersion of phosphogypsum in the Jorf Lasfar port. This class of meth-
ods has been proposed for the first time in15,16 where an 𝐿2-projection semi-Lagrangian finite element approach has been
introduced for solving convection-diffusion and incompressible Navier-Stokes problems. In this approach, the convective terms
which are usually known as a source of computational difficulties are dealt with using the semi-Lagrangian method whereas,
the diffusive terms are handled using a mixed finite element method. However, when dealing with real applications, solving
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convection-dominated flow problems using this class of methods becomes computationally expensive due to the huge density
of quadratures needed by the L2-projection for the computation of solutions at the departure points. To overcome this drawback,
a novel class of adaptive enriched semi-Lagrangian finite element method has been proposed for convection-diffusion problems
in17, for incompressible Navier-Stokes equations in18 and for coupled Navier-Stokes/Boussinesq equations in19. This approach
enriches locally the approximation of integrals in the 𝐿2-projection using a family of quadrature rules which allows for spa-
tial discretization on coarse fixed meshes. Moreover, the enrichment points are adjusted as needed without refining the mesh
throughout the time integration process and therefore, the associated linear systems preserve the same size and structure during
the simulation. In practice, a semi-Lagrangian method tracks backwards the numerical solution at a time level in the departure
points of a discrete set of virtual (backward) Lagrangian particles that arrive at a regular set of gridpoints at the next time level.
To evaluate the departure points, a second-order extrapolation based on the midpoint rule is used in previous works18,17,19. How-
ever, these typical solvers are inappropriate to compute departure points because of the feature of the quick expansion of the
invariants in large-time computations20. Consequently, the overall accuracy of the semi-Lagrangian schemes is highly sensitive
to the evaluation of the departure points. In this work, we adopt the symplectic integrators presented in21 which are based on
the Hamilton variational principle to evaluate the departure points. These methods are considered as structure-preserving meth-
ods and they have the potential to deal with the rapid growth of Hamiltonian even in long-time simulations and can guarantee
a correct streamline tracking. Another advantage of the proposed approach over those presented in18,17,19 lies in the efficiency
of the search-locate algorithm used for identifying the mesh elements where departure points lie in the computational domain.
Indeed, the search-locate algorithm is improved to efficiently deal with the high number of points that need to be located in a
discretized domain. Furthermore, in our previous works18,19 a direct gradient conjugate solver has been used for solving the
stokes equations. However, the main drawback of this method is the computational cost especially when solving the large sys-
tems of algebraic equations associated with the discretized problem. To overcome this drawback, we proposed in the current
work a coupled projection scheme based on a rotational pressure correction with a second-order backward difference formula
for the time integration presented in22. Compared to the standard projection methods, the presence of the previous gradient
step in the velocity prediction problem improves the accuracy order of the method. Moreover, the rotational pressure correction
projection enhances the method to avoid artificial boundary conditions on the pressure and improves the rate of convergence
of the pressure. It should also be noted that the proposed adaptive enriched semi-Lagrangian finite element method uses the
well-established gradient-based error indicators to identify areas that need to be enriched in the computational domain. Multiple
quadratures are used for enrichments in the L2-projection, which allows for considerable efficiency because the computational
mesh is kept fixed and re-utilized throughout the simulation process, as opposed to ℎ-adaptive finite element approaches with
gradient-based error indicators, see for example,23,24,25,26,27,28,29. Indeed, ℎ-adaptive techniques with gradient-based error indi-
cators require an initial coarse mesh to evaluate a primary solution for the error estimation. Because of the coarse mesh used in
the approximation, this causes error accumulation and the computation cost becomes prohibitive due to the many interpolations
between adaptive meshes. Several numerical examples for transport and dispersion problems are used to test the performance
of the proposed approaches. The enriched semi-Lagrangian finite element method is examined for various levels of enrichment
and mesh refinements. The obtained results are also compared to those obtained using the conventional methods.

This paper is organized as follows. In Section 2 we present the governing equations and their finite element discretization.
The proposed numerical method is presented in Section 3. This section includes symplectic semi-Lagrangian scheme, local
enrichment and projection method for solving the Stokes problem. Section 4 is devoted to the development of the adaptive
enriched semi-Lagrangian finite element method. The criteria used for the adaptation process is also discussed in this section. In
Section 5, we examine the numerical performance of the proposed method using two examples of dispersion problems including
transport and dispersion of phosphogypsum in the port of Jorf Lasfar. Concluding remarks are summarized in Section 6.

2 MATHEMATICAL MODELS

Several models exist in the literature to describe the hydrodynamics and water flows in rivers and oceans, see for instance30,31. In
the situations where the pressure can be assumed hydrostatic and the bathymetric forces may become strong, the well-established
shallow water equations are most suitable for their modelling. However, in oceanography and problems as those considered
in this work, these forces are very weak and the pressure still persists within the flows and therefore the barotropic model is
considered to be the most appropriate for these situations. For a detailed comparison between shallow water and barotropic
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Figure 1 Map illustrating the location of Jorf Lasfar.

model, we refer to32 and further discussions are therein. In the present study, we consider a barotropic ocean model for the flow
along with a convection-diffusion equation for the concentration transport as

∇ ⋅ 𝑼 = 0,
𝜕𝑼
𝜕𝑡

+ 𝑼 ⋅ ∇𝑼 + ∇𝑝 − 𝜈Δ𝑼 = 𝑓𝑼⟂ − 𝛾𝑼 + 𝜏
𝐻

+ 𝛽
(

𝐶 − 𝐶∞
)

𝒆, (1)
𝜕𝐶
𝜕𝑡

+ 𝑼 ⋅ ∇𝐶 − ∇ ⋅ (𝑫∇𝐶) = 𝑆,

where Ω ⊂ ℝ2 is a bounded domain with boundary Γ, 𝑼 = (𝑈, 𝑉 )⊤ the depth-averaged horizontal velocity field defined by

𝑼 (𝑡,𝒙) = 1
𝐻

0

∫
−𝐻

𝐮(𝑡, 𝑥, 𝑦, 𝑧) 𝑑𝑧,

with 𝐮 is the velocity field,𝐻 the depth of the water measured from the undisturbed water surface. In (1), 𝑝 denotes the pressure, 𝑓
the Coriolis parameter, 𝛾 to the bottom friction coefficient, 𝜈 the kinematic viscosity, 𝜏 the wind stress acting on the upper surface,
𝛽 the coefficient of solute expansion, 𝐶 the pollutant concentration, 𝑆(𝑡,𝒙) the source term, 𝐶∞ the reference concentration and
𝑼⟂ = (𝑉 ,−𝑈 )⊤. It should be stressed that the flow equations (1) account for the barometric pressure, Coriolis effects, friction
terms, eddy-diffusion, and wind stresses. In this class of applications, the influence of the bathymetry in the barotropic ocean
model appears in conjunction with the wind stress acting on the upper surface such that large effects are expected for shallow
waters and strong winds30,31. Notice that at deep waters or weak winds, the influence of the bathymetry on the model is minimal
and it can be neglected. Unlike the conventional shallow water equations for which effects of the bathymetry appear as source
terms involving its gradient, the barotropic ocean model (1) assumes that the bathymetric variation is very small and therefore
cancels out in the governing equations but it still appears within the wind stresses, see for example32.

In (1), 𝑫 is the diffusion tensor defined as
𝐃 =

(

𝐷11 𝐷12
𝐷21 𝐷22

)

, (2)
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where the coefficients 𝐷11, 𝐷12, 𝐷21 and 𝐷22 are defined by the Fickian dispersion tensor as
𝐷11 = 𝐷𝑚 +

𝛼𝐿𝑈 2 + 𝛼𝑇𝑉 2

√

𝑈 2 + 𝑉 2
,

𝐷12 = 𝐷21 =
(

𝛼𝐿 − 𝛼𝑇
) 𝑈𝑉
√

𝑈 2 + 𝑉 2
, (3)

𝐷22 = 𝐷𝑚 +
𝛼𝐿𝑉 2 + 𝛼𝑇𝑈 2

√

𝑈 2 + 𝑉 2
,

where 𝐷𝑚 is the molecular dispersion coefficient, 𝛼𝐿 and 𝛼𝑇 are the longitudinal and transverse dispersion coefficients, re-
spectively. Note that in general, the coriolis force mainly occurs in three-dimensional models used in the ocean recirculation.
However, since the model considered in the present work is obtained by depth-averaging the three-dimensional equations, these
terms are inherited from the full model and they should be accounted for in large water areas such as the one used in our study.
Obviously, the impact of these terms on the flow recirculation would depend on the magnitude of the velocity field and the
Coriolis parameter 𝑓 which varies with the rotation of the earth30,31. It should be noted that equations (1) are equipped with
appropriate boundary and initial conditions to produce a well-posed mathematical problem.

For solving the equations (1)-(3), the simulation domain Ω = Ω ∪ Γ is discretized into a quasi-uniform partition Ωℎ ⊂ Ω
of triangular elements 𝑘 such that Ω = ∪𝑁𝑒

𝑘=1𝑘, where 𝑁𝑒 is the number of elements of Ωℎ and ℎ is a space discretization
parameter. For the conforming finite element spaces for the velocity/concentration and pressure, we use the mixed Taylor-Hood
finite elements 𝑃2-𝑃1 i.e., quadratic elements for the velocity/concentration and linear elements for the pressure. It is well-
known that for the mixed finite element formulation, the discrete velocity and pressure fields satisfy the inf-sup condition, see
for instance16. The finite element spaces associated to the mixed formulation are defined as

𝑉ℎ =
{

𝑈ℎ ∈ 𝐶0(Ω) ∶ 𝑈ℎ
|

|

|𝑘
∈ 𝑃2(𝑘), ∀ 𝑘 ∈ Ωℎ

}

, ℎ =
{

𝑝ℎ ∈ 𝐶0(Ω) ∶ 𝑝ℎ
|

|

|𝑘
∈ 𝑃1(𝑘), ∀ 𝑘 ∈ Ωℎ

}

,

where 𝑃1(𝑘) and 𝑃2(𝑘) are polynomial spaces of degree 1 and 2, respectively, defined in the element 𝑘. Since the velocity
field is a vector of two components, the associated finite element space is defined as 𝐕ℎ = 𝑉ℎ × 𝑉ℎ. For the time discretization,
the time interval [0, 𝑇 ] is also divided into sub-intervals [𝑡𝑛, 𝑡𝑛+1] of a fixed length Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 for 𝑛 ≥ 0. In the following,
we adopt the notation 𝑤𝑛

ℎ ∶= 𝑤(𝒙ℎ, 𝑡𝑛) to denote the value of a function 𝑤 at time 𝑡𝑛 in the position 𝒙ℎ. Hence, the approximate
values 𝑼 𝑛

ℎ(𝒙) ∈ 𝐕ℎ, 𝑝𝑛ℎ(𝒙) ∈ ℎ and 𝐶𝑛
ℎ(𝑥) ∈ 𝑉ℎ are formulated as

𝑼 𝑛
ℎ(𝒙) =

𝑀𝑣
∑

𝑗=1
 𝑛

𝑗𝜙𝑗(𝒙), 𝑝𝑛ℎ(𝒙) =
𝑀𝑝
∑

𝑙=1
𝑃 𝑛
𝑙 𝜓𝑙(𝒙), 𝐶𝑛

ℎ(𝒙) =
𝑀𝑣
∑

𝑗=1
𝑛𝑗𝜙𝑗(𝒙), (4)

where 𝑀𝑣 and 𝑀𝑝 are respectively, the number degrees of freedom associated with velocity/concentration and pressure in Ωℎ.
The solutions  𝑛

𝑗 =
(

𝑈 𝑛
𝑗 , 𝑉

𝑛
𝑗

)⊤, 𝑃 𝑛
𝑙 and 𝑛𝑗 are the corresponding nodal values of 𝑼 𝑛

ℎ(𝒙), 𝑝𝑛ℎ(𝒙) and 𝐶𝑛
ℎ(𝒙), respectively. These

values are evaluated as  𝑛
𝑗 = 𝑼 𝑛

ℎ(𝒙𝑗), 𝑃 𝑛
𝑙 = 𝑝𝑛ℎ(𝒚𝑙) and 𝑛𝑗 = 𝐶𝑛

ℎ(𝒙𝑗), respectively, where {𝒚𝑙}𝑀𝑝

𝑙=1 is the set of mesh points in Ωℎ

and {𝒙𝑗}
𝑀𝑣
𝑗=1 is the set containing the mesh nodes in addition to the mid-edge nodes. Here,𝑀𝑝 < 𝑀𝑣, {𝒚𝑙}𝑙 ⊂ {𝒙𝑗}𝑗 and {𝜙𝑗}

𝑀𝑣
𝑗=1

and {𝜓𝑙}
𝑀𝑝

𝑙=1 are respectively, the set of global nodal basis functions of the velocity and the pressure spaces, characterized by the
property 𝜙𝑖(𝒙𝑗) = 𝛿𝑖𝑗 and 𝜓𝑖(𝒚𝑙) = 𝛿𝑖𝑙 with 𝛿 denoting the Kronecker symbol.

3 NUMERICAL METHODS

The semi-Lagrangian finite element method belongs to fractional-step techniques where the convective parts in (1) are decoupled
from the Stokes part in the time integration procedure. Let 𝑼ℎ ∈ 𝐕ℎ, 𝐶ℎ ∈ 𝑉ℎ and 𝑝ℎ ∈ ℎ be the discrete velocity, temperature
and pressure, respectively. Thus, at each time step the solutions are updated by first solving the convection equations using the
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Time

Time

Figure 2 An illustration displaying the key parameters utilized for approaching the departure points in in the conventional
method (black line) and the L2-projection method (blue line).

semi-Lagrangian approach
𝐷𝑼ℎ

𝐷𝑡
∶=

𝜕𝑼ℎ

𝜕𝑡
+ 𝑼ℎ ⋅ ∇𝑼ℎ = 𝟎,

𝐷𝐶ℎ
𝐷𝑡

∶=
𝜕𝐶ℎ
𝜕𝑡

+ 𝑼ℎ ⋅ ∇𝐶ℎ = 0, (5)
followed by the generalized Stokes equations

∇ ⋅ 𝑼ℎ = 0,
𝐷𝑼ℎ

𝐷𝑡
+ ∇𝑝ℎ − 𝜈Δ𝑼ℎ = 𝑓𝑼ℎ

⟂ − 𝛾𝑼ℎ +
𝜏
𝐻

+ 𝛽
(

𝐶ℎ − 𝐶∞
)

𝒆, (6)
𝐷𝐶ℎ
𝐷𝑡

− ∇ ⋅
(

𝑫∇𝐶ℎ
)

= 𝑆.

In (5), 𝐷
𝐷𝑡

=∶ 𝜕
𝜕𝑡
+𝑼ℎ ⋅∇ is the material (total) derivative associated with flow velocity 𝑼ℎ. In the subsequent section, we focus

on the solution of the convection equations (5) using a symplectic semi-Lagrangian method. In the semi-Lagrangian method, the
value of the transported fields in equations (5) are constant along the trajectory of a fluid particle that travels from a departure
point at time 𝑡𝑛 and arrives to the gridpoint 𝒙𝑗 at time 𝑡𝑛+1. This gridpoint is referred to as the arrival point and the particle
trajectory is referred to as the characteristic curve. Accordingly, the value that we require at the arrival point is equal to the value
of the field at the departure point. The travel of a fluid particle is associated with the velocity field 𝑼ℎ along a characteristic
curve 𝝌 𝑗(𝑡), which fulfills the following first-order ordinary differential equation

𝑑𝝌 𝑗(𝑡)
𝑑𝑡

= 𝑼ℎ(𝝌 𝑗(𝑡), 𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], (7)
𝝌 𝑗(𝑡𝑛+1) = 𝒙𝑗 .

Therefore, 𝝌 𝑗(𝑡𝑛) =
(

𝑋𝑗(𝑡𝑛), 𝑌𝑗(𝑡𝑛)
)⊤ is the departure point at time 𝑡𝑛 of the particle that will attain the point 𝒙𝑗 =

(

𝑥𝑗 , 𝑦𝑗
)⊤ at

time 𝑡𝑛+1 as illustrated in Figure 2. For simplicity purposes, we note by 𝝌𝑛
𝑗 the departure point 𝝌 𝑗(𝑡𝑛).

3.1 Calculation of departure points

The practical use of the conventional semi-Lagrangian method requires in a first step an approximation of the solution of (7).
This solution can be formulated as

𝝌𝑛
𝑗 = 𝒙𝑗 −

𝑡𝑛+1

∫
𝑡𝑛

𝑼ℎ
(

𝝌 𝑗(𝑡), 𝑡
)

𝑑𝑡. (8)
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In the Lagrangian framework, the equation (7) is usually evaluated using numerical integration techniques such as the Runge-
Kutta and Euler approaches18,17,19,15,16. However, while these solvers are generic, they have the inconvenient feature of quick
system energy development (Hamiltonian) in long-time computations and they are inappropriate for particle tracking since they
are not structure-preserving (SP) methods, see for example20. It has been shown in21 that when non-geometric integrators are
employed, such as the widely used Runge-Kutta approaches, the obtained results are less accurate and more diffuse. Indeed, the
so-called symplectic integrators have the potential to deal with the rapid growth of Hamiltonian even in long-time simulations
and can guarantee a correct streamline tracking. Since the symplectic integrators are only appropriate for Hamiltonian systems,
a stream function 𝜓 can be used to express equation (7) for the incompressible flow. Thus, the characteristics trajectory 𝝌 =
(𝑋, 𝑌 )⊤ can be reformulated as

𝑑𝑋
𝑑𝑡

=
𝑑𝜓
𝑑𝑌

,
(9)

𝑑𝑌
𝑑𝑡

= −
𝑑𝜓
𝑑𝑋

,

where the stream-function 𝜓 is considered as the Hamiltonian and the pair (𝑋, 𝑌 )⊤ is considered as the canonical pair. Conse-
quently, the equations (9) are a Hamiltonian system for which it is possible to use symplectic integrators to evaluate integration
in (8). In the present study, we consider the one-step method presented in21 to evaluate the solution of (7) as

𝝌 𝑟+1 = 𝚽Δ𝑡
(

𝝌 𝑟
)

, (10)
where the method 𝚽Δ𝑡 is assumed to be a second-order method and time symmetric i.e., 𝚽Δ𝑡◦𝚽−Δ𝑡 = 𝐈, with ◦ and 𝐈 represent
the function compositions symbol and the identity operator, respectively. For example, these requirements are satisfied by the
implicit midpoint scheme and the Verlet method. An example of composite symplectic method is the Yoshida technique given by

𝝌 𝑟+1 = 𝚽𝛼Δ𝑡◦𝚽(1−2𝛼)Δ𝑡◦𝚽𝛼Δ𝑡(𝝌 𝑟), (11)
where 𝛼 = 1

3

(

2 + 2
1
3 + 2−

1
3

)

is chosen to guarantee a fourth-order accuracy, see example4. In what follows, we choose 𝚽Δ𝑡 to
be the following implicit midpoint scheme

𝝌 𝑟+1 = 𝝌 𝑟 − Δ𝑡𝑼ℎ

(1
2
(

𝝌 𝑟 + 𝝌 𝑟+1
)

, Δ𝑡
2

)

, (12)
which can be solved using Newton’s method. The solution of the symplectic integrator is the departure point 𝝌𝑛

𝑗 at time 𝑡𝑛 of
the trajectory of a particle located at the gridpoint 𝒙𝑗 at time 𝑡𝑛+1. In terms of the particle movement, the transported quantities
𝑼 and 𝐶 in (5) are invariant along characteristic curves of the flow and are automatically transported by the particle’s motion.
Therefore, the semi-Lagrangian solution of (5) can be expressed as

𝑼 𝑛+1
ℎ (𝒙𝑗) = 𝑼 𝑛

ℎ(𝝌
𝑛
𝑗 ), 𝐶𝑛+1

ℎ (𝒙𝑗) = 𝐶𝑛
ℎ(𝝌

𝑛
𝑗 ). (13)

However, the approximated departure point 𝝌𝑛
𝑗 does not necessarily coincide with a gridpoint in Ωℎ. As a result, a search-locate

algorithm is required to find the element ̂𝑗 where 𝝌𝑛
𝑗 belongs. In the current work, we use the method developed in33,34. Hence,

to determine the host element ̂𝑗 of the departure point 𝝌𝑛
𝑗 , we chose an initial guess 𝑠, then we check if the departure point

belongs to this element, else, we select one of its neighbor elements according to a selection criterion, then we repeat the process.
In order to do so, we consider the on-to-one mapping 𝑠 from a reference element  ∗ to the element 𝑠, where the reference
element  ∗ for triangular mesh is defined as

 ∗ =
{

(𝑝, 𝑞) ∶ 0 ≤ 𝑝, 𝑞 ≤ 1, 0 ≤ 1 − 𝑝 − 𝑞 ≤ 1
}

, (14)
or

 ∗ =
{

(𝑝, 𝑞) ∶ min
𝑖
(𝑖(𝑝, 𝑞)) ≥ 0 and max

𝑖
(𝑖(𝑝, 𝑞)) ≤ 1

}

, (15)
where 𝑖, 𝑖 = 1,⋯ , 𝑁 are the shape functions defined on the reference element  ∗. Therefore, for any 𝒙𝑝 = (𝑥𝑝, 𝑦𝑝)⊤ ∈ 𝑠,
there exists a point 𝐩∗ = (𝑝∗, 𝑞∗) ∈  ∗ such that

𝒙𝑝 − 𝐅𝑠(𝐩∗) = 𝟎. (16)
Thus, if there is 𝐩∗ in  ∗ satisfying (16), then 𝒙𝑝 belongs to the element 𝑠. Hence, we search for a solution 𝐩∗ of (16) in  ∗

using Newton method as follows:
Let 𝒙𝑝 ∈ 𝑠 and 𝐩0 = (𝑝0, 𝑞0)⊤ ∈  ∗, then for 𝑘 ≥ 0

𝐩𝑘+1 = 𝐩𝑘 − 𝐉−1𝑠
(

𝒙𝑝 − 𝑠(𝐩𝑘)
)

, (17)
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Algorithm 1 Search-locate algorithm
1: Given 𝝌 𝑗
2: Chose an arbitrary point 𝐩0 = (𝑝0, 𝑞0)⊤ in the reference element  ∗

3: Select an initial guess for the host element 𝑠
4: Construct the mapping 𝑠 from  ∗ to 𝑠
5: Compute 𝐩∗ = (𝑝∗, 𝑞∗)⊤ the solution of equation (17)
6: if 𝐩∗ in  ∗ then
7: The host element ̂𝑗 of 𝝌 𝑗 is 𝑠. (i.e. ̂𝑗 ≡ 𝑠)
8: Stop
9: else

10: Apply the selection criteria to select a neighboring element
11: Go to step 4
12: end if

where 𝐉−1𝑠 is the inverse of the Jacobian matrix 𝐉𝑠 of the mapping 𝑠. If 𝒙𝑝 ∈ 𝑠, the Newton method (17) will converge to the
unique solution 𝐩∗ ∈  ∗ independently of the initial guess 𝐩0 ∈  ∗. Since 𝑠 is an arbitrary element, then we must test whether
𝐩𝑘+1 is in  ∗ or not. Thus, using (15) we have 𝐩𝑘+1 ∈  ∗ if

min
𝑖
(𝑖(𝐩𝑘+1)) ≥ 0 and max

𝑖
(𝑖(𝐩𝑘+1)) ≤ 1.

If the iterate 𝐩𝑘+1 ∉  ∗, then 𝐱𝑝 ∉ 𝑠, because that, there is no 𝐩∗ ∈  ∗ such that (16) holds. Thus, a neighboring element of 𝑠
must be selected and reconsider the equation (17) for the new guess. The selection criteria used in this work can be expressed as:

• Let 𝑙 = index(min𝑖(𝑖(𝐩𝑘+1)))

• Select the element 𝑟 such that Γ𝑠𝑟 = 𝑠 ∩ 𝑟 is the side of 𝑠 opposite to the vertex 𝒙𝑙.

In summary, the search-locate algorithm for departure points carried out using Algorithm 1.
Once the departure point 𝝌𝑛

𝑗 and its host element ̂𝑗 are determined, the solutions in departure point at time 𝑡𝑛 can be
interpolated from the known values at the vertices of ̂𝑗 as

𝑼 𝑛
ℎ

(

𝝌𝑛
𝑗

)

=
𝑁
∑

𝑖=1
𝑼 𝑛
ℎ(𝒙̂𝑖)𝜑𝑖

(

𝝌𝑛
𝑗

)

, 𝐶𝑛
ℎ

(

𝝌𝑛
𝑗

)

=
𝑁
∑

𝑖=1
𝐶𝑛
ℎ(𝒙̂𝑖)𝜑𝑖

(

𝝌𝑛
𝑗

)

, (18)

where {𝜑𝑖}𝑁𝑖=1 are the local shape functions of the element ̂𝑗 ,𝑁 is the number of nodes which define the velocity/concentration
mesh type, and {𝒙̂𝑖}𝑁𝑖=1 are the vertices of the element ̂𝑗 . Then, for all mesh nodes {𝒙𝑗}𝑗 the equation (13) can be reformulated as

 𝑛+1
𝑗 = 𝑼 𝑛+1

ℎ (𝒙𝑗) = 𝑼 𝑛
ℎ

(

𝝌𝑛
𝑗

)

∶= ̂
𝑛
𝑗 , 𝑛+1𝑗 = 𝐶𝑛+1

ℎ (𝒙𝑗) = 𝐶𝑛
ℎ

(

𝝌𝑛
𝑗

)

∶= ̂𝑛𝑗 , (19)
where ̂

𝑛
𝑗 and ̂𝑛𝑗 are a short notations of 𝑼 𝑛

ℎ

(

𝝌𝑛
𝑗

)

and 𝐶𝑛
ℎ

(

𝝌𝑛
𝑗

)

, respectively. Therefore, the conventional semi-Lagrangian
finite element solutions of (5) can be expressed as

𝑼 𝑛+1
ℎ (𝒙) =

𝑀𝑣
∑

𝑗=1
̂

𝑛
𝑗𝜙𝑗(𝐱), 𝐶𝑛+1

ℎ (𝒙) =
𝑀𝑣
∑

𝑗=1
̂𝑛𝑗𝜙𝑗(𝐱). (20)

Note that, the precision of the conventional semi-Lagrangian finite element approach depends on the size of the computational
mesh utilized in the numerical simulations. Furthermore, it has been demonstrated in33 that the conventional semi-Lagrangian
finite element approach fails to properly handle the steep gradients exhibited by convective components if the computational
mesh is not fine enough. In order to overcome such problems, the suggested methodology in the present study is to incorporate
local enrichments using the L2-projection. This would enhance the accuracy of the semi-Lagrangian finite element solution.
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Figure 3 Illustration of the search-locate algorithm used in17,18,19 (left plot) and the modified search-locate algorithm adopted
in the present study (right plot).

Algorithm 2 Modified search-locate algorithm
1: for each element 𝑒 do
2: Chose an arbitrary point 𝐩0 = (𝑝0, 𝑞0)⊤ in the reference element  ∗

3: Select an initial guess for the host element 𝑠
4: for each departure point 𝝌𝑞,𝑘 do
5: Find the mapping 𝑠 from  ∗ to 𝑠
6: Compute 𝐩∗ = (𝑝∗, 𝑞∗)⊤ the solution of equation (17)
7: if 𝐩∗ in  ∗ then
8: The host element ̂𝑞,𝑘 of 𝝌𝑞,𝑘 is 𝑠. (i.e. ̂𝑗 ≡ 𝑠)
9: Stop

10: else
11: Apply the selection criteria to select a neighbor elements
12: Go to step 5
13: end ifSelect ̂𝑞,𝑘 as initial guess Go to step 4;
14: end for
15: end for

3.2 𝐋2-projection for local enrichments

In this section, we provide a novel enrichment approach for semi-Lagrangian finite element solution of convection-dominated
flow problems based on the L2-projection investigated in35,33. For simplicity purpose, the suggested approach is formulated
only for the concentration solution, and with the same implementation, the velocity solution can be determined. Therefore, the
second part of the equation (19) can be written as

𝐶𝑛+1
ℎ (𝒙𝑗) = 𝐶𝑛

ℎ

(

𝝌𝑛
𝑗

)

. (21)
Thus, multiplying both sides of equation (21) by the finite element basis functions 𝜙𝑖 and integrating over Ω yields

∫
Ω

𝐶𝑛+1
ℎ (𝒙)𝜙𝑖(𝒙)𝑑𝒙 = ∫

Ω

𝐶𝑛
ℎ (𝝌

𝑛)𝜙𝑖(𝒙) 𝑑𝒙, 𝑖 = 1,… ,𝑀𝑣. (22)

Therefore, the equation (22) can be assembled in a global matrix-vector structure as
[𝐌]

{

𝐂𝑛+1} = {𝐫𝑛} , (23)
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where [𝐌] is the finite element mass matrix with inputs 𝑚𝑖𝑗 = ∫Ω 𝜙𝑗𝜙𝑖𝑑𝒙, 𝐂𝑛+1 is the vector of the unknown nodal solutions
𝐶𝑛+1
𝑗 and 𝐫𝑛 is the right-hand side vector with entries 𝑟𝑛𝑖 defined as

𝑟𝑛𝑖 = ∫
Ω

𝐶𝑛
ℎ (𝝌

𝑛)𝜙𝑖(𝒙) 𝑑𝒙. (24)

To evaluate the integrals {𝑟𝑛𝑖 } in equation (24), a quadrature rule is used as follows

𝑟𝑛𝑖 =
𝑁𝑒
∑

𝑘=1
∫
𝑘

𝐶𝑛
ℎ (𝝌

𝑛)𝜙𝑖(𝒙) 𝑑𝒙 ≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑄
∑

𝑞=1
𝜔𝑞,𝑘𝐶ℎ

𝑛(𝝌𝑛
𝑞,𝑘)𝜙𝑖(𝒙𝑞,𝑘), (25)

where 𝒙𝑞,𝑘 =
(

𝑥𝑞,𝑘, 𝑦𝑞,𝑘
)⊤ are the quadrature points associated with the element 𝑘, 𝜔𝑞,𝑘 its corresponding weight, 𝑁𝑒 is the

total number of elements in computational mesh, 𝑁𝑘,𝑄 is the total number of quadrature points in the element 𝑘, and 𝝌𝑛
𝑞,𝑘 is

the departure point that will attain the point 𝒙𝑞,𝑘 at time 𝑡𝑛+1. Moreover, 𝐶𝑛
ℎ(𝝌

𝑛
𝑞,𝑘) is the concentration solution evaluated at the

departure point 𝝌𝑛
𝑞,𝑘 through the equation (18) as

𝐶𝑛
𝑞,𝑘 ∶= 𝐶𝑛

ℎ(𝝌
𝑛
𝑞,𝑘) =

𝑁
∑

𝑖=1
𝐶𝑛
ℎ(𝒙̂𝑖)𝜑𝑖(𝝌

𝑛
𝑞,𝑘), 𝑞 = 1,⋯ , 𝑁𝑘,𝑄, (26)

where {𝒙̂𝑖}𝑁𝑖=1 are the vertices of the element ̂𝑞,𝑘 hosting 𝝌𝑛
𝑞,𝑘 and {𝜑𝑖}𝑁𝑖=1 are their corresponding local basis functions.

Therefore, the entries 𝑚𝑖𝑗 and 𝑟𝑛𝑖 in (23) are evaluated as

𝑚𝑖𝑗 ≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑄
∑

𝑞=1
𝜔𝑞,𝑘𝜙𝑗(𝒙𝑞,𝑘)𝜙𝑖(𝒙𝑞,𝑘), 𝑟𝑛𝑖 ≈

𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑄
∑

𝑞=1
𝜔𝑞,𝑘𝐶

𝑛
𝑞,𝑘𝜙𝑖(𝒙𝑞,𝑘), 𝑖, 𝑗 = 1,… ,𝑀. (27)

Similarly, the velocity field approximation can be written as
[𝐌]

{

 𝑛+1
}

= {𝐳𝑛} , (28)

where  𝑛+1 is the vector of the unknown nodal solutions with entries 𝐔𝑛+1
𝑗 =

(

𝑈 𝑛+1
𝑗 , 𝑉 𝑛+1

𝑗

)⊤ and 𝐳𝑛 is the right-hand side with
inputs 𝑧𝑛𝑖 calculated in a similar manner as in (25) with

𝑧𝑛𝑖 ≈
𝑁𝑒
∑

𝑘=1

𝑁𝑘,𝑄
∑

𝑞=1
𝜔𝑞,𝑘̂

𝑛
𝑞,𝑘𝜙𝑖(𝒙𝑞,𝑘), 𝑗 = 1,… ,𝑀, (29)

where ̂
𝑛
𝑞,𝑘 = 𝐔𝑛

ℎ(𝝌
𝑛
𝑞,𝑘) is the velocity solution calculated using (26) at the departure point 𝝌𝑛

𝑞,𝑘. Note that the search-locate
algorithm used in17,18,19 is accurate and suitable for the conventional semi-Lagrangian method. However, in our current enriched
method for each quadrature point in each element, we compute the corresponding departure point. Although this algorithm
converges in few iterations, the use of high number of enrichment makes the search-locate algorithm very demanding. This is
mainly because all departure points should be traced starting from an initial guess for the host element as illustrated in the left
plot of Figure 3. In this plot, we show the paths followed by the search-locate algorithm to trace the six quadrature points of
an element starting from an arbitrary initial guess 𝑠. It can be seen from this figure that for each point there is a considerable
number of elements that must be tested before finding the correct host element. Moreover, when high numbers of enrichments are
used, tracking departure points using the considered algorithm requires more time which affect the efficiency of the developed
approach. In the current work, the search-locate Algorithm 1 is enhanced to improve the efficiency of our method. Since in our
enriched method, we search for departure points of a set of quadrature points of a considered element, these departure points
must fall in the same element or in elements that are neighbors. Thus, we can trace one of the points using the old search-locate
algorithm, then use its host element as an initial guess to search for the rest of departure points as shown in the right plot of
Figure 3. Consequently, for a number of enrichments 𝑁𝑘,𝑄 = 70, the new algorithm would find the first point after several
iterations, and the other 69 points after one or two iterations maximum. For completeness, the modified search-locate algorithm
is detailed in Algorithm 2.

In conclusion, the enriched semi-Lagrangian finite element approach is implemented for advection problem (1) using the
steps outlined in Algorithm 3. In this study, the quadrature rules established in36 are employed. Figure 4 depicts the distribution
of the considered quadrature points with𝑁𝑘,𝑄 = 6, 12, 25, 52 and 70. Note that the current study interprets equations (27) as an
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Algorithm 3 Enriched semi-Lagrangian finite element algorithm for the coupled problem.
1: Generate the quadrature pair (𝒙𝑞,𝑘, 𝜔𝑞,𝑘

), 𝑞 = 1,… , 𝑁𝑘,𝑄, and 𝑘 = 1,… , 𝑁𝑒
2: Calculate the L2-projection mass matrix [𝐌] using (27)
3: while 𝑡𝑛+1 ≤ 𝑇 do
4: Assuming that the approximated solutions 𝑼 𝑛

ℎ and 𝐶𝑛
ℎ are known

Step 1: Solve the Navier-Stokes equations
5: for each element 𝑘 do
6: for each quadrature point 𝒙𝑞,𝑘, 𝑞 = 1,… , 𝑁𝑘,𝑄 do
7: Compute the departure point 𝝌𝑛

𝑞,𝑘 by solving (7)
8: Identify the host element ̂𝑞,𝑘 where 𝝌𝑛

𝑞,𝑘
9: belongs using Algorithm 2

10: Approximate the value of 𝑈 𝑛
𝑞,𝑘 using (26)

11: end for
12: end for
13: Evaluate the right-hand side entries 𝑧𝑛𝑖 using (27)
14: Assemble the right-hand side vector 𝐳𝑛
15: Solve the associated linear system (28)
16: Solve the Stokes problem (6) using Algorithm 3.3
17: Update the velocity field 𝑼 𝑛+1

ℎ at time 𝑡𝑛+1 using (4)
Step 2: Solve the transport equation

18: for each element 𝑘 do
19: for each quadrature point 𝒙𝑞,𝑘, 𝑞 = 1,… , 𝑁𝑘,𝑄 do
20: Calculate the departure point 𝝌𝑛

𝑞,𝑘 by solving (7) using the approximated velocity 𝑼 𝑛+1
ℎ

21: Identify the host element ̂𝑞,𝑘 where 𝝌𝑛
𝑞,𝑘 belongs using Algorithm 3.3

22: Approximate the value of 𝐶𝑛
𝑞,𝑘 according to (26)

23: end for
24: end for
25: Evaluate the right-hand side entries 𝑟𝑛𝑖 using (27)
26: Assemble the right-hand side vector 𝐫𝑛
27: Solve the associated linear system (23)
28: Update the concentration 𝐶𝑛+1

ℎ at time 𝑡𝑛+1
29: end while

Figure 4 Distribution of Dunavant quadrature points employed for global and local enrichments.

enrichment approach based on the distribution of quadrature points in the computational mesh. As a result, as stated in section
5, the number of quadrature points 𝑁𝑘,𝑄 can be adjusted globally throughout the whole computational grid or locally at each
element. It should be noted that no linear systems of algebraic equations are solved in the conventional Galerkin-characteristic
finite element method, and the numerical solution is interpolated using the quadratic shape functions of the element where
the departure points 𝝌𝑛

𝑖 reside. However, the proposed semi-Lagrangian finite element method, in contrast to the conventional
approach, evaluates the departure points 𝝌𝑛

𝑞,𝑘 for all quadrature points belonging to each triangle 𝑘 in the considered grid and
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needs a linear system solution to update the numerical solution. It should be noted that alternative quadrature rules may be
applied in our approach as well.

3.3 Solution of the Stokes problem

To solve the stokes problem (6), we formulate the coupled projection scheme based on a rotational pressure correction with a
BDF2 time integration method as those studied in22. Thus, we solve the Stokes problem (6) for updating the velocity field and
pressure at every step using the coupled projection scheme in order to complete the implementation of semi-Lagrangian finite
element approach for solving incompressible Navier-Stoke equations (1). Comparing to the standard projection methods, the
presence of previous gradient step in the velocity prediction problem improves the order of the scheme. Moreover, the rotational
pressure correction projection enhanced the method to avoids artificial boundary conditions on the pressure and improves its
rate of convergence22. Hence, assuming that 𝑼̂ 𝑛, 𝑼̂ 𝑛−1, 𝐶𝑛, 𝐶𝑛−1 and 𝑝𝑛 are known, the Stokes equations (6) are solved using
the following steps:

1. Solve for 𝐶𝑛+1 ∈ 𝐕ℎ
3

2Δ𝑡
𝐶𝑛+1 − ∇ ⋅

(

𝐷∇𝐶𝑛+1) = − 4
2Δ𝑡

𝐶𝑛 + 1
2Δ𝑡

𝐶𝑛−1 + 𝑆𝑛. (30)

2. Solve for 𝑼̃ 𝑛+1
∈ 𝐕ℎ

3
2Δ𝑡

𝑼̃
𝑛+1

− 𝜈Δ𝑼̃
𝑛+1

+ 𝛾𝑼̃
𝑛+1

− 𝑓
(

𝑼̃
𝑛+1)⊤

− 𝛽(𝐶𝑛+1 − 𝐶∞)𝐞 = 4
2Δ𝑡

𝑼̂
𝑛
− 1

2Δ𝑡
𝑼̂
𝑛−1

−∇𝑝𝑛 + 𝜏
𝐻
. (31)

3. Perform the projection step and compute 𝜑 by solving the Poisson problem
Δ𝜑 = 3

2Δ𝑡
∇ ⋅ 𝑼̃

𝑛+1
. (32)

4. Velocity correction:
𝑼 𝑛+1 = 𝑼̃

𝑛+1
− 2Δ𝑡

3
∇𝜑. (33)

5. Pressure correction
𝑝𝑛+1 = 𝑝𝑛 + 𝜑 − 𝜈∇ ⋅ 𝑼̃

𝑛+1
. (34)

It should be stressed that in equations (30)-(31), the solutions 𝐶𝑛−1 , 𝐶𝑛 , 𝑼̃ 𝑛 and 𝑼̃
𝑛−1 are required to advance the solution

𝐶𝑛+1
ℎ and the iterated velocity 𝑼 (𝑘)

ℎ in time. In this case, only one initial condition is given at time 𝑡 = 0, and the implicit Euler
scheme is used to get the second condition.

4 MULTILEVEL ADAPTIVE ENRICHMENTS

In many applications in coupled flow-transport problems, the Reynolds number reaches high values for which steep gradients,
localized eddies and boundary shear layers occur in their numerical solutions. To accurately capture these features, the enriched
semi-Lagrangian finite element technique described in section 2 requires very fine meshes and a large number of quadrature
points, especially in regions where the values of the solution gradients are very high. In the present study, to avoid uniform
enrichments in the entire computational domain, we propose a multilevel adaptive algorithm for local enrichments to increase the
efficiency of the proposed method. The key idea in this multilevel adaptive technique lies on refining the number of quadrature
points 𝑁𝑘,𝑄 in mesh elements where the solution gradient generates high values and unrefine otherwise according to a given
adaptation criterion. In practice, an error indicator and a specified tolerance are needed to adjust the quadrature at each time
step. For example, gradient-based error estimators have been widely used in the literature in ℎ-adaptive finite element methods
for solving incompressible Navier-Stokes equations, see23,24,25,26,27,28,29 among others. However, most of these gradient-based
ℎ-adaptive techniques use an initial coarse mesh to compute a primary solution for estimating the gradient errors. Consequently,
an accumulation of errors in time is expected due to the coarse mesh used in the approximation and also the computational cost
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Figure 5 Schematic description of refinement (top plot) and unrefinement (bottom plot) used for multilevel adaptive enrichments.

becomes prohibitive due to multiple interpolations between adaptive meshes. In the current work, we consider the normalized
gradient of the concentration as an adaptive criterion for the local enrichments of each element in the computational domain
defined by

𝑒𝑟𝑟𝑛+1
(

𝑘
)

=
‖

‖

‖

∇𝐶𝑛+1
𝑘

‖

‖

‖

𝑁𝑒max
𝑗=1

‖

‖

‖

‖

∇𝐶𝑛+1
𝑗

‖

‖

‖

‖

, (35)

where 𝐶𝑛+1
𝑘

is the concentration on the triangle 𝑘 at time 𝑡𝑛+1 and ‖

‖

‖

∇𝐶𝑛+1
𝑘

‖

‖

‖

is the L2-norm of the gradient of the solution on
𝑘 defined by

‖

‖

‖

∇𝐶𝑛+1
𝑘

‖

‖

‖

=
√

√

√

√∫
𝑘

∇𝐶𝑛+1
𝑘

⋅ ∇𝐶𝑛+1
𝑘

𝑑Ω. (36)

The considered error indicator (35) can benefits from the semi-Lagrangian method to approximate the gradient ‖‖
‖

∇𝐶𝑛+1
𝑘

‖

‖

‖

back-
wards in time from the known solution at time 𝑡𝑛. Thus, applying the gradient to the restriction of the solution (20) on the element
𝑘 we obtain

∇𝐶𝑛+1
𝑘

=
𝑁
∑

𝑖=1
𝐶𝑛
𝑖 ∇𝜑𝑖. (37)
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Compute the adaptation creteria
𝐸𝑟𝑟𝑛+1(𝑘)

Yes

Compute the
𝐿2-projection

mass matrix [M]
using (27)

𝑡𝑛+1 ≥ 𝑇

Stop and display the results

No

Yes

For a time 𝑡𝑛+1

Generate the quadrature pairs
(𝐱𝑞,𝑘, 𝑤𝑞,𝑘), 𝑞 = 1, ..., 𝑁𝑘,𝑄

Compute the departure point 𝑛
𝑞,𝑘 of 𝐱𝑞,𝑘

No

k=1

𝜀𝑚 < 𝐸𝑟𝑟𝑛+1(𝑘) ≤ 𝜀𝑚+1

Is

?
𝑁𝑘,𝑄 = 𝑁𝑞𝑚𝑁𝑘,𝑄 = 6
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?

𝑘 = 𝑁𝑒 𝑘 = 𝑘 + 1No
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k=1

q=1

Identify the element ̂𝑞,𝑘 where 𝑛
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Compute ̂𝑞,𝑘 according to (26).
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?
𝑞 = 𝑁𝑘,𝑄
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𝑘
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1
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Solve the linear system [𝑀]
{

𝑛+1
}

= 𝐫𝑛

Is
?

𝑘 = 𝑁𝑒

Figure 6 Adaptive enriched semi-Lagrangian finite element flowchart.
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Therefore, the integral in (36) can be evaluated as
‖

‖

‖

∇𝐶𝑛+1
𝑘

‖

‖

‖

=
√

√

√

√∫
𝑘

∇𝐶𝑛+1
𝑘

⋅ ∇𝐶𝑛+1
𝑘

𝑑Ω,

=

√

√

√

√

√∫
𝑘

( 𝑁
∑

𝑖=1
𝐶𝑛
𝑖 ∇𝜑𝑖

)

⋅

( 𝑁
∑

𝑗=1
𝐶𝑛
𝑗∇𝜑𝑗

)

𝑑Ω,

=

√

√

√

√

√

√

√

𝑁
∑

𝑖=1
𝐶𝑛
𝑖

⎛

⎜

⎜

⎜

⎝

𝑁
∑

𝑗=1
𝐶𝑛
𝑗 ∫
𝑘

∇𝜑𝑖 ⋅ ∇𝜑𝑗 𝑑Ω

⎞

⎟

⎟

⎟

⎠

,

=
√

(

̂𝑛𝑘

)⊤
𝐒𝑘 ̂

𝑛
𝑘
. (38)

where ̂𝑛𝑘 = (̂𝑛1 ,… , ̂𝑛𝑁 )
⊤ are the solutions values computed at the departure points of the vertices of the element 𝑘 at time

𝑡𝑛, and 𝐒𝑘 denotes the elementary stiffness matrix associated with the element 𝑘. Normalizing the error indicator is a very
important task in our case as ensures that criteria (35) is recognized to take values between 0 and 1. As a result, the multilevel
adaptation method we suggest in this work is carried out in the following manner:

Assuming that the values for the tolerances {𝜀𝑚} satisfy 0 = 𝜀0 < 𝜀1 < 𝜀2 < 𝜀3 < 𝜀4 = 1. If an element of the mesh 𝑘 meets
the following criteria

𝜀𝑚 ≤ 𝑒𝑟𝑟𝑛+1
(

𝑘
)

≤ 𝜀𝑚+1, 0 ≤ 𝑚 ≤ 3,
then 𝑘 is enriched using the quadrature pairs (𝒙𝑘,𝑞 , 𝑤𝑘,𝑞

) with 𝑞 = 1, 2… , 𝑁𝑘,𝑞𝑚 . It should be noted that the values of tolerances
{𝜀𝑚} and the number of levels vary depending on the addressed problem, and their explanation is deferred until section 5
which includes numerical test cases. The suggested adaptive enriched semi-Lagrangian finite element technique for solving the
convection phase is described in flowchart displayed in Figure 6.

5 NUMERICAL RESULTS

In this section, the accuracy of the new enriched semi-Lagrangian finite element method introduced in the above sections is
assessed using test examples of incompressible flow problems. This is expected to ensure the robustness of the proposed method-
ology before applying it for the real case of transport and dispersion of phosphogypsum in the Jorf Lasfar coastal zone. For this
reason a test example with known analytical solution is considered. Consequently, the relative 𝐿1-error and 𝐿2-error at time 𝑡𝑛
can be evaluated, such that

𝐿1-error =
∫
Ω

|

|

|

𝑼 𝑛
ℎ − 𝑼 𝑛

exact
|

|

|

𝑑Ω

∫
Ω

|

|

|

𝑼 𝑛
exact

|

|

|

𝑑Ω
, 𝐿2-error =

⎛

⎜

⎜

⎝

∫
Ω

|

|

|

𝑼 𝑛
ℎ − 𝑼 𝑛

exact
|

|

|

2
𝑑Ω

⎞

⎟

⎟

⎠

1
2

⎛

⎜

⎜

⎝

∫
Ω

|

|

|

𝑼 𝑛
exact

|

|

|

2
𝑑Ω

⎞

⎟

⎟

⎠

1
2

, (39)

where 𝑼 𝑛exact and 𝑼 𝑛
ℎ are respectively, the exact and numerical solutions obtained at the gridpoint 𝒙ℎ and time 𝑡𝑛. In all the

computations reported in this section, resulting linear systems of algebraic equations are solved using the conjugate gradient
solver with incomplete Cholesky decomposition. In addition, all stopping criteria for iterative solvers were set to 10−6, which
is small enough to guarantee that the algorithm truncation error dominates the total numerical error. All the computations are
performed on an Intel® Core(TM) i7-7500U @ 2.70GHz with 16 GB of RAM.

5.1 Transport problem with anisotropic dispersion
The main purpose of this test example is to demonstrate the performance of the novel adaptive enriched semi-Lagrangian finite
element approach for handling anisotropic advection-diffusion problems. For this reason, only the convection-diffusion equations
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Table 1 Results for the transport problem with anisotropic dispersion obtained using the enriched semi-Lagrangian finite element
method with both adaptive and fixed enrichments on structured meshes using different quadratures and anisotropy parameters.

𝛼𝐿 = 10 and 𝛼𝑇 = 10−1

Fixed enrichments Adaptive enrichments
ℎ 𝑁𝑄 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU

1
32

12 4.759E-02 4.320E-02 0.996 0.6082 -0.0033 0.93 4.823E-02 4.320E-02 0.996 0.6082 -0.0033 0.76
25 2.568E-02 2.080E-02 0.996 0.5862 -0.0025 1.55 2.574E-02 2.138E-02 0.996 0.5865 -0.0025 0.99
52 1.867E-02 1.469E-02 0.997 0.5745 -0.0008 2.39 1.889E-02 1.470E-02 0.997 0.5745 -0.0008 1.32
70 1.336E-02 1.078E-02 0.997 0.5720 -0.0003 3.30 1.424E-02 1.124E-02 0.997 0.5721 -0.0004 1.45

1
64

12 8.429E-03 5.755E-03 0.998 0.5741 -0.0001 3.98 8.425E-03 5.755E-03 0.998 0.5741 -0.0001 1.94
25 5.914E-03 4.781E-03 0.999 0.5717 0.0000 5.35 5.954E-03 4.781E-03 0.999 0.5717 0.0000 2.21
52 3.194E-03 2.544E-03 0.999 0.5710 0.0000 8.45 3.356E-03 2.551E-03 0.999 0.5710 0.0000 2.78
70 2.757E-03 2.411E-03 0.999 0.5708 0.0000 12.36 2.834E-03 2.417E-03 0.999 0.5708 0.0000 3.61

1
128

12 1.220E-03 1.106E-03 0.999 0.5708 0.0000 13.54 1.222E-03 1.106E-03 0.999 0.5708 0.0000 6.59
25 9.384E-04 6.455E-04 0.999 0.5704 0.0000 23.04 9.384E-04 6.455E-04 0.999 0.5704 0.0000 7.38
52 8.264E-04 5.573E-04 1.000 0.5701 0.0000 37.30 8.266E-04 5.573E-04 1.000 0.5701 0.0000 11.77
70 6.188E-04 4.155E-04 1.000 0.5700 0.0000 48.81 6.208E-04 4.155E-04 1.000 0.5700 0.0000 14.16

𝛼𝐿 = 10−1 and 𝛼𝑇 = 10
Fixed enrichments Adaptive enrichments

ℎ 𝑁𝑄 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU

1
32

12 2.342E-01 1.828E-01 0.997 0.5168 -0.0219 0.92 2.344E-01 1.828E-01 0.997 0.5168 -0.0219 0.74
25 8.946E-02 7.608E-02 0.998 0.5174 -0.0107 1.53 9.014E-02 7.608E-02 0.997 0.5174 -0.0107 0.98
52 6.477E-02 5.717E-02 0.998 0.5353 -0.0082 2.39 6.477E-02 5.717E-02 0.998 0.5353 -0.0082 1.33
70 5.118E-02 4.240E-02 0.999 0.5534 -0.0037 3.27 5.106E-02 4.239E-02 0.999 0.5534 -0.0037 1.40

1
64

12 2.594E-02 2.396E-02 0.998 0.5784 -0.0011 3.95 2.600E-02 2.396E-02 0.998 0.5784 -0.0011 1.90
25 9.893E-03 8.585E-03 0.999 0.5744 0.0000 5.35 9.952E-03 8.586E-03 0.999 0.5744 0.0000 2.19
52 7.364E-03 6.757E-03 0.999 0.5713 0.0000 8.44 7.593E-03 6.758E-03 0.999 0.5713 0.0000 2.75
70 5.502E-03 4.832E-03 1.000 0.5702 0.0000 12.56 5.594E-03 4.833E-03 1.000 0.5702 0.0000 3.61

1
128

12 4.183E-03 2.841E-03 0.999 0.5710 0.0000 13.52 4.201E-03 2.842E-03 0.999 0.5710 0.0000 6.60
25 2.363E-03 1.588E-03 1.000 0.5702 0.0000 23.34 2.381E-03 1.593E-03 1.000 0.5702 0.0000 7.36
12 1.651E-03 1.503E-03 1.000 0.5699 0.0000 37.00 1.662E-03 1.503E-03 1.000 0.5699 0.0000 11.16
70 9.813E-04 6.317E-04 1.000 0.5699 0.0000 49.09 9.890E-04 6.321E-04 1.000 0.5699 0.0000 14.29

𝛼𝐿 = 10 and 𝛼𝑇 = 10
Fixed enrichments Adaptive enrichments

ℎ 𝑁𝑄 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU 𝐿1-error 𝐿2-error Mass Max 𝐶 Min 𝐶 CPU

1
32

12 3.733E-02 3.673E-02 0.997 0.3355 -0.0002 1.10 3.745E-02 3.674E-02 0.997 0.3355 -0.0002 0.82
25 9.620E-03 7.894E-03 0.997 0.3210 -0.0001 1.64 9.626E-03 7.892E-03 0.997 0.3210 -0.0001 0.99
52 7.546E-03 6.198E-03 0.998 0.3172 0.0000 2.59 7.556E-03 6.197E-03 0.998 0.3172 0.0000 1.36
70 5.660E-03 4.843E-03 0.999 0.3140 0.0000 3.53 5.679E-03 4.842E-03 0.999 0.3140 0.0000 1.42

1
64

12 3.674E-03 2.696E-03 0.998 0.3146 0.0000 4.14 3.687E-03 2.699E-03 0.998 0.3146 0.0000 1.92
25 2.127E-03 1.634E-03 0.999 0.3142 0.0000 5.49 2.152E-03 1.637E-03 0.999 0.3142 0.0000 2.21
52 8.946E-04 6.197E-04 0.999 0.3138 0.0000 9.05 8.953E-04 6.197E-04 0.999 0.3138 0.0000 2.78
70 7.649E-04 5.023E-04 1.000 0.3137 0.0000 12.62 7.676E-04 5.024E-04 1.000 0.3137 0.0000 3.64

1
128

12 5.696E-04 4.038E-04 0.999 0.3143 0.0000 14.36 5.720E-04 4.040E-04 0.999 0.3143 0.0000 6.62
25 3.246E-04 2.343E-04 1.000 0.3137 0.0000 24.43 3.269E-04 2.346E-04 1.000 0.3137 0.0000 7.47
52 2.671E-04 2.066E-04 1.000 0.3135 0.0000 37.82 2.690E-04 2.068E-04 1.000 0.3135 0.0000 11.20
70 1.698E-04 1.796E-04 1.000 0.3135 0.0000 49.97 1.711E-04 1.798E-04 1.000 0.3135 0.0000 14.35
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in (1) without the source term are considered with a given stationary flow field as
𝜕𝐶
𝜕𝑡

+ 𝑼 ⋅ ∇𝐶 − ∇ ⋅ (𝑫∇𝐶) = 0, in Ω × [0, 𝑇 ],

𝐶(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡), in 𝜕Ω × [0, 𝑇 ], (40)
𝐶(𝑥, 𝑦, 0) = 𝐶0(𝑥, 𝑦), in Ω,

where the computational domain Ω = [−1500, 1500] × [−1500, 1500], the initial condition is defined as
𝐶0(𝑥, 𝑦) =

𝑐0
2𝜋𝜎20

exp(−
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2

2𝜎20
),

whereas the boundary function 𝑔(𝑥, 𝑦, 𝑡) is obtained from the following analytical solution

𝐶(𝑥, 𝑦, 𝑡) =
𝑐0

2𝜋
√

|𝑑𝑒𝑡(𝜎)|
exp

(

−

(

𝒙 − 𝑼 𝑡
)⊤ 𝜎−1

(

𝒙 − 𝑼 𝑡
)

2

)

, (41)

where 𝜎 = 𝜎20𝐈 + 2𝐃𝑡, 𝜎−1 represents the inverse matrix of 𝜎, |𝑑𝑒𝑡(𝜎)| is the absolute value of the determinant of 𝜎, and
𝐃 is the dispersion tensor given by (2)-(3). In our simulations for this example we set 𝑐0 = 150000, 𝜎0 = 150, 𝐷𝑚 = 10−3,
𝒙 = (𝑥 − 𝑥0, 𝑦 − 𝑦0)⊤, with (𝑥0 = −1050, 𝑦0 = −1050) and the velocity field is assumed stationary given by 𝑼 = (450, 450)⊤.
In this test case, the ability of local enrichments to properly reproduce steep gradients in numerical solutions is assessed using
different anisotropy corresponding to different values of longitudinal and transverse dispersion coefficients 𝛼𝐿 and 𝛼𝑇 . It is easy
to verify, using the definition of the Peclet number ‖𝑈‖𝐿𝑟𝑒𝑓

‖𝐃‖ , that the associated Peclet number for this test example is 300 for all
considered values of the dispersion coefficients 𝛼𝐿 and 𝛼𝑇 . As discussed in section 4, the suggested method is accompanied by a
multilevel adaptive technique that uses three different tolerance values. For this example, we set 𝜀1 = 0.07, 𝜀2 = 0.2 and 𝜀3 = 0.3.
According to these considered values, a three-level enrichment is performed using (𝑁𝑘,𝑄 = 70, 𝑁𝑘,𝑄 = 52, 𝑁𝑘,𝑄 = 12). The
number of quadrature points in elements which are not subject to enrichments we used fixed 𝑁𝑘,𝑄 = 6.

Quantitative results, including the relative 𝐿1-error and 𝐿2-error, relative mass (Mass), maximum (Max), minimum (Min)
and computational costs (CPU) are summarized in Table 1. These results are computed using the suggested fixed and adaptive
enriched semi-Lagrangian finite element method with several structured meshes, quadratures, and different values of (𝛼𝐿, 𝛼𝑇

).
Table 2 also includes those results obatined using the conventional semi-Lagrangian finite element approach for the same consid-
ered parameters. Note that the maximum of the analytical solution is also included in Table 2 whereas, the analytical minimum
is 0. Based on the results obtained for 𝐿1-error and 𝐿2-error in Table 1, the fixed and adaptive enrichment techniques yield
comparable results with minor differences for all meshes and quadrature point counts. The conventional semi-Lagrangian finite
element approach, on the other hand, is less accurate than the suggested enriched methods, compare the results in Table 2. In
addition, the conventional semi-Lagrangian approach produces negative minimum values, which can be improved by increas-
ing the number of enrichments in the enriched outcomes. When refining the computational mesh or increasing the number of
quadrature points in simulations, Table 1 and Table 2 show a clear improvement in the accuracy of the results produced using
all the considered numerical methods. Refining the mesh or increasing the quadrature points, for example, enhances the accu-
racy of the relative mass in Table 1. By comparing results for the computational costs, the fixed enrichment strategy is clearly
more expensive than the adaptive enrichment approach. The CPU time needed by the adaptive enriched technique is 63% less
than that required by the fixed enriched approach for the parameters evaluated. Moreover, in comparison to the fixed enriched
method requirements using a fine mesh with 1

128
and 𝑁𝑘,𝑄 = 70, the local enrichments reduced the computational cost by 71%.

Finally, although the computational cost of the conventional semi-Lagrangian method is significantly lower compared to the
suggested method, the latter presents much higher performance in terms of precision and consistency, see Table 2.

To further illustrate the results listed in Table 1 and Table 2, cross-sections at the main diagonal 𝑥 = 𝑦 of the results computed
using fixed and adaptive enrichment approaches at two different times 𝑡 = 0.4 and 𝑡 = 4.24 are displayed in Figure 7. Results
obtained using the conventional method and the analytical solution are also included in this figure. These results are evaluated on
a structured mesh with ℎ = 1

32
and various numbers of enrichments 𝑁𝑘,𝑄 = 12, 25, and 70 for the anisotropy cases (𝛼𝐿, 𝛼𝑇

)

=
(

10, 10−1
)

,
(

𝛼𝐿, 𝛼𝑇
)

=
(

10−1, 10
) and (

𝛼𝐿, 𝛼𝑇
)

= (10, 10). The accuracy of numerical results generated using the enriched
semi-Lagrangian finite element approach with both fixed and adaptive enrichments increases when the number of enrichments
𝑁𝑘,𝑄 is high either globally or locally in the computational mesh, as shown in Figure 7. The results, displayed in the same
figure, computed using the traditional semi-Lagrangian technique, indicate excessive numerical diffusion. All of those results
were obtained using the same 𝑃2 finite element model.
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Table 2 Results for the transport problem with anisotropic dispersion obtained using the conventional semi-Lagrangian finite
element method on structured meshes using different quadratures and anisotropy parameters.

𝛼𝐿 = 10 and 𝛼𝑇 = 10−1

ℎ 𝐿1-error 𝐿2-error Mass Exact Max Max 𝐶 Min 𝐶 CPU
1
32

2.65827E-01 2.42053E-01 1.0509 0.5700 0.4364 -0.0015 0.49
1
65

6.00554E-02 5.77386E-02 0.9951 0.5700 0.5311 -0.0003 1.82
1

128
1.04466E-02 9.83793E-03 0.9978 0.5700 0.5652 0.0000 7.47

1
256

1.75037E-03 1.79344E-03 0.9996 0.5700 0.5705 0.0000 33.56

𝛼𝐿 = 10−1 and 𝛼𝑇 = 10
ℎ 𝐿1-error 𝐿2-error Mass Exact Max Max 𝐶 Min 𝐶 CPU
1
32

6.21264E-01 4.76727E-01 1.0495 0.5699 0.3324 -0.0136 0.48
1
65

2.39633E-01 2.10466E-01 1.0038 0.5699 0.4694 -0.0167 1.88
1

128
5.95296E-02 5.38938E-02 0.9963 0.5699 0.5492 -0.0016 7.57

1
256

2.78376E-03 2.56909E-03 0.9992 0.5699 0.5702 -0.0000 34.28

𝛼𝐿 = 10 and 𝛼𝑇 = 10
ℎ 𝐿1-error 𝐿2-error Mass Exact Max Max 𝐶 Min 𝐶 CPU
1
32

2.09094E-01 1.96180E-01 1.0133 0.3135 0.2593 -0.0020 0.48
1
65

4.62392E-02 4.47009E-02 0.9777 0.3135 0.3012 -0.0001 1.80
1

128
9.42312E-03 8.89406E-03 0.9829 0.3135 0.3126 0.0000 7.24

1
256

9.85869E-04 9.56553E-04 0.9994 0.3135 0.3132 0.0000 33.93

To compare the results obtained by the adaptive and fixed enriched semi-Lagrangian approaches to those computed using the
conventional semi-Lagrangian method and the analytical results, we display in Figure 8, 15 equi-distributed contourlines of the
computed solution at times 𝑡 = 0.4 and 𝑡 = 4.24 using𝑁𝑘,𝑄 = 12, 25 and 70 and for (𝛼𝐿 = 10−1, 𝛼𝑇 = 10

). The results obtained
using (

𝛼𝐿 = 10, 𝛼𝑇 = 10−1
) and (

𝛼𝐿 = 10, 𝛼𝑇 = 10
) are displayed in Figure 9 and Figure 10, respectively. From these figures,

it can be concluded that when the fixed and adaptive enrichments provide identical results with little variation compared to the
analytical solutions, the conventional semi-Lagrangian finite element approach fails to solve the issue, as predicted.

Finally, contourlines of the numerical solution produced by the three-level enrichment technique, its corresponding gradients,
and the distribution of quadrature points formed the three-level enrichments at times 𝑡 = 0.6 and 𝑡 = 4.24 are illustrated in Figure
11 for (𝛼𝐿 = 10−1, 𝛼𝑇 = 10), (𝛼𝐿 = 10, 𝛼𝑇 = 10−1) and (𝛼𝐿 = 10, 𝛼𝑇 = 10). The purpose here is to assess the effectiveness of
the adaptive enriched approach in capturing the transport and dispersion feature of a Gaussian pulse on a coarse structured mesh
with ℎ = 1

32
. The enrichment level for each element in the computational mesh is depicted using a different color. Figure 11

illustrates that the position of the quadrature points for the three-level enrichments capture the solution gradients correctly and
that the distribution of these enrichment points has not been distorted. As a result, the investigated adaptive enrichment approach
effectively solves the convection-diffusion issue since the mesh is kept constant during the temporal integration operation,
allowing for local adjustment of the enrichment points where needed.

5.2 Application to dispersion in the Jorf Lasfar

We turn our attention to the application of the developed numerical tools to simulate the real case of Phosphogypsum release
at the Jorf Lasfar industrial platform. The objective here is to assess the robustness of the methodology proposed in this study
to resolve the underlying complex transport of the release. The mathematical model (1) is therefore considered to predict the
transport and dispersion of Phosphogypsum in the Jorf Lasfar, where 𝐶 represents the concentration of Phosphogypsum in the



Abdelouahed Ouardghi, Mohammed Seaid, Mofdi El-Amrani, Nabil El Mocayd 19
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Figure 7 Cross-sections at the main diagonal 𝑥 = 𝑦 obtained for the transport problem with anisotropic dispersion at two different
times 𝑡 = 0.4 and 𝑡 = 4.24 on a structured mesh with ℎ = 1

32
using (𝛼𝐿 = 10−1, 𝛼𝑇 = 10) (first row), (𝛼𝐿 = 10, 𝛼𝑇 = 10−1)

(second row) and (𝛼𝐿 = 10, 𝛼𝑇 = 10) (third row) with 𝑁𝑘,𝑄 = 12 (first column), 𝑁𝑘,𝑄 = 25 (second column) and 𝑁𝑘,𝑄 = 70
(third column).

ocean. Note that the use of a Fickian dispersion tensor used in the current work is motivated based on the complex rheological
behavior of the phosphate slurry, see for instance37. Furthermore, the physical domain is defined through a high-resolution
(of 10 m) remote sensing product (Sentinel-2), as depicted by Figure 12. Notice that the dispersion of Phosphogypsum in
the ocean is clearly visible in Figure 12, compare the region bounded by the red contourline on the map. Here, the problem
statement consists of solving the system (1) in the corresponding domain near the Jorf Lasfar platform. A qualitative calibration
of dispersion parameters is performed in order to obtain the same feature observed by the remote sensing product. Following this
methodology, the molecular dispersion coefficient𝐷𝑚 = 10−3 𝑚2∕𝑠, the longitudinal dispersion coefficient 𝛼𝐿 = 5×10−2 𝑚2∕𝑠
and the transverse dispersion coefficient 𝛼𝑇 = 10−2 𝑚2∕𝑠. In our simulations, the Coriolis parameter 𝑓 = 8.55 × 10−5 ∕𝑠, the
bottom friction coefficient 𝛾 = 0.012 𝑠∕𝑚1∕3, the coefficient of solute expansion 𝛽 = 1, the reference concentration 𝐶∞ = 0, the
kinematic viscosity 𝜈 = 1.67×10−3 𝑘𝑔∕𝑚𝑠 and the wind stress 𝜏 = 1.5 𝑁∕𝑚2 which is equivalent to a wind speed of 28 𝑚∕𝑠. It
is worth mentioning that, in order to perform a quantitative calibration, further treatments on the satellite products are required
as discussed in38. However, this is out of the scope in the present work and only the robustness of the model is assessed.

Our main objective in these numerical simulations is twofold, on one hand to demonstrate the performance of the proposed
multilevel adaptive enriched semi-Lagrangian finite element method to accurately resolve complex geometries and on the other
hand to develop a class of robust computational techniques to efficiently simulate the transport and dispersion of phosphogypsum
in the Jorf Lasfar coastal zone. In our computations, we implement a three-level adaptive enrichment with tolerances fixed to
𝜀1 = 0.07, 𝜀2 = 0.13 and 𝜀3 = 0.3 for which the initial number of quadrature points is set to 𝑁𝑘,𝑄 = 6 in each element and
this number is refined accordingly using (𝑁𝑘,𝑄 = 12, 𝑁𝑘,𝑄 = 25, 𝑁𝑘,𝑄 = 52). Here, using the image shown in Figure 12, a
computational domain is generated for the equations (1) to be solved subject to a continuous release of 𝑆 = 1.2 𝑡𝑜𝑛𝑒𝑠∕ℎ𝑜𝑢𝑟
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Figure 8 Results obtained for the transport problem with anisotropic dispersion at two different times 𝑡 = 0.4 and 𝑡 = 4.24 on
a structured mesh with ℎ = 1

32
using (𝛼𝐿 = 10−1, 𝛼𝑇 = 10) for the exact solution (first column), conventional method (second

column), fixed enrichments (third column) and adaptive enrichments (fourth column) with𝑁𝑘,𝑄 = 12 (first row) and𝑁𝑘,𝑄 = 70
(second row).
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Figure 9 Same as Figure 8 but using (𝛼𝑙 = 10, 𝛼𝑙 = 10−1).

located at the point (11.55 𝐾𝑚, 2 𝐾𝑚)⊤. Initially, the system is assumed to be at rest, no-slip boundary conditions are used on
the coastlines, and a well developed velocity profile with a maximum velocity 𝑢∞ = 0.18 𝑚∕𝑠 is imposed at the open water
boundaries. Note that this velocity profile corresponds to the annual mean of the Atlantic input flux and it is also comparable
to the main semidiurnal component 𝑀2, see for instance39. Notice that for the considered flow conditions and based on the
definition of the Reynolds number 𝑢∞𝐿𝑟𝑒𝑓

𝜈
, the associated Reynolds number for this problem is about 5 × 106.
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Figure 10 Same as Figure 8 but using (𝛼𝑙 = 10, 𝛼𝑙 = 10).

We first perform a mesh convergence study for this problem by considering a series of unstructured meshes as shown in
Figure 13 with the corresponding statistics of elements and nodes given in Table 3. Figure 14 depicts the time evolution of
the concentration computed at three different gauge stations, G1, G2 and G3 in the Jorf Lasfar as illustrated on the meshes in
Figure 13. Here, the selected gauges G1, G2 and G3 are located in the Jorf Lasfar at (10.7 𝐾𝑚, 4.1 𝐾𝑚)⊤, (10.7 𝐾𝑚, 6.5 𝐾𝑚)⊤
and (11.4 𝐾𝑚, 9.4 𝐾𝑚)⊤, respectively. It should be noted that the reference solution is calculated using the fixed method on
the reference mesh using 𝑁𝑘,𝑄 = 70. It is clear that the concentrations obtained for the selected gauges using the coarse Mesh
I are less accurate than those obtained using Mesh II and Mesh III. Refining the density of elements in the computational
domain, results obtained on Mesh II and Mesh III are relatively close. This confirms the mesh convergence in the proposed
multilevel adaptive enriched semi-Lagrangian finite element method for this problem. To further quantify the results for this
mesh convergence study, we also calculate the total kinetic energy and averaged concentration volume as

1
2 ∫

Ω

(

𝑈 2(𝒙, 𝑡) + 𝑉 2(𝒙, 𝑡)
)

𝑑𝒙 and 1
|Ω| ∫

Ω

𝐶(𝒙, 𝑡)𝑑𝒙. (42)

Table 3 summarizes the averaged concentration volume, computational time, and total kinetic energy produced using the con-
sidered meshes at time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠. It is evident that minor differences are detected in the values obtained for total kinetic
energy and averaged concentration volume on Mesh II, Mesh III, and Reference mesh. Furthermore, differences in the results
obtained for total kinetic energy and averaged concentration volume on Mesh II and Reference mesh are less than 2.36% and
3.56%, respectively. On Mesh III and Reference mesh, these values drop to less than 1% and 1.93%, respectively. In addition,
the computational time required for the proposed method on Mesh III, is 75% less than the time required for Reference mesh,
while the implementation on Mesh II reduces this computational cost to 80.2%. As a result, Mesh III is considered to be suited
for obtaining numerical results free of grid effects. Therefore, the remaining results presented herein are based on Mesh III.

Figure 15 displays the snapshots of numerical solutions computed using three-level adaptive enrichments, its corresponding
gradients, and adaptive quadrature points at times 𝑡 = 30 min, 𝑡 = 2 hours, 𝑡 = 10 hours, 𝑡 = 17 hours, and 𝑡 = 24 hours.
Notice that we use three different colors to illustrate the distributions of quadrature points namely, green color is used for
the first level, blue color for the second level and red color for the third level, whereas gray color is used for those elements
with smooth solutions and low concentration gradients. At the earlier time of simulations, the concentration plume released
in the sea starts to develop and it is transported later on by the flow at far north around the port. The interaction between the
phosphogypsum dispersion and the water flow is detected across the Jorf Lasfar zone during the simulation time. It can be clearly
seen that the complicated concentration patterns are captured by the adaptive enriched semi-Lagrangian finite element method. In
particular, high gradients of the concentration are well represented, as the quadrature points are condensed in regions controlled
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Figure 11 Contourlines of the solution obtained by three-level adaptive enrichments (first row), gradient of the solution (second
row) and adaptive quadrature points using three-level enrichments (third row) at two different times 𝑡 = 0.4 and 𝑡 = 4.24 using
(𝛼𝐿 = 10−1, 𝛼𝑇 = 10) (first column), (𝛼𝐿 = 10, 𝛼𝑇 = 10−1) (second column) and (𝛼𝐿 = 10, 𝛼𝑇 = 10) (third column). For a
better visualization, green, blue and red colors are used for elements with single-level, two-level, and three-level enrichments,
respectively.

by the defined tolerances according to the required three-level enrichments in the computational domain. As expected, denser
quadrature points are generated for the three-level adaptive enrichment than for the single- and two-level enrichments for the
selected times. It can also clearly be seen from Figure 15 that, under the considered flow conditions and simulation parameters,
the dispersion of phosphogypsum is mainly transported towards the same direction as suggested by the remote sensing product
shown in Figure 12. For obtained flow patterns, we display in Figure 16 snapshots of the pressure and velocity magnitude along
with the velocity field at time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠. The recirculation zone can be clearly seen in these results and an almost uniform
pressure distribution can also be observed. Again the proposed three-level adaptive enrichment procedure captures well the
pressure and velocity features in the Jorf Lasfar zone.
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Figure 12 Satellite image retrieved using Sentinel-2 product over the Jorf Lasfar region in August 2022. Dispersion of Phosph-
ogypsum is also shown in the region bounded by the red contourline on the map.

Table 3 Mesh statistics, values of the kinetic energy and the total averaged concentration using adaptive enrichment method at
time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠, and computational times for the considered meshes in the problem of transport and dispersion of phospho-
gypsum in the Jorf Lasfar. The CPU times are given in seconds.

# ele # 𝑃2 nodes # 𝑃1 nodes Energy Averg C CPU
Mesh I 1849 3988 1070 2.82866 8.62122 128
Mesh II 5640 11647 3004 3.68261 11.39013 194
Mesh III 16759 34009 8659 3.73390 11.53249 245
Reference 33286 67317 17016 3.77149 11.80986 982

For comparison reasons, Figure 17 depicts the time evolution of monitored pressures, velocity magnitudes and concentrations
at the three gauges shown in Figure 13 using fixed enrichments with 𝑁𝑘,𝑄 = 52, three-level adaptive enrichments, and the
conventional approach on Mesh III. Reference solutions obtained on the fine mesh using fixed enrichments with 𝑁𝑘,𝑄 = 70 are
also included in these plots. It is clear that the results obtained using the conventional semi-Lagrangian finite element method
suffer from excessive numerical diffusion. On the other hand, results obtained using the fixed and adaptive enrichments exhibit
minor differences. The proposed multilevel adaptive enriched semi-Lagrangian finite element approach successfully captures
the flow and concentration features in the Jorf Lasfar coastal zone for the considered flow, transport, and dispersion conditions.
Finally, the robustness of the proposed method is compared against the conventional technique, including fixed enrichments
and reference solution. Table 4 presents results for the averaged concentration volume, computational times and total kinetic
energy obtained using Mesh III at time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠. Reference solutions are also included in Table 4. Both fixed and adaptive
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Mesh I Mesh II

Mesh III Reference mesh

Figure 13 Computational meshes used for the transport and dispersion of phosphogypsum in the Jorf Lasfar.

Figure 14 Time evolution of the concentration obtained using the adaptive enrichment method at the selected gauges using
different meshes for the problem of transport and dispersion of phosphogypsum in the Jorf Lasfar.

enrichments yield comparable results that are closer to reference solutions than the conventional method. In terms of CPU times,
the adaptive enriched technique requires significantly less simulation time (about 63% less) than the fixed enriched method.
The conventional approach has a reduced computing cost compared to the enriched approaches on the same mesh, but its
overall accuracy and stability are inferior to those produced by the enrichment technique. Note that results from the proposed
transport model should be compared with observations of real phosphogypsum distributions on the sea-surface in the Jorf Lasfar.
However, there is no such data available until now in the literature to carry out this work. Thus, at the moment we can only
perform simulations and verify that results are plausible and consistent. In summary, the phosphogypsum transport is captured
accurately and the concentration front is resolved reasonably. It should be stressed that all these excellent computational features
are achieved using time steps larger than those required for the Eulerian-based methods in convection-dominated flows.
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Figure 15 Snapshots of the computed solutions on Mesh III using three-level adaptive enrichments (first column), gradient of
the solution (second column) and adaptive quadrature points using three-level enrichments (third column) at time 𝑡 = 30 𝑚𝑖𝑛
(first row), 𝑡 = 2 hours (second row), 𝑡 = 10 ℎ𝑜𝑢𝑟𝑠 (third row), 𝑡 = 17 ℎ𝑜𝑢𝑟𝑠 (fourth row) and 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠 (fifth row). For
a better visualization, green, blue and red colors are used for elements with single-level, two-level and three-level enrichments,
respectively.

Figure 16 Snapshot of the pressure (left), the velocity magnitude (middle) and the velocity field (right) obtained on Mesh III
using three-level adaptive enrichments at time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠.
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Figure 17 Time evolution of the pressure (first row), the velocity magnitude (second row) and concentration (third row) obtained
using Mesh III at the three selected gauges for the problem of transport and dispersion of phosphogypsum in the Jorf Lasfar.

6 CONCLUDING REMARKS

A multilevel adaptive semi-Lagrangian finite element method is proposed in this work for modelling and simulation of transport
and dispersion of phosphogypsum in the Jorf Lasfar coastal zone. To improve the efficiency and accuracy of the method, we
combine the modified method of characteristics to deal with convection terms, finite element discretization to handle complex
geometries, a rotational pressure-correction algorithm to solve the Stokes problem, and an adaptive L2-projection using quadra-
ture rules. As a result, the considered method benefits from the advantages of all these techniques to provide a semi-Lagrangian
solution for dispersion problems that is efficient and accurate as well. Multilevel adaptive enrichments, in which the quadrature
points are adjusted as needed without refining the mesh throughout the time integration process, have improved the accuracy and
efficiency of the numerical solution. As a consequence, linear systems generated using the considered semi-Lagrangian finite
element method retain the same size and structure during the adaptation process. The gradient of concentration is employed as
an error indicator for adaptation of enrichments by increasing the number of quadrature points where necessary without refining
the mesh. Unlike previous adaptive finite element approaches for incompressible viscous flows, linear systems in the proposed
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Table 4 Comparison results for the kinetic energy, the total averaged concentration obtained using Mesh III at time 𝑡 = 24 ℎ𝑜𝑢𝑟𝑠,
and computational times for the problem of transport and dispersion of phosphogypsum in the Jorf Lasfar. The CPU times are
given in seconds.

Energy Averg C CPU
Conventional 1.15274 7.52275 98
Fixed 3.73761 11.53827 664
Adaptive 3.73390 11.53249 245
Reference 3.77149 11.80986 982

enriched semi-Lagrangian finite element method retain the same structure and size during the adaptation procedure. In the con-
sidered simulations, we demonstrate that the proposed approach can recover the flow characteristics on coarse meshes and with
a much lower degree of freedom than the conventional method. As a result, the computational requirements are significantly re-
duced while maintaining the accuracy of the solutions. The development of highly accurate error estimates, such as a posteriori
error estimates, will be the focus of future work and will serve as the standard for multilevel adaptive enrichment.
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