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Abstract

Short-term increases in stream temperature in response to storm events have fre-

quently been observed in urban areas, highlighting the need for improved understand-

ing of the factors influencing urban stream temperature. Urban land cover complexity

and infrastructure designed for rapid water routing to the sewer system create a direct

link between storm events and water release processes, influencing urban stream tem-

perature responses. This study aims to identify predictors of diverse stream tempera-

ture response patterns to summer storms. We analysed 403 storm events from six

urban and semi-urban catchments along the US East Coast using dynamic time warping

to identify archetype patterns of stream temperature responses. We further disen-

tangled observed stream temperature increase patterns to reveal the drivers associated

with ‘heat pulses’, which are characterized by a rapid but high-magnitude temperature

increase followed by a sharp temperature drop at the start of the hydrograph increase.

Our results show that stream temperature patterns were event-specific and linked to

pre-event conditions and rainfall–runoff characteristics, with the shape of the hydro-

graph and rainfall–runoff response identified as the most important determinators of

the observed temperature response patterns. Ponded surface waters and storm drains,

as well as cooler water from the shallow subsurface, were identified as potential

sources contributing to temperature patterns. These findings have important implica-

tions for understanding urban hydrology and the contributions of different source

zones in urban catchments. Specifically, our results suggest that stream temperature

may serve as a cost-effective tracer providing information about urban water sources

and pathways, thus aiding in the understanding of complex urban hydrology.
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1 | INTRODUCTION

Stream temperature is an important water quality parameter that

plays a pivotal role in controlling metabolic and other reaction

processes (Arnell, 1998) and the survival of most aquatic species. High

water temperatures can increase stress for benthic organisms

(Winterbottom et al., 1997) and fish populations (Gooseff

et al., 2005), making it essential to maintain a suitable temperature
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range. Stream temperature in urban environments may differ from

stream temperature in forested and rural areas, with urban areas act-

ing as heat sources and creating temperature discontinuities along riv-

ers (Arora et al., 2018). The degradation of water quality and

ecological status of streams draining urban areas is referred to as

‘urban stream syndrome’ (Walsh et al., 2015), an umbrella term that

characterizes a range of responses that have been observed in urban

systems. In particular, streams experiencing urban stream syndrome

often drain high percentages of impervious areas, exhibit flashy

hydrographs due to rapid routing of rain water to the stream, reduced

biodiversity, and increased nutrient and contaminant concentrations,

in addition to stream temperature changes (Nelson & Palmer, 2007).

Past studies have shown that stream temperature in urban areas

depends substantially on the near-stream land cover. Riparian buffer

zones may cool urban stream temperatures (Arora et al., 2018),

whereas effluent from waste water treatment plants is known to raise

stream temperatures (Beganskas & Toran, 2021). Furthermore, storm-

water control measures can substantially influence stream tempera-

ture by impacting urban discharge (Fanelli et al., 2019) as well as the

temperature of the added localized runoff (Ouellet et al., 2021; Timm

et al., 2020). More recently, a positive relationship has been observed

between length of stormwater pipes and daily water temperatures

(Timm et al., 2021). In consequence, stream temperature is highly

dependent on the specific layout of the urban system.

Stream temperature is known to fluctuate on annual, seasonal,

and daily basis, however, storm events may additionally impact stream

temperature on even shorter time scales. In particular, short-term

increases in stream temperature in response to storm events have fre-

quently been observed in urban areas. In the Maryland piedmont, Nel-

son and Palmer (2007) measured temperature increases associated

with storms of up to 7�C, mostly at urbanized sites. Similarly, Somers

et al. (2013) documented increases of around 4�C during storms in

urban catchments, but only insignificant temperature changes at for-

ested sites. More recently, Beganskas and Toran (2021) found that

the frequency and magnitude of stream temperature increases corre-

lated well with the percentage of impervious land cover at the water-

shed scale. At regional scales, Zahn et al. (2021) documented the

highest frequency of temperature increases in highly developed

watersheds with a low percentage of vegetated area.

While many studies have sought to quantify stream temperature

responses, it has also been noted that temperature increases do not occur

during every summer storm. For example, Beganskas and Toran (2021)

only observed temperature increases during 6%–32% of days with rain,

and found no difference in regional precipitation characteristics between

days with and without temperature changes. Consequently, temperature

increases may occur during some events but not others at the same site.

Similarly, the shape and form of these stream temperature responses

may vary, and (gradual) temperature increases do not appear to be the

only possible stream temperature response during a storm event. Zahn

et al. (2021) observed that temperature increases may be followed by a

subsequent rapid decrease in water temperature, a pattern we will refer

to as a ‘heat pulse’ in our study. However, further exploration of this phe-

nomena has been limited. Altogether, this indicates that stream

temperature responses associated with storm events may be more

diverse than has been previously thought, with respect to magnitude,

direction, and timing of their response. Of the few studies that explore

stream temperature increases at city to regional scales, the majority focus

on extracting a handful of stream temperature metrics from each storm,

most often the total magnitude of temperature change (and even more

commonly limited to positive changes) over the course of the storm

event. These, however, are not able to capture the complexity of water

temperature responses to storm events, which may represent a missed

opportunity to assess water release processes from storm responses.

In this study, we aim to understand event-specific predictors of

diverse stream temperature responses to summer storms. For this

purpose, we analyse stream temperature, discharge, and precipitation

data from six urban and semi-urban catchments located at the East

Coast of the US during storm events of three consecutive summers.

We assess variations in stream temperature responses associated with

storm events, and link the response types to storm event characteris-

tics. We also examine ‘heat pulses’ more closely, that is, brief but sub-

stantial increases in stream temperature at the beginning of an event

followed by a rapid drop in stream temperature, to understand which

event characteristics influence the occurrence and magnitude of these

pulses. We hypothesize that a combination of time-varying factors

related to precipitation intensity, streamflow response, time of day,

and seasonality (e.g., time of year) will ultimately organize stream tem-

perature responses across events and create distinct stream tempera-

ture patterns as function of event characteristics.

2 | STUDY AREA

We focus on data from six semi-urban and urban watersheds located

on the US East Coast. The sites were chosen because each gaging sta-

tion was located within 15 miles of a high resolution precipitation

station. All sites are located in semi-urban to urban areas with moder-

ate to high percentages of impervious area (Table 1, Figure S8); nota-

bly, sites were not selected to span a land cover gradient, and the

effect of land cover is not evaluated in our analysis. According to the

HydroWASTE dataset (Ehalt MacEdo et al., 2022), none of the water-

sheds contain wastewater treatment plants.

Geographically, sites cluster within two general areas: the

Philadelphia-Baltimore-Washington DC area, and the metropolitan

Atlanta area. We briefly summarize key aspects of each site below,

ordered from North to South. Site figures are included in the supple-

mentary material.

Cobbs Creek (Figure S1) drains a semi-urban catchment north-

west of Philadelphia, Pennsylvania with large areas of imperviousness.

The immediate riverbanks are forested. Average discharge during the

years 2015–2020 was 0.21 m3/s.

Carroll Creek (Figure S2), located in Frederick, Maryland, drains

forested hills in its headwaters with semi-urban industrial and residen-

tial areas and significant areas of open grassland closer to the gauge.

A narrow buffer strip protects the immediate stream, and average dis-

charge of the years 2018–2020 was 0.46 m3/s.
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Hickey Run (Figure S3) is located in north eastern Washington

DC, within the National Arboretum. Large parts of the catchment are

now underground, confined to artificial storm pipes, and only a short

section of the stream remains in its natural state. The impervious area

of the watershed has increased substantially in the past 30 years

(DOE, 2022). Average discharge was 0.06 m3/s during the years

2015–2020.

Little Stone Mountain Creek (Figure S4) is a small headwater

stream in a semi-urban catchment in Dekalb County, Georgia, north-

east of Atlanta. The watershed lies mostly in a residential area with

large amounts of forest cover, particularly along the stream banks.

Average discharge was 0.21 m3/s during the years 2015–2020.

Woodall Creek (Figure S5) is a headwater stream located in north-

ern Atlanta, Georgia. The watershed is forested close to the gauging

station, but drains an industrial area further upstream with large

impervious surface coverage. The stream banks are forested along

most of its length, though the extent of this buffer strip is narrow in

most places. Average discharge was 0.13 m3/s during the years

2015–2020.

Doolittle Creek (Figure S6) is a semi-urban catchment in the East

of Atlanta, Georgia. It drains a residential area with some forested

areas along the riverbanks, and larger areas of grassland throughout

the watershed. At its source, Doolittle Creek drains a small lake

belonging to a golf club. Average discharge was 0.43 m3/s during the

years 2015–2020.

3 | METHODS

3.1 | Dataset

Discharge, precipitation, and stream temperature data were obtained

from the USGS National Water Information System for the years

2019–2021. Winter data were either minimally or not available at

some of the sites due to snow cover and ice. For this reason, we

restricted our analysis to the periods of 1st May until 30th September

for the years 2019, 2020, and 2021 at all six sites. At most sites, dis-

charge and stream temperature data were available at 15 min

intervals, except at Hickey Run (2 min) and Carroll Creek (5 min). The

temporal resolution of the precipitation data normally matched

the resolution of the discharge data, except at Hickey Run, where pre-

cipitation information was provided at 5 min intervals.

To determine watershed land use and cover, we first delineated

each watershed to the latitude and longitude of the USGS monitoring

location using StreamStats (https://streamstats.usgs.gov/ss/). We

then extracted the percentage of forest cover (classes 41–43, includ-

ing deciduous, evergreen and mixed forest) and the percentage of

developed land cover (sum of classes 21–24) from the 2021 National

Land Cover Database (NLCD) Land Cover dataset and imperviousness

from the 2021 NLCD Percent Developed Imperviousness dataset

(Dewitz, 2023) with a grid resolution of 30 m. This information was

extracted for each watershed in ArcMap (v. 10.8.2) and the values are

reported in Table 1.

3.2 | Data analysis

3.2.1 | Event identification

Hydrologic events were identified using the MATLAB package

HydRun (Tang & Carey, 2017). In this, an event was classified as an

increase in discharge of at least the mean discharge value of the time

series. Events were cut at 60% recession, but events with shorter

recession were also included in the analysis, as long as three or more

data points for both discharge and stream temperature were available

after the discharge peak. This threshold is somewhat arbitrary but was

selected to enable identification of a large range of event sizes. Events

without stream temperature data were excluded from further analysis.

In total, this resulted in 677 analysable events across all sites and

years.

3.2.2 | Identification of temperature patterns

We identified different stream temperature patterns and assessed

their relative frequency at each site based on the 677 events with

TABLE 1 List of streamwater sites used in this study, including their USGS Site numbers and catchment areas, and some measures of
land use.

Site name State

USGS Site

reference

Catchment

area (mi2)

Forested

area (%)

Developed

area (%)

Impervious

area (%)

Cobbs Creek at US Highway No. 1 PA 01475530 4.78 8.2 91.0 29.0

Carroll Creek above Rock Creek MD 01642199 7.33 24.6 50.3 17.7

Hickey Run at National Arboretum DC 01651770 1.01 1.5 97.7 60.6

Little Stone Mountain Creek near Stone

Mountain

GA 02207135 2.20 38.7 60.2 11.4

Woodall Creek at Defoors Ferry Road GA 02336313 2.71 7.6 90.8 59.1

Doolittle Creek at Flat Shoals Road GA 02203831 4.25 15.3 83.2 21.7

Note: Catchment area information is taken from the USGS National Water Information System. Watersheds were delineated in StreamStats, and used to

extract information on the 2021 percentage of forested area, developed land cover and percent developed imperviousness (Dewitz, 2023).
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stream temperature data. This comparison aimed to identify whether

sites were more likely to exhibit one dominant pattern, or whether a

wider range of patterns occurred at the different sites. Comparing

across 3 years also allowed us to test the stability of the different pat-

terns over time. For this analysis, we classified general response

patterns in a first step, and further disentangled temperature increase

patterns in a second step.

General stream temperature patterns

First, we classified the general temperature response patterns of

stream temperature (increase, decrease, or no change) during

each event (Figure 1a). Events where the average temperature

change during the event was smaller than 0.25�C/h were classi-

fied as ‘no stream temperature change’ (ΔST¼0). A stream tempera-

ture increase (ΔST > 0) was diagnosed if the difference between the

maximum temperature and the pre-event baseflow temperature was

at least twice as large as the difference between the minimum tem-

perature and the pre-event temperature. Similarly, a stream tempera-

ture decrease (ΔST <0) was identified if the difference between pre-

event temperature and minimum temperature was at least twice as

high as the difference between maximum temperature and the pre-

event temperature:

(a)

(b)

(c)

F IGURE 1 (a) General stream temperature patterns: no change in stream temperature (ΔST¼0), increase in stream temperature (ΔST >0), and
decrease in stream temperature (ΔST < 0). These are identified based on stream temperature alone. (b) Scaled stream temperature and discharge
of the different stream temperature increase patterns: heat pulse, stream temperature increase before discharge, stream temperature increase
with discharge, and stream temperature increase after discharge. (c) Archetype cluster patterns related to the ST increase patterns shown in (b).

4 of 14 KNAPP and KELLEHER
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ΔST¼0 if
STmax �ST0

tevent
< 0:25�C=h, ð1Þ

ΔST >0 ifSTmax �ST0 > 2 � ST0�STminð Þ, ð2Þ

ΔST <0 ifST0�STmin > 2 � STmax �ST0ð Þ, ð3Þ

with the minimum and maximum temperature during the event, STmin

and STmax , the pre-event stream temperature measured directly

before the start of the event, ST0, and the duration of the event,

tevent. Any temperature change falling between the two end members

of temperature increase and decrease was classified as an unclear pat-

tern and not included in the analysis.

Stream temperature increase patterns

Next, we identified and separated various types of temperature

increases, including events with a rapid, short temperature increase

followed by a rapid drop in temperature at the start of the event

(a pattern we will refer to as ‘heat pulse’ in the following). Visual

inspection of the events featuring an increase in stream tempera-

ture revealed four different archetype patterns of the timing in

temperature increases relative to the timing of the hydrograph

(Figure 1b):

1. a heat pulse, that is, a rapid temperature increase occurring at the

very start of the discharge rise, followed by a rapid drop in stream

temperature;

2. an increase in stream temperature before the rise of the hydro-

graph, with stream temperature continuing to stay high until at

least the hydrograph peak;

3. an increase in stream temperature at approximately the same time

as the rise of the hydrograph;

4. an increase in stream temperature delayed relative to the rise of

the hydrograph, that recedes very slowly.

To identify these patterns in a systematic way, we classified the

timing of the stream temperature change relative to the timing of

the discharge rise. This required scaling both temperature and dis-

charge to a range from 0 (discharge Q0 and stream temperature ST0

during pre-event baseflow) to 1 (maximum values of discharge, Qmax ,

and stream temperature, STmax ):

Qnorm tð Þ¼ Q tð Þ�Q0

Qmax �Q0
, ð4Þ

STnorm tð Þ¼ ST tð Þ�ST0

STmax �ST0
: ð5Þ

Finally, we calculated the difference of STnorm and Qnorm and

scaled it again to yield ΔSTQnorm:

ΔSTQ tð Þ¼ STnorm tð Þ�Qnorm tð Þ, ð6Þ

ΔSTQnorm tð Þ¼
ΔSTQ tð Þ�ΔSTQ0

ΔSTQmax �ΔSTQ0
if ΔSTQmax > ΔSTQminj j

ΔSTQ tð Þ�ΔSTQ0

ΔSTQ0�ΔSTQmin
else

:

8
>><

>>:

ð7Þ

The repeated scaling is necessary to ensure comparability

between small and big events (Equation 4), events with higher and

lower average temperatures and temperature changes (Equation 5),

and events with stronger and weaker ratios of temperature and dis-

charge changes (Equation 7). It thus allows comparing events based

on the relative timing of discharge and temperature, rather than the

magnitudes of discharge and temperature.

To identify the most representative stream temperature pattern

for each event, we created archetypes of the four clustering patterns

quantifying the difference between normalized discharge and normal-

ized stream temperature (Figure 1c) and performed dynamic time

warping between ΔSTQnorm and the four archetype patterns of tem-

perature increase. Dynamic time warping quantifies the smallest

Euclidian distance between signals with variable timing, by stretching

and compressing the signals to find the closest match between them.

We then used the calculated Euclidian distance between the ‘warped’
signals to assess the goodness of fit of ΔSTQnorm to the four arche-

type patterns. To account for the different shapes and ranges of the

archetypes, we subtracted the distance value obtained from dynamic

time warping of the archetype and its mean value from the distance

between the time series and the archetypes. The archetype pattern

that fitted the ΔSTQnorm pattern the best (i.e., resulted in the smallest

Euclidean distance) was selected as the most representative tempera-

ture increase pattern. The analysis was performed in MATLAB

R2020b using the function dtw (Paliwal et al., 1982; Sakoe &

Chiba, 1978) of the Signal Processing Toolbox. A visual inspection

was additionally performed to confirm the identified archetype pat-

tern for each event.

3.2.3 | Heat pulse magnitudes and mixing analysis

Finally, we calculated the magnitudes of the temperature increase for

those events featuring a heat pulse. This heat pulse magnitude was

quantified as the largest temperature increase within 15 min occurring

at any time throughout the event. An interval of 15 min (14 min at

Hickey Run) was selected because the temperature increases of most

heat pulses lasted for approximately 15–30 min. We confirmed that

the magnitude of the 15 min temperature rise was not significantly

biased by the temporal resolution of the data set, by comparing the

calculated magnitudes of 15 min temperature changes at Hickey Run

and Carroll Creek at the supplied temporal resolution (2 and 5 min,

respectively) and for subsampled datasets at both sites. Our analysis

showed that aggregating to 15 min only resulted in a very small

underestimation of the heat pulse magnitude (less than 10%,

Figure S7). To identify the potential sources of the water contribu-

tions resulting in heat pulses, we additionally quantified the water

KNAPP and KELLEHER 5 of 14
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temperature of added runoff required to raise stream temperatures at

a given site by our quantified heat pulse magnitudes. For this purpose,

we performed a simple mixing analysis, explained further in Support-

ing Information S6.

3.2.4 | Relationship of water temperature patterns
to predictor variables

We assessed the influence of event characteristics on the differ-

ent temperature patterns using a bootstrap forest model and

logistic regression analysis. Both analyses were performed in JMP

Pro 16. In both analyses we assessed predictor variables

describing a wide range of storm event characteristics, metrics of

the precipitation input and its discharge response as well as the

pre-event conditions (Table 2). These predictors were selected

because they are hypothesized to either directly or indirectly cap-

ture the routing and response of urban rainfall–runoff processes.

The relationship between the different predictor variables was

additionally assessed through the calculation of Spearman's rank

correlation coefficients.

Because the predictors also include characteristics of the rain

events, we excluded from the analyses all events for which no precipi-

tation data were recorded or for which the identified precipitation

event incorrectly appeared to start after the first rise of the hydro-

graph (n = 268). This can happen if the precipitation event is highly

localized and occurs away from the rain gauge. We also excluded an

additional six events during which the calculated rainfall–runoff coef-

ficient was greater than 1, indicating possible complications with the

rainfall data. In total, this resulted in the exclusion of 274 events from

the analysis, meaning 403 storm events remained for the bootstrap

forest and logistic regression analyses. The exclusion was not biased

toward specific types of events, as we excluded 70 out of 222 events

without temperature change (32%), 166 out of 362 events with a

temperature increase (46%), and 38 out of 93 events with a tempera-

ture decrease (41%).

The bootstrap forest analysis is a type of predictor screening

that can be used to assess many different variables for their ability

to predict an outcome (Hastie et al., 2009), and thus provides

insights into the variables relevant for stream temperature patterns

as a whole. The bootstrap forest method estimates a response by

averaging predictions from multiple decision trees. Each tree is

developed using a bootstrap sample from the training data, which is

a random selection of observations with replacement. Here, the

bootstrap forest model was constructed using 100 decision trees for

each response variable to evaluate the relative contribution of each

predictor to the response. Response variables in this analysis were

the two categorical temperature patterns (general stream tempera-

ture change, and the temperature increase pattern), and also the

heat pulse magnitude.

A logistic regression analysis is similar to a linear regression analysis,

but applies to categorical rather than continuous response variables. It

can be used to model the relationship between explanatory (or predictor)

and response variables and assesses the probability of different out-

comes (in this case, the identified temperature patterns) as a function of

the explanatory variables. Parameter estimates determined for the differ-

ent explanatory variables provide information on the characteristics

deciding the type of stream temperature response. It thus allows dissect-

ing the relationship between individual stream temperature patterns and

predictor variables in more detail. Here we used a stepwise approach to

generate the output model, which successively excluded predictors with

the highest p-value, that is, the lowest predictive power, until the model

only included predictor variables with p-values <0.05. Separate logistic

regression analyses were run for the general stream temperature pat-

terns and the temperature increase patterns.

TABLE 2 A list of predictor (explanatory) variables assessed in the
bootstrap forest model and the logistic regression analyses.

Metric Unit Description

Antecedent conditions and event timing:

date (day) Julian Date—Day of year since 01-Jan

ToD (h) Time of day since midnight

T0 (�C) Stream temperature at baseflow before the

hydrograph rise

P4d (mm) Antecedent wetness as the total volume of

precipitation fallen in the 4 days prior to

the storm event

Q0 (mm/d) Discharge before the start of the

hydrograph increase

Hydrograph metrics:

trise (h) Time of rise—time between start and peak

of hydrograph

Qpeak (�) Discharge value at peak, normalized by the

mean discharge of the time series

ΔQ (mm/d) Discharge increase between baseflow and

peak flow

Qpeak=VQ (1/d) Peak discharge value related to total runoff,

this assesses the shape of the

hydrograph, with larger values indicating

shorter relative events.

Rainfall and input metrics:

train (d) Rainfall duration

Ip (mm/d) Rainfall intensity

C (�) Runoff coefficient

tresponse
a (h) Time between start of rain event and

hydrograph increase

tcentroid
a (h) Time between centroid of rain event and

centroid of hydrograph

Note: The predictor include a range of different characteristics of the pre-

event characteristics, the hydrograph, and the precipitation input, all

hypothesized to be related, either directly or indirectly, to stream

temperature responses to storm events.
aBoth metrics quantify lag times between rain and runoff, however, they

are only weakly correlated describing very different aspects of the lag,

which justifies including both as potential predictor variables.
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4 | RESULTS

4.1 | Stability of general temperature patterns and
temperature increase patterns

Across all sites and years, stream temperature did not change during 33%

of events (ΔST¼0), increased during 53% of events (ΔST >0), and

decreased during 14% of events (ΔST <0). The observed patterns were

mostly stable over the 3years, with the relative frequencies of the gen-

eral temperature response patterns similar in the summers of 2019,

2020, and 2021 at each site (Figure 2a). This was especially true for sites

with one dominant pattern (e.g., Hickey Run and Carroll Creek), whereas

sites with a greater variety of patterns also exhibited greater variability

across the years (e.g., Little Stone Mountain Creek, Cobbs Creek).

no ST

change ST

incre
ase ST

decre
ase

no ST

change ST

incre
ase ST

decre
ase

no ST

change ST

incre
ase ST

decre
ase

ST incre
ase

before Qheat pulse

ST incre
ase

with Q
ST incre

ase

after Q ST incre
ase

before Qheat pulse

ST incre
ase

with Q
ST incre

ase

after Q ST incre
ase

before Qheat pulse
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ase

with Q
ST incre

ase

after Q

F IGURE 2 (a) Relative frequency of general stream temperature response patterns to storm events across the years 2019 (blue), 2020 (red),
and 2021 (yellow). Responses vary greatly across sites but are relatively consistent over time. (b) Relative frequencies of different temperature
increase patterns. Heat pulses and stream temperature increases after discharge seem to be the most typical increase responses, and these
patterns are highly site-specific.
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We used dynamic time warping to further subset the different

stream temperature increase patterns. Most temperature increase

patterns consisted of either heat pulses (in 36% of all events with a

temperature increase) or a delayed increase in temperature relative to

the hydrograph (in 48% of all events with a temperature increase). An

increase in water temperature slightly before or at the same time as

the hydrograph rise occurred in only 15% of all events. For all further

pattern-based analyses of the temperature increase patterns (i.e., the

bootstrap forest and logistic regression analyses), we thus compared

the events with heat pulses to a lumped category of the other temper-

ature increase patterns featuring a more gradual response (ST increase

before, with and after Q).

The water temperature increase patterns were mostly site spe-

cific. Heat pulses were the dominant response at Little Stone Moun-

tain Creek, Cobbs Creek, and Carroll Creek, whereas temperature

typically increased with a delay to the hydrograph at Hickey Run,

Woodall Creek, and Doolittle Creek (Figure 2b). Heat pulse magni-

tudes varied from 0.2 to 6.8�C.

No relationship between the relative number of events with

stream temperature increases and the frequency of heat pulses

was observed. At both Hickey Run and Carroll Creek, the most

frequent general temperature pattern was a water temperature

increase. But at Hickey Run, nearly all of these were temperature

increases after the hydrograph increase, whereas the events at

Carroll Creek typically featured a heat pulse at the start of the

event. Hence it does not appear that a specific general stream

temperature patterns (no ST change/ST increase/ST decrease)

makes a specific temperature increase pattern (gradual or heat

pulse) more likely.

4.2 | Bootstrap forest analysis

The bootstrap analysis identified a range of characteristics related to

the hydrograph, precipitation, and the pre-event conditions as the

most relevant predictor variables for the general stream temperature

pattern (Figure 3a). In particular the time of rise (trise), the shape of the

hydrograph (Qpeak=VQ), the precipitation intensity (Ip), and the pre-

event baseflow temperature (T0) were identified as important predic-

tors. We note that some of these predictor variables are correlated

(Table S3), with a faster hydrograph increase (shorter trise) typically

coinciding with higher precipitation intensities and narrower hydro-

graphs (higher Qpeak=VQ and Ip values). A higher pre-event baseflow

temperature (T0) is also related to stronger precipitation intensities

(Ip). These correlations are not always strong, but in all cases statisti-

cally significant. While these significant but weak to moderate correla-

tions exist among these predictors, we have not excluded these

predictors, as we are interested in a first order assessment of the key

empirical predictors of water temperature storm responses.

Hydrograph characteristics were the most important predictors

for distinguishing the stream temperature increase pattern

(i.e., distinguishing between heat pulses and more gradual stream tem-

perature increase patterns, Figure 3b). In particular the shape of the

hydrograph (Qpeak=VQ), the discharge change (ΔQ) and peak discharge

(Qpeak) played an important role. Additionally, metrics of antecedent

conditions (the pre-event baseflow value, Q0) and the event timing

(the time of day, ToD) played a role in determining the temperature

increase pattern.

Conversely, the types of predictors relevant for the heat pulse

magnitude (Figure 3c) were related to a mix of predictor variables,

F IGURE 3 Results of the bootstrap forest analysis. The bars quantify the relative contribution of each predictor variable to the bootstrap
forest model for the general stream temperature change pattern (a; no T change, ST increase, and ST decrease), the temperature increase pattern
(b; heat pulse, gradual ST increase), and for the heat pulse magnitude (c). The most important predictors, which contribute jointly at least 50% to
the overall outcome, are coloured, and the colouring corresponds to the type of characteristic described in Table 2 (green: antecedent conditions
and event timing; blue: hydrograph metrics; red: precipitation input metrics).
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including the runoff coefficient (C), the time of rise of the hydrograph

(trise), and the pre-event stream temperature (T0). The largest tempera-

ture increases were observed for low runoff coefficients and fast dis-

charge increases (Figure S9a,b). However, this part of the analysis

should be treated with caution, given that the dataset only includes

71 events with heat pulses. Although bootstrap forest is a robust algo-

rithm that can handle small samples, it is typically recommended that

the dataset is about 10 times the number of variables, which is not

the case for the heat pulse analysis.

In consequence, the predictors influencing the type of response

(Figure 3a,b) differed from those most important for the magnitude of

the heat pulse response (Figure 3c). For example, how fast the hydro-

graph increases (i.e., the time between first increase in discharge and

the discharge peak, trise) was highly relevant for the general tempera-

ture pattern and the heat pulse magnitude, but much less important

for the temperature increase pattern. One can also identify predictor

variables that appear to be of little relevance in this study. These are

largely related to antecedent conditions (like P4D), the event itself

(e.g., date, although it should be noted that only events during the

months from May to September were assessed here) and rainfall–

runoff metrics (lag times like tcentroid and tresponse).

It should be noted that a bootstrap forest analysis can identify

the most important predictors influencing different response vari-

ables. It, however, does not make any statements regarding the direc-

tion of the relationship between the predictor and response variables,

merely identifying the dominant influencing variables.

4.3 | Logistic regression analysis

The logistic regression analyses were able to correctly identify the

general stream temperature patterns of 306 out of 403 events (76%),

and the correct temperature increase pattern in 144 out of 196 events

(73%). The relative amount of correctly identified events for each type

of event ranged from 15% to 86%. Stream temperature decrease pat-

terns had the lowest probability of correct identification at 15%, likely

due to the generally small number of events featuring this pattern.

Thus, relationships to event characteristics identified for this particu-

lar temperature pattern should be treated with caution. Conversely,

all other patterns were correctly identified with a probability of at

least 52% (Table S1).

The model predicting the general stream temperature change

included nine explanatory variables with p-values <0.05 describing a

wide range of characteristics, including aspects of the hydrograph

(trise, ΔQ and Qpeak=VQ), precipitation event (Ip, tresponse), and timing

and antecedent conditions (T0, Q0, date, and ToD). Only six explana-

tory variables were required for the model distinguishing between dif-

ferent patterns of temperature increase (Table 3), which were largely

related to the hydrograph (Qpeak=VQ, ΔQ) and antecedent and timing

characteristics (T0, Q0, date, and ToD).

The results of the logistic regression analyses illustrate the influ-

ence of different event characteristics on the general temperature

responses and temperature increase patterns (Figure 4). Events

without a stream temperature change were characterized by slow and

smaller increases in the hydrograph (long trise, small ΔQ) after low-

intensity storms (small Ip). This suggests that watershed sources were

contributing more slowly to streamflow, and likely stemming from fur-

ther upstream, with such a type of response only marginally changing

the stream temperature during the storm event. Conversely, events

with a decrease in stream temperature were more likely to occur

when the baseflow temperature was already substantially elevated

(high T0), for example, on warmer days. These events showed a large,

but slower and less flashy responses (higher tresponse). Consequently, a

higher pre-event temperature of the streamwater (T0), and a longer

lag time between the precipitation event and streamflow response

(tresponse) increased the likelihood of a temperature decrease. Finally,

events with temperature increases typically featured narrow, peaked,

and fast-rising hydrographs (high Qpeak=VQ, short trise) with substantial

changes in runoff and starting at low baseflow values (high ΔQ, small

Q0) following high-intensity precipitation (high Ip). Often, these events

occurred in the late afternoon, evening and during the night. The rank

correlation analysis (Table S3) revealed only a weak correlation

between the time of day and precipitation intensity, meaning that

intense thunderstorms in the later hours of the day are not a key cor-

relate for the observed increases in water temperature.

Disentangling events with a temperature increase further, we

identified hydrograph metrics as particularly relevant (Figure 4b). A

heat pulse was most likely if the runoff change (ΔQ) was high, but the

hydrograph was broad (small Qpeak=VQ), and the pre-event water tem-

perature was low (small Tini). Heat pulses were also more likely in the

afternoon of late summer days (high date and ToD).

In logistic regression analyses, the parameter values quantify the

effect of a one-unit change in the explanatory variable. However,

the absolute parameter values should not be compared among each

other, because the different explanatory variables have variable

ranges (e.g., 0 ≤ C ≤ 1, 11.8�C ≤ T0 ≤ 30.3�C, whereas

0 mm ≤ P4d ≤ 150 mm in this dataset). Instead, their statistical signifi-

cance provides a useful measure of their importance. (Comparability

of parameter values is possible through standardization of parameter

ranges before the analysis, the results of which are shown in

Table S2.)

5 | DISCUSSION

Stream temperature changes associated with storm events are

diverse, both in their timing relative to streamflow, and in regard to

the shape these temperature changes take. Importantly, stream tem-

perature responses to storm events are not limited to gradual temper-

ature increases, but may take different shapes. These may differ from

event to event, and can consist of a rapid, short temperature increase

and drop at the start of the hydrograph (i.e., a ‘heat pulse’), or take
the shape of a more gradual temperature increase or decrease.

The importance and direction of the different event characteris-

tics in predicting the various stream temperature patterns is schemati-

cally illustrated in Figure 4. The most important predictors for the
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general stream temperature response patterns were related to

the shape of the hydrograph (e.g., with a slow rise and small increase

in discharge most likely not resulting in a temperature change) and to

the rainfall and input metrics (e.g., with stronger precipitation intensi-

ties favouring a temperature increase). Conversely, a high pre-event

stream temperature and a long response time between precipitation

input and hydrograph response was related to a temperature

decrease.

The day of year and time of day were also linked to the type

of temperature response. Events with temperature increases were

more likely to occur in the afternoon/evening, whereas stream

temperature decreases typically occurred earlier in the year

(before the middle of July, day of year 200). The finding that time

of day is linked to the occurrence of temperature increases is in

agreement with work by Zahn et al. (2021), who quantified heat

pulses across 100 watersheds in the midwestern and eastern US,

and Hester and Bauman (2013), who observed water tempera-

tures near urban storm sewer outfalls in Virginia, USA. Both stud-

ies observed a greater frequency and magnitude of temperature

increases in the afternoon when pre-event discharge and pre-

event temperatures were higher. These two variables were signifi-

cantly related to both date and ToD in our study (Table S3). How-

ever, no studies to our knowledge have commented on relationships

between time of year and likelihood of specific temperature patterns,

except to identify that such behaviours are more likely to occur in the

summer as opposed to cooler times of the year. Though we did not

include a predictor describing air temperature within our analysis, we

indirectly accounted for seasonal and diel variations in solar radiation,

which in turn drives air temperature and stream temperature, using

two metrics, date and ToD. Thus, our findings are also in alignment

with Somers et al. (2016), who found that heat pulse magnitude was

somewhat correlated with the air temperature preceding the event.

Air temperature is likely to be a key predictor of heat pulse magni-

tude; however, as our analysis relied on publicly available datasets, we

do not have observations of air temperature at each of our sites.

Given that air temperatures vary widely within urban areas, we opted

to use these static predictors instead of observations of air tempera-

tures, as it was not possible for us to guarantee these observations

from other locations would be representative of behaviour at our

particular site.

5.1 | Importance of site versus event
characteristics

The initial analysis of the relative frequency of different event types

revealed that a wide variety of event types occurred at most sites

(Figure 2a), and only two sites showed a clear preference for a tem-

perature increase over the other two general stream temperature pat-

terns. This suggests that the general type of stream temperature

response is more strongly linked to event characteristics than site

characteristics.

When it comes to the type of temperature increase, however,

individual sites appeared to display a clear preference for specific pat-

terns (Figure 2b), either exhibiting a very rapid increase in stream tem-

perature at the start of the event (a ‘heat pulse’), or a much more

gradual, delayed temperature increase. This preference for specific

responses was consistent across the 3 years of data analysed here. An

analysis of the importance of site characteristics, however, is beyond

the scope of this paper, which focuses more specifically on response

across events. It thus remains to be seen whether such patterns would

hold at broad scales, which would require a comparison of a

TABLE 3 Results of the logistic regression analysis for (a) the general stream temperature pattern, and (b) the temperature increase pattern
intended to aid the interpretation of Figure 4.

(a) General stream temperature pattern (b) Stream temperature increase pattern

No ST change $ ST
decrease

No ST change $ ST
increase

ST increase $ ST
decrease

Heat pulse $ gradual increase
pattern

trise 0.69 ± 0.18* 0.87 ± 0.16* �0.19 ± 0.17 Qpeak=VQ �0.05 ± 0.01*

T0 �0.23 ± 0.09* 0.17 ± 0.06* �0.41 ± 0.08* T0 �0.31 ± 0.08*

Ip �0.16 ± 0.06* �0.20 ± 0.06* 0.04 ± 0.04 ΔQ 0.00 ± 0.00*

ΔQ �0.01 ± 0.00* �0.01 ± 0.00* 0.00 ± 0.00 date 0.02 ± 0.01*

tresponse �0.14 ± 0.06 0.04 ± 0.05 �0.18 ± 0.05* ToD 0.07 ± 0.03*

date 0.02 ± 0.01* 0.01 ± 0.00 0.01 ± 0.01* Q0 0.19 ± 0.10

ToD �0.05 ± 0.03 �0.07 ± 0.02* 0.01 ± 0.03

Q0 0.10 ± 0.09 0.21 ± 0.10* �0.11 ± 0.08

Qpeak=VQ �0.03 ± 0.01 �0.03 ± 0.01* 0.01 ± 0.01

Note: The analysis compares two categories in each column, and the parameter estimate indicates the increased probability of a certain outcome with

changing explanatory value. For example, the parameter estimate of 0.69 for trise in the first column indicates that the ‘no ST change’ pattern becomes

more likely compared to the ‘ST decrease’ pattern if trise increases. In logistic regression without standardized parameter values, the parameter values

quantify the effect of a one-unit change in the explanatory variable; in consequence, their statistical significance (variables with p-value <0.05 are indicated

by an asterisk) can be used to assess their relative importance. Comparability of regression values is possible through standardization of the parameter

ranges before the analysis, the results of which are shown in Table S2.
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substantially larger number of sites than the six investigated here.

While other studies have investigated how site characteristics, such

as shading, stream width, and drainage area, are related to

temperature changes (Nelson & Palmer, 2007; Somers et al., 2013;

Wissler et al., 2022; Zahn et al., 2021), our study uniquely links these

behaviours to event characteristics and identified hydrograph metrics

F IGURE 4 Illustration of the results of the logistic regression analyses for (a) the general temperature change pattern, and (b) the temperature
increase pattern. The figure illustrates the relevant explanatory variables identified for each pattern, and the type of event characteristics most
strongly associated with each temperature pattern. Predictor variables are coloured to indicate the characteristic types outlined in Table 2. The
variable ToD is represented by a small clock (with AM and PM distinguishing between ‘early in the day’ and ‘late in the day’), and the variable
date by a sun (small yellow sun indicating early in the year and a large orange sun indicating later in the year).
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(e.g., Qpeak=VQ, ΔQ) as important predictors for the temperature pat-

terns (Figures 3 and 4).

Nevertheless, the dominance of specific temperature patterns at

some sites suggests that the response pattern may at least in part be

site specific. In consequence, stream temperature patterns likely

depend at least partially on local site characteristics, reflecting interac-

tions between local climate, watershed and reach characteristics, and

local weather conditions. As the literature most commonly attributes

heat pulses to warm runoff from storm sewers (with potential for

combined sewer overflows to also play a role), information on the

presence of stormwater and combined sewer overflow locations

would also be of interest when considering site specific patterns.

While our data should not be used to interpret the importance of

land cover for specific temperature patterns, our findings do point to

the relevance of landscape architecture and land cover at the local

scale. In spite of the (semi-)urban character of all sites analysed here,

the sites differ substantially with respect to the spatial distribution of

forested and impervious areas within the watershed. For instance,

while some watersheds contain forested buffer strips (of varied length

and width) along the stream, others have a larger, continuous area

with forest cover away from the channel or in the upstream area. A

wealth of literature has spoken to the value of forested buffers for

stream temperature (Hewlett & Fortson, 1982; Moore et al., 2005;

Somers et al., 2013; Sweeney & Newbold, 2014), and previous work

has shown that the location of imperviousness will influence stream-

flow response (Roodsari & Chandler, 2017). The local-scale land cover

is thus likely to have an important effect on short-term stream tem-

perature responses during storm events.

5.2 | Comparison of bootstrap and logistic
regression results

The results of the bootstrap and logistic regression analyses are gen-

erally comparable and both analyses identify similar predictor vari-

ables that show a link between stream temperature response and

hydrologic behaviour. For example, trise, Ip, and Qpeak=VQ, were found

to be important for distinguishing general stream temperature pat-

terns in both analyses. In addition, the initial water temperature (T0)

was also a key explanatory variable for both types of analyses. How-

ever, the logistic regression analysis provides more detail on the rele-

vance and direction of the parameters for specific stream temperature

patterns compared to the bootstrap forest analysis.

Nevertheless, some results of the two analyses differ. For exam-

ple, the result of the logistic regression analysis identifies tresponse, date

and ΔQ as relevant parameters for the general stream temperature

patterns, while their relevance is deemed low based on the bootstrap

forest outcomes. This may in part be due to a correlation of these

parameters with other highly relevant characteristics (e.g., ΔQ is highly

correlated with Qpeak=VQ and Ip, which are identified in both analyses,

and date and tresponse are correlated with T0 and Q0, which are again

identified as relevant in various analysis aspects). Thus, their

explanatory power is similar in the bootstrap forest analysis and one

variable can be replaced by the other.

Importantly, we emphasize that, across these sites, we cannot link

any of the observed patterns to only one or two specific predictor vari-

ables. Instead, a number of predictors together—characterizing several

aspects of the storm event—determine the type of observed tempera-

ture response. This is illustrated by the largely overlapping ranges of

the violin plots in Figure S10, which demonstrate that different patterns

are simply more likely to occur within a given predictor range, but that

the resulting pattern is determined by several predictors in concert.

5.3 | Stream temperature patterns and water
release processes

Our analysis identified distinct stream temperature responses to

storm events, and we were able to link these patterns to event char-

acteristics (Figure 4). This indicates that water release processes are

important drivers of stream temperature response patterns. Urban

infrastructure is typically designed to rapidly route water to the sewer

network to avoid flooding, and it appears logical that specific stream

temperature responses may be related to event- and site-specific

water sources contributing to streamflow. No changes in stream tem-

perature are observed in the case of a slow rise in the hydrograph fol-

lowing a low-intensity precipitation event (Figure 4a), that is, these

discharge increases may be caused by the slow seeping of soil water

or groundwater into the channel at a rate that is too slow to substan-

tially or quickly change the stream temperature. Stream temperature

increases, on the other hand, are observed during events with quick

and substantial discharge increases causing narrow and peaked hydro-

graphs (Figure 4a), indicating that substantial amounts of surface run-

off or water from the shallow subsurface are translated to the stream

within a short amount of time. Finally, decreases in stream tempera-

ture are observed if response times between the precipitation input

and hydrograph response are long and the pre-event stream tempera-

ture is high (Figure 4a). This pattern potentially implies the translation

of larger amounts of water from upstream areas toward the gauge,

though confirming the processes that generate such behaviour would

require further monitoring and potentially stream temperature model-

ling. Similarly, the presence and absence of heat pulses seems to be

linked to event characteristics, especially those describing the shape

of the hydrograph (Figure 4b). This is particularly striking, since the

heat pulse typically occurs very early and usually before any substan-

tial change in flow has occurred, indicating that specific water release

processes may trigger both a specific hydrograph shape as well as a

heat pulse response.

The strong link between event characteristics and temperature

patterns indicates the potential for stream temperature as inexpensive

tracers for water sources and pathways in urban systems. However,

further research is needed to disentangle the various empirical rela-

tionships and reveal potential physical controls on how (warm) water

is conveyed to streams in urban systems.
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5.4 | Prevalence and magnitude of heat pulses

Heat pulses represent a specific type of stream temperature increase,

with a rapid rise in stream temperature at the very start of the storm

event, followed by a subsequent temperature drop usually occurring

before peak runoff is reached (Figure 1b). Given that heat pulses typi-

cally occur at the very start of an event, at a time when the discharge

increase is yet marginal, the added runoff must be quite warm to cre-

ate such a strong temperature increase. To estimate the temperature

of this added runoff, we performed a simple mixing analysis for the

events in 2019 with heat pulses at Carrol Creek (11 events between

May 3 and August 28), Cobbs Creek (10 events between May 28 and

September 4), and Little Stone Mountain Creek (4 events between

June 11 and July 17). This mixing analysis showed that the added

water during a heat pulse had an average temperature of around 24�C

(assuming no change in baseflow contribution) with a range from 19.5

to 31.0�C at Carroll Creek, 19.3 to 27.8�C at Cobbs Creek, and 22.7

to 26.7�C at Little Stone Mountain Creek (Section S6 in the Support-

ing Information). The highest of these temperatures were calculated

for events in July, August, and early September, when air temperature

was likely very warm. Based on the calculated temperature of these

added water contributions, we can pose some possible hypotheses

regarding their origin that could be tested via field observations. First,

we point out that these temperatures are likely too warm to indicate

groundwater contributions or direct routing of same-event precipita-

tion to the stream. When considering possible sources, all sources of

water to the stream should be considered, including point sources

(e.g., storm sewers and other sources of effluent) and diffuse

sources that supply water to the stream. As observed in other studies,

in many cases heat pulses are observed to be generated by contribu-

tions from storm sewers, as was observed by Somers et al. (2013) and

Hester and Bauman (2013). Alternatively, heat pulses may result from

contributions of runoff or water ponded on near-stream impervious

surfaces (though most cities work to eliminate such areas) that has

been heated by hot pavement (Omidvar et al., 2018), stormwater

management ponds or detention basins (Sabouri et al., 2016), or

wastewater treatment plants (e.g., Beganskas & Toran, 2021). It also

remains unclear whether warmer water in the shallow subsurface that

has been heated in the lead up to the event and entering the stream

with the first flush of precipitation, could also contribute to these

responses. However, further research is needed to identify the exact

water sources of these contributions, and crucially, whether such

mechanisms may differ across sites.

6 | CONCLUSIONS

In this study we analysed the stream temperature response during

403 storm events across three summers and six (semi-)urban catch-

ments. Our results illustrate that stream temperature responses to dis-

charge increases during storm events can be varied and range from

temperature decreases to temperature increases. The type of

response is substantially influenced by storm event characteristics, in

particular characteristics of the hydrograph and of precipitation,

whereas pre-event conditions appear to be less relevant. We also

demonstrate that different sites are prone to specific types of stream

temperature increase patterns, typically either featuring a rapid heat

pulse at the start of the event, or a much more gradual temperature

increase with a delay relative to the hydrograph increase.

The dependence of stream temperature responses to event char-

acteristics indicates that different temperature patterns may be

caused by different sources of water contributing to streamflow dur-

ing storm events. The mixing of sources, and the timing of this mixing

process, likely causes a unique stream temperature pattern. Even

though we can speculate about the origin of the water sources con-

tributing to streamflow based on the identified relationships, the exact

processes remain uncertain. Further experimental data and numerical

modelling are needed to disentangle these different contributions and

their spatial origin in the catchment. However, if successful, this

would enable the use of stream temperature as an inexpensive but

effective tracer of water sources and pathways in urban systems,

which are typically difficult to assess (Oswald et al., 2023).

Understanding sources and their likely impact on stream tempera-

ture is also important from a perspective of water quality and biogeo-

chemical functioning. As shown here, shorter hydrograph rise times are

linked to stream temperature increases during storm events. However,

causal mechanisms linking urbanization, increasing fraction of impervi-

ous surfaces, pathways of water in urban catchments, and the occur-

rence and magnitude of heat pulses are still under explored. Further

clarifying such links is not only important in the context of land cover

change, but also when considering impacts from changing climate,

which itself will likely lead to increases in air and water temperatures in

the next century and further threaten ecosystem functioning.
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