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a b s t r a c t

We prove that the sub-Riemannian exponential map is not injective in any
neighbourhood of certain critical points. Namely that it does not behave like the
injective map of reals given by f(x) = x3 near its critical point x = 0. As a
consequence, we characterise conjugate points in ideal sub-Riemannian manifolds
in terms of the metric structure of the space. The proof uses the Hilbert invariant
integral of the associated variational problem.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In their 1932 landmark paper, Morse and Littauer [18] showed that the exponential map expp :
om(expp) ⊆ Tp(M) → M , based at a point p of an analytic Finsler manifold M , is never injective
n any neighbourhood of critical value v ∈ Tp(M). The critical values of the exponential map are also
alled conjugate vectors at p, while the image expp(v) ∈ M of a conjugate vector v is what is usually
alled a conjugate point to p (along the geodesic curve t ↦→ expp(tv). Morse and Littauer showed that
onjugate points occur precisely when certain families of extremals (called fields of extremals) fail to cover
he neighbourhood of these points in a one-to-one manner. Savage [22] extended this result to smooth Finsler
anifolds, while Warner [26] gave a different proof of the same result by obtaining normal forms of the

xponential map near those conjugate vectors, at which Whitney’s singularity theory can be applied.
The present work aims to extend this result to sub-Riemannian geometry. There are important differences

etween Riemannian and sub-Riemannian geometry that need to be taken into account. We explain some
f them in simple terms here; they will be detailed rigorously afterwards.
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The geometry of a sub-Riemannian manifold M is better described from the Hamiltonian point of
view. Riemannian geodesics solve a second-order differential equation while the sub-Riemannian geodesic
equation is a Hamiltonian system on the cotangent bundle T∗(M). Pontryagin’s maximum principle, stated
in Theorem 6, shows that a sub-Riemannian length minimiser γ : [0, T ] → M has a lift λ : [0, T ] → T∗(M)
that is either normal, or else is abnormal. A normal lift is one that satisfy the sub-Riemannian geodesic
equation. Abnormal lifts on the other hands satisfy another non-differential condition. A geodesic γ is normal
(resp. abnormal) if it has a normal (resp. abnormal) lift. In general, a curve γ could be both normal and
abnormal, although a normal lift λ of γ must be unique. A geodesic can be abnormal and not normal, we
say that it is strictly abnormal. A geodesic γ that is normal but not abnormal is said to be strictly normal.
A strictly normal geodesic γ is therefore not abnormal, but this does not mean that the restriction of γ to
a subsegment of [0, T ] cannot be abnormal. A geodesic γ that is normal on every subsegment is said to be
strongly normal.

Abnormal geodesics are still not completely understood, and there are famous open problems related to
them. It is still unknown in general if abnormal geodesics are always smooth, and if the size of the set of
points that can be reached by abnormal curve starting from a given point is a null set. These are the so-called
regularity and Sard conjectures in sub-Riemannian geometry. In this work, we will mainly deal with normal
geodesics. A sub-Riemannian manifold that does not have non-trivial abnormal geodesics is said to be ideal.

The sub-Riemannian exponential map is the projection of the flow of the sub-Riemannian equation, that
is to say

expp : Dom(expp) ⊆ T∗
p(M) → M : λ0 → γ(1),

where γ : [0, 1] ↦→ M is the projection of the solution λ : [0, 1] → T∗(M) to the sub-Riemannian geodesic
equation with initial condition λ(0) = (p, λ0). The curve t ∈ [0, 1] ↦→ expp(tλ0) is a normal geodesic. A
critical value of expp is defined in the same way as in Riemannian geometry, a covector λ0 is conjugate if
dim(Kerdλ0expp) ̸= 0. The order of conjugacy, or multiplicity, of λ0 is precisely defined as the dimension of
Ker(dλ0expp). Our goal is to show that, under some generic and nondegenerate conditions, the covector λ0 is
a critical value of expp if and only if expp is not injective in any neighbourhood of λ0 ∈ T∗

p(M), generalising
Morse and Littauer’s theorem to the sub-Riemannian exponential map. We describe in a few words those
generic and nondegenerate conditions that we will assume for our main result.

In our previous work [8], we showed that the sub-Riemannian exponential map satisfies a continuity
property, similar to what we have in Riemannian geometry. If λ0 ∈ T∗

p(M) is a conjugate covector, then there
is a neighbourhood U of this covector such that the following holds: for all λ′

0 ∈ U , the number of conjugate
covectors, counted with their multiplicities, on the intersection of U with the straight line passing through
the origin and λ′

0 is equal to the multiplicity of λ0. Following Warner [26, Section 3], we say that a conjugate
covector λ0 is regular if, in a neighbourhood U of this covector, there exists precisely one conjugate covector,
which, due to the continuity property, has the same multiplicity as λ0, on every straight line connecting the
origin and the neighbourhood U . A conjugate vector that is not regular will be said to be singular.

Furthermore, and unlike what happens in Riemannian geometry, the multiplicity of a critical value λ0 of
expp is usually not equal to the order of the root t = 1 of the map

[0, 1] → R : t ↦→ det(dtλ0expp).

It is typically smaller. It will be key to our argument to nevertheless assume that this order is still finite.
We will prove in Theorem 29 that the subset of conjugate vectors in T∗

p(M) is a smooth hypersurface in a
small neighbourhood of a conjugate covecter λ0 that has finite order which is also of independent interest.

Theorem 1. Let M be a sub-Riemannian manifold and p ∈ M . If λ0 ∈ Dom(expp) ⊆ T∗
p(M) is a strongly

normal and regular conjugate covector of finite order, then the exponential map expp is not injective in any
neighbourhood of λ .
0
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λ
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Theorem 1 is a refinement of the following known fact in Riemannian and sub-Riemannian geometry: if
the structure does not admit abnormal extremals, and if γ is a length-minimising geodesic with conjugate
endpoints p = γ(0) and q = γ(1), then on any neighbourhood V ⊆ M of q the exponential map
expp|exp−1

p (V ) : exp−1
p (V ) → M is not injective (see [1, Theorem 8.73 and Corollary 8.74]). A priori, this

statement does not exclude the possibility that the pairs of geodesics connecting a point p with certain
points q ∈ V may be distant from each other at intermediate times. Theorem 1 (and analogously the
Morse–Littauer–Savage theorem in Riemannian geometry) demonstrates this.

Already in Riemannian geometry, it does not seem possible to obtain Theorem 1 in full generality without
going through a complex proof (see the discussion in Section 4.3 alongside the description of a flawed,
simpler proof present in the literature). Only in the next very specific case (see Theorem 39), we know
of a more straightforward proof. Let Cut(p) denote the cotangent cut locus, i.e. the set of initial covectors
corresponding to geodesics that are minimising up to time t = 1 but not minimising up to time t = 1 + ε,
for any ε > 0. The subset Cut1(p) of Cut(p) consists of the covectors λ0 for which there exists another

′
0 ∈ Cut(p) such that expp(λ0) = expp(λ′

0).

heorem 2. Let M be an ideal sub-Riemannian manifold, and p ∈ M . If λ0 ∈ Cut(p) \ Cut1(p), then the
exponential map expp fails to be injective in any neighbourhood of λ0 ∈ T∗

p(M).

Note that in the previous statement, we do not need to assume that λ0 is a regular conjugate covector,
or that it has finite order. This is because here we do not need to prove that the conjugate locus is a smooth
hypersurface of T∗

p(M) to conclude, contrary to our proof of Theorem 1.
The local non-injectivity of the sub-Riemannian exponential map at critical points has applications in

metric geometry. In [23] Shankar and Sormani introduced different metric definitions of conjugate points
along geodesics. If γ : [0, 1] → X is a geodesic in a metric space X, then the point q := γ(1) is said to be
one-sided conjugate to p := γ(0) along γ if there exists a sequence of points (qn) converging to q such that
for every n, there are two distinct geodesics γ1

n and γ2
n joining p to qn and both converging to γ. There are

variants of this definition, that we recall in Definition 36, which will give meaning to q being symmetrically
conjugate, or unreachably conjugate, to p along γ.

We prove that when our version of Morse–Littauer–Savage theorem applies, for example in the ideal case,
then there is a correspondence between these metric notions of conjugate points and the differential one.
This shows that if discrepancies in metric notions of conjugate points are to be found in sub-Riemannian
geometry, abnormal segments or infinite order of conjugate points must play a role.

Theorem 3. Let M be an ideal sub-Riemannian manifold, γ : [0, 1] → M be a normal geodesic such that
its initial covector λ0 is regular conjugate and has finite order, and denote p := γ(0) and q := γ(1). Then,
the following statements are equivalent:

(i) q is conjugate to p along γ;
(ii) q is one-sided conjugate to p along γ;
(iii) q is symmetrically conjugate to p along γ.

Furthermore, if p and q are unreachable conjugate points along γ, then q is also conjugate to p along γ.

The paper is organised as follows. In Section 2, we summarise notions from sub-Riemannian geometry that
will be important in our argument. The family of extremals is introduced in Section 3.1 while in Section 3.2
we define the Hilbert integrals. In Section 3.3, we address the regularity of the sub-Riemannian conjugate
locus. This result is a contribution to sub-Riemannian geometry of independent interest. Finally, we prove
Theorem 1 in Section 3.4 and discuss Theorem 3, as well as possible future work and related open questions,

in Section 4.
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2. Preliminaries

We begin with a general description of sub-Riemannian geometry, one that includes rank-varying
tructures. Nowadays, there are many good references on sub-Riemannian geometry. We refer the reader
o the seminal paper [25], as well as the reference books [11,15]. In this work, we will adopt the point of view
nd notations from [1].

A sub-Riemannian structure is a connected manifold M equipped with a set of smooth global vector fields
X1, . . . , Xm called the generating family. To be more precise, we are defining what is sometimes called a free
sub-Riemannian structure (see [1, Chapter 3]). However, the most general definition of sub-Riemannian
structure is always equivalent to a free one, as shown in [1, Corollary 3.27].

The distribution at a point p ∈ M is Dp := span{X1(p), . . . , Xm(p)}. The rank of the sub-Riemannian
tructure at p ∈ M is rank(p) := dim(Dp). Observe that in our definition, a sub-Riemannian manifold may
e rank-varying. An inner product on Dp is induced by the polarisation formula applied to the norm

∥u∥2
Dp

:= min
{

m∑
k=1

u2
i

⏐⏐⏐ m∑
k=1

uiXk(p) = u

}
.

A curve γ : [0, T ] → M with initial value γ(0) = p ∈ M is horizontal if there exists u ∈
2([0, T ],Rm), called a control, such that γ̇(t) =

∑m
k=0 uk(t)Xk(γ(t)) for almost every t ∈ [0, T ]. In fact,

rom Carathéodory’s existence theorem, there exists a unique maximal Lipschitz solution to the Cauchy
roblem {

γ̇(t) =
∑m
k=0 uk(t)Xk(γ(t))

γ(0) = p
(1)

or every u ∈ L2([0, T ],Rm) and p ∈ M .
The sub-Riemannian length and the sub-Riemannian energy of γ are defined by

L(γ) =
∫ T

0
∥γ̇(t)∥Dγ(t)dt, J(γ) = 1

2

∫ T

0
∥γ̇(t)∥2

Dγ(t)
dt. (2)

In the case where every two points can be joined by a horizontal curve, we have a well-defined distance
function on M .

Definition 4. The distance function of a sub-Riemannian manifold M , also called the Carnot-Carathéodory
istance, is defined by

d(x, y) := inf{L(γ) | γ : [0, T ] → M is horizontal and γ(0) = x and γ(T ) = y}.

In this work, we assume that the sub-Riemannian structures satisfy Hörmander’s condition (introduced
by Hörmander in [12]), that is to say Liep(D) = Tp(M) for all p ∈ M , where Liep(D) is defined as the
smallest Lie algebra equipped with the Lie bracket of vector fields that contains D. In that case, we also
say that D is bracket-generating. This is motivated by the well-known result from the independent works of
Chow [9] and Rashevsky [21] (see also [1, Theorem 3.31]).

Theorem 5 (Chow–Rashevsky Theorem). Let M be a sub-Riemannian manifold such that its distribution D
is C∞ and satisfies the Hörmander condition. Then, (M,d) is a metric space and the manifold and metric
topology of M are equivalent.

On the space of controls L2([0, T ],Rm), we can define a length functional, as well as a corresponding energy
functional

L(u) :=
∫ T

∥u(t)∥Rmdt, J(u) := 1 ∫ T

∥u(t)∥2
Rmdt.
0 2 0
4
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Given an horizontal curve γ : [0, T ] → M , we define at every differentiability point of γ the minimal control
u associated with γ

u(t) := arg min
{

∥u∥Rm | u ∈ Rm, γ̇(t) =
m∑
k=0

ukXk(γ(t))
}
.

he relationship with the functionals defined in (2) is the following: L(γ) = L(u) and J(γ) = J(u) when u

s the minimal control associated with γ. Through the Cauchy problem (1), it can be seen that finding a
ength minimiser for L among the horizontal curves with fixed endpoints, where γ(0) = p and γ(T ) = q,
s equivalent to finding a control that minimises the length functional L among all the controls for which
he associated path connects points p and q. Furthermore, we have the following classical correspondence:
horizontal curve γ : [0, T ] → M joining p to q is a minimiser of J if and only if it is a minimiser of L and

s parametrised by constant speed, see [1, Lemma 3.64]. Therefore, it is also equivalent to finding a control
hat minimises the energy J among all the controls for which the associated path connects points p and q,
his is the sub-Riemannian energy minimisation problem.

In metric geometry, a length minimiser that is parametrised by constant speed is often called a minimising
eodesic, while a geodesic is a curve that is only locally length minimising, i.e. it is a length minimiser
etween every pair of points close enough in its image. Because of the lack of a torsion-free metric connection,
e cannot have a geodesic equation through a covariant derivative. Rather, sub-Riemannian geodesics are
haracterised via Hamilton’s equations. The Hamiltonian of the sub-Riemannian structure is defined by

H : T∗(M) → R : λ ↦→ H(λ) := max
u∈Rm

(
m∑
k=1

uk⟨λ,Xk(π(λ))⟩ − 1
2

m∑
k=1

u2
k

)
. (3)

The Hamiltonian H may be written in terms of the generating family of the sub-Riemannian structure
(X1, . . . , Xm) as follows

H(λ) = 1
2

m∑
k=1

hk(p, λ0)2, ∀λ ∈ T ∗(M),

here hk(p, λ0) := ⟨λ0, Xk(p)⟩. For p ∈ M , we will also write Hp for the restriction of H to the cotangent
pace T∗

p(M). The following result can also be viewed as an application of Pontryagin’s Maximum Principle
rst proved by Pontryagin in [20]. It provides a necessary condition for a control to be a solution to the
ub-Riemannian energy minimisation problem.

heorem 6 (Pontryagin’s Maximum Principle). Let γ : [0, T ] → M be a horizontal curve which is a length
inimiser among horizontal curves, and parametrised by constant speed. Then, there exists a Lipschitz curve
(t) ∈ T∗

γ(t)(M) such that one and only one of the following is satisfied:

(N) λ̇ = −→
H (λ), where −→

H is the unique vector field in T∗(M) such that σ(·,−→H (λ)) = dλH for all λ ∈ T∗(M)
and σ denotes the canonical symplectic form on the cotangent bundle T∗(M);

(A) σλ(t)(λ̇(t),∩nk=1ker(dλ(t)hk)) = 0 for all t ∈ [0, T ].

oreover, in case (A), we have λ(t) ̸= 0 for every t ∈ [0, T ].

If λ is a curve in T∗(M) that satisfies (N) (resp. (A)), we will also say that λ is a normal extremal
resp. abnormal extremal). The same terminology is used for the corresponding curve γ = π(λ) and for the

minimal control associated to γ. Here, the map π : T∗(M) → M denotes the bundle projection. We note
hat an extremal could be both normal and abnormal. A normal trajectory γ : [0, T ] → M is called strictly
ormal if it is not abnormal. If, in addition, the restriction γ|[0,s] is strictly normal for every s > 0, we say
hat γ is strongly normal. It can be seen that γ is strongly normal if and only if the normal geodesic γ does
ot contain any abnormal segment. The projection of a normal extremal to M is locally minimising, that
5
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is to say it is a geodesic (for the sub-Riemannian distance) parametrised by constant-speed. More precisely,
it holds ∥γ̇(t)∥2 = 2H(λ(t)) for every t ∈ [0, T ]. The projection of an abnormal extremal to M might not
necessarily be a geodesic (or a minimising geodesic).

Sub-Riemannian structures which do not admit any non-trivial (i.e. non-constant) abnormal geodesics
(the trivial geodesic is always abnormal as soon as rank(Dp) < dim(M)) are said to be ideal. Examples of
ideal sub-Riemannian manifolds include the Heisenberg groups, Sasakian manifolds, and more generally any
contact sub-Riemannian manifold, as well as the α-Grushin plane (see [6]). The Martinet flat structure, the
Engel group, and in fact any Carnot group of step 3 and higher, are not ideal.

The theory of ordinary differential equations proves the existence of a maximal solution to (N) for every
iven initial condition λ(0) ∈ T∗(M). The time t - flow of Hamilton’s equation (N) is the semigroup denoted
y et

−→
H : T∗(M) → T∗(M). The restriction of the time 1 - map of this flow to the fibre T∗

p(M), followed by
rojection to the base, is called the sub-Riemannian exponential map based at p.

Definition 7. The sub-Riemannian exponential map at p ∈ M is the map

expp : Up → M : λ ↦→ π(e
−→
H (λ)),

where Up ⊆ T∗
p(M) is the open set of covectors such that the corresponding solution of (N) is defined on

the interval [0, 1].

The sub-Riemannian exponential map expp is smooth. If λ : [0, T ] → T∗(M) is the normal extremal
that satisfies the initial condition λ(0) = (p, λ0) ∈ T∗(M), then the corresponding normal extremal path
γ(t) = π(λ(t)) by definition satisfies γ(t) = expp(tλ0) for all t ∈ [0, T ]. If M is complete for the Carathéodory
distance, then Up = T∗

p(M), and if in addition there are no strictly abnormal length minimisers, then the
exponential map expp is surjective. Contrary to the Riemannian case, the sub-Riemannian exponential map
is not necessarily a diffeomorphism of a small ball in T∗

p(M) onto a small geodesic ball in M . In fact,
Im(d0expp) = Dp and expp is a local diffeomorphism at 0 ∈ T∗

p(M) if and only if Dp = Tp(M).

Definition 8. The critical points of the exponential map expp : Up → M are called conjugate covectors at
p. We denote by Conj(p) ⊆ Up the collection of all such covectors. If sλ0 ∈ T∗

p(M) is conjugate, we say that
the point q := expp(sλ0) is conjugate to p = expp(0 · λ0) along the normal geodesic γ(t) := expp(tλ0), and
that s is a conjugate time.

We mention here some important properties related to conjugacy. The restriction of a normal extremal
γ to an interval [t, t + ε] is abnormal if and only if γ(s) is a conjugate point to γ(0) for all s ∈ [t, t + ε]
([1, Theorem 8.47]). Furthermore, the set of conjugate times of γ is discrete if γ does not contain abnormal
segments ([1, Corollary 8.51]). We will also use the following result from [1, Theorem 8.61].

Theorem 9. Let γ : [0, T ] → M be a normal extremal that does not contain abnormal segments. If γ has
no conjugate points, then it is a local minimiser for the length on the space of admissible trajectories with
the same endpoints. If γ contains at least one conjugate point to γ(0), then it is not a local minimiser on the
space of admissible trajectories with the same endpoints.

3. Non-local injectivity of the sub-Riemannian exponential map

3.1. A family of normal extremals and the associated flow

For the rest of this work, we fix a sub-Riemannian manifold M and a point p ∈ M .

6
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Definition 10. The family of extremals from p in augmented space is the map given by

Fp : Up → R×M : (t, λ0) ↦→ (t, expp(tλ0)),

here Up ⊆ R× T∗
p(M) is the maximal open set on which Fp is well-defined.

The non-local injectivity of the exponential map may be related to the non-local injectivity of the family
f extremals.

efinition 11. We say that the family of extremals containing p ∈ M simply covers (t, q) ∈ R×M if there
xists an open U ′ ⊆ Up such that Fp is injective on U ′ and (t, q) ∈ Fp(U ′) ⊆ R×M .

roposition 12. The exponential map expp : Up → M is injective in a neighbourhood of a covector
0 ∈ Up ⊆ T∗

p(M) if and only if the family of extremals Fp simply covers (1, expp(λ0)) ∈ R×M .

Proof. Suppose that expp is injective in a neighbourhood λ0 ∈ U ′ ⊆ Up. Then for small ε > 0, the
restriction of Fp to ]1 − ε, 1 + ε[ × U ′ is also injective. Indeed, the equality Fp(t, λ0) = Fp(t′, λ′

0), for some
t, t′ ∈ ]1 − ε, 1 + ε[ and λ0, λ

′
0 ∈ U ′, implies that t = t′, expp(tλ0) = expp(t′λ′

0), and thus λ0 = λ′
0. The other

implication is proved in a similar fashion. □

Similarly, we may parametrise the lift of normal extremals.

Definition 13. The flow of extremals based at p ∈ M is the map given by

Φp : Vp → R× T∗(M) : (t, λ0) ↦→ (t, et
−→
H (p, λ0)),

where Vp ⊆ R× T∗
p(M) is the maximal open set on which Φp is well-defined.

Remark 14. From the definition of expp(λ0) and et
−→
H (p, λ0), we know that the domains of the maps Fp

and Φp coincide: Up = Vp.
The maps Fp and Φp defined in this section are analogues of the concept of a family of extremals in the

classical calculus of variations. Using the standard terminology, the family of extremals considered here is
central since the extremals all start from the same point p.

A cotangent version of Gauss’ lemma reads in this context as follows, see [1, Proposition 8.42].

Theorem 15. Let p ∈ M , t ∈ R, and δ : ]−ε, ε[ → T∗
p(M) such that tδ(s) ∈ Up for all s ∈ ]−ε, ε[. Let

λ(t, s) := et
−→
H (p, δ(s)) and γ(t, s) := π(λ(t, s)) = expp(tδ(s)),⟨

λ(t, s), d
dsγ(t, s)

⟩
= d

dsH(λ(t, s)),

where ⟨·, ·⟩ denotes the natural pairing of covectors and vectors.

3.2. Hilbert invariant integrals

The Poincaré-Cartan one-form on R × T∗(M), associated to the Hamiltonian of the sub-Riemannian
structure, is defined to be

θ −Hdt ∈ Ω1(R× T∗(M)),

where θ ∈ Ω1(T∗(M)) denotes the tautological one-form of the cotangent bundle. The pullback map
associated to the smooth map Φ will be denoted by Φ∗.
p p

7
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Definition 16. The Hilbert integral I∗
p , defined on an open set U ⊆ Up ⊆ R× T∗

p(M), is the line integral
obtained by integrating the one-form η∗

p := Φ∗
p(θ − Hdt) ∈ Ω1(U). In other words, if Γ ∗ is a smooth

arametrised curve in U , then
I∗
p [Γ ∗] =

∫
Γ∗
η∗
p =

∫
Γ∗

Φ∗
p(θ −Hdt).

Let us give precise description to the action of the form η∗
p . Fix (t, λ0) ∈ U and v ∈ T(t,λ0)(U), which we

identify with T(t,λ0)(R × T∗
p(M)). As usual, we set λ(t) := et

−→
H (p, λ0) and γ(t) := expp(tλ0). By definition,

e have that
(η∗
p)(t,λ0)[v] = (θ −Hdt)(t,λ(t))

[
d(t,λ0)Φp(v)

]
.

If we write v = w + s ∂∂t (t, λ0) for unique s ∈ R and w ∈ Tλ0(T∗
p(M)), seen as a subspace of T(t,λ0)(R ×

T∗
p(M)), we can then express d(t,λ0)Φp(v) ∈ T(t,λ(t))(R× T∗(M)) as

d(t,λ0)Φp(v) = d(p,λ0)et
−→
H ◦ dλ0ιp(w) + s

(
∂

∂t
(t, λ(t)) + −→

H (λ(t))
)
, (4)

here ιp : T∗
p(M) → T∗(M) is the injection ιp(λ0) := (p, λ0), satisfying π ◦ ιp = p for all p ∈ M .

Now by recalling Hamilton’s equation from Theorem 6, we obtain

(η∗
p)(t,λ0)[v] =

⟨
λ(t),dλ0expp(t ·)[w]

⟩
+ s
(
⟨λ(t), γ̇(t)⟩ −H(λ(t))

)
. (5)

The Hilbert integral I∗
p has some useful properties. When evaluated along a ray in the augmented space

× T∗
p(M), it evaluates the length of the corresponding extremal in M .

roposition 17. Given an open neighbourhood U in Up, a covector λ0 ∈ T∗
p(M), and the curve Γ ∗ :

t0, t1] → R× T∗
p(M) defined by Γ ∗(t) = (t, λ0), then we have

I∗
p [Γ ∗] = L(γ|[t0,t1]),

here γ(t) := expp(tλ0), whenever Γ ∗(t) ∈ U and tλ0 ∈ Up for all t ∈ [t0, t1].

roof. Since Γ̇ ∗(t) = (1, 0), (5) implies that

I∗
p [Γ ∗] =

∫ t1

t0

⟨λ(t), γ̇(t)⟩ −H(λ(t))dt,

here λ(t) := et
−→
H (p, λ0). By (3), we can write the maximised Hamiltonian as

H(λ(t)) = ⟨λ(t), γ̇(t)⟩ − 1
2 |u(t)|2, for all t ∈ [t0, t1],

here u(t) is the minimal control of γ(t) = expp(tλ0), i.e. ui(t) = ⟨λ(t), Xi(γ(t))⟩ for i = 1, . . . , N . Therefore,

I∗
p [Γ ∗] =

∫ t1

t0

[
⟨λ(t), γ̇(t)⟩ −

(
⟨λ(t), γ̇(t)⟩ − 1

2 |u(t)|2
)]

dt = 1
2

∫ t1

t0

|u(t)|2dt = L(γ|[t0,t1]). □

Our goal now is to establish that the Hilbert integral I∗
p defines an invariant integral, namely that it is

independent of path relative to endpoints.

Proposition 18. The one-form η∗
p defined on an open connected subset U of Up ⊆ R × T∗

p(M) is closed.
Equivalently, the Hilbert integral I∗ is homotopy-invariant in U .
p

8
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Proof. We prove that η∗
p is closed by showing that dη∗

p = 0 vanishes identically. We have

dη∗
p = d

[
Φ∗
p(θ −Hdt)

]
= Φ∗

p [d(θ −Hdt)] = Φ∗
p [d(θ −Hdt)]

= Φ∗
p [dθ − dH ∧ dt] = Φ∗

p [σ − dH ∧ dt] ,

where σ denotes the Poincaré two-form on T∗(M). If (t, λ0) ∈ U ⊆ R × T∗
p(M) and v1, v2 ∈ T(t,λ0)(U) ≃

R× T∗
p(M), then

(dη∗
p)(t,λ0)(v1, v2) = [σ − dH ∧ dt](t,λ(t)) (d(t,λ0)Φp(v1),d(t,λ0)Φp(v2)).

As previously in (4), we let vi = wi + si
∂
∂t (t, λ0) for unique si ∈ R and wi ∈ Tλ0(T∗

p(M)).
Without loss of generality, we only need to treat the following two cases: s1 = s2 = 0, and s1 = 0 while

s2 ̸= 0.
In the first case, we use the invariance of the symplectic form under the Hamiltonian flow, i.e. the equality

et
−→
H∗σ = σ, as well as the fact that d(p,λ0)π ◦ dλ0ιp = 0 to find

(dη∗
p)(t,λ0)(v1, v2) = σλ(t)(d(p,λ0)et

−→
H ◦ dλ0ιp(w1),d(p,λ0)et

−→
H ◦ dλ0ιp(w2))

= (et
−→
H∗σ)(p,λ0)(dλ0ιp(w1),dλ0ιp(w2)) = σ(p,λ0)(dλ0ιp(w1),dλ0ιp(w2))

= (ιpσ)∗
λ0(w1, w2) = ι∗p(dθ)λ0(w1, w2) = dι∗p(θ)λ0(w1, w2) = 0.

In the second case, we use Hamilton’s equation alongside the definition of the symplectic gradient, and
we obtain

(dη∗
p)(λ0,t)(v1, v2) = σλ(t)

(
d(p,λ0)et

−→
H ◦ dλ0ιp(w1),−→H (λ(t))

)
− (dH ∧ dt)(t,λ(t))

(
d(p,λ0)et

−→
H ◦ dλ0ιp(w1), ∂

∂t
(t, λ(t))

)
− (dH ∧ dt)(t,λ(t),t)

(
d(p,λ0)et

−→
H ◦ dλ0ιp(w1),−→H (λ(t))

)
= (et

−→
H (p, ·)∗dH)λ0(w1) − (et

−→
H (p, ·)∗dH)λ0(w1) ∧ dt(−→H (λ(t)))

+ (dH)λ(t)(
−→
H (λ(t))) ∧ dt(d(p,λ0)et

−→
H ◦ dλ0ιp(w1))

− (et
−→
H (p, ·)∗dH)λ0(w1) ∧ dt

(
∂

∂t
(t, λ(t))

)
+ (dH)λ(t)

(
∂

∂t
(t, λ(t))

)
∧ dt(d(p,λ0)et

−→
H ◦ dλ0ιp(w1)) = 0,

hich concludes the proof. □

We will now complete the proof of the invariance of I∗
p .

roposition 19. Let U ⊆ R × T∗
p(M) be an open neighbourhood which is convex in the R-direction

i.e. if (t0, λ0), (t1, λ0) ∈ U , then (t, λ0) ∈ U for all t ∈ [t0, t1]). Then, one-form η∗
p defined on U is exact.

quivalently, the Hilbert integral I∗
p is path-independent in U .

roof. Let Γ ∗(s) = (t(s), λ0(s)) be closed path in U parametrised on the interval [a, b]. According to
he convexity hypothesis, this curve is homotopic to the curve Γ ∗

0 (s) := (t(a), λ0(s)). It follows from
roposition 18, (5) and the cotangent version Gauss’ lemma as seen in Theorem 15 that∫

Γ∗
η∗
p =

∫
Γ∗

0

η∗
p =

∫ b

a

d
ds

[
H
(

et(a)−→
H (p, λ0(s))

)]
ds

= H
(

et(a)−→
H (p, λ0(b))

)
−H

(
et(a)−→

H (p, λ0(a))
)

= 0,

since λ (·) is a closed curve. □
0

9
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When a family of extremals containing p simply covers an open neighbourhood of R×M , it can be used
o define a Hilbert integral Ip on a subset of R×M .

efinition 20. Assume that the family of extremals Fp is injective on a neighbourhood λ0 ∈ U ⊆
× T∗

p(M). Then the Hilbert integral Ip, defined on Fp(U) ⊆ R × M , is the line integral obtained by
ntegrating the continuous one-form

(ηp)(t,q)(s, w) = ⟨λt, w⟩ −H(q, λt)s, (6)

here (q, λt) := et
−→
H (p, λ0), (t, λ0) := F−1

p (t, q), and s ∂∂t + w ∈ T(t,q)(R×M).

Remark 21. While η∗
p ∈ Ω1(U) is smooth, the form ηp ∈ Ω1(Fp(U)) needs to be only continuous. Namely

the functions (q, λt) in its definition depend smoothly on t, p, λ0, but the value λ0 in turn depends only
continuously on (t, q). This is because Fp is only simply covering, thereby a homeomorphism. This lack of
smoothness will require a detailed analysis, as given in Section 3.4.

In a similar way to Proposition 17, evaluating the Hilbert integral Ip on the graph of one of the normal
extremals of the family Fp simply gives its length.

Proposition 22. Given an open neighbourhood U ⊆ Up such that the family of extremals Fp is injective on
U , a covector λ0 ∈ T∗

p(M), and the curve Γ : [t0, t1] → Fp(Up) defined by Γ (t) := (t, expp(tλ0)). Then the
following equality holds :

Ip[Γ ] = L(γ|[t0,t1]).

Here γ(t) := expp(tλ0), whenever Γ (t) ∈ Fp(U) and tλ0 ∈ Up for all t ∈ [t0, t1].

roof. Reasoning as in the proof of Proposition 17 and using (6), it is seen that

Ip[Γ ] =
∫
Γ

ηp =
∫ t1

t0

(
⟨et

−→
H (p, λ0), γ̇(t)⟩ −H(et

−→
H (p, λ0))

)
dt = L(γ|[t0,t1]). □

Furthermore, the Hilbert integrals and I∗
p on U and Ip on Fp(U) coincide on smooth curves (assuming

hat Fp is injective), as shown in the following proposition.

roposition 23. Suppose that the family of extremals Fp : U → R×M is an injective map. Assume also
hat either Γ ∗ is a smooth curve in U and Γ := Fp ◦ Γ ∗ is the corresponding smooth curve in Fp(U), or

assume that both Γ is a smooth curve in Fp(U) and the corresponding curve Γ ∗ = F−1
p ◦ Γ in U are smooth.

Then I∗
p [Γ ∗] = Ip[Γ ].

Proof. Let us write Γ (s) := (t(s), q(s)), as well as Γ ∗(s) := (t(s), λ0(s)), with q(s) := expp(t0(s)λ0(s)),
where the functions t(·), q(·) and λ0(·) are smooth. As before we use the notation λ(s) := et(s)−→

H (p, λ0(s))
and γ(s) := expp(t0(s), λ0(s)).

Notice first that

γ̇(s) = d
ds

(
π ◦ et(s)−→

H (p, λ0(s))
)

= dλ(s)π
[
ṫ(s)−→H (λ(s)) + dλ0(s)et(s)−→

H (p, ·)(λ̇0(s))
]
.

Therefore, (5) and (6) yield

(η ) (Γ̇ (s)) = ⟨λ(s), γ̇(s)⟩ − ṫ(s)H(λ(s))
p Γ(s)

10



S. Borza and W. Klingenberg Nonlinear Analysis 239 (2024) 113421

r
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U

c
c
(

= ⟨λ(s),dλ(s)π ◦ dλ0(s)et(s)−→
H (p, ·)(λ̇0(s))⟩

+ ṫ(s)
[
⟨λ(s),dλ(s)π ◦

−→
H (λ(s))⟩ −H(λ(s))

]
= (η∗

p)Γ∗(t)(Γ̇ ∗(t)),

which proves the statement. □

The relations between Ip and I∗
p given by the last two propositions are insufficient to extract the exactness

of ηp. In order to progress, we will now study the nature of the sub-Riemannian conjugate locus.

3.3. The sub-Riemannian conjugate locus

Let us recall the regularity and continuity properties of the sub-Riemannian exponential map proven by
the authors in [8]. If a Riemannian metric g on M is fixed, one can consider the isomorphism

♯ : Verλ ⊆ Tλ(T∗
p(M)) → Tp(M) : ξ ↦→ ξ♯, p := π(λ), λ ∈ T∗(M),

where ξ♯ is the unique element of Tp(M) such that g(ξ♯, X) = ξ(X), for every X ∈ Tp(M), the spaces Verλ
and T∗

p(M) being canonically identified. As explained in [8, Section 3.2], fixing a Riemannian metric in this
way is equivalent to choosing a symplectic moving frame along a normal geodesic γ(t), and extend the scalar
product ⟨·, ·⟩γ(t) along γ(t) to the whole manifold.

The ray in Up ⊆ T∗
p(M) through λ0 is the map

rp,λ0 : [0, T ] → T∗
p(M) : t ↦→ tλ0

where [0, T ] ⊆ R+ is the maximal interval containing 0 such that tλ0 ∈ Up for every t ∈ [0, T ]. In this way,
˙p,λ0(t) ∈ Ttλ0(T∗

p(M)) and identifying Ttλ0(T∗
p(M)) with T∗

p(M) in the usual way, we have ṙp,λ0(t) = λ0
for every t ∈ [0, T ].

Theorem 24 (Warner-Regularity of the Sub-Riemannian Exponential Map [8]). Let M be a sub-Riemannian
manifold and p ∈ M . Then,

(R1) The map expp is C∞ on Up = Dom(expp) and, for all λ0 ∈ Up \ H−1
p (0) and all t ∈ Ip,λ0 , we have

dtλ0expp(ṙp,λ0(t)) ̸= 0expp(tλ0);
(R2) The map

Ker(dλ0expp(λ0)) → Texpp(λ0)(M) : ξ0 ↦→
(

dλ0et
−→
H [ξ0]

)♯
has its image g-perpendicular to Im(dλ0expp)

(R3) Let λ0 ∈ Up \H−1
p (0) be a covector such that the corresponding geodesic γ(t) := expp(tλ0) is strongly

normal. Then, there exists a radially convex neighbourhood V of λ0 such that for every ray rp,λ0
which

intersects V that does not contain abnormal subsegments in V, the number of singularities of expp
(counted with multiplicities) on Im(rp,λ0

) ∩ V is constant and equals the order of λ0 as a singularity
of expp, i.e. dim(Ker(dλ0expp)).

In view of the continuity property (R3), we will now adapt Warner’s definition of singular and regular
onjugate points and their order (see [26, Section 3.]) to the sub-Riemannian setting.

efinition 25. We say that a conjugate covector λ0 ∈ T∗
p(M) is regular for expp if there is a neighbourhood

of λ0 such that every ray of T∗
p(M) contains at most one covector in U which is conjugate. A conjugate

ovector that is not regular is said to be singular. The collection of regular conjugate (resp. singular
onjugate) covectors is denoted by ConjR(p) ⊆ T∗

p(M) (resp. ConjS(p)). We write ConjRU (p) := ConjR(p)∩U
S S
resp. ConjU (p) := Conj (p) ∩ U).

11
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In Riemannian geometry, the Jacobi fields along a given geodesic satisfy a second order differential
equation. Consequently, the order of vanishing the function t ↦→ det(dtvexpp) at t = 1 is always finite and
equal to the order of v ∈ Tp(M) as a singularity of expp (see [16]). This motivates the following definition.

Definition 26. We say that a covector λ0 ∈ Up has order m ∈ N ∪ {+∞} if the map t ↦→ det(dtλ0expp)
vanishes of order m at t = 1.

The definition above is well posed thanks to (R2) of Theorem 24. Indeed, the domain of the map

dtλ0expp : Ttλ0(T∗
p(M)) → Texpp(tλ0)(M)

is first identified with the space T∗
p(M) as usual and then we have isomorphisms

T∗
p(M) ∼= Ker(dtλ0expp) ⊕ Im(dtλ0expp) ∼= Texpp(tλ0)(M).

The last identification depends on the choice of a moving frame in (R2). However, the vanishing of
the determinant of dtλ0expp, viewed as a map from Texpp(tλ0)(M) to itself, as well as the vanishing of its
derivatives that we need for Definition 26, are independent of this choice.

Let us describe in geometric and analytic more details the content of Definition 26, and its relation to
Jacobi fields. We will make use of the theory for sub-Riemannian Jacobi fields explained in [8] (see also [5]).
Let us fix a symplectic moving frame E1(t), . . . , En(t), F1(t), . . . , Fn(t) along the lift λ(t) of γ(t) := expp(tλ0),
hat is

Ker(dλ(t)π) = span{E1(t), . . . , En(t)} ⊆ Tλ(t)(T∗(M)),

nd
σ(Ei, Ej) = 0, σ(Fi, Fj) = 0, σ(Ei, Fj) = δi,j ,

here σ is the usual symplectic form on T∗(M). The differential of the inclusion T∗
p(M) → T∗(M) :

0 ↦→ (p, tλ0) is used to identify Ttλ0(T∗
p(M)) with span{tE1(0), . . . , tEn(0)}. A vector field J (t) =

n
i=1 pi(t)Ei(t) + xi(t)Fi(t) along λ(t) is then a Jacobi field if and only if(

ṗ
ẋ

)
=
(

−C1(t) −R(t)
C2(t) C1(t)T

)(
p
x

)
, (7)

or some smooth curves of n × n matrices C1(t), C2(t) and R(t) such that C2(t) and R(t) are symmetric,
2(t) ≥ 0. The Riemannian Jacobi equation can be recovered by choosing a symplectic moving frame induced
y the parallel transport, in which case C1(t) = 0, C2(t) = 1, and R(t) is the curvature operator along the
eodesic.

It can also be shown, see [8, Section 3.2] for example, that the multiplicity λ0 as a conjugate covector is
iven by the dimension of the space Jacobi fields (p, x) satisfying x(0) = x(1) = 0. In these coordinates, the
eterminant given in Definition 26 is given by

det(dtλ0expp) = det
(
x1(t) x2(t) · · · xn(t)

)
, (8)

here (p1, x1), (p2, x2), . . . , (pn, xn) form a basis of the space of Jacobi fields (p, x) such that x(0) = 0.
ithout loss of generality, we can assume that the k first columns in (8) correspond to a basis of the space

f Jacobi fields (p, x) such that x(0) = x(1) = 0.
At first glance, it seems to us that the possibility of the order of vanishing of t ↦→ det(dtλ0expp) at t = 1

eing infinite cannot be ruled out in general. However, it appears challenging to construct a meaningful
xample. It may be that one would have to construct an example similar to the one appearing in [14] to
ave t ↦→ det(d exp ) of infinite order at t = 1. Clearly, if the sub-Riemannian structure is analytic, as
tλ0 p

12
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is the case in all Carnot group, for instance, then every strictly normal conjugate covector must have finite
order.

In any case, we give further sufficient natural conditions under which a conjugate covector has finite order.
Suppose that all Jacobi fields (p, x) such that x(0) = x(1) = 0 also satisfy ẋ(1) = ẍ(1) = · · · = x(l−1)(1) = 0
nd x(l)(1) ̸= 0 for some fixed l ∈ N, and suppose also that in the expression x(l)(1) = C(1)p(1) induced
rom Eq. (7), the matrix C(1) is invertible and positive definite. This will be the case if the matrices appearing
n the Hamiltonian system Eq. (7) obey some kind of generalised Kalman rank condition. All the examples
nvestigated in [7,8] satisfy this condition.

Under these assumptions and using Hadamard’s lemma, (8) can be written as

det(dtλ0expp) = (t− 1)lk

l!k det
(
y1(t) · · · yk(t) xk+1(t) · · · xn(t)

)  
=:E(t)

, (9)

where y1, . . . , yk are smooth functions such that y1(1) = x
(l)
1 (1), . . . , yk(1) = x

(l)
k (1). We claim that E(1) ̸= 0.

If not, we would have

a1x
(l)
1 (1) + · · · + akx

(l)
k (1) = ak+1x1(1) + · · · + anxn(1),

for some a1, . . . , an ∈ R not all zero. Define the Jacobi fields (p, x) := ak+1(pk+1, xk+1)+ · · ·+an(pn, xn) and
(p, x) := a1(p1, x1) + · · · +ak(pk, xk). We show that x(1) ̸= 0. Suppose that 0 = ak+1x1(1) + · · · +anxn(1) =

(1), then we would have a1 = · · · = an = 0, and a1x
(l)
1 (1) + · · · + akx

(l)
k (1) = 0. Since the matrix C(1)

s assumed to be invertible, this would also imply that 0 = a1p1(1) + · · · + akpk(1) = p(1). Now, we have
x(1) = p(1) = 0 and thus the Jacobi fields (p, x) must be identically zero, and so a1 = · · · = ak = 0.

herefore, we must have x(1) ̸= 0. In this case, [8, Lemma 16] shows that

p · x− p · x = 0, for all t ∈ [0, 1],

nd evaluating this expression at t = 1 gives

p(1) · C(1)p(1) = p(1) · x(1) = p(1) · x = 0,

hich is impossible since C(1) is assume to be positive definite. Therefore, we must have E(1) ̸= 0 and so
0 is a conjugate covector of order lk, according to Definition 26.

Proposition 27. If λ0 ∈ ConjR(p) has finite order, then there exists a neighbourhood U ⊆ T∗
p(M) of λ0

uch that all vectors in ConjRU (p) have the same order.

roof. Assume that λ0 has order m ≥ 1. By Malgrange’s Preparation Theorem (see [10]) there exists in a
eighbourhood ]1 − ε, 1 + ε[ × V of (1, λ0) ∈ R × T∗

p(M) a factorisation of the type

det(dtηexpp) = c(t, η) ·
[
(t− 1)m + am−1(η)(t− 1)m−1 + · · · + a0(η)

]
, (10)

here c : ]1 − ε, 1 + ε[ × V → R, ai : V → R are smooth functions such that c(1, λ0) ̸= 0 and
m−1(λ0) = · · · = a0(λ0) = 0. Since λ0 is regular, then for sufficiently small ε′ ≤ ε and V ′ ⊆ V , we
ay assume that all the conjugate covectors in V ′ are regular.
If λ′

0 ∈ Conj(p) has order m′ ≥ 1 such that (1, λ′
0) ∈ V ′, we can use Malgrange’s Preparation Theorem

gain at λ′
0 to find a neighbourhood ]1 − ε′, 1 + ε′[ × V ′ ⊆ ]1 − ε, 1 + ε[ × U and smooth functions

′ : ]1 − ε′, 1 + ε′[ × V ′ → R, a′
0, . . . , a

′
m′−1 : V ′ → R such that

det(dtηexpp) = c′(t, η) · ((t− 1)m
′
+ a′

m′−1(η)(t− 1)m
′−1 + · · · + a′

0(η)), (11)

or every (t, η) ∈ ]1 − ε′, 1 + ε′[ × U ′, with c′(1, λ′ ) ̸= 0, a′ (λ′ ) = · · · = a′ (λ′ ) = 0.
0 0 0 m′−1 0

13
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m

t

Now (10) and (11) both hold in the non-empty neighbourhood ]1 − ε′, 1 + ε′[ ×U ′ and therefore m must
equal m′. Indeed, a0(λ′

0) = 0 since λ′
0 is conjugate and the limit

lim
t→1

(t− 1)m + am−1(λ′
0)(t− 1)m−1 + · · · + a1(λ′

0)(t− 1)
(t− 1)m′

ust exist and tend to c′(1, λ′
0)/c(1, λ′

0). This implies that m = m′.
On the other hand, if a sequence (λk)k∈N of conjugate covectors that have infinite order converges to λ0,

hen λ0 would also have an infinite order, since t ↦→ det(dtηexpp) is smooth for all η ∈ Up. The above proves
that the set of points of constant order is open and closed in Up. □

Remark 28. The notion of order finiteness that we introduce in the section is related to those of ample
and equiregular geodesics introduced in [3]. Indeed, if γ(t) := expp(tλ′

0) is ample and equiregular for all
λ′

0 in a neighbourhood of λ0 in T∗
p(M), then λ0 ∈ ConjR(p) must have finite order. In general, the set of

A ⊆ T∗(M) of (p, λ0) such that the corresponding normal geodesic is ample and equiregular is non-empty
and dense (see [2, Proposition 7.1]).

In the following theorem, we prove that in the neighbourhood of a conjugate covector that has finite order,
the conjugate locus can be given a structure of submanifold.

Theorem 29. If λ0 ∈ T∗
p(M) is a regular conjugate covector that has finite order m, then there exists

a neighbourhood U of λ0 such that ConjU (p) is a submanifold of codimension one in T∗
p(M). Moreover,

Tλ0(T∗
p(M)) = Tλ0(ConjU (p)) ⊕ Im(rp,λ0).

Proof. Consider the smooth function

∆m−1
p : Up → R : λ ↦→ dm−1

dtm−1

⏐⏐⏐
t=1

(
det dtλexpp

)
.

From Proposition 27, we can find a neighbourhood U ⊆ Up of λ0 such that all covectors in ConjU (p) are
regular and of order m. The inclusion ConjU (p) ⊆ (∆m−1

p )−1(0) thus holds. The derivative of ∆m−1
p along

the ray rp,λ0 is non-zero. Indeed, since λ0 is assumed to have order m,

d1rp,λ0(∆m−1
p ) = d

ds

⏐⏐⏐
s=1

(
dm−1

dtm−1

⏐⏐⏐
t=1

(
det dtsλ0expp

))
= (m− 1) dm−1

dtm−1

⏐⏐⏐
t=1

(
det dtλ0expp

)
+ dm

dtm
⏐⏐⏐
t=1

(
det dtλ0expp

)
= dm

dtm
⏐⏐⏐
t=1

(
det dtλ0expp

)
̸= 0.

Therefore a possibly smaller neighbourhood U of λ0 in T∗
p(M), can be chosen to be convex and on which the

radial derivative of ∆m−1
p is non-zero. The function ∆m−1

p is in particular smooth on U and has a non-zero
differential.

Let us now show that (∆m−1
p )−1(0) ⊆ ConjU (p). Suppose λ′

0 ∈ U and ∆m−1
p (λ′

0) = 0. The neighbourhood
U has the property that each ray intersecting it has exactly one conjugate covector. Thus, on the ray passing
through λ′

0, there must be a (unique) conjugate covector λ′′
0 . Since U is convex, the line joining λ′

0 to λ′′
0 is

also in U . The radial derivative of ∆m−1
p along that line is non zero while ∆m−1

p (λ′
0) = 0, by hypothesis,

and ∆m−1
p (λ′′

0) = 0, since all the conjugate vectors in U have the same finite order. Thus, by the mean value
theorem, we must have λ′

0 = λ′′
0 , and λ′

0 ∈ ConjU (p).
Finally, by the implicit function theorem, (∆m−1

p )−1(0) = ConjU (p) can be given the desired manifold
structure. □

Remark 30. Under the hypothesis of Theorem 29, we have in particular that the set Πp = {(t, η) ∈
∗
]1 − ε, 1 + ε[ × U | tη is conjugate} ⊆ Up ⊆ R× Tp(M) is also a submanifold for ε > 0 sufficiently small.
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3.4. Non-local injectivity of the sub-Riemannian exponential map

Putting everything together, we finally prove in this section the relationship between the injectivity of
the sub-Riemannian exponential map and its singularities.

We will need the following lemma, which is a consequence of Sard’s theorem. It appeared in [22, Lemma
II], and we provide here the proof for the sake of completeness.

Lemma 31. Let X and Y be smooth manifolds with dimX = dimY , and assume that X is compact. If f
is a C1 map from X to Y , then almost all points of Y have a finite preimage under f .

Proof. Let us denote by Crit(f) the set of critical points of f , i.e.

Crit(f) := {x ∈ X | dxf has a non-trivial kernel}.

et y ∈ Y such that f−1(y) is infinite. Since X is assumed to be compact, we can deduce that f−1(y) has
at least one accumulation point x. We write (xn) ⊆ f−1(y) for a sequence, distinct from x, converging to x.

Let φ be a coordinate chart around x in X and ψ a coordinate chart around y in Y . We write fφψ =
◦ f ◦ φ−1 for the expression of the map f in these coordinates. When n is large enough, we can be sure

hat xn ∈ Dom(φ) and then consider the map

f(t) : [0, 1] → RdimY : t ↦→ fφψ(φ(x) + t(φ(xn) − φ(x))).

y the mean value theorem, there exists tn ∈ ]0, 1[ such that

fφψ(φ(xn)) = fφψ(φ(x)) + dφ(x)+tn(φ(xn)−φ(x))fφψ[(φ(xn) − φ(x))],

nd therefore, by letting n tend to +∞,

dφ(x)fφψ[v] = 0, where v = lim
n→+∞

φ(xn) − φ(x)
∥φ(xn) − φ(x)∥ ̸= 0.

onsequently, dxf has a non-trivial kernel and x is a critical point, i.e. y = f(x) ∈ f(Crit(f)). By Sard’s
theorem, the image of Crit(f) under f has measure zero in Y and the proof is complete. □

The study of the regularity of the conjugate locus in the previous section allows us to prove that the
ontinuous one-form ηp is indeed exact.

roposition 32. If the family of extremals Fp simply covers (1, q) ∈ R × M , where q := expp(λ0) and
0 ∈ Up ⊆ T∗

p(M) is a regular conjugate vector of finite order, then Hilbert integral Ip is invariant on some
eighbourhood of (1, q) in R×M .

roof. By Proposition 19, the Hilbert integral I∗
p is path-independent on a small enough convex neigh-

ourhood U of (1, λ0) in R× T∗
p(M). We would like to argue that as a consequence the same property holds

or Ip.
Let Γ (s) = (t(s), q(s)) be a smooth closed curve in Fp(U). If the corresponding curve Γ ∗(s) =

t(s), λ0(s)) := F−1
p (Γ (s)) were to be smooth, we would be able to conclude this by Proposition 23. However,

p is only a homeomorphism and thus we do not have enough regularity in general to evaluate the line
ntegral I∗

p along Γ ∗. This issue is addressed by introducing a coordinate system φ containing Γ , and by
pproximating in C0 the loop φ(Γ ) by a sequence of parametrised polygons (pn) in Rn+1. These polygons

ay be chosen such that they intersect the conjugate locus only a finite number of times. Indeed, if x /∈ Πp,
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one can deduce from Lemma 31 that almost all rays passing through x in Rn+1 intersect Πp a finite number
f times. Finally we may conclude by Proposition 23, letting n tends to +∞, that

Ip[Γ ] = lim
n→+∞

Ip[φ−1(pn)] = lim
n→+∞

I∗
p [φ−1(pn)] = 0,

hat is to say, Ip is path independent. □

The integral Ip is the analogy of what is called Hilbert invariant integral in the classical calculus of
ariations. The fact that the family of extremals Fp induces the invariance of the Hilbert integral Ip
orresponds to Fp defining what is commonly called a (central) field of extremals. The strategy now is to
educe that subsegment of normal geodesics are length-minimising if they are part of a field of extremals.

roposition 33. Let ε > 0 and γ : [0, 1+ε[ → M be a strongly normal extremal starting at p ∈ M and with
nitial covector λ0 ∈ Up. Assume that λ0 is a first conjugate covector that is regular and has finite order. If
he family of extremals Fp simply covers (1, expp(λ0)), then any subsegment of γ is a local length-minimiser
mong all the admissible trajectories with the same endpoints.

roof. The assumption that λ0 is strongly normal and is a first conjugate covector implies, by adapting the
roof of Proposition 12 with the conclusions of Theorem 9, that the neighbourhood on which Fp is injective
an be chosen such that it contains the ray rp,λ0 .

Consider an admissible trajectory c : [t0, t1] → M with control u′, different from γ|[t0,t1], but with the
ame endpoints (t0, t1 ∈ ]0, 1 + ε[). We denote by Γ ′(t) = (t, c(t)) the corresponding curves in Fp(U). We
lso write λ′

0(t) for the curve of initial covectors in T∗
p(M) such that Γ ′(t) = Fp(t, λ′

0(t)), as well as the lift
′(t) := et

−→
H (p, λ′

0(t)), as usual.
By definition of the sub-Riemannian Hamiltonian, we have that

H(λ′(t)) ≥ ⟨λ′(t), ċ(t)⟩ − 1
2 |u′(t)|2, for almost every t ∈ [t0, t1],

s well as
H(λ(t)) = ⟨λ(t), γ̇(t)⟩ − 1

2 |u(t)|2, for all t ∈ [t0, t1],

ince λ(t) is the lift of the normal geodesic γ.
Therefore, we deduce that

1
2L(γ|[t0,t1])2 = 1

2

∫ t1

t0

|u(t)|2dt =
∫ t1

t0

(⟨λ(t), γ̇(t)⟩ −H(λ(t))) dt = Ip[Γ ] = Ip[c]

ince the Hilbert integral Ip is path-independent by Proposition 32, and

1
2L(γ|[t0,t1])2 =

∫ t1

t0

(
⟨λ′(t), ċ(t)⟩ −H(λ(t))

)
dt ≤ 1

2

∫ t1

t0

|u′(t)|2dt = 1
2L(c)2. □

We can now conclude recalling from Theorem 9 that a normal extremal that does not contain any
abnormal subsegment cannot be length minimising past a conjugate point. The proof of Theorem 1 will
be completed by the following Theorem.

Theorem 34. Let M be a sub-Riemannian manifold and p ∈ M . If λ0 ∈ Up ⊆ T∗
p(M) is a strongly normal

and regular conjugate covector of finite order, then the exponential map expp : Up → M is not injective in
any neighbourhood of λ .
0

16
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Proof. Without loss of generality, we may assume that λ0 is a first conjugate covector along the geodesic it
generates. Since Up is open, the geodesic γ(t) := expp(tλ0) is well defined for all t ∈ [0, 1 + ε[ for some ε > 0.
If expp were to be injective in some neighbourhood of λ0, then the family of extremals Fp would simply
cover (1, expp(λ0)) by Proposition 12. The corresponding Hilbert integral Ip would be path independent by
Proposition 32. Now, Proposition 33 would imply that the normal geodesic γ : [0, 1+ε[ → M is a local length
minimiser among all the admissible trajectories with the same endpoints, which would be in contradiction
with Theorem 9 since λ0 is assumed to be conjugate. □

In the classical theory of calculus of variations (see for example [17]), the fact that an extremal is part of
a field of extremals is a sufficient condition for minimality is usually deduced from studying the Weierstrass
E-function (see [24]). That argument is replaced in optimal control problems with the maximum principle.
Let us mention two instances where we have found related uses of these techniques. In [19], fields of extremals
are constructed in order to formulate sufficient conditions of optimality generalising Weierstrass’ condition.
The fact that normal extremal trajectories are locally minimising is proved by constructing a (non-central)
field of extremals in [1, Section 4.7].

Let us finally discuss how the result Theorem 34 could be extended to the whole conjugate locus. If
the regular conjugate covectors of finite order is dense in the regular conjugate locus, then by density the
sub-Riemannian exponential map will also fail to be injective in any neighbourhood of a regular conjugate
covector of infinite order. This is trivially the case if the sub-Riemannian manifold is analytic or if any
geodesic γ(t) := expp(tλ0) is ample and equiregular for all (p, λ0) ∈ T∗(M). Furthermore, if the sub-
Riemannian manifold is ideal then the property (R3) from Theorem 24 implies that regular conjugate
covectors is dense in the conjugate locus, as in [26, Theorem 3.1].

4. Applications and final remarks

4.1. Conjugate points in metric geometry

The non-local injectivity of the sub-Riemannian exponential map implies a cotangent version of Shankar–
Sormani’s equivalence for synthetic notions of conjugate points in length space (see [23]) along a strongly
normal geodesic with an initial covector that is regular conjugate and that has finite order.

Definition 35. Let X be a geodesic space and denote by L its length structure. If γn, γ are minimising
geodesics parametrised on [0, 1], we say that γn converges to γ if they converge for the metric

dGeo(X)(γ1, γ2) := sup
t∈[0,1]

|γ1(t) − γ2(t)| + |L(γ1) − L(γ2)|.

If the geodesic space in question is a sub-Riemannian manifold M , then it is easy to see that a sequence
of normal geodesics γn(t) := exppn

(tλn0 ) converges to γ(t) := expp(tλ0) if and only if pn converges to p in
and λn0 converges to λ0 in T∗

p(M).

efinition 36. Let X be a geodesic space, and a geodesic γ : [0, 1] → X joining two points p and q of X.
e say that

(i) q is one-sided conjugate to p along γ if there exists a sequence of points (qn) converging to q such that
for every n, there are two distinct geodesics γ1

n and γ2
n joining p to qn and both converging to γ;

(ii) p and q are symmetrically conjugate along γ if there exist sequences of points (pn) converging to p and
(qn) converging to q such that for every n, there are two distinct geodesics γ1

n and γ2
n joining pn to qn

and both converging to γ;

17
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(iii) p and q are unreachable conjugate along γ if there are sequences of points (qn) converging to q and (pn)
converging to p such that if γn is geodesic joining qn to pn for all n, then the sequence (γn) cannot
converge to γ;

(iv) p and q are ultimate conjugate points along γ if they are symmetrically conjugate or unreachable
conjugate along γ.

The relationship in sub-Riemannian geometry between these different definitions of conjugate points is
iven by the following theorem.

heorem 37. Let M be an ideal sub-Riemannian manifold, γ : [0, 1] → M be a normal geodesic such that
ts initial covector λ0 is regular conjugate and has finite order, and denote p := γ(0) and q := γ(1). Then,
he following statements are equivalent:

(i) q is conjugate to p along γ;
(ii) q is one-sided conjugate to p along γ;
(iii) q is symmetrically conjugate to p along γ.

urthermore, if p and q are unreachable conjugate points along γ, then q is also conjugate to p along γ.

Remark 38. The ideal assumption in Theorem 37 is there to ensure that the sequences of geodesics in
Definition 36 consist of normal extremals.

Proof. If (qn) is a sequence of points converging to q and if (γ1
n), (γ2

n) are two sequences of geodesics
joining p to qn and converging to γ, then their initial covectors η1

n and η2
n will converge to λ0 in T∗

p(M). By
Theorem 34, the normal extremals γ1

n and γ2
n must coincide for n large enough. This proves that (i) implies

(ii). It is easy to see from Definition 36 that (ii) immediately implies (iii).
Consider the function

E : T∗(M) → M ×M : (x, η) ↦→ (x, expp(η)),

which has a differential at (p, λ0) that is a linear isomorphism if q is not conjugate to p along γ. By the inverse
function theorem, there exists a neighbourhood of (p, λ0) on which the function E is a diffeomorphism.
Suppose now that q is one-sided conjugate to p along γ, so that there exists a sequence of points (qn)
converging to q and for all n two distinct normal extremals γ1

n and γ2
n, with initial covectors η1

n and η2
n

respectively, joining p to qn and converging to γ. The proof of (ii) implies (i) follows by observing that
E(p, η1

n) = E(p, η2
n) for n large enough while η1

n ̸= η2
n since γ1

n and γ2
n are distinct. By the same argument,

it can be seen that (iii) implies (i). The last statement about unreachable conjugate points is the same as
in [23]. □

4.2. Structure of the sub-Riemannian cut locus

Theorem 1 is also related to the structure of the sub-Riemannian cut locus. Let M be an ideal
sub-Riemannian manifold and define the cut time of (p, λ0) ∈ T∗

p(M) as

tcut(p, λ0) := sup{t > 0 | expp(·λ0)|[0,t] is a length-minimising geodesic}.

The (cotangent) cut locus is then

Cut(p) := {λ0 ∈ T∗
p(M) | tcut(p, λ0) = 1}.

and we denote by Cut1(p) the subset of Cut(p) consisting of those covectors λ0 for which there exists
′ ′ ′
another λ0 ∈ Cut(p) such that expp(λ0) = expp(λ0) and λ0 ̸= λ0. Note that by [1, Theorem 8.72], if
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λ0 ∈ Cut(p) \ Cut1(p), then λ0 ∈ Conj(p). In this specific case, we are able to prove the local non-injectivity
roperty of the exponential map without extra assumptions and without invoking the regularity of the
onjugate locus.

heorem 39. Let M be an ideal sub-Riemannian manifold, and p ∈ M . If λ0 ∈ Cut(p) \ Cut1(p), then the
xponential map expp fails to be injective in any neighbourhood of λ0.

roof. Let γ(t) := expp(tλ0) be the unique length minimising geodesic between p and q := expp(λ0). Let
be its minimal control and λ1 ∈ T∗

p(M) its Lagrange multiplier. By [1, Corollary 8.74], we find a sequence
f points qk ∈ M converging to q such that for each k there are two distinct length minimisers γ1

k and γ2
k

oining p and qk. We denote by λ1
1,k and λ2

1,k the normal Lagrange multipliers of γ1
k and γ2

k respectively,
s well as u1

k and u2
k for their respective minimal control. We write λ1

0,k and λ2
0,k for their initial covectors.

They satisfy expp(λ1
0,k) = expp(λ2

0,k) and we would like to prove that λ1
0,k and λ2

0,k both converge to λ0 as
k → +∞.

Modulo extraction of a subsequence, we may assume by compactness of length minimisers ([1, Proposition
8.67]) that u1

k and u2
k converge in the strong L2 topology, as well as γ1

k and γ2
k converge uniformly to a

geodesic joining p and q. This is unique by our assumption. So, γ1
k and γ2

k converge uniformly to γ and u1
k

and u2
k converge to u.

Choose any metric | · | on T∗
p(M) that we only use to prove estimates. We want to show that λ1

1,k is
convergent. Assume that it is not, this would mean that there exists a subsequence of |λ1

1,k| that diverges to
+∞. Now, η1

1,k := λ1
1,k/|λ1

1,k| of course converges to some η1
1 . The Lagrange multiplier rule ([1, Section 8.3])

for γ1
k implies that

λ1
1,k

|λ1
1,k|

Duk
Ep = uk

|λ1
1,k|

and thus, by taking the limit, η1
1DuEp = 0. Here, we have written Ep for the endpoint map (see [1, Section

8.1]). We obtain that η1
1 is an abnormal Lagrange multiplier but this is impossible since we assumed γ to be

non-abnormal.
Therefore, λ1

1,k must be convergent and by taking again the limit in the Lagrange multiplier rule

λ1
1,kDuk

Ep = uk

we obtain that its limit must a (normal) Lagrange multiplier for γ. This is necessarily unique since γ is not
abnormal and thus λ1

1,k → λ1, as well as λ2
1,k → λ1 by the same argument. This also implies that λ1

0,k → λ0

and λ2
0,k → λ0 since initial and final covectors are linked by the Hamiltonian flow. □

Corollary 40. Let M be an ideal sub-Riemannian manifold, and p ∈ M . The set Cut1(p) is dense in
Cut(p).

Proof. Let λ0 ∈ Cut(p)\Cut1(p) and consider a sequence of decreasing open neighbourhoods (Un) ⊆ T∗
p(M)

such that ∩nUn = {λ0}. Then, by Theorem 34, the exponential map expp fails to be injective on each Un
and so for every n, the intersection Cut1(p) ∩ Un is non empty. We therefore find a sequence of covectors
λn ∈ Cut1(p) such that λn → λ0. □

Corollary 40 can be used to prove that the map d(p, ·)2 is smooth in a neighbourhood of q if and only if
there is a unique length-minimiser γ joining p to q and q is not conjugate to p along γ. In the non-ideal case,
one usually bypass this type of argument to study the regularity of the sub-Riemannian squared distance
(see [1, Chapter 11]).
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4.3. Final remarks

As mentioned in the introduction, a proof of the local non-injectivity of the Riemannian exponential map
can be found in [18,22], and [26]. There is also an argument towards this result in [13], and we explain here
why it is incomplete. The Ref. [13, Theorem 2.1.12] argues by contradiction, assuming that expp is injective
n a neighbourhood of a conjugate vector v (and thus it is a homeomorphism by invariance of domain). Here
e use notation of the reference. A curve b that has the same endpoints as the geodesic c along which p is
onjugate to expp(v) is constructed so that one may use standard arguments using Jacobi fields to conclude
hat L(b) < L(c). The last (and flawed) step consists in defining the curve b̃ := exp−1

p (b) in Tp(M) and
o invoke a corollary of Gauss’ lemma from [13, Theorem 1.9.2] to conclude that L(b) ≥ L(c). However,
his is exactly where things break down. This very last step can only be performed if b̃ is regular enough,
ay (piecewise) smooth. However, expp is only a homeomorphism, and not a diffeomorphism. This is in fact
he heart of the problem that needs to be overcome (see Remark 21), and the reason why a more complex
rgument is necessary.

On another note, it seems possible that a conjugate covector has infinite order in the sense of Definition 26,
ven if the sub-Riemannian structure is ideal. It would be interesting to investigate further this property,
nd to find relevant examples. For instance, is it possible to construct an example for which Conj(p) contains
nly conjugate covectors of infinite order? In particular, the proof of Theorem 34 relies on Theorem 24, which
ays that Conj(p) is a smooth hypersurface near a regular conjugate covector of finite order. In the case of
nfinite order, we do not know if Conj(p) can still be endowed with such a manifold structure.

Let us remark again that Warner’s proof of the Riemannian analogous to Theorem 34 is different to what
e have done here. At the core of Warner’s proof is Whitney’s singularity theory, used to find the normal

orms of the exponential map near a conjugate vector, which precisely works there because the Riemannian
acobi equation is a second order differential equation. It is unclear if it is possible to have such a general
escription of the normal forms of the sub-Riemannian exponential map, again because of the difference
etween the multiplicity of a conjugate vector and what we have called the order of a conjugate vector.
evertheless, we have successfully pursued this approach for some specific examples: for the Heisenberg
roup in [8], and for the α-Grushin plane, SU(2) and SL(2) in [7]. We expect this approach to work in other
ases, possibly with techniques similar to what has been done for the 3D contact case in [1, Chapters 17 to
9] (and the references therein), and in [4], where the authors classify the singularities of the sub-Riemannian
xponential for low-dimensional generic structures.

Finally, we have not dealt with abnormal geodesics. For example, it would be interesting to understand if
he metric notions of conjugate points make sense along abnormal geodesics, and if they are still equivalent.
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[6] Samuël Borza, Distortion coefficients of the α-Grushin plane, J. Geom. Anal. 32 (3) (2022) http://dx.doi.org/10.1007/
s12220-021-00736-8, Paper No. 78, 284363751.
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