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Abstract—Deep learning (DL) has shown great potential in
revolutionizing the traditional communications system. Many
applications in communications have adopted DL techniques due
to their powerful representation ability. However, the learning-
based methods can be dependent on the training dataset and
perform worse on unseen interference due to limited model
generalizability and complexity. In this paper, we consider the
semantic communication (SemCom) system with multiple users,
where there is a limited number of training samples and
unexpected interference. To improve the model generalization
ability and reduce the model size, we propose a knowledge
distillation (KD) based system where Transformer based encoder-
decoder is implemented as the semantic encoder-decoder and
fully connected neural networks are implemented as the channel
encoder-decoder. Specifically, four types of knowledge transfer
and model compression are analyzed. Important system and
model parameters are considered, including the level of noise
and interference, the number of interfering users and the size
of the encoder and decoder. Numerical results demonstrate that
KD significantly improves the robustness and the generalization
ability when applied to unexpected interference, and it reduces
the performance loss when compressing the model size.

Index Terms—Deep learning, knowledge distillation, model
compression, multi-user interference, semantic communication,
text transmission.

I. INTRODUCTION

ACCORDING to Shannon and Weaver [1], communica-
tions can be categorized into three levels: transmission

of symbols, transmission of semantics behind symbols, and
effectiveness of semantics transmission. The first level aims
to accurately transmit the symbols from the transmitter to the
receiver by minimizing the bit error rate (BER) or the symbol
error rate (SER). The second level semantic communication
(SemCom) focuses on precisely conveying the meaning behind
the bits. The third level concentrates on the effectiveness of the
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tasks that the communication intends to achieve over semantics
transmission.

However, the limited spectrum resources constrain the ca-
pacity of traditional data communications at the first level,
following the Shannon limit. To address this, SemCom extracts
the meaning behind data and transmits only the essential
semantic information, prioritizing semantic-level fidelity over
bit-level accuracy. This is useful for applications requiring
extensive data exchange but with limited bandwidth, where
task effectiveness precedes exact information recovery. Poten-
tial applications include human-machine symbiosis, intelligent
transportation, and extended reality (XR) [2]–[4]. For instance,
the XR performance relies on processing the essential user
data (e.g., head movement, gestures and text input). Fast
data transmission via low-latency networks to XR servers
is vital for data processing and the corresponding tactile
feedback. By filtering out the non-essential data with semantic
understanding, SemCom allows end devices to transmit only
pertinent data required for the operation at the XR server,
thereby reducing bandwidth requirement and computational
costs on the XR server. To enable such functions, it is crucial
to investigate effective techniques for extracting semantic
information.

Recently, deep learning (DL) has been widely applied to
address problems in natural language processing and com-
puter vision due to their powerful pattern recognition and
representation capacity. Inspired by this, several works have
been conducted to explore the DL-enabled SemCom systems
for text [5]–[9], image [10]–[13] and speech transmission
[9]. Different channel conditions are considered, including
additive white Gaussian noise, Rician fading, and Rayleigh
fading. However, it has yet to be studied whether a SemCom
system, well-suited for end-to-end (E2E) communications [7],
can effectively function in the presence of multi-user (MU)
interference. MU interference, such as co-channel interference,
is usually caused by multiple radios transmitting on the same
frequency simultaneously due to the overly crowded spec-
trum [14]. Although interference can be avoided or mitigated
through effective resource management [15], [16], these come
at the expense of system complexity and resource utilization
efficiency. When there is a high user density or uncontrolled
interference sources, eliminating MU interference may not be
practical. Allowing interference to co-exist with SemCom sys-
tems without significantly degrading the system performance
could be a simple but effective way to overcome this challenge.
Therefore, it is necessary to evaluate the SemCom system
quantitatively and whether the learning-based techniques can
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achieve a tolerable performance in the presence of MU inter-
ference.

Moreover, the work in [17] has emphasized that researchers
should focus on not only applying the existing DL techniques
to the improvement of the current communications system
but also considering the requirements and constraints of the
communications network, such as low model complexity and
low power consumption for low-power chips, to enable learn-
ing and data-driven distributed mobile devices. The semantic
information varies with the transmission task, such as a highly
convoluted image feature map or compressed text embeddings
[9]. Therefore, we need a powerful model to mine the deeper
information hidden in the raw training data and understand the
relationship of the transmitted words. This typically requires
a model designed with a complex and deep structure and
an extensive amount of training data to cultivate the gener-
alization ability. However, when it comes to deployment, a
lighter model is preferred due to the constraints of computation
complexity and time. To achieve this, knowledge distillation
(KD) can be used to keep the light size and the generalizability,
which was first proposed in [18] to compress the knowledge
from an intelligent ensemble of models into a single light
model. KD is widely utilized to reduce the size and improve
the generalization for language understanding tasks [19], [20].
Nevertheless, KD has not yet been applied to SemCom.

A. Related work
To explore how learning-based algorithms can transform the

communications system for lower complexity and better per-
formance, representative works were conducted in [17], [21]–
[23]. The challenges and opportunities of machine learning in
communications were reviewed and discussed in [17] for the
physical layer. The future research directions powered by the
data-driven and learning approaches were pointed out. The
recent advances in applying DL in the physical layer were
demonstrated in [21], [22] to provide potential research direc-
tions for intelligent learning-based communications. The work
in [24] proposed a deep neural network for multi-input multi-
output (MIMO) detection in different channel conditions,
which has near-optimal performance with perfect channel
state information (CSI). To address the channel distortion,
a fully connected neural network was proposed for channel
estimation and signal detection in the OFDM system, which
has comparable system performance with the minimum mean-
square error estimator [25]. The work in [26] demonstrated that
the learning-based detector could perform without knowledge
of CSI by proposing a sliding bidirectional recurrent neural
network to detect the signals. Moreover, the effect of co-
channel interference and radar interference on learning-based
detectors were analyzed in [27] and [28], respectively.

Unlike the aforementioned works that only optimize and
deploy the learning-based receiver, several works have been
conducted to jointly optimize the transmitter and receiver. For
example, an E2E learning-based communications system was
proposed in [21] using autoencoders to replace the traditional
transmitter and receiver, to significantly reduce the complexity
of design and implementation compared with traditional block-
wise communications systems. Recently, research has shifted

from transmission of symbols to transmission of semantic
meaning inspired by the significant advancements of DL in
natural language processing. The scalability and capacity of
DL enables semantic understanding on deeper information,
such as word meaning and word relations in text transmis-
sion, to improve the system performance. A comprehensive
overview was conducted in [23] on how the communications
system can benefit from semantic and goal-oriented commu-
nications in terms of effectiveness and sustainability. This
overview strengthens the idea that recovering the meaning
behind the bits or completing the task that the transmission
intends to achieve is key to the recovery of the transmitted
information at the receiver. Understanding the meaning or the
goals behind the bits requires that the coding and decoding
schemes can identify the internal relationship of the transmit-
ted information.

There have been several studies on DL-enabled SemCom
including text transmission [5]–[8], image transmission [10]–
[13], speech transmission [9] and task-oriented transmission
[29]. The work in [5] proposed a joint source-channel cod-
ing (JSCC) communication framework using recurrent neural
network for text transmission, which had lower word error
rates than conventional coding schemes. By mapping the
words in a semantic space, words with similar meaning can
have close distance. Then, a DL-enabled SemCom system,
DeepSC, was proposed in [6], [7] to use Transformer as
the semantic encoder and decoder, to outperform traditional
coding schemes, especially in low SNR regime. Additionally,
a lite SemCom system, L-DeepSC, was proposed in [8] for
distributed IoT devices, which used parameter pruning and
quantization to reduce the model size so that it can work with
the limited bandwidth and transmission conditions. Moreover,
the work in [9] proposed an attention-based residual network
as the joint transceiver for speech signals, which showed better
robustness and performance than the traditional benchmarks
with regard to the speech signal metrics. A JSCC was proposed
for wireless image compression and transmission using two
convolutional neural networks [10]. The work in [11] proposed
a practical JSCC scheme based on autoencoder taking channel
output feedback into account to improve the image reconstruc-
tion quality. The work in [12] proposed an iterative source-
channel decoder to explicitly consider residual bit error of each
iteration for image transmission. The work in [13] proposed
coarse-to-fine image semantic coding model for multimedia
SemCom system using generative adversarial networks. Apart
from joint source-channel coding schemes for texts, images
and speech, a task-oriented MU SemCom, MU-DeepSC, was
designed to deal with multi-modal data [29].

B. Motivation and contribution
Although all the previous works have demonstrated novelty

and satisfactory performance by adopting DL-based semantic
systems for robustness and effectiveness, there has not been
any works on applying KD to the SemCom system with MU
interference. MU interference of the communications system
is inevitable in practice due to spectrum sharing. Yet, it is
either not studied or ignored in the previous works. More-
over, revolutionizing the traditional communications system
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with a DL-enabled source-channel coding scheme still has to
overcome many practical problems, including model generaliz-
ability and complexity. Specifically, the learning-based model
can be overly dependent on the training dataset samples and
consequently perform worse on unseen data. Several questions
need to be addressed in DL-based SemCom systems:

1) How well can the model generalize on unseen interfer-
ence?

2) How well can the model perform by training with limited
dataset?

3) How light can the model be with negligible performance
loss?

In this paper, our work focuses on the SemCom system using
KD to improve the model generalization capacity and lower
the model complexity. The main contributions of this paper
can be summarized as below:

1) To the best of the authors’ knowledge, this is the first
work that applies KD to the DL-enabled SemCom sys-
tem with MU interference. The random occurrences and
delays are considered for the interference. The perfor-
mance of this system is evaluated for different signal-to-
noise ratios (SNRs), signal-to-interference ratios (SIRs),
and numbers of interfering users.

2) We propose four types of KD approaches by training
the distilled student models for a limited range of SNR
regimes in the absence of interference samples and then
applying them to a wider range of SNR regimes with
unseen MU interference. Numerical results show that
distilled models outperform the non-distilled baselines
and the conventional communications system with and
without interference. Furthermore, it is proved that KD
largely improves the generalizability and robustness of
the model, which address Question 1) and 2) mentioned
before.

3) By adopting model compression in KD after training,
we apply model compression to the semantic encoder-
decoder and the channel encoder-decoder to reduce per-
formance loss. We also demonstrate the complexity and
performance analysis in terms of the size and number
of parameters, which address Question 3). Additionally,
an ablation study is conducted to analyze the effect of
various losses on the distilled student models.

The rest of the paper is organized as follows. In Section II, we
will introduce the system model of the SemCom system with
MU interference and describe the main challenges. Section
III will discuss the KD-based SemCom, model compression
and training process. Simulation settings and numerical results
will be demonstrated in Section IV. Finally, Section V will
conclude the work.

Notation: To represent the parameters and outputs from the
interfering user, we use the superscript I to represent the
interfering user. Also, we use the superscript T and S to
represent the parameters and outputs from the teacher model
and the student model in the distillation training process. E
denotes the mean of each element in the vector.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will firstly describe the SemCom system
with MU interference. Then, we will point out the chal-
lenges that DL-based SemCom might encounter, including
generalizing on unseen data, limited training data and model
complexity.

A. SemCom system

Physical 
Channel

Semantic Transmitter Semantic Receiver

Interfering 
Channel

Co-channel Interfering User 1

Co-channel Interfering User N

Desired User

Interfering 
Channel

+

Fig. 1: SemCom with MU interference due to co-channel
competition.

As shown in Fig. 1, we consider a SemCom system with
multiple users, where all users are equipped with a semantic
transmitter and compete for the same channel to incur co-
channel interference. In this MU system, each user could be
the desired user or cause interference to other users. When
they transmit signals simultaneously, they can interfere with
each other. Therefore, we model this SemCom system to have
one desired user in the presence of co-channel interference
from 𝑁 interfering users. Note that the interference in this
paper refers to the signals transmitted from interfering users
to the desired user. Each interference has random occurrences
and delays in the transmission. Moreover, each desired user
has a transmitter-receiver pair with one semantic encoder and
channel encoder at the transmitter, one channel decoder and
a semantic decoder at the receiver. The semantic encoder and
decoder are responsible for compressing and extracting the
information from the source at the semantic level. The channel
encoder and decoder are designed to counteract the channel
effect and recover the encoded semantic information.

We focus on a text transmission task using the SemCom
system in the presence of MU interference and noise. The
text input is expressed as 𝒔 = [𝑤1, 𝑤2, ..., 𝑤𝑛], where 𝑤𝑖
denotes the 𝑖-th word in the sentence 𝒔. Then, each word is
successively encoded by the semantic encoder and channel
encoder to formulate the transmitted symbols 𝒙 as

𝒑 = SE(𝒔,𝜶), (1)
𝒙 = CE( 𝒑, 𝜷), (2)
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where 𝒔 is the text sentence as input, 𝒑 denotes the semantic
encoded information, SE(·) and CE(·) is the semantic encoder
and the channel encoder with parameters 𝜶 and 𝜷, respectively,
and 𝒙 is the transmitted symbols as output.

Consider a SemCom system with one desired user and
multiple interfering users equipped with semantic transmitters,
the interference signals transmitted by the 𝑘-th interfering user
can be expressed by

𝒊I
𝑘
= CEI

𝑘
(SEI𝑘 (𝒔

I
𝑘
,𝜶I

𝑘
), 𝜷I

𝑘
), (3)

where 𝒊I
𝑘

is the interfering symbols from the 𝑘-th interfering
user. Then, the signals transmitted by the interfering users
arrive at the receiver of the desired user as,

𝒚 = 𝒉 ∗ 𝒙 +
𝑁∑︁
𝑘=1

𝚲I
𝑘
∗ 𝒎I

𝑘
∗ 𝒊I
𝑘
+ 𝒏, (4)

𝚲I
𝑘
= [𝜆𝑘,1, 𝜆𝑘,2, · · · , 𝜆𝑘,𝑛], (5)

𝜆𝑘, 𝑗 =

{
1 if the interference symbol occurs
0 otherwise

, (6)

where 𝒉 and 𝒎I
𝑘

are the physical channel and the 𝑘-th inter-
fering channel following Gaussian distributions, respectively,
𝚲𝑘 denotes the random occurrence of the 𝑘-th interference,
𝜆𝑘,𝑛 is the binary interference occurrence indicator for 𝑗-
th symbol in the 𝑘-th interference, 𝒏 denotes the additive
white Gaussian noise with mean zero and variance 𝜎2 and
the operation ∗ denotes the element-wise multiplication. To
decode the received signals for the desired user, the decoding
process can be expressed by,

�̂� = CD(𝒚, 𝜸), (7)
𝒕 = SD( �̂�, 𝜹), (8)

where CD(·) and SD(·) are the channel decoder and semantic
decoder with parameters 𝜸 and 𝜹, respectively; 𝒑 is the
decoded channel information, which is also the input to the
semantic decoder, 𝒕 denotes the decoded semantic informa-
tion. Finally, a dense layer with softmax activation function
is applied as the prediction layer to estimate the predicted
sentence 𝒔 from the semantic decoded information 𝒕, which
can be expressed by

𝒔 = F𝑝𝑟𝑒𝑑 ( 𝒕, 𝒘𝑝𝑟𝑒𝑑 , 𝒃𝑝𝑟𝑒𝑑)
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝒘𝑝𝑟𝑒𝑑 𝒕 + 𝒃𝑝𝑟𝑒𝑑)

, (9)

where 𝒘𝑝𝑟𝑒𝑑 and 𝒃𝑝𝑟𝑒𝑑 are the prediction layer parameters,
𝒔 denotes the predicted sentence.

The goal of the SemCom system is to recover the text
sentence 𝒔 in the presence of interference and noise. In order
to explore the generalization ability of the SemCom system,
we assume the receiver has the perfect CSI of the desired-
user channel gain 𝒉 but no knowledge of the interfering
channels. Then, the perfect CSI 𝒉 is adopted by zero-forcing
detector at the receiver to obtain the recovered signals �̂�
from the received signal 𝒚. The reason for this assumption
is to focus on evaluating the proposed methods’ performance
in the presence of unseen interference rather than the effect
of channel estimation errors or other practical limitations.
The extension to the case with both interference and channel

estimation error is not studied here due to space limit. Besides,
we consider Rayleigh fading, random interference occurrences
and transmission delay for the MU interference.

B. Problem description
The cross-entropy loss is utilized to measure the difference

between the ground truth hard labels and the predicted text
sentence, which can be expressed by

Lℎ𝑎𝑟𝑑 =L𝐶𝐸 (𝒔, 𝒔)

= − 1
𝑛

𝑛∑︁
𝑚=1

𝑃(𝒔[𝑚]) log 𝑃(𝒔[𝑚]), (10)

where 𝒔 = [𝑤1, 𝑤2, ..., 𝑤𝑛], 𝑃(𝒔[𝑚]) is the probability for the
real 𝑚-th word 𝑤𝑚 in the text sentence 𝒔, and 𝑃(𝒔[𝑚]) is the
probability for the predicted 𝑚-th word �̂�𝑚 in the text sentence
𝒔. Semantic transmitter and receiver are jointly optimized by
adjust their parameters sets to minimize the loss considering
physical channel attenuation, interference and noise. However,
this training method also brings several challenges.

The first challenge is the training of the semantic transmitter
and receiver for generalization ability. The cross-entropy loss
function only takes the final output of the SemCom system
into account, so that the semantic encoder, channel encoder,
channel decoder and semantic decoder are jointly trained as
one black box. Although the SemCom system technically has
a semantic transmitter and a semantic receiver, it is difficult
to interpret the intermediate output as it is part of the conver-
gence. Consequently, the model can easily overfit on the train-
ing dataset or under-trained. This is inevitable for data-driven
and learning-based systems, where the quality of the trained
model cannot be guaranteed unless we conduct extensive
experiments on all unseen data to validate its generalization
ability. In practice, this may lead to excessive resources for
training and testing. Therefore, it is important to design a
training method so that the model can have considerable
performance and generalization ability with unseen data.

The second challenge is the limitation of the training data.
The data-driven and learning-based communications system
highly relies on the training dataset to maintain the model
performance. An extensive amount of datasets containing
sufficient patterns lays the foundation for training a powerful
learning-based communications system. However, it can be
challenging in a practical communications system to obtain
the ideal dataset which meets such requirements. Therefore, it
is important to train the model properly with fewer dataset.

The third challenge is the model complexity. A com-
plex model normally possesses a high convergence ability
to accurately learn and approximate the relationship between
inputs and outputs for a given dataset and generalizes well to
unseen data. Nevertheless, the computational complexity can
be too high for devices with limited computation resources.
Therefore, it can be very challenging to reduce the model
complexity while preserving its convergence. Next, we will
address these challenges.

III. KD-BASED SEMCOM SYSTEM

In this section, we will introduce the Transformer-based
semantic transceiver. Then, we will introduce a KD-based
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SemCom system to address the challenges mentioned above.
Different model compression algorithms are used to address
Question 3), and KD is adopted to solve Questions 1) and 2).
Finally, the training procedure will be demonstrated.

A. Transformer based semantic transceiver

Inspired by the bidirectional encoder representations from
Transformers (BERT) [30], we adopt the Transformer struc-
ture as the semantic encoder and decoder to compress and
extract the semantic information. The attention scheme of the
Transformer can correlate the contextual information for each
word in the sentence. The attention can be computed by

𝑸 = 𝑾𝑄𝑿𝑄, 𝑲 = 𝑾𝐾𝑿𝐾 , 𝑽 = 𝑾𝑉𝑿𝑉 , (11)

F𝐴(𝑸, 𝑲,𝑽) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑸𝑲𝑇
√
𝑑𝑘
)𝑽, (12)

where 𝑸, 𝑲, 𝑽 ∈ R𝐵×𝐿×𝐷𝑚𝑜𝑑𝑒𝑙 denote the representations of
the query, the key and the value with the input 𝑿𝑄, 𝑿𝐾 and
𝑿𝑉 ∈ R𝐵×𝐿×𝐷𝑚𝑜𝑑𝑒𝑙 and the parameter 𝑾𝑄, 𝑾𝐾 and 𝑾𝑉 ,
respectively, 𝐵 is the batch size, 𝐿 is the sequence length
and 𝐷𝑚𝑜𝑑𝑒𝑙 is the embedding dimension, F𝐴(·) denotes the
attention function and 𝑑𝑘 is the scaling factor. To obtain
the information from different representation subspaces at
different positions, the multi-head attention is used to calculate
the attention in parallel and then concatenate the independent
attention. The multi-head attention with 𝑁 heads can be
computed by

𝑸𝑖 = 𝑸𝑾𝑄

𝑖
, 𝑲𝑖 = 𝑲𝑾𝐾

𝑖 , 𝑽𝑖 = 𝑽𝑾𝑉
𝑖 , (13)

F𝑀𝐴(𝑸, 𝑲,𝑽) = [FA (𝑸1, 𝑲1,𝑽1) | | · · · | |FA (𝑸𝑁 , 𝑲𝑁 ,𝑽𝑁 )]𝑾0,
(14)

where F𝑀𝐴(·) is the multi-head attention function with param-
eter 𝑾0, 𝑸𝑖 , 𝑲𝑖 and 𝑽𝑖 ∈ R𝐵×𝐿×𝐷ℎ𝑒𝑎𝑑 are the query, the key
and the value of the 𝑖-th head with parameters 𝑾𝑄

𝑖
, 𝑾𝐾

𝑖 and
𝑾𝑉
𝑖 ∈ R𝐷𝑚𝑜𝑑𝑒𝑙×𝐷ℎ𝑒𝑎𝑑 , 𝐷ℎ𝑒𝑎𝑑 = 𝐷𝑚𝑜𝑑𝑒𝑙/𝑁 is the embedding

dimension of each head and | | denotes the concatenation
operation. Then, the feed forward layer is applied to the output
of the multi-head attention layer, which is expressed as,

F𝐹𝐹 (𝑿) = 𝑾FF𝑿 + 𝒃FF , (15)

where 𝑾FF and 𝒃FF are the parameters of the feed forward
layer. Layer normalization is applied to each output from the
multi-head attention layer and the feed forward layer to rescale
and shift the outputs, which can be described by

F𝐿𝑁 (𝑿) =
𝑿 − E[𝑿]√︃
𝜎2
𝑿 + 𝜖

𝜃 + 𝜇, (16)

where 𝑿 ∈ R𝐷𝑚𝑜𝑑𝑒𝑙 is the input of the layer normalization,
𝜃 and 𝜇 are the trainable parameters, 𝜎𝑿 is the variance of
the input 𝑿, 𝜖 is an arbitrarily small number. Also, we apply
skip connection using addition by adding the output from the
preceding layer to the layer ahead.

For the Transformer based semantic transmitter, the text
sequence 𝒔 is preprocessed by a text tokenizer to split the
text into words by punctuation and whitespaces, and then map
each word with the corresponding scalar number according to

the word representation dictionary. Then, the text sequence
𝒔 is embedded as 𝒕 ∈ R𝐵×𝐿×𝐷𝑚𝑜𝑑𝑒𝑙 , which is the input to
the Transformer layer. Each layer of the Transformer based
semantic encoder contains a multi-head self-attention layer and
a feedforward layer processed by residual connection and layer
normalization. The Transformer layer of the semantic encoder
can be expressed by,

𝒛𝑠𝑒𝑙 𝑓 = F𝐿𝑁 (F𝑀𝐴(𝑾𝑄 𝒕,𝑾𝐾 𝒕,𝑾𝑉 𝒕) + 𝒕), (17)
𝒑 = F𝐿𝑁 (F𝐹𝐹 (𝒛𝑠𝑒𝑙 𝑓 ) + 𝒛𝑠𝑒𝑙 𝑓 ), (18)

where 𝒛𝑠𝑒𝑙 𝑓 is the output of the multi-head self-attention
processed by layer normalization and residual connection with
embeddings 𝒕 as input, 𝑾𝑄, 𝑾𝐾 and 𝑾𝑉 are the weights
parameters, 𝒑 denotes the semantic encoded information in
(1) and also the output of the Transformer layer with a size
determined by sentence length and output units of the semantic
encoder.

For the channel encoder and decoder, fully connected dense
layers are used to encode and recover the information from the
corrupted channel condition, which can be expressed as,

F𝐹𝐶 (𝑿) = 𝜌(𝑾𝑿 + 𝒃), (19)
𝒙 = F𝐹𝐶 ( 𝒑, 𝜷), (20)
�̂� = F𝐹𝐶 (�̂�, 𝜸)), (21)

where F𝐹𝐶 (·) denote the fully connected layer with input
𝑿 and parameters 𝑾 and 𝒃, 𝜌 is the activation function, 𝒙
denotes the channel encoded information in (2) with semantic
encoded information 𝒑 as input and 𝜷 as trainable parameters,
�̂� denotes the channel decoded information with recovered
symbols �̂� at receiver as input and 𝜸 as trainable parameters.

Different from the semantic encoder, where the attention is
calculated instantaneous for the entire sequence, the seman-
tic decoder estimates the sequence by iteratively predicting
each word sequentially using the previous estimate as input.
Therefore, an additional self-attention for the predicted words
of each iteration is required for the semantic decoder. The
Transformer layer of the semantic decoder can be expressed
as

𝒛′ = F𝐿𝑁 (F𝑀𝐴(𝑾′𝑄 𝒕′,𝑾′𝐾 𝒕′,𝑾′𝑉 𝒕′) + 𝒕′), (22)

𝒛𝑐𝑟𝑜𝑠𝑠 = F𝐿𝑁 (F𝑀𝐴(𝑾𝑄𝒛′,𝑾𝐾 �̂�,𝑾𝑉 �̂�) + 𝒛′), (23)
𝒕 = F𝐿𝑁 (F𝐹𝐹 (𝒛𝑐𝑟𝑜𝑠𝑠) + 𝒛𝑐𝑟𝑜𝑠𝑠), (24)

where 𝒛′ denotes the multi-head self-attention with the pre-
dicted embeddings 𝒕

′ as input, 𝒕
′ ⊆ 𝒕 denotes the results of

each iteration to estimate the sequence, 𝑾′𝑄, 𝑾′𝐾 and 𝑾′𝑉

denote the parameters for the self-attention of the previous pre-
dictions, 𝒛𝑐𝑟𝑜𝑠𝑠 is the multi-head cross-attention with attention
of the previous predictions 𝒛′ and channel decoded information
�̂� as input, 𝑾𝑄, 𝑾𝐾 and 𝑾𝑉 denote the parameters for
the multi-head cross-attention, �̂� is the output of the channel
decoder in (7), 𝒕 is the output of the semantic decoder in (8).

In training, we use the masked sequence embedding 𝒕𝑚𝑎𝑠𝑘𝑒𝑑
as input to predict the masked word instead of using the
output of the previous predictions 𝒕

′ to predict the next word.
The attention mechanism can learn the contextual information
around the masked word during training. This could speed
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up the training and address the problems that the model
cannot make reliable predictions when under-trained. During
the deployment and testing, we always use the predictions
of the previous iterations to estimate the next. Note that the
semantic encoder-decoder and the channel encoder-decoder
can have multiple layers, which are iterated by using the output
of the current layer as the input for the next.

B. KD-based system model

As shown in Fig. 2, we propose a tailored KD algorithm
for the SemCom system. In KD, the teacher is required to
provide soft targets as knowledge to train the student model.
The soft targets are the probability distribution obtained by
applying the softmax function to the output of the model. By
adding the temperature parameter 𝑇 in the softmax, it could
control the level of uncertainty in the output probabilities. By
raising the temperature, the soft targets become more diffuse
with less emphasis on the most probable class, which can help
prevent the student model from overfitting to the training data
and encourage it to learn more generalizable features [18]. The
softmax function with temperature 𝑇 can be described by

𝑄(𝑧𝑖;𝑇) =
𝑒𝑥𝑝(𝑧𝑖/𝑇)∑
𝑗 𝑒𝑥𝑝(𝑧 𝑗/𝑇)

, (25)

where 𝑧𝑖 is the 𝑖-th output of the model which can be the
final prediction or the intermediate feature representation, and
𝑇 denotes the temperature parameter. To transfer knowledge
from teacher to student, instead of only considering the final
output logits, we consider the intermediate outputs in the
SemCom system including the encoded semantic information
𝒑T , 𝒑S , the encoded channel information 𝒙T , 𝒙S , the de-
coded channel information �̂�T , �̂�S , the decoded semantic
information 𝒕

T , 𝒕
S and the final predictions 𝒔T , 𝒔S . In this

way, teachers’ intermediate outputs can be used as additional
supervisory data to guide student training and as a comparative
benchmark to implicitly explain students’ intermediate outputs
in the SemCom system. Taking semantic encoded information
as an example, tests show that a closer distribution to the
teacher model could enhance the capability of the student
model.

The total distillation loss is computed by

L𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
∑︁

(OS ,OT ) ∈O
L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (OS ,OT)

=
∑︁

(OS ,OT ) ∈O
E
{
𝜂OS ,OT𝑇

2D𝐾𝐿 [𝑄(OS ;𝑇) | |𝑄(OT ;𝑇)]
}
,

(26)

O ⊆
{
( 𝒑S , 𝒑T), (𝒙S , 𝒙T), ( �̂�S , �̂�T), ( 𝒕S , 𝒕T), (𝒔S , 𝒔T)

}
,

(27)
where L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (·) is the corresponding distillation loss of each
output from the teacher and the student; OT denotes the output
from the teacher serving as the reference to the output from
the student OS ; OT and OS are the subset of the distillation
information set O; 𝜂OS ,OT is the weight parameter for each
distillation loss; D𝐾𝐿 (·) denotes the Kullback-Leibler (KL)
divergence [31]. KL divergence can compare two probability

distributions with different scales, which provides a way to
measure how much the student distribution deviates from the
teacher distribution. Minimizing this difference enables the
student to learn from the teacher and reproduce the teacher’s
probability distribution. Additionally, KL divergence allows
the temperature parameter 𝑇 to be adjusted, which improves
the flexibility of the training. To obtain the overall training
loss for the student model, we combine the cross entropy loss
with the hard labels and the sum of the distillation loss, which
can be represented as,

L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = (1 −
∑︁

(OT ,OS ) ∈O
𝜂OT ,OS )L𝐶𝐸 (𝒔S , 𝒔S)

+
∑︁

(OT ,OS ) ∈O
E
{
𝜂OT ,OS𝑇

2D𝐾𝐿 (𝑄(OS ;𝑇) | |𝑄(OT ;𝑇))
}
.

(28)

Then, the gradient of the overall loss is calculated and back-
propagated to update the parameters. Therefore, the error
between the teacher’s output probability distributions and
student output distributions can be minimized. In other words,
the optimization for the student can be guided by the teacher
model, which is equivalent to matching the corresponding
outputs of each part from the teacher model to the student
model [18].

C. Model compression

The proposed SemCom system adopts the Transformer
structure as the semantic encoder-decoder and dense lay-
ers as the channel encoder-decoder. Unlike the conventional
learning-based system that is treated as a black box, the
training of the proposed KD-based SemCom system can be
divided into several small black boxes based on the distilled
knowledge. Each black box can converge the corresponding
outputs from the pre-trained teacher model. This process can
potentially have more control on the optimization process
of the student model. Therefore, we can conduct the model
compression by reducing the size of each component in the
student model while converging the outputs, as shown in Fig.
2. However, simply reducing the number of Transformers in
the semantic encoder-decoder could weaken the robustness
of the model. To alleviate this nagative effect, the student
learns from the teacher by mimicking the teacher’s outputs
to improve generalization ability since the teacher model is
over-parameterized and pre-trained with extensive data. This
is achieved by minimizing L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 in equation (28). Similarly,
the number of dense layers in the channel encoder-decoder can
also be reduced for model compression. Although this might
affect the information recovery performance, the knowledge
from the teacher is transferred to compensate for the impact
on the performance.

Also, inspired by the work in [8] using network quantization
for the SemCom system, we propose to use post training
dynamic quantization to further compress our model after re-
ducing the number of layers and parameters via KD. Dynamic
quantization converts the float representation of the weights
to the reduced integer representation, which essentially saves
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Fig. 2: The structure of the KD-based SemCom system.

the model size and computational complexity. The weights
quantization can be expressed as,

𝑿𝑞 = 𝑟𝑜𝑢𝑛𝑑 (𝜑𝑿 𝑓 𝑙𝑜𝑎𝑡 − 𝜔), (29)

where 𝑿𝑞 is the quantized output, 𝑿 𝑓 𝑙𝑜𝑎𝑡 is the float input, 𝜑 is
the scale parameter and 𝜔 is the zero point. Note that, overly
decreasing the size of the mode could cause the model to
diverge and lose generalization ability. The trade-off between
performance and the size of the model will be discussed to
answer Question 3).

D. Training

To train the KD-based SemCom system, the combined
training process is demonstrated in Algorithm 4. It can be
divided into three phases: training the teacher model, training
the student model and applying post-training quantization.
Algorithm 1 demonstrates the feed forward process to generate
the outputs for teacher and student models. Since the proposed
SemCom system adopts a DL-based E2E transceiver design,
the feed-forward process is implemented as the complete
process of encoding the information at the transmitter and
recovering it at the receiver. In order to generate inputs for
the semantic encoder, the dataset is partitioned into batches
for parallel processing during training, and each word is
then transformed into word embeddings for use as inputs.
The semantic encoder consists of multiple Transformer layers
with the multi-head self-attention in (17) and (18), while the
semantic decoder additionally computes the multi-head cross-
attention to account for previous predictions, denoted in (22),
(23) and (24). For channel encoder and decoder, it adopts
multiple fully connected dense layers in (19). As the teacher
model is pre-trained, we assume that the teacher model has
sufficient computational resources and large amount of training
data. Also, we simulate different SNRs on the transmitted
signals. With these samples in the training dataset, the teacher
can have robust performance in the scenarios across different

Algorithm 1 Data generation

Input: : Dataset 𝑺, number of interfering users 𝑁 , SemCom
model SE(·), CE(·), CD(·), SD(·) and P𝑝𝑟𝑒𝑑 (·) with
parameters Θ = {𝜶,𝜷,𝜸,𝜹, 𝒘𝑝𝑟𝑒𝑑 ,𝒃𝑝𝑟𝑒𝑑}

1: 𝒔← 𝐵𝑎𝑡𝑐ℎ𝐷𝑎𝑡𝑎𝑠𝑒𝑡 (𝑺).
2: 𝒕 ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝒔).
3: Compute the output of semantic encoder by (17) and (18),

𝒑 ← SE( 𝒕,𝜶).
4: Compute the output of channel encoder by (19) and (20),

𝒙 ← CE( 𝒑, 𝜷).
5: if Train the teacher model then
6: Transmit 𝒙 over the physical channel with MU interfer-

ence 𝒊I1 , ..., 𝒊
I
𝑁

in (3).
7: else if Train the student model then
8: Transmit 𝒙 over the physical channel with no MU

interference.
9: end if

10: Receive 𝒚.
11: Compute the output of channel decoder by (19) and (21),

�̂� ← CD(𝒚, 𝜸).
12: Compute the output of semantic decoder by (22), (23) and

(24), 𝒕 ← SD( �̂�, 𝜹).
13: Compute the predicted results by (9), 𝒔 ←
P𝑝𝑟𝑒𝑑 ( 𝒕, 𝒘𝑝𝑟𝑒𝑑 , 𝒃𝑝𝑟𝑒𝑑).

Output: 𝒔, 𝒑, 𝒙, �̂�, �̂� and �̂�.

SNRs, with or without interference. The training algorithm
for the teacher model is demonstrated in Algorithm 2. Firstly,
the feed forward process is applied to generate the teacher’s
outputs, which introduces the interference signals from the
interfering semantic transmitters. Afterwards, the cost is com-
puted by calculating cross-entropy loss and propagating back
to compute gradients. Then, the stochastic gradient descent is
used to update the parameters in the semantic transceiver.
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Algorithm 2 Training algorithm of the teacher model

Input: Training dataset 𝑺T , MU interfering model SEI (·),
CEI (·), number of epochs 𝐸 , Teacher model SET (·),
CET (·), CDT (·), SDT (·) and PT

𝑝𝑟𝑒𝑑
(·) with parameters

ΘT = {𝜶T ,𝜷T ,𝜸T ,𝜹T , 𝒘T
𝑝𝑟𝑒𝑑

,𝒃T𝑝𝑟𝑒𝑑}.
1: Initialize parameters ΘT .
2: for 𝑒 = 1 to 𝐸 do
3: Perform forward propagation to compute output 𝒔T .
4: Compute cost 𝐽 (ΘT) using loss function Lℎ𝑎𝑟𝑑 in (10).
5: Perform backward propagation to compute gradients

𝜕𝐽

𝜕ΘT
.

6: Update parameters ΘT using stochastic gradient de-
scent.

7: end for
Output: Trained SET (·), CET (·), CDT (·), SDT (·) and
PT
𝑝𝑟𝑒𝑑
(·) with parameters ΘT .

Algorithm 3 Training algorithm of the student model

Input: Training dataset 𝑺S , number of epochs 𝐸 , pre-
trained teacher model SET (·), CET (·), CDT (·),
SDT (·) and PT

𝑝𝑟𝑒𝑑
(·), student model SES (·), CES (·),

CDS (·), SDS (·) and PS
𝑝𝑟𝑒𝑑
(·) with parameters ΘS =

{𝜶S ,𝜷S ,𝜸S ,𝜹S , 𝒘S
𝑝𝑟𝑒𝑑

,𝒃S𝑝𝑟𝑒𝑑}.
1: Initialize parameters ΘS , load pretrained teacher SET (·),
CET (·), CDT (·), SDT (·) and PT

𝑝𝑟𝑒𝑑
(·)

2: for 𝑒 = 1 to 𝐸 do
3: Compute the outputs of pretrained teacher 𝒑T , 𝒙T , �̂�T ,

�̂�
T and �̂�T .

4: Perform forward propagation to compute the student
outputs 𝒑S , 𝒙S , �̂�S , �̂�S and �̂�S .

5: Compute cost 𝐽 (ΘS) using loss function L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 in
(28).

6: Perform backward propagation to compute gradients
𝜕𝐽

𝜕ΘS
.

7: Update parameters ΘS using stochastic gradient de-
scent.

8: end for
Output: Trained SES (·), CES (·), CDS (·), SDS (·) and
PS
𝑝𝑟𝑒𝑑
(·) with parameters ΘS .

After obtaining the trained teacher model, we train the
student model in the second phase, which is demonstrated in
Algorithm 3. We use the transfer training dataset 𝑺S , which
contains limited samples to simulate the scenario when there
are not enough training data. Unlike the training dataset for
the teacher model, we do not add MU interference in this
training data and simulate a limited range of SNRs. Consider-
ing these constraints, we apply the feed forward propagation
in Algorithm 1 to obtain the outputs of the students and
the teacher from semantic encoder, channel encoder, channel
decoder, semantic decoder, and prediction layer, respectively.
Then, we apply the KD algorithm by computing the overall
loss L𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , which considers the distilled loss L𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑖𝑙𝑙
between the student and the teacher and the cross-entropy loss

Algorithm 4 Combined training algorithm for the proposed
KD-based SemCom

Input: Training dataset 𝑺T , transfer dataset 𝑺S .
1: Train the teacher model ← 𝑺T .
2: Train the student model ← 𝑺S , pretrained teacher model
SET (·), CET (·), CDT (·), SDT (·) and PT

𝑝𝑟𝑒𝑑
(·).

3: Quantize the student model by (29).
Output: : Trained and quantized SES (·), CES (·), CDS (·),
SDS (·) and PS

𝑝𝑟𝑒𝑑
(·).

between the predicted sentence and the ground truth. Then,
the student model’s parameters are optimized by stochastic
gradient descent after backpropagation. In the third phase, we
apply post-training quantization to the weights and activation
function so that the model size can be further compressed.

The overall loss function using cross-entropy and KL
divergence could have multiple local minima due to their
asymmetric inputs. Besides, the semantic encoder-decoder and
channel encoder-decoder consists of millions of parameters
with several hidden layers and non-linear activation function,
which also causes multiple local minima. Therefore, the
optimization problem using KD is considered non-convex.
To alleviate the non-convexity and approximate the global
minimum, we adopt Adam optimizer [32], layer normalization
and dropout layer in the network to avoid local minima and
improve convergence.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we examine the performance of the proposed
KD-based SemCom system in Rayleigh fading channels with
MU interference. We assume perfect CSI for the desired user
and various SNR regime is simulated in the experiment.

A. Simulation setting

There are several types of knowledge from the teacher
model, and increasing distilled knowledge for the student
model can increase the difficulty of the training by introducing
more hyperparameters. Therefore, we propose four types of
student models to evaluate the performance for different dis-
tilled knowledge and model compression. These four models
will be trained using the limited dataset and tested in the
SemCom system in the presence of co-channel interference
to analyze the generalization ability on unseen data, which
could answer Questions 1) and 2).

The parameter settings for the teacher and the student
models are shown in Table I. We adopt the same structure
as the L-DeepSC [8] for Teacher and Student 1, which has
4 layers of Transformer with 8 attention heads and 128 units
as the semantic encoder and decoder. Additionally, 2 dense
layers with 256 and 16 units are used for the channel encoder,
and 3 dense layers with 128, 512, and 128 units are used for
the channel decoder. Student 2 adopts 2 Transformer layers
for the semantic encoder and decoder, while Student 3 and
4 further reduce the model size by using 1 dense layer for
channel encoder and 2 dense layers for channel decoder.
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TABLE I: The setting of the teacher and student models for the SemCom system

Teacher Student 1 Student 2 Student 3 Student 4
Semantic
encoder

4 x Transformer layers
8 heads 128 units

2 x Transformer layers
8 heads 128 units

Channel
encoder

2 x Dense layers
256, 16 units

1 x Dense layer
16 units

Channel
decoder

3 x Dense layers
128, 512, 128 units

2 x Dense layers
128, 128 units

Semantic
decoder

4 x Transformer layers
8 heads 128 units

2 x Transformer layers
8 heads 128 units

Prediction
layer

1 x Dense layer
dictionary units

Distilled
knowledge - (𝒙S , 𝒙T ) ,(𝒕S , 𝒕T )

and (𝒔S , 𝒔T )
(𝒑S , 𝒑T ) , (𝒙S , 𝒙T ) , ( �̂�S , �̂�T ) ,
(𝒕S , 𝒕T ) and (𝒔S , 𝒔T )

Quantization - - - - ✓

Finally, a dense layer is adopted as the prediction layer to
output a vector with a dictionary size to represent the predicted
word. All of the student models conduct KD from the teacher
model. Students 1 and 2 consider the knowledge from the
outputs of channel encoder, semantic encoder, and prediction
layer, while Students 3 and 4 additionally consider the outputs
from the semantic encoder and channel decoder. Moreover,
post-training dynamic quantization is applied to Student 4.
All learning-based SemCom systems require 8 symbols to
represent one word since the output units of the channel
encoder are set as 16, and it is converted to a two-dimensional
vector as complex for transmission.

The performance of all baseline models is evaluated using
the same number of transmitted symbols to guarantee a fair
comparison. The settings of the baselines are described below:

1) Baselines of learning-based SemCom systems: All base-
lines are trained without KD to benchmark the contribution of
distilled knowledge.
• DeepSC [7]: We apply the same structure of DeepSC,

which has 3 layers of Transformer with 8 attention heads
as semantic encoder and decoder and 2 dense layers as
channel encoder and decoder.

• Baseline 1: We adopt the same structure as L-DeepSC,
Teacher and Student 1.

• Baseline 2: We adopt the same model structure as Student
2.

• Baseline 3: We adopt the same model structure as Student
3.

2) Conventional communications systems: We adopt 8
symbols to represent one word for different source coding
methods by choosing appropriate code rate for low-density
parity-check code (LDPC) and 16-QAM for modulation,
which are the same as the learning-based SemCom system.
• Huffman coding and LDPC: Huffman coding requires

about 20 bits to represent a word, and we adopt 16-QAM
for modulation and 5/8 as the code rate for LDPC.

• 5-Bit coding and LDPC: We adopt 16-QAM and 7/8 for
the code rate of LDPC, since 5-bit uses about 28 bits to
represent a word. Also, 5-bit coding is used to benchmark
the performance without compression.

The source of the training dataset is the English dataset from
the Europarl [33], which contains over 2 million sentences and

53 million words. The sentences are randomly split into the
training set and the testing set. As the teacher model is pre-
trained, we conduct different experiments to randomly add
extra interference and noise to formulate the training datasets
for the teacher model to make it robust. To simulate the
interference, we use randomly selected sources. Moreover, the
random occurrences and delays of interference are simulated
by applying a 90% of occurrence rate and a maximum three-
word (24 symbols) delay to the interfering signals. Differ-
ent from the extensive training datasets for the teacher, the
transferring dataset for the student model and the baselines
is formulated with an interference-free channel and a limited
regime of noise, which does not contain any interference
samples. In this case, the student models and the baselines are
trained with limited transferring datasets compared with the
teacher model. Therefore, we can test the student and baseline
models with unseen interference to evaluate the robustness
and generalization ability under limited training data. The
difference between the student models and the baselines is that
the student models are conducted KD, whereas the baselines
are not.

To measure the performance of the models mentioned
above, we adopt a bilingual evaluation understudy (BLEU)
score to measure the difference between two sentences [34].
However, it is difficult for BLEU to distinguish synonyms or
polysemy. Thus, we also use sentence similarity [7], which
adopts BERT [30] to map the sentences into semantic vector
space and compare their semantic vectors. The simulation is
performed on a computer with Intel(R) Xeon(R) CPU E5-2678
v3 @ 2.50GHz and NVIDIA GeForce GTX 1080 Ti.

B. Performance without interference

In this section, we compare the performance without MU
interference. The teacher model is trained using a dataset with
SNR randomly changing from 10 dB to 15 dB, while others
are trained by the transfer training dataset with a limited SNR
ranging from 15 dB to 18 dB. Fig. 3 evaluates the BLEU
performances for the teacher, the students, and the baselines.
The BLEU accuracy of the teacher model ranges from about
52% to over 90% when the SNR increases from 0 dB to 18
dB. It outperforms other models because using the sufficient
training set with a wider SNR range improves its robustness
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Fig. 3: BLEU score of the SemCom with no interference.

over different SNRs. With the transferred knowledge from the
teacher model, all student models can perform better than the
baselines without KD when the SNR is less than 9 dB. The
reason is that the knowledge for the generalization in the low
SNR regime is transferred from the teacher to the students,
while the baselines can only learn through the hard label
information. This also illustrates that, when the transfer dataset
is limited, KD from the teacher can improve the robustness of
the model.

For conventional communications systems, the BLEU can
reach about 60% when SNR is 18 dB. The non-compression
coding scheme, 5-Bit with LDPC, performs slightly better
than Huffman and LDPC when SNR increases over 9 dB.
However, there is still a significant performance gap compared
with learning-based SemCom systems. Additionally, a slight
performance decline for Baseline 3 can be observed when
SNR increases over 12 dB due to overly simplifying the model
without the distilled knowledge from the teacher. One of the
advantages of KD is that the student model does not need
to have access to a large amount of training data while the
teacher can be trained offline anywhere. This allows for data
isolation and privacy. Also, compared with conducting several
experiments to train the student model for different values of
SNRs and SIRs, directly distilling the knowledge from the
teacher could save the experiment time.

C. Performance with MU interference

To further investigate the effect of the proposed KD-based
SemCom system, we evaluate the BLEU, sentence similarity
and BER with one co-channel interference when SIR increases
from 0 to 18 dB in Fig. 4. This is equivalent to increasing
the number of interfering users while keeping the SIR for
each user. The BER of the SemCom system is computed
by converting the recovered words into bits using ASCII. To
evaluate the KD-based models with unseen data, the students
and the baselines are trained with the transferring dataset

without no MU interference samples, while they are tested
in the presence of MU interference to show robustness.

For the BLEU score, although the performance gap between
the baselines and the student models narrows when SIR grows,
the student models with distilled knowledge perform better
than the baselines when SIR is less than 12 dB. For the
conventional communications system, 5-bit and LDPC range
from 30% to over 50% when SIR increases to 18 dB, which
performs better than Huffman and LDPC. Nevertheless, the
students with KD still greatly outperform the conventional
communications systems regardless of the SIRs. The perfor-
mance of sentence similarity in Fig. 4 demonstrates the same
trend as the BLEU scores. The sentence similarity of students
ranges from about 60% to over 80% when SIR increases to
18 dB, which is better than the baselines and conventional
communications systems. This shows that the models with
KD have better word accuracy in BLEU scores and recover the
sentences that are easier to understand. Moreover, the learning-
based communications systems outperform the conventional
communications system for all SIRs, indicating that people
can better understand the text with the SemCom system.
However, the conventional baselines do perform better than all
the SemCom systems in terms of BER. This is attributed to the
transformer-based encoder-decoder used by SemCom, which
recovers the intended message through contextual reasoning
on a word-by-word basis, instead of adhering strictly to the
precise wording. SemCom sacrifices bit errors for the recovery
of the meaning of words to save spectrum. In this regard, the
semantic systems may have limited applications in services
requiring precise bits, such as voice control. Despite this, the
students with KD still outperform the learning-based baselines
in BER, demonstrating the enhanced generalization to unseen
interference by KD.

Fig. 5 demonstrates the performances in the presence of one
interfering user when SIR is 0 dB and 10 dB to simulate the
strong and weak interference. When the physical channel is
severely interfered, the BLEU accuracy of the baselines and
DeepSC can barely reach 20% because there is neither KD
in the training nor interference samples in the training data.
However, it still outperforms the conventional communications
system with Huffman and 5-bit coding schemes when the SNR
is less than 12 dB. The overall BLEU score of the teacher
ranges from about 30% to 50% as the SNR increases from 0
to 18 dB due to its powerful generalization ability. On the other
hand, the BLEU accuracy of the student models with distilled
knowledge ranges from 25% to 30% when SNR increases from
0 to 18 dB, which outperforms the baselines and DeepSC by
over 10%. This shows that distilled knowledge can improve the
model performance of generalizing on unseen data. Moreover,
Student 2 and Student 1 have better performances than other
students because overly compressing the size of the model can
result in performance degradation.

When the SIR is 10 dB, the BLEU score of the teacher
ranges from about 47% to over 80% when the SNR is from
0 to 18 dB. Again, the student models perform better than
the baselines and DeepSC from 0 to 18 dB. Also, Student
2 and Student 1 perform slightly better than Student 3 and
Student 4. Student 2 only compresses the semantic encoder
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Fig. 4: BLEU score and sentence similarity of the SemCom with one MU interference when the SNR is 18 dB.
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Fig. 5: BLEU score of the SemCom with one MU interference.

and decoder, while Student 3 and Student 4 conduct model
compression on both semantic encoder-decoder and channel
encoder-decoder. Additionally, Student 3 and Student 4 have
similar performances, which illustrates that the post-training
dynamic quantization can barely have any effect on the BLEU
score performance.

To test the performance when there are more interfering
users, Fig. 6 demonstrates the BLEU performance with mul-
tiple interference when SIR is 20 dB. When SNR is 6 dB,
Student 1 and Student 2 outperform the teacher, as the number
of interference increases from 3 to 9. This demonstrates that
distilled knowledge can provide the generalization ability for
Students 1 and 2, and direct the student models in optimization
to outperform their teacher. Moreover, this compresses the
model and improves the performance simultaneously. Ad-
ditionally, all student models can generally outperform the
baselines and DeepSC, except that Student 4 has a relatively
poor accuracy when the number of interference is 3. For con-
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Fig. 6: BLEU score of the SemCom with multiple interference.

ventional communications systems, the BLEU of the Huffman
and 5-bit coding with LDPC remains less than 10%. When
the SNR is 15 dB, the BLEU score of the teacher ranges from
about 77% to 41% as the number of interfering users increases
from 3 to 9. The 5-Bit and LDPC scheme performs slightly
better than Huffman and LDPC with an accuracy ranging
from 35% to 25%. However, Student 1 and Student 2 still
demonstrate better performance than the teacher, the baselines,
and the conventional communications. Comparing Student 1
and Baseline 1, KD without model compression improves
the accuracy by over 20%, as the number of interfering
users increases. Furthermore, Student 1 has a slightly better
performance than Student 2, which shows that KD can reduce
the performance loss while compressing the model.

D. Ablation experiment

In Table II, we investigate the effect of various components
of the loss function on the distilled student models. We
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TABLE II: Variations on BLEU score relative to the model
trained with all losses.

Without interference With interference
SNR=6 SNR=15 SNR=6 SNR=15

Without L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒔T , 𝒔S ) -5.16% -2.25% -5.11% -1.07%
Without L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒙T , 𝒙S ) -6.08% -4.62% -5.73% -1.45%

and L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒕T , 𝒕S )
Without L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒑T , 𝒑S ) -5.08% -6.35% -0.89% -1.18%

and L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ( �̂�T , �̂�S )
Without Lℎ𝑎𝑟𝑑 (𝒔S , 𝒔S ) -18.63% -12.59% -11.71% -6.44%

categorize the distilled losses by considering the symmetric
structure of the SemCom system. The SemCom systems with
no interference and with one interference when SIR is 10 dB
are considered.

When there is no interference, the distilled knowledge from
the outputs of the channel encoder and the semantic decoder
has more impact on the performance than other distilled
knowledge when there is strong noise in the system. Con-
versely, the knowledge from the intermediate outputs of the
encoded semantic information 𝒑T and 𝒑T tends to have more
influence on the performance when there is less noise. The
cross-entropy loss Lℎ𝑎𝑟𝑑 (𝒔S , 𝒔S) is the most important loss
function regardless of the presence of the interference because
it has the hard label information, which is the direct way to
improve the performance. When there is unseen interference,
the effect of the hard labels information and the intermedi-
ate outputs of the semantic encoded information diminishes,
while L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒔T , 𝒔S), L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 (𝒙T , 𝒙S) and L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 ( 𝒕T , 𝒕S)
can have similar effects on the BLEU score to the condition
with no interference. The student model improves the robust-
ness of generalizing on the unseen data by learning from the
teacher model through these distilled knowledge. Moreover,
these results can be used as the guidance to determine the
proportion of different loss functions.

E. Complexity Analysis

TABLE III: The complexity analysis with number of parame-
ters, model size, training time and inference time.

Parameters Size
(MB)

Training time
(ms/batch)

Inference time
(ms/sentence)

Teacher 2022672 12.46 108.86 24.10
Student 1 2022672 12.46 199.75 22.90
Student 2 1096976 6.98 169.87 14.87
Student 3 946704 6.06 166.86 14.50
Student 4 5376 0.05 166.86 14.18
DeepSC 1462928 9.18 95.76 19.79
LDPC - - - 42.74

In Table III, we conduct the complexity analysis for the
student models in terms of the number of parameters, the
size of the models, training time per batch and average
inference time per sentence. With the model compression
for semantic encoder-decoder components, the size of the
semantic encoder and decoder is reduced from 12.46 MB
to 6.98 MB. Moreover, about 50% of the parameters are
reduced for Student 2 compared with Student 1. Student 3
is compressed on the channel encoder and decoder, which has

0.92 MB, slimmer than Student 2. Furthermore, Student 4 uses
post-training dynamic quantization based on Student 3, which
further reduces the size from 6.06 MB to 0.05 MB.

Furthermore, Student 1 costs about 199 ms/batch for train-
ing, which is the longest since it has the same size as the
teacher but considers the extra distilled knowledge from the
teacher. Students 2, 3, and 4 benefit from a reduced model size,
resulting in approximately 30 ms/batch reduction in training
time than Student 1. Despite this, they still require longer train-
ing time than the non-distilled models. This shows a potential
drawback of KD for introducing extra computational overhead
during model training. In terms of the average inference time,
it is related to the size of the model for the learning-based
models. Students 2, 3, and 4 can have an inference time of
less than 15 ms/sentence, whereas Teacher and Student 1 take
more than 20 ms/sentence. This significantly outperforms the
traditional communications system using LDPC. Therefore,
KD-assisted model compression could reduce the sentence
processing time during inference, improving the real-time
latency. However, this comes at the expense of increasing
training costs, which may not be suitable for applications, such
as online learning, where the model is continuously trained
with new incoming data.

V. CONCLUSION

In this paper, we have proposed a KD-based SemCom sys-
tem with MU interference. Specifically, four distilled student
models have been designed and trained with the constraints of
limited training samples. Performances have been compared
and analyzed for different SNRs, SIRs, and the number of
interference. Numerical results have shown distilled models
perform better than the non-distilled baselines and the conven-
tional communications system with Huffman codes and LDPC
as the source and channel coding scheme when generalizing
on unseen interference. KD can greatly improve the general-
ization and robustness of the student models. Moreover, the
complexity analysis has been conducted to illustrate that KD
can reduce inference time by compressing the model while
compromising on training cost. Furthermore, an ablation study
has compared the importance of various distilled loss functions
on the distilled student models. Finally, simulation results have
also shown that the post-training dynamic quantization has a
very limited effect on the system performance.
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