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1 Introduction

Low-dimensional critical lattice models whose low-energy behavior is captured by field
theories with a non-compact target space have attracted increasing attention in recent
years. Such theories may support continuous spectra of critical exponents, which have
been argued to describe the multifractal scaling of the critical wave functions at the integer
quantum Hall plateau transition and other disorder-driven quantum phase transitions [1, 2].
At the same time, finite lattice realizations of such models with a compact configuration
space may facilitate numerical studies of questions arising in the context of AdS/CFT
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dualities [3]. This is particularly true if these lattice models are integrable and allow for a
solution of their spectral problem by means of Bethe ansatz methods.

One approach to study two-dimensional disorder problems such as quantum Hall sys-
tems or dirty d-wave superconductors is based on supersymmetric reformulations in terms
of spin chains based on supergroup symmetries [4–7]. A characteristic feature of these spin
chains is that their Hilbert space has a Z2 staggering, i.e. the local degrees of freedom in
these spin chains are different (conjugate) representations of the underlying algebra on even
and odd sites respectively. Motivated by these findings, integrable deformations of such
staggered superspin chains have been constructed [8–13]. Beginning with ref. [11] on an
integrable sl(2|1) superspin chain with alternating three-dimensional quark and antiquark
representations as the local degrees of freedom, finite-size studies of these models have pro-
vided evidence for the presence of continuous components in their spectrum of critical ex-
ponents. The latter manifest themselves through towers with a macroscopic number of en-
ergy levels that extrapolate to the same scaling dimension in the thermodynamic limit, but
exhibit strong (logarithmic) corrections to scaling that lift their degeneracies in the finite
system. By now the most studied and best understood of the models with such properties is
the staggered six-vertex model related to the antiferromagnetic Potts model [14–19], whose
low energy effective theory has been identified to be the SL(2, R)/U(1) black hole conformal
field theory featuring one compact and one non-compact bosonic degree of freedom [20].

A common property of the models mentioned above is that they are staggered (either
by choosing alternating representations of the underlying algebra, or by considering inho-
mogeneous shifts of the spectral parameter in the vertex model). This staggering allows for
the construction of a conserved ‘quasi momentum’ operator, which has been crucial in the
identification of the scaling limit. Note however, there also exist translation-invariant mod-
els, e.g. based on twisted Lie algebras including several spin chains from the A(2)

n series in
their regime III [21–23], for which signatures for the existence of continuous components of
the conformal spectrum have been observed. Based on finite-size estimates of their central
charge and the spectra of elementary excitations, it has been argued that the A(2)

n models
allow for two (or more) non-compact degrees of freedom (in addition to the compact ones)
in the scaling limit for the higher rank cases with n > 3. Due to numerical and analytical
difficulties, a reliable description of the conformal spectra in these models has not been
possible, though.

Interestingly, the staggered six-vertex model has recently been shown to allow for a
mapping to a homogeneous integrable spin chain constructed from the twisted affine D(2)

2
Lie algebra [24]; as a consequence, a quasi momentum can be constructed in one formulation
but not in the other. Such a factorization is not known for the higher-rank models based on
D

(2)
n . Nevertheless, obvious questions to ask are whether these, too, give rise to a series of

non-compact CFTs; what is the counting of compact and non-compact degrees of freedom;
and finally, what is the operator content of the CFTs describing the low energy spectrum
in the scaling limit.

With this paper, we begin the investigation of these questions for the simplest case
beyond the staggered six-vertex model, i.e. the D(2)

3 spin chain. Our paper is organized
as follows: in section 2, after recalling the underlying integrable structures, we construct
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the transfer matrix of the model subject to generic diagonal twisted boundary conditions,
and we identify some of its symmetries. Generalizing the analytical Bethe ansatz for
the periodic case [25], we obtain the eigenvalues of the transfer matrix and the resulting
Hamiltonian with local, i.e. nearest-neighbor interactions. In section 3, combining results
from the exact diagonalization of small systems with the numerical solution of the Bethe
equations, we identify the root configurations of the low-lying states. This is then used
in section 4 to compute the ground state energy density in the thermodynamic limit, and
in section 5 to construct the renormalization group trajectories for the ground state and
excitations used in the finite-size scaling analysis of the spectrum. The latter is done
separately for the compact and the non-compact parts of the spectrum, both with and
without the twist. The flow of the compact modes under the twist resembles that of two
compact bosons with compactification radii depending on the anisotropy. In addition,
we observe the emergence of discrete states from the continuous parts of the spectrum
of conformal weights for sufficiently large twists, similar as in other lattice realizations of
the black hole CFT. Based on the analytical dependence of these discrete weights on the
twist, we conjecture a result for the central charge of the model in its scaling limit which
is consistent with that of two copies of the SL(2, R)/U(1) sigma model.

2 The D
(2)
3 spin chain

In this section, we define the D(2)
3 spin chain, describe its symmetries, and review its Bethe

ansatz solution.

2.1 The R-matrix

The main building block of the D(2)
3 integrable quantum spin chain is the 36 × 36 D

(2)
3

R-matrix obtained in [26]. We follow here the conventions in eqs. (A.8-10) of [27]; i.e. our
R-matrix R(u) is related to the one of Jimbo RJ(x) [26] by the following identifications
and rescaling:

R(u) = e−2u−6ηRJ(x) , x = eu , k = e2η . (2.1)

Moreover, we henceforth set η = iγ, so that γ is our anisotropy parameter. This R-matrix
satisfies the Yang-Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) , (2.2)

and has the two U(1) symmetries

[R(u) , (hj ⊗ I + I⊗ hj)] = 0 , j = 1, 2 , (2.3)

where
h1 = e(1,1) − e(6,6) , h2 = e(2,2) − e(5,5) , (2.4)

and e(k,l) denotes the elementary 6×6 matrix with 0 everywhere except for one 1 at position
(k, l); and I is the identity matrix.
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Further important properties of this R-matrix include PT symmetry:

R21(u) := P12 R12(u)P12 = Rt1t2
12 (u) , (2.5)

where P is the permutation matrix, and t denotes transposition; braiding unitarity:

R12(u)R21(−u) = ξ(u) ξ(−u) I⊗2 , ξ(u) = 4 sinh(u+ 2iγ) sinh(u+ 4iγ) ; (2.6)

regularity:
R12(0) = ξ(0)P12 ; (2.7)

crossing symmetry:

R12(u) =V1Rt2
12(4iγ−u)V1 =V t2

2 Rt1
12(4iγ−u)V t2

2 , V =


e−3iγ

e−iγ
1

1
eiγ

e3iγ

 , (2.8)

with V 2 = I and
V1 R12(u)V1 = V2 R21(u)V2 ; (2.9)

quasi-periodicity:

R12(u+ iπ) = U1 R12(u)U1 = U2 R12(u)U2 , U =

 1
1

0 1
1 0

1
1

 , (2.10)

with U2 = I; and the two Z2 symmetries:

R12(u) =U1U2R12(u)U1U2 , (2.11)

R12(u) =W1(u)W2(0)R12(u)W1(u)W2(0) , W (u) =


e−u

−e−u

1
−1

eu

−eu

 . (2.12)

with W (u)2 = I.

2.2 The transfer matrix and its symmetries

We consider a closed homogeneous spin chain of length L with diagonally-twisted boundary
conditions. The corresponding transfer matrix t(u) is therefore given by [28, 29]

t(u) := tr0 K0 T0(u) , (2.13)

where T0(u) is the monodromy matrix

T0(u) := R0L(u) . . .R01(u) . (2.14)

Moreover, the diagonal twist matrix K is given by

K = e
∑2

j=1 iϕj hj = diag
(
eiϕ1 , eiϕ2 , 1 , 1 , e−iϕ2 , e−iϕ1

)
, (2.15)
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where ϕ1 and ϕ2 are twist angles, which we restrict to real ϕ1,2. Note that the local Hilbert
space at each site has dimension 6. Furthermore,

[R(u) ,K⊗K] =
[
R(u) , e

∑2
j=1 iϕj (hj⊗I+I⊗hj)

]
= 0 , (2.16)

where the last equality follows from (2.3). The transfer matrix (2.13) has the commutativity
property

[t(u) , t(v)] = 0 , (2.17)

which is the hallmark of quantum integrability, as a consequence of (2.2), (2.16).
The U(1) symmetries of the R-matrix (2.3) are inherited by the transfer matrix[

t(u) ,h(L)
j

]
= 0 , j = 1, 2 , (2.18)

where1

h
(L)
j =

L∑
i=1

(hj)i , (2.19)

and (hj)i denotes the generator hj (2.4) at site i, that is

(hj)i = I⊗ · · · ⊗ I⊗ hj︸︷︷︸
i

⊗I⊗ · · · ⊗ I . (2.20)

Further properties inherited from the R-matrix by the transfer matrix include crossing
symmetry:

t
t(u; {ϕj}) = t(4iγ − u; {−ϕj}) , (2.21)

periodicity:
t(u+ iπ) = t(u) , (2.22)

and Z2 symmetry:
t(u) = U⊗L

t(u)U⊗L , (2.23)

see eqs. (2.8), (2.10), (2.11), respectively. The Z2 symmetry (2.23) is a generalization of
the Z2 symmetry found for D(2)

2 [14, 24, 30].2 For generic values of the twists ϕ1, ϕ2, we
also have

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L = t(u;−ϕ2,−ϕ1) . (2.24)

Hence, if the twist angles satisfy ϕ1 +ϕ2 = 0 (but not for generic values), then the transfer
matrix (2.13) also has the Z2 symmetry

W (0)⊗L
t(u;ϕ,−ϕ)W (0)⊗L = t(u;ϕ,−ϕ) . (2.25)

1We will henceforth abbreviate h(L)
j as hj when the meaning is clear from the context.

2In [30], the Z2 symmetry of the D
(2)
2 closed-chain transfer matrix is expressed (3.32) in terms of an

operator constructed from a matrix C (2.10), in a gauge that is specified by a matrix B (2.9), with

B C B =
(

1
0 1
1 0

1

)
,

which is evidently a reduction of the matrix U in (2.10).
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Finally, we note that the transfer matrix has the CPT-like symmetry

V ⊗L Π t
t(u; {−ϕj}) ΠV ⊗L = t(u; {ϕj}) , (2.26)

where Π is the parity operator

Π =
⌊L

2 ⌋∏
i=1

Pi,L+1−i , (2.27)

which on any local operator Xi at site i acts as ΠXi Π = XL+1−i, see e.g. [31]; in eq. (2.27)
⌊x⌋ denotes the floor of x. Proofs of the symmetries (2.21), (2.24) and (2.26) are sketched
in appendix A.

2.3 Bethe ansatz

Let |Λ⟩ denote a simultaneous (normalized) eigenstate of the transfer matrix t(u) (2.13)
and of the U(1) generators hj

t(u) |Λ⟩ = Λ(u) |Λ⟩ , (2.28)
hj |Λ⟩ = hj |Λ⟩ , j = 1, 2 . (2.29)

The eigenvalues Λ(u) are given by

Λ(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L eiϕ1 A(u)

+ (4 sinh(u− 4iγ) sinh u)L
[
eiϕ2 B1(u) +B2(u) +B3(u) + e−iϕ2 B4(u)

]
+ (4 sinh(u− 2iγ) sinh u)L e−iϕ1 C(u) , (2.30)

with

A(u) =
m1∏
j=1

sinh(u− u
[1]
j + iγ)

sinh(u− u
[1]
j − iγ)

,

B1(u) =
m1∏
j=1

sinh(u− u
[1]
j − 3iγ)

sinh(u− u
[1]
j − iγ)

m2∏
j=1

sinh(u− u
[2]
j )

sinh(u− u
[2]
j − 2iγ)

,

B2(u) =
m2∏
j=1

2 cosh
(

1
2

(
u− u

[2]
j

))
sinh

(
1
2

(
u− u

[2]
j − 4iγ

))
sinh(u− u

[2]
j − 2iγ)

,

(2.31)

and

C(u) = Ā(4iγ − u) , B3(u) = B̄2(4iγ − u) , B4(u) = B̄1(4iγ − u) , (2.32)

where the barred quantities are obtained by negating all the Bethe-roots (i.e. u[l]
j 7→ −u[l]

j ),
that is,

Ā(u) =
m1∏
j=1

sinh(u+ u
[1]
j + iγ)

sinh(u+ u
[1]
j − iγ)

,

B̄1(u) =
m1∏
j=1

sinh(u+ u
[1]
j − 3iγ)

sinh(u+ u
[1]
j − iγ)

m2∏
j=1

sinh(u+ u
[2]
j )

sinh(u+ u
[2]
j − 2iγ)

,

B̄2(u) =
m2∏
j=1

2 cosh
(

1
2

(
u+ u

[2]
j

))
sinh

(
1
2

(
u+ u

[2]
j − 4iγ

))
sinh(u+ u

[2]
j − 2iγ)

.

(2.33)
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If u and η = iγ are real, then the bar has the interpretation of complex conjugation, and
the periodic transfer-matrix eigenvalue has the crossing symmetry

Λ̄(u) = Λ(4iγ − u) , (2.34)

similarly to the XXZ model [32]. The result for the periodic case (ϕ1 = ϕ2 = 0) was
obtained by Reshetikhin via the analytical Bethe ansatz in [25]. The generalization to
the twisted case is presented in appendix B. Note that we have redefined the Bethe-roots
from [25] as

u
[1]
j = 2ixj , u

[2]
j = 2iyj . (2.35)

We also note that the eigenvalues (2.30) have the periodicity Λ(u+ iπ) = Λ(u), consistent
with (2.22).

An eigenvalue Λ(u) of the transfer matrix is a Fourier polynomial and hence an analytic
function. By requiring that the residues of (2.30) at the apparent poles

u = u
[1]
j + iγ , u = u

[2]
j + 2iγ (2.36)

vanish, one obtains the Bethe equations (BE)

sinh
(
u

[1]
j − iγ

)
sinh

(
u

[1]
j +iγ

)
L

= ei(ϕ2−ϕ1)
m1∏
k ̸=j

sinh
(
u

[1]
j −u[1]

k −2iγ
)

sinh
(
u

[1]
j −u[1]

k +2iγ
) m2∏

k=1

sinh
(
u

[1]
j −u[2]

k +iγ
)

sinh
(
u

[1]
j −u[2]

k − iγ
) ,

j= 1, . . . ,m1 , (2.37)
m1∏
k=1

sinh
(
u

[2]
j −u[1]

k − iγ
)

sinh
(
u

[2]
j −u[1]

k +iγ
) = e−iϕ2

m2∏
k ̸=j

sinh 1
2

(
u

[2]
j −u[2]

k −2iγ
)

sinh 1
2

(
u

[2]
j −u[2]

k +2iγ
) , j= 1, . . . ,m2 ,

see also [25, 33].
Note that the BE are invariant under the transformations u[1]

j → u
[1]
j + iπ and u

[2]
j →

u
[2]
j + 2iπ. Hence, one can restrict

−π2 < ℑm(u[1]
j ) ≤ π

2 , (2.38)

−π < ℑm(u[2]
j ) ≤ π . (2.39)

Notice that we are also allowed to do u[2]
j → u

[2]
j +iπ, but only if we shift all the Bethe-roots

(i.e. for every j) at the same time.
The eigenvalues hj of the U(1) generators hj (see eq. (2.29)) are given by [25]

h1 = L−m1 ,

h2 = m1 −m2 .
(2.40)

As usual, the Bethe ansatz provides solutions for

L ≥ m1 ≥ m2 ≥ 0 . (2.41)

– 7 –
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Although an algebraic Bethe ansatz construction of the eigenstates
|u[1]

1 , . . . , u
[1]
m1 ;u[2]

1 , . . . , u
[2]
m2⟩ of the D

(2)
3 transfer-matrix (2.13) has not yet been worked

out in detail, we expect that these states can be constructed as follows: the first level
of nesting (introducing type-1 Bethe roots u[1]

1 , . . . , u
[1]
m1) can be accomplished [34] using

certain elements of the monodromy matrix (2.14), reducing the problem to D
(2)
2 . The

transfer matrix for the latter can be expressed as a product of A(1)
1 transfer matrices [30],

which can then be diagonalized by the usual algebraic Bethe ansatz (introducing the
type-2 Bethe roots u[2]

1 , . . . , u
[2]
m2). We therefore expect that the Z2 symmetry (2.23) shifts

all type-2 Bethe roots by iπ

U⊗L |u[1]
1 , . . . , u[1]

m1 ;u[2]
1 , . . . , u[2]

m2⟩ ∝ |u[1]
1 , . . . , u[1]

m1 ;u[2]
1 + iπ, . . . , u[2]

m2 + iπ⟩ . (2.42)

Indeed, the Z2 symmetry in the D(2)
2 case shifts all Bethe roots by iπ (see (3.34) in [30]);

and, in the D(2)
3 case, these Bethe roots correspond to type-2 Bethe roots.

2.4 Hamiltonian

Commuting integrals of motion for the D
(2)
3 spin chain are obtained by expanding the

transfer matrix (2.13) about the regular point u = 0 (2.7). The leading term is

t(0) = (4 sinh(2iγ) sinh(4iγ))L eiP , (2.43)

where eiP is the one-site translation operator of the model with quasi-periodic boundary
conditions, whose matrix elements are given by[

eiP
]b1,...,bL

a1,...,aL

= exp
{

iϕ1
(
δb1

1 − δb1
6

)
+ iϕ2

(
δb1

2 − δb1
5

)}
δb2

a1δ
b3
a2 . . . δ

bL
aL−1δ

b1
aL
. (2.44)

From (2.30) we find that its eigenvalues eiP are parameterized by the Bethe roots as

ei P = eiϕ1
m1∏
k=1

sinh(u[1]
k − iγ)

sinh(u[1]
k + iγ)

. (2.45)

Similarly, we define the local Hamiltonian of the D(2)
3 spin chain as3

H = sinh(2iγ) d
du log (t(u))

∣∣∣
u=0

+ L sinh(2iγ) [coth(2iγ) + coth(4iγ)] I⊗L . (2.46)

the eigenenergies are

E =
m1∑
k=1

ϵ0(u[1]
k ) = −

m1∑
k=1

2 sinh2(2iγ)
cosh

(
2u[1]

k

)
− cosh (2iγ)

. (2.47)

The Hamiltonian of course inherits the U(1) and Z2 symmetries of the transfer matrix

[H ,hj ] = 0 , j = 1 , 2 , (2.48)[
H , U⊗L

]
= 0 , (2.49)[

H(ϕ,−ϕ) ,W (0)⊗L
]

= 0 , (2.50)

3With this sign the Hamiltonian generalizes the D
(2)
2 spin chain which has been related to the antifer-

romagnetic Potts model [24] or respectively the corresponding staggered-six vertex model [30, 35].

– 8 –
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see eqs. (2.18), (2.23), (2.25), respectively. The Hamiltonian also has the additional CP
symmetry, [

H , V ⊗L Π
]

= 0 , (2.51)

see appendix A. We emphasize that this symmetry does not extend to the full transfer
matrix, which has only the CPT symmetry (2.26).

The U(1) generators commute with the Z2 symmetry (2.23)[
hj , U

⊗L
]

= 0 , j = 1 , 2 , (2.52)

and they transform into each other under W (0) (2.12)

W (0)⊗L
h1W (0)⊗L = −h2 ,

W (0)⊗L
h2W (0)⊗L = −h1 . (2.53)

Under the CP symmetry, the U(1) generators transform as

V ⊗L Πhj ΠV ⊗L = −hj , j = 1 , 2 . (2.54)

The symmetry transformations (2.50) together with (2.51) induce degeneracies in the
energy spectrum between different sectors of the U(1)-charges. For the analysis of the
finite-size spectrum, it is sufficient to focus on one representative of a given energy level,
keeping these degeneracies implicit. The symmetries (2.50), (2.51) allow one to restrict
to the case h1 ≥ |h2| for suitably chosen twist angles. In addition, we found by exact
diagonalization of the Hamiltonian for small system sizes that one can further restrict to

0 ≤ h2 ≤ h1 . (2.55)

Note that all the sectors specified by (2.55) can be accessed by the above Bethe ansatz,
see (2.41) and (2.40). Further, we should stress that the defined Hamiltonian is non-
Hermitian. This leads to complex eigenvalues. On numerical grounds, we find, however,
that the energies of the ground state and lowest excitations are real. In the rest of this
work, we study states parameterized by the classes of Bethe root configurations listed in
the following section. These states, too, turn out to have real energies.

3 Methodology of studying the scaling limit

To study the scaling limit of a lattice model, one should define an L-dependence to the
low-lying energy states. Such an assignment |ΨL⟩ will be called an RG-trajectory. For
the ground state or for the lowest energy states in the disjoint sectors (h1, h2) of the
Hilbert space, such an assignment is clear. On the other hand, constructing individual
RG trajectories |ΨL⟩ for generic low-energy states is not a trivial task. The fact that the
considered model is integrable allows for the following strategy: for small initial lattice
sizes L = Lin ≲ 6, we diagonalize the Hamiltonian in the subspace spanned by eigenvectors
of the U(1) generators with given eigenvalues h1, h2.4 The eigenvalues are then matched

4Note that the full Hilbert space has dimension 6L.
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via (2.47) with a solution of the Bethe ansatz equations {u[1], u[2]}m1
m2 where m1 and m2

are determined by (2.40). The state |ΨL⟩ at higher L = Lin + 2 is obtained by solving the
Bethe ansatz equations for a pattern of Bethe roots that qualitatively resembles the one of
the state |ΨLin⟩. Via this procedure, we construct the RG trajectory |ΨL⟩ up to L ∼ 2000
without relying on a direct diagonalization of the Hamiltonian, which is an impossible task
for L≫ 1 since the size of the Hilbert space grows exponentially.

3.1 Considered class of states

In the above procedure, it is essential to understand the structure of the low-energy spec-
trum in terms of the Bethe roots. However, the particular structure depends essentially on
the domain of the parameters γ, ϕ1 and ϕ2. In the regime

γ ∈ (0, π4 ) (3.1)

and for small ϕ1,2, we found that the bulk of the Bethe root configurations corresponding
to low energy states consists of 4-strings, each containing a pair of conjugate roots on both
levels centered at real xj :

u[1] −→ v
[1]
j = xj + δ

[1]
j + iπ

2 − iγ − iϵ[1]
j , v̄

[1]
j = xj + δ

[1]
j − iπ

2 + iγ + iϵ[1]
j ,

u[2] −→ v
[2]
j = xj + δ

[2]
j + iπ

2 + iϵ[2]
j , v̄

[2]
j = xj + δ

[2]
j − iπ

2 − iϵ[2]
j ,

(3.2)

where j ≤ L
2 and δ

[k]
j , ϵ

[k]
j are small real deviations. For even system sizes, the ground

state of the system is realized in the sectors h1 = h2 = 0 with ϵ
[2]
j ≡ 0. See figure 1 for

the ground state of the L = 18 chain. The low-energy spectrum is described by various
root configurations. In this work, we focus on a particular class of states described by the
following additional roots outside these 4-string configurations:

i) Level-1 roots on the line iπ
2

ii) Level-2 roots placed on the line iπ.

iii) Level-2 roots placed on the real line.

subject to the constraint (2.41).

4 Root density approach for the ground state

For even L the ground state is parameterized by roots arranged in the configuration (3.2)
where j runs from one to L

2 and ϵ
[2]
j is set to zero. Further, we find numerically that the

remaining deviations δ[k]
j , ϵ

[1]
j in (3.2) tend to zero as L → ∞. Hence, we can study the

ground state in the root density approach [36]. By inserting (3.2) into the Bethe equations
and taking the logarithm one obtains the following counting function for the real centers:

zx(x) = 1
2πψ(x, 2γ) + 1

2πL

L
2∑

k=1
χ(x− xk, 4γ) , (4.1)
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Figure 1. Bethe root configuration of the ground state for L = 18 and γ = 0.4 plotted in the
complex u-plane. Blue (red) symbols denote level 1 (2) roots. One can clearly see the pattern (3.2).

where

χ(x, y) = 2 arctan (tanh(x) cot(y)) , ψ(x, y) = 2 arctan (tanh(x) tan(y)) . (4.2)

Upon differentiation we obtain the following linear integral equation for the root density
defined by ρx(x) = ∂xz

x(x):

ρx(x) = 1
2πψ

′(x, 2γ) + 1
2π

∫ ∞

−∞
dx′ χ′(x− x′, 4γ)ρx(x′) , (4.3)

which is solved by Fourier transform giving:

ρx(x) = 1
2(π − 4γ)

1
cosh( πx

π−4γ ) . (4.4)

The density is positive and becomes singular at γ = π
4 , giving additional support to our

choice of the parameter domain (3.1) for γ. Similarly, the dressed energy ϵx(x) of excitations
corresponding to the removal of a four-string is obtained from the same linear integral
equation as (4.3) but with the driving term ψ replaced by ϵx0(x) = ϵ0(x+ iπ

2 −iγ)+ϵ0(x− iπ
2 +

iγ), where ϵ0 has been defined in (2.47) above. For γ in the domain (3.1), these excitations
turn out to be gapless with a linear dispersion. The corresponding Fermi velocity is

vF := 1
2π lim

Λ→∞

1
ρx(Λ)

d
dΛϵ

x(Λ) = π sin(2γ)
π − 4γ . (4.5)

Finally, using (4.4), we obtain the energy density e∞ in the thermodynamic limit

e∞ = −sin(2γ)
2

∫ ∞

−∞
dω sinh(2γω)

sinh
(

πω
2
) 1

cosh(1
2(π − 4γ)ω)

. (4.6)
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5 Analysis of the finite-size spectrum

As the model is critical, the spectrum of low-energy excitations can be described within
the framework of a conformal field theory. In this paper, we extract the central charge and
investigate the first features of the underlying CFT, such as the spectrum of scaling dimen-
sions. The following prediction from conformal field theory is expected to hold [37–39],

L

2πvF
(E − Le∞) ≃ − c

12 + h+ h̄ , (5.1)

where e∞ and vF are given by (4.6) and (4.5), respectively. Hence, by studying the
asymptotic behavior of the energies on the lattice, one can access the central charge c

and the conformal weights h, h̄ of primaries in the underlying CFT. Note that on the
right-hand side of (5.1), only the sum of the central charge and the scaling dimension
X = h + h̄ appears, such that one cannot determine c or h, h̄ on their own. Suitable
measures of the scaling dimensions and the central charge are given by the effective scaling
dimensions Xeff and the effective central charge ceff defined by

Xeff = L

2πvF
(E − Le∞) , (5.2)

ceff = − 6L
πvF

(EGS − Le∞) . (5.3)

The quantity EGS in (5.3) is the ground state energy.
Besides (5.1) we have also the following relation between the scaling dimensions and

the eigenvalue of one-site translation operator (2.44)

ei P = e
2iπ
L (h−h̄) . (5.4)

One can easily show that

eiPL = exp
{

2iπ
(
h1

ϕ1
2π + h2

ϕ2
2π

)}
. (5.5)

Comparing with (5.4), one analytically obtains the result for the difference h− h̄

h− h̄ = h1
ϕ1
2π + h2

ϕ2
2π mod 1 . (5.6)

To proceed further in our analysis, we relied on numerical methods whose results we present
in the following sections.

5.1 Compact part

In this section, we investigate two classes of fundamental excitation patterns. In terms
of the Bethe roots, the first class is simply built from configurations following the struc-
ture (3.2) but with a non-zero h1 in contrast to the ground state. Here, the eigenvalue h2
of the U(1)-charge h2 is kept the same as for the ground state, i.e. h2 = 0. See figure 2 for
an illustration.
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Figure 2. Left (right) plot displays the Bethe-root configuration in the complex u-plane of an
excited state for L = 18, γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 (8). Blue (red) symbols denote level
1 (2) roots. This excitation corresponds to removing 2 (4) four-strings from the configuration of
the ground state, see figure 1.
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Figure 3. Left (right) plot displays the Bethe-root configuration in the complex plane of an excited
state for L = 18, (19), γ = 0.4, ϕ1,2 = 0 in the sector h1 = 4 and h2 = 2, (3). Blue (red) symbols
denote level 1 (2) roots. This excitation is built by placing 2(3) level-1 roots (×) on the line iπ

2 in
addition to the bulk roots (•).

The second class of excitations gives h2 a non-vanishing value. This is accomplished
on the level of the Bethe roots by mechanism (i), i.e. by placing additional level-1 roots on
the line iπ

2 . We have illustrated this type of excitations in figure 3. We start our numerical
analysis by investigating the scaling behavior of the ground state. We obtain

ceff = 4 . (5.7)

Further, for periodic boundary condition ϕ1,2 = 0, we have constructed the RG trajectories
for various excited states based on the mechanisms discussed above. Exemplary plots of the
numerical data for finite L calculated by the Bethe ansatz and their extrapolations to L→
∞ are given in figures 4–5. Here, the extrapolation procedure is based on the assumption
that the effective scaling dimensions are rational functions of 1

log(L) . We conclude that they
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Figure 4. Finite-size scaling up to L ∼ 2000 of
the ground state (black) and states with pattern
(see figure 2) similar to the ground state with
h2 = 0 but with different U(1)-charge h1, i.e.,
h1 = 1, 2, 3, 4, 6 in increasing order from below.
The crosses are the numerically obtained effec-
tive scaling dimensions. The dashed lines are
given by formula (5.8) with the associated h1,2.
Solid lines are given by a rational extrapolation.
Here γ = 0.4 and ϕ1,2 = 0.

Figure 5. Finite-size scaling up to L ∼
2000 for states with similar root configura-
tion, as depicted in figure 3. Crosses are the
numerically obtained effective scaling dimen-
sions. The U(1)-charges (h1, h2) take the val-
ues (4, 0), (4, 1), (4, 2), (4, 3), (4, 4) labelled from
below. Dashed lines are given by equation (5.8)
and the solid lines are given by a rational extrap-
olation. Here γ = 0.4 and ϕ1,2 = 0.

flow to the following effective scaling dimensions:

XCom
eff = − 4

12 + (h1)2

2 k
+ (h2)2

2 k
. (5.8)

In (5.8) the first term accounts for the effective central charge and agrees with our find-
ings (5.7). Note the exchange symmetry of h1 and h2 observed in the spectrum. The
parameter k specifying the amplitudes is related to the anisotropy by

k = π

γ
. (5.9)

5.1.1 Spectrum flow of the compact modes under twists

We now turn to the extension of the formula (5.8) to small non-vanishing twist angles. The
analytic expression (5.6) and symmetry arguments suggest the following generalization

XCom
eff (h1, h2, ϕ1, ϕ2) = − 4

12 +
(h1 + k ϕ1

2π )2

4 k
+

(h2 + k ϕ2
2π )2

4 k
+

(h1 − k ϕ1
2π )2

4 k
+

(h2 − k ϕ2
2π )2

4 k
.

(5.10)
We have numerically verified the above expression by using the data of the periodic
model by applying the following iterative method: we start with a solution {u[1], u[2]}ϕin

1
ϕin

2
of the BAE (2.37) in logarithmic form with a particular initial set (ϕin

1 , ϕ
in
2 ) of twist

values e.g., (ϕin
1 , ϕ

in
2 ) = (0, 0). We see that the maximal error using {u[1], u[2]}ϕin

1
ϕin

2
as

an initial approximation for the BAE for new values (ϕin
1 + ∆ϕ1, ϕ

in
2 + ∆ϕ2) behave as
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max {|∆ϕ1|, |∆ϕ2 − ∆ϕ1|}. Hence, by taking the steps sizes ∆ϕ1,∆ϕ2 small enough, we
can iteratively obtain the state at some (ϕend

1 , ϕend
2 ).

Note that the above form of the effective scaling dimensions is compatible with the
symmetries (2.25), (2.51). To interpret these results further, consider the conformal weights
of a twisted free boson given by [40]

hn,ω = 1
2

(
n

2R +R(ω + φ)
)2

h̄n,ω = 1
2

(
n

2R −R(ω + φ)
)2

(5.11)

where the integers n, ω label charge and winding while φ parameterizes the twisted bound-
ary condition. By comparing (5.11) and (5.10) we see that the excitations (5.10) mimic
two independent twisted compact bosonic modes with the same compactification radii
R1,2 =

√
k
2 with charges n1,2 = h1,2 and zero windings. Despite extensive study of root

patterns of the low-lying excitations, we have not been able to identify any state with non-
zero winding. Note that the functional dependence on the compactification radii induced
by non-zero twists ϕ1,2 is exactly the same as for two compact bosons as expected from
the symmetries of the model.

We want to end this section by the following important remark. The above expressions
for the scaling dimensions capture the leading finite-size behavior only. Corrections to (5.1)
can arise, e.g., due to perturbations of the fixed-point Hamiltonian by terms involving
irrelevant operators present in the lattice model (2.46) [39]. In the presence of a marginally
irrelevant operator, one expects these subleading corrections to contain logarithms [41]. In
the present case we observe such corrections, see e.g., figures 4 and 5. As we will argue
below, however, these are also a signature of non-compact degrees of freedom in the effective
theory describing the critical behavior.

5.2 Continuous part of the spectrum

Interestingly, there also exist excitations whose scaling dimensions coincide with compact
ones (5.10) up to logarithmic corrections. These excitations can be characterized by the
presence of roots of type (ii) and (iii). Consider first the ones of type (ii). Examples of
their root configurations are displayed in figure 6.

By replacing more and more 4-strings by roots of type (i) and (ii), one can generate
an infinite tower of excitations labelled by the number Mπ of type (ii) roots. All of them
flow to the same scaling dimension (5.10), see figure 7. Using the symmetry u[2]

j → u
[2]
j +iπ

that exchanges the (ii) and (iii) types of roots, one deduces that the RG trajectories of
excitations with root configuration built by mechanism (iii) instead of (ii), see e.g. figure 8,
also flow to the same scaling dimensions. Let’s label them by the number M0 of type (iii)
roots. Further, it turns out that combinations of the two above excitation patterns are
possible, see for example figure 9 for the Bethe root configuration of a mixed state of both
fundamental excitations (ii) and (iii). Further, see figure 10 to see how such states fit in
within the scaling behavior of other states.

The obtained numerical data for various RG trajectories with different M0,Mπ can
be used to extract the form of the logarithmic corrections: the rational extrapolation
in figure 10 suggest a general quadratic decay as ∝ 1

log(L)2 . Further, the existence of
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Figure 6. Left (right) plot displays the Bethe-root configuration in the complex plane of an excited
state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. Blue (red) symbols denote level 1
(2) roots. This excitation is built by placing 2(3) level 1 roots (×) on the line iπ

2 and 2,(3) level-2
roots (□) on the line iπ in addition to the bulk roots (•). Further, one (and a half four-string) has
been removed with respect to the lowest energy state configuration in this sector.
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Figure 7. Left (right) plot displays the finite-Size Scaling up to L ∼ 2000 in the sectors (h1, h2):
(0, 0) × , (2, 0) ⋄ ((1, 0) △) for states with Mπ = 0, 1, 2, 3 in increasing order from below (blue, red,
green, cyan). Solid lines are rational extrapolation. One can see clearly the logarithmic dependence
of the scaling dimensions. The parameters are set to γ = 0.4 and ϕ1,2 = 0.

two excitation mechanism refines this ansatz to ∝ C1
log(L)2 + C2

log(L)2 with state dependent
constants C1,2. As the Z2 symmetry interchanges these two contributions, we conclude
that we must have C1 = C2. Multiplying the numerical data with log(L)2 extrapolating
L→ ∞, we can access, by considering ratios, the dominant state dependence for each |ΨL⟩.
This numerical work reveals the following behavior:

Xeff = XCom
eff (h1, h2, 0, 0) +

A(γ)(M0 + 2
3)2

log(L/L0)2 +
A(γ)(Mπ + 2

3)2

log(L/L0)2 . (5.12)

Here L0 is a non-universal, state dependent constant, which we do not attempt to calculate
here. We are left to extract the amplitude A(γ). As it is the same for all states, we
determine it by considering the effective scaling dimensions of the ground state where we
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Figure 8. Left (right) plot displays the Bethe-root configuration in the complex plane of an excited
state for L = 19, (18), γ = 0.4 in the sector h1 = 1 and h2 = 0. Blue (red) symbols denote level 1
(2) roots. This excitation is built by placing 2(3) level-1 roots (×) on the line iπ

2 and 2,(3) level-2
roots (△) on the real line in addition to the bulk roots (•). Further, one (and a half four-string)
has been removed with respect to the lowest energy state configuration in this sector. It is the state
displayed in figure 6 transformed by u[2] + iπ, and so it has the same energy.
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Figure 9. Left (right) plot displays the Bethe-root configuration in the complex plane of an excited
state for L = 18, γ = 0.4 in the sector h1 = 0 and h2 = 0. Blue (red) symbols denote level 1 (2)
roots. This excitation is built by placing 2(4) level-1 roots (×) on the line iπ

2 and 1,(2) level-2 roots
(△) on the real line and 1,(2) level-2 roots (□) on the line iπ in addition to the bulk roots (•). This
is an excitation of both non-compact modes.

expect the subleading logarithmic corrections to be the smallest:

XGS
eff (L) = − 4

12 + 8
9

A(γ)
log(L/L0)2 . (5.13)

Following [14], we eliminate L0 by using data points for two system size L1 and L2:

A(γ) = 9
8

[
log(L1

L2 )
(XGS

eff (L1) + 4
12)−

1
2 − (XGS

eff (L2) + 4
12)−

1
2

]2

. (5.14)
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Figure 10. Left (right) plot displays the finite-size scaling up to L ∼ 300 in the sectors (h1, h2):
(1, 0) ◦, (2, 1) △ ((1, 1) ×, (2, 2) □) for states with (M0,Mπ) = (0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2)
in increasing order from below (black, blue, cyan, green, red, orange). The solid lines are obtained
by a rational extrapolation. The dashed lines depict the limiting value given by (5.10). One can see
clearly the logarithmic dependence of the scaling dimensions. The parameters are set to γ = 0.4,
ϕ1,2 = 0.
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Figure 11. Amplitude A(γ) calculated via (5.14) for L1 = 2000, L2 = 1000 for various γ-values.
The dashed line is the conjecture (5.15). One see a fairly good matching. At the boundaries
γ ≈ 0, ( π

4 ) one sees deviations which are assumed to be due to increasing finite-size corrections, see
also [14].

The numerical results are displayed in figure 11. Based on these, we conjecture that

A(γ) = 5π − 4γ
4γ . (5.15)

– 18 –



J
H
E
P
1
1
(
2
0
2
3
)
0
9
5

We want to briefly comment how the above leads to two continuous components in
the spectrum of scaling dimensions. So far, we have defined the RG trajectories |ΨL⟩ by
keeping the numbers M0,π fixed, leading at first view to infinite degeneracies in the scaling
limit. However, we can also organize the RG trajectories differently. Instead of keeping
M0,π fixed, we can also let them run under the RG flow. In particular, we group states
into trajectories |ΨL⟩ such that

M0 ∼ log(L) , Mπ ∼ log(L) . (5.16)

Here (5.16) is subject to the constraint M0,π ≪ L such that |ΨL⟩ is still a low energy state
for any finite L, i.e. its energy obeys (5.1). This restriction is essential as RG trajectories
leave the low energy spectrum once M0,π ∼ L. In fact, it is straightforward to show within
the root density approach that the state with M0,π = L is highly excited: in comparison to
the energy Le∞ of the ground state (4.6), its energy is of the order ∼ L (similar as e.g. in
the staggered sl(2|1) superspin chain [11]). This supports the interpretation of the findings
above as evidence for the existence of continuous components in the conformal spectrum
labelled by two continuous quantum numbers M0,π/ logL.

The redefinition (5.16) of RG trajectories enables that (5.12) can tend as L → ∞
to a different scaling dimension than XCom

eff (h1, h2, 0, 0). In fact, by suitably arranging
the concrete behavior (5.16), the scaling dimensions can take any value larger or equal to
XCom

eff (h1, h2, 0, 0). Note that Xeff for trajectories with similar M0,π(L) for fixed L become
densely distributed (∼ 1

log(L)), leading to continuous spectrum of scaling dimensions. As
the two excitation mechanisms labelled by M0 and Mπ are independent of each other, we
must have two continuous variables, call them s0 ∼ M0

log(L) , sπ ∼ Mπ
log(L) , whose limits label

the state in the scaling limit. The existence of two continua is also further supported by
our finding for finite twist angles discussed below.

We want to stress that for the identification of the underlying CFT with two continu-
ous components, a more rigorous definition of the scaling limit than in (5.16) is needed. A
proper scaling limit can be defined in inhomogeneous models, where the logarithmic cor-
rections can be parameterized by a conserved operator of the lattice model, the so-called
quasi-momentum operator. However, the definition of this operator in these models relies
on their inhomogeneity, and is therefore not applicable to our model. For details, we refer to
the extensive study of the staggered-six vertex model [19, 42] and the pioneering work [15].

5.2.1 Spectral flow for continuum states

Having identified the finite-size spectrum for vanishing twist angles, we now turn to the
question of what happens when these angles are tuned on. We follow the procedure de-
scribed below eq. (5.10) starting from (ϕin

1 , ϕ
in
2 ) = (0, 0) and iterating to the higher twists.

This procedure can be technically involved, as certain roots of a given configuration can
tend to infinity as the twists approach certain values. If these specific twist values are
exceeded, then the infinite roots come back to a finite value. To avoid numerical problems
caused by these infinities, it is suitable to transform to a different coordinate set. By using
ζ = e−u infinitely large roots are mapped to zero in this coordinate frame.
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Figure 12. The left (right) plot displays the effective scaling dimensions for the lowest state
in the continuum in the sectors (h1, h2) = (0, 0), ((1, 0)) for L = 2000, (1999), under various
twists (ϕ1, ϕ2) = (ϕ, 0), (0, ϕ), (ϕ, ϕ), (ϕ, 1

2ϕ) (Black, Blue, Red, Green). The solid lines display the
expected behavior (5.10) for small twist angles excluding the strong logarithmic corrections. The
crosses or circles display the numerical data obtain from the Bethe ansatz for twist angles as far as
possible in the numerical procedure. The vertical lines designate the critical twist values, where the
agreement with (5.10) breaks down. The dashed lines indicate the conjectured formula (5.18) for
the scaling dimensions valid beyond the critical points. Note that the matching with the conjecture
is extremely accurate. We interpret this as the emergence of discrete states having less logarithmic
corrections.

We start by discussing the lowest states (M0 = Mπ = 0) in the two continua first.
Some of our results are represented in figure 12. One can see that for small twist angles,
the scaling dimensions follow (5.12) but with the first term replaced by (5.10) with non-
vanishing twist. However, after critical values of the twists given by

ϕc
1,2 = 2γ(h1,2 + 1) = 2π(h1,2 + 1)

k
, (5.17)

the behavior changes drastically to

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2) −

(h1,2 + 1 − kϕ1,2
2π )2

2(k − 2) , ϕc
1,2 < ϕ1,2 < ϕ̃c

1,2 , (5.18)

with the absence of logarithmic corrections. Numerical work suggests that the choice
between 1 and 2 in the above formulae seems to taken in a way such that the second term
in (5.18) always incorporates the bigger twist angle and, if both twists are equal, minimizing
the critical twist angle (see figure 12). It turns out that (5.18) is valid just until the twist
exceeds another critical twist angle ϕ̃c

1,2. For example, for twisting only with ϕ1 or ϕ2 in
the lowest sector h1 = h2 = 0, we find that

ϕ̃c
1,2

∣∣∣
h1=h2=0

= 2π − ϕc
1,2

∣∣∣
h1=h2=0

. (5.19)

So far, we have considered only the lowest states in the continua. If we twist excited
states, their scaling dimensions follow (5.18) but again spoiled by decreasing logarithmic
corrections. To further investigate this phenomenon, we have searched for twists for which
the Bethe root configurations are again regular enough to define RG trajectories. We
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find that a suitable point is (ϕ1, ϕ2) = (π, 0). Here, the Bethe roots parameterizing the
low-energy states consists mainly of

u[1] −→ xj + iπ
2 − iγ − iϵ[1]

j , xj −
iπ
2 + iγ + iϵ[1]

j

u[2] −→ zl + iπ
2 , l = 1, . . . ,Mz,

wk − iπ
2 , k = 1, . . . ,Mw .

(5.20)

In addition there are level-1 roots sitting exponentially close to the following values de-
pending on the parity of dN := Mz −Mw:

iγ,−iγ if dN even
2iγ, 0,−2iγ if dN odd

(5.21)

Plots of typical configurations are shown in figure 13. It turns out that states with dif-
ferent distributions dN of level-2 roots on the two lines ± iπ

2 flow to the same conformal
dimensions (5.18) with ϕ1 = π and ϕ2 = 0, see e.g. figure 14. We find that the scaling of
dimensions of excited states for ϕ1 = π, ϕ2 = 0 are given by

Xeff = XCom
eff (h1, h2, ϕ1, ϕ2)

∣∣∣
ϕ1=π,ϕ2=0

−
(h1 + 1 − kϕ1

2π )2

2(k − 2)

∣∣∣∣∣
ϕ1=π

+ Ã(γ) dN2

log(L/L̃0)2 . (5.22)

where again L̃0 is a non-universal constant which we do not attempt to calculate here.
Further, the above formula also holds true for small deviations around the twist angles i.e.
ϕ1 ≈ π, ϕ2 ≈ 0 with the obvious modifications. We conjecture that the amplitude Ã(γ) is
given by

Ã(γ) = 2(2 − 5γ)γ
3(1 − 4γ)2 . (5.23)

In order to interpret these results, let us recall that the scaling limit of models such as the
staggered-six vertex model or the A(2)

2 -model possess one continuous parameter, call it s∗.
Besides this class of states, there also exist states where s∗ takes values in a discrete set.
The lattice regularization of those states does not possess logarithmic corrections. Further,
a state belonging to the family with continuous s∗ can become a discrete state under a
twist [19, 21]. We interpret the above finding in an analogous way for our model. Consider
a state whose scaling limit is described by the two continuous variables s0, sπ. Under a
twist, one of the continuous variables changes its class to the discrete one, while the other
remains in the continuous family. The latter still induces logarithmic corrections on the
level of the lattice regularization as seen in (5.22).

Ultimately, this conjecture should imply the existence of purely discrete states (apart
from the dN = 0 state) without any logarithmic corrections. We have checked that this
is indeed the case. Starting from the twist (ϕ1, ϕ2) = (π, 0), we turn on the second twist
significantly. We find that the first excited states dN = 1, 2 in the sector h1 = 0 = h2
become purely discrete states when the second twist angle exceeds the critical value ϕ2 =
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Figure 13. Left (right) plot displays the Bethe-root configuration in the complex u-plane of an
excited state for L = 18, γ = 0.4 in the sector h1 = 0 and h2 = 0. Blue (red) symbols denote level 1
(2) roots. The left figure shows the ground state configuration, while the right excitation is built by
unbalancing dN = 4 the number of level-2 on the lines ± iπ

2 . The two level-1 roots with vanishing
real part have imaginary close to ±γ.
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Figure 14. Effective scaling dimensions up to L ∼ 2000 for ϕ1 = π, ϕ2 = 0, γ = 0.4 in the
sector h1 = h2 = 0 for dN = 0, 1, 2, 3, 4 in increasing order from below (black, blue, cyan, green,
red). The crosses are the numerical data obtain from the Bethe ansatz. The solid lines are rational
extrapolation. Further, the dashed pink line is given by the constant limit value (5.18). In order to
obtain the numerical data, we have assumed that the roots which are exponentially close to (5.21)
actually sit on these values. This leads to a small offset (see the green and blue crosses on the far
right) for small system sizes, as here the approximation is inducing an error.
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Figure 15. Effective scaling dimensions for small L and ϕ1 = 9π
10 , γ = 0.4 + iϵ in the sector

h1 = h2 = 0 for dN = 0, 1, 2, 3 (black, blue, green, red) under variation of the second twist ϕ2. The
sightly complex value of the anisotropy and offset of the first twist angle from π is due to numerical
purposes. The black solid line displays XCom

eff (h1, h2,
9π
10 , ϕ2) while the blue line is given by (5.24).

The black vertical line hallmarks the appearance of a purely discrete state.

2γ. It has effective scaling dimensions

Xeff = XCom
eff (h1, h2, π, ϕ2) −

(h1 + 1 − k π
2π )2

2(k − 2) −
(h2 + 1 − kϕ2

2π )2

2(k − 2) with ϕ2 > 2γ . (5.24)

Note that this check can be done on the level of small L, as we expect that this state
does not possess any logarithmic corrections, see figure 15. The purely discrete scaling
dimensions (5.24) are valid for large twist angle only; however, one can analytically continue
back the scaling dimensions (5.24) to zero twist. For the lowest state with h1 = h2 = 0,
we obtain in this way:

Xeff = − 4
12 + 1

k − 2 . (5.25)

Assuming that the conformal weights h, h̄ vanish in this procedure as it is for example in
the staggered six-vertex model or the A(2)

2 model [21], we obtain on speculative grounds
that the central charge is given by

c = 4 − 12
k − 2 = 2

(
2 − 6

k − 2

)
, (5.26)

which formally coincides with two black hole CFTs [3, 43, 44].
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6 Conclusion

Starting from the periodic D(2)
3 spin chain [25], we have generalized it to the quasi-periodic

case. The boundary conditions are found to be parameterized by two twist angles ϕ1, ϕ2.
The appearance of the twists ϕ1, ϕ2 can be accounted for in the analytic Bethe ansatz
such that the model can be exactly solved in the Bethe ansatz sense (2.30), (2.37). As the
rank of D(2)

3 is two, the Bethe ansatz is two-level nested. As usual, the model possesses an
infinite family of commuting operators (2.17). Among these, a local Hamiltonian can be
defined in the standard way by the first logarithmic derivative of the transfer matrix (2.46).

The model has a rich symmetry structure, see (2.23), (2.25), (2.26). The most interest-
ing result is that a generalization (2.23) of the Z2-symmetry of the lower-rank case D(2)

2 is
identified. It is related to the quasi-periodicity of the R-matrix (2.10); and on the level of
the Bethe ansatz, this symmetry maps states among each other whose level-2 Bethe roots
differ by iπ. Further, we have found that the transfer matrix is CPT-invariant (2.26), while
on the Hamiltonian level this symmetry reduces to CP-symmetry (2.51).

Turning to the analysis of the scaling limit, we have concentrated on the regime of
the anisotropy γ ∈ (0, π

4 ). The spin chain is found to be critical, as it possesses gapless
excitations with a linear dispersion relation. Hence, the effective theory of its low-lying
excitations arising in the thermodynamic limit L→ ∞ should be governed by a conformal
field theory. We have identified certain classes of the low-lying energy states which are
parameterized by the U(1)-charges. We have found that their effective scaling dimensions
give rise to two compact modes in the scaling limit. More precisely, these modes mimic two
compact bosons with zero winding (5.10). Indeed, despite considerable numerical effort,
we did not find any non-zero winding states. Whether non-trivial winding states exist is
left open for future investigation.

In addition to the two compact modes, we found two types of decreasing logarithmic
corrections. The corrections are generated by the number of level-2 Bethe roots on the real
line and on the line with imaginary part π. We provide evidence that these logarithmic
corrections give rise to two non-compact degrees of freedom in the scaling limit. The
two non-compact modes are interchanged by the Z2 symmetry (2.23). Furthermore, we
have considered the influence of large twists. We found that, beyond certain critical twist
angles, some of the logarithmic corrections disappear. We interpret this phenomenon as
the emergence of discrete states under twists. For the case of ϕ1 = π and small ϕ2, we find
that one of the continua becomes totally discrete, while the other persists. For the extreme
case of ϕ1 = π and large ϕ2, we observe the existence of purely discrete states (5.24).
By analytical continuation of its effective scaling dimension to zero twists, and under the
assumption that the conformal dimensions vanish there [21, 45], we access the true central
charge (5.26). Formally, it agrees with the sum of two Black Hole CFT central charges.
One copy of this CFT describes the scaling limit of the lower-rank D(2)

2 model [15, 19, 30].
For a rigorous identification of the underlying CFT, we would need a conserved operator

that parameterizes the non-compact degrees of freedom on the lattice. Such an operator,
the so-called quasi-momentum, has so far been defined only in staggered models in which
either the representation of the R-matrix [45] or the associated spectral parameter [15, 46]

– 24 –



J
H
E
P
1
1
(
2
0
2
3
)
0
9
5

of the quantum spaces varies periodically along the chain. Its definition relies on the type of
inhomogeneity; hence, this construction is not applicable for the case of the homogeneous
D

(2)
3 model we are considering here. The search for such an operator might be an interesting

research direction, supporting the analysis of the scaling limit. It could help with the
identification of the space of states in the scaling limit, and especially the calculation of
the density of states of the continua.

It should be possible to study the influence of open boundary conditions for selecting
certain sectors of the underlying CFT, as has been done for the lower rank case D(2)

2 [24,
30, 35, 47–50]. It might also be interesting to investigate the different parameter regimes
γ ∈ (π

4 ,
π
2 ). Another natural but challenging topic might be the generalization to D(2)

n with
n > 3, as has been done for the A(2)

n series [23].
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A Proofs of symmetries

We sketch here proofs of some of the symmetries noted in the main text.

A.1 Crossing symmetry of the transfer matrix (2.21)

To prove that the transfer matrix (2.13) has the crossing symmetry (2.21), we begin by
noting that the transposed transfer matrix can be expressed as

t
t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))t0t1···tL

= tr0 Rt0t1
01 (u) · · ·Rt0tL

0L (u)Kt0
0 ({ϕj})

= tr0 K0({ϕj})R10(u) · · ·RL0(u) , (A.1)

where we have passed to the final line using the PT symmetry (2.5) and the fact that the
twist matrix (2.15) is symmetric Kt = K. We then observe that the transfer matrix itself
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can be expressed as

t(u; {ϕj}) = tr0 (K0({ϕj})R0L(u) . . .R01(u))t0

= tr0 Rt0
01(u) · · ·Rt0

0L(u)Kt0
0 ({ϕj})

= tr0 V
t0

0 R10(4iγ − u)V t0
0 · · ·V t0

0 RL0(4iγ − u)V t0
0 K0({ϕj})

= tr0 K0({−ϕj})R10(4iγ − u) · · ·RL0(4iγ − u)
= t

t(4iγ − u; {−ϕj}) . (A.2)

In passing to the third equality, we have used (2.8) and (2.5); and in passing to the fourth
equality, we have used the fact

V K({ϕj}) = K({−ϕj})V . (A.3)

Finally, to pass to the last line of (A.2), we have used the result (A.1).

A.2 W (0) symmetry of the transfer matrix (2.24)

The transfer matrix (2.13) transforms under W (0)⊗L as

W (0)⊗L
t(u;ϕ1, ϕ2)W (0)⊗L = W (0)⊗L tr0 (K0(ϕ1, ϕ2)R0L(u) . . .R01(u) )W (0)⊗L

= tr0 K0(ϕ1, ϕ2)WL(0)R0L(u)WL(0) . . .W1(0)R01(u)W1(0)
= tr0 K0(ϕ1, ϕ2)W0(u)R0L(u)W0(u) . . .W0(u)R01(u)W0(u)
= tr0 K0(−ϕ2,−ϕ1)R0L(u) . . . R01(u)
= t(u;−ϕ2,−ϕ1) , (A.4)

where we have passed to the third equality using (2.12), and to the fourth equality using
the fact

W (u)K(ϕ1, ϕ2)W (u) = K(−ϕ2,−ϕ1) . (A.5)

A.3 CPT symmetry of the transfer matrix (2.26)

In order to prove that the transfer matrix (2.13) has the CPT symmetry (2.26), we begin
by observing that the parity operator (2.27) acts as

Π t(u; {ϕj}) Π = tr0 Π (K0({ϕj})R0L(u) . . .R01(u)) Π
= tr0 K0({ϕj})R01(u) . . .R0L(u) . (A.6)

It then follows that

V ⊗L Π t(u; {ϕj}) ΠV ⊗L = tr0 K0({ϕj})V1 R01(u)V1 . . . VL R0L(u)VL

= tr0 K0({ϕj})V0 R10(u)V0 . . . V0 RL0(u)V0

= tr0 V0 K0({ϕj})V0 R10(u) . . .RL0(u)
= tr0 K0({−ϕj})R10(u) . . .RL0(u)
= t

t(u; {−ϕj}) , (A.7)

where we have passed to the second equality using (2.9), to the fourth equality using (A.3),
and to the last equality using (A.1).
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A.4 CP symmetry of the Hamiltonian (2.51)

In order to prove that the Hamiltonian has the CP symmetry (2.51), we note the more
explicit expression that follows from its definition (2.46)

H ∼ t
−1(0) t′(0) =

L−1∑
i=1

Hi,i+1 + K−1
L HL,1 KL , Hi,i+1 = Pi,i+1 R′

i,i+1(0) , (A.8)

and proceed to show that the “bulk” and “boundary” terms are separately invariant.
For the “bulk” terms in (A.8), we observe that parity acts as

ΠHi,i+1Π = HL+1−i,L−i = PL+1−i,L−i R′
L+1−i,L−i(0) . (A.9)

It follows that CP acts as

V ⊗L ΠHi,i+1ΠV ⊗L = PL+1−i,L−i VL−i VL+1−i R′
L+1−i,L−i(0)VL−i VL+1−i

= PL+1−i,L−i R′
L−i,L+1−i(0)

= HL−i,L+1−i , (A.10)

where we have passed to the second equality using (2.9). Summing over i, we obtain

V ⊗L Π
(

L−1∑
i=1

Hi,i+1

)
ΠV ⊗L =

L−1∑
i=1

HL−i,L+1−i =
L−1∑
j=1

Hj,j+1 , (A.11)

where we have performed the change of variables j = L− i to pass to the final equality. In
short, the “bulk” terms in (A.8) are CP invariant.

For the “boundary” term in (A.8), we observe that parity acts as

ΠK−1
L HL,1 KLΠ = K−1

1 H1,L K1 , (A.12)

and therefor CP acts as

V ⊗L ΠK−1
L HL,1 KLΠV ⊗L = V1 VL K−1

1 H1,L K1 V1 VL

= K1 V1 VLH1,L V1 VL K−1
1

= K1HL,1 K−1
1

= K−1
L HL,1 KL , (A.13)

where we have passed to the second equality using (A.3), to the third equality using (2.9),
and to the final equality using the fact

[HL,1 ,KL K1] = 0 . (A.14)

We conclude that the “boundary” term is also CP invariant, and therefore, so is the full
Hamiltonian (A.8).
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B Introducing a diagonal twist in the Bethe ansatz

We present here a derivation of the result (2.30) for the eigenvalue Λ(u) of the (twisted)
transfer matrix, starting from the untwisted result [25]

Λ(u)
∣∣∣
ϕ1=ϕ2=0

= (4 sinh(u− 2iγ) sinh(u− 4iγ))LA(u) + (4 sinh(u− 4iγ) sinh u)L
4∑

ℓ=1
Bℓ(u)

+ (4 sinh(u− 2iγ) sinh u)LC(u) ,
(B.1)

where A(u), Bℓ(u), C(u) are given in eqs. (2.31), (2.32).
We proceed, in the same spirit as [25], using a kind of analytical Bethe ansatz approach.

The asymptotic behavior of the monodromy matrix (2.14) is given by

T(u) ∼
u→∞

(e2u−4iγ)L
{

diag
(
e−2iγh1 , e−2iγh2 , I , I , e2iγh2 , e2iγh1

)
+ . . .

}
, (B.2)

where the ellipsis denotes off-diagonal terms that will not contribute to the final result. It
follows that the twisted transfer matrix (2.13) has the asymptotic behavior

t(u) ∼
u→∞

(e2u−4iγ)L

2 I +
2∑

j=1

(
eiϕj e−2iγhj + e−iϕj e2iγhj

)
+ . . .

 . (B.3)

We assume that the eigenvalue Λ(u) is given by the following “dressed” version of the
periodic result (B.1)

Λ(u) = (4 sinh(u− 2iγ) sinh(u− 4iγ))L aA(u) + (4 sinh(u− 4iγ) sinh u)L
4∑

ℓ=1
bℓBℓ(u)

+ (4 sinh(u− 2iγ) sinh u)L cC(u) , (B.4)

where the parameters a , bℓ , c are still to be determined. Evidently, we have from (2.28)

⟨Λ|t(u)|Λ⟩ = Λ(u) . (B.5)

For u→ ∞, we evaluate the l.h.s. of (B.5) using (B.3) and (2.29), obtaining

⟨Λ|t(u)|Λ⟩ ∼
u→∞

(e2u−4iγ)L
{

eiϕ1e−2iγ(L−m1) + eiϕ2e−2iγ(m1−m2)

+ 2 + e−iϕ1e2iγ(L−m1) + e−iϕ2e2iγ(m1−m2)
}

; (B.6)

and we evaluate the r.h.s. of (B.5) using (B.4) to obtain

Λ(u) ∼
u→∞

(e2u−4iγ)L
{
a e−2iγ(L−m1) + b1 e−2iγ(m1−m2)

+ b2 + b3 + b4 e2iγ(m1−m2) + c e2iγ(L−m1)
}
. (B.7)

Comparing (B.6) and (B.7), we conclude that the parameters are given by

a = eiϕ1 , b1 = eiϕ2 , b2 = b3 = 1 , b4 = e−iϕ2 , c = e−iϕ1 , (B.8)

which is the result in (2.30).
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31 (1998) 4909.

[9] J. Links and A. Foerster, Integrability of a t-J model with impurities, J. Phys. A 32 (1999)
147 [cond-mat/9806129].

[10] R.M. Gade, An integrable sl(2|1) vertex model for the spin quantum Hall critical point, J.
Phys. A 32 (1999) 7071.

[11] F.H.L. Essler, H. Frahm and H. Saleur, Continuum limit of the integrable sl(2/1) 3-3̄
superspin chain, Nucl. Phys. B 712 (2005) 513 [cond-mat/0501197] [INSPIRE].

[12] H. Frahm and M.J. Martins, Finite size properties of staggered Uq[sl(2|1)] superspin chains,
Nucl. Phys. B 847 (2011) 220 [arXiv:1012.1753] [INSPIRE].

[13] H. Frahm and M.J. Martins, Phase diagram of an integrable alternating Uq[sl(2|1)] superspin
chain, Nucl. Phys. B 862 (2012) 504 [arXiv:1202.4676] [INSPIRE].

[14] Y. Ikhlef, J. Jacobsen and H. Saleur, A staggered six-vertex model with non-compact
continuum limit, Nucl. Phys. B 789 (2008) 483 [cond-mat/0612037] [INSPIRE].

[15] Y. Ikhlef, J.L. Jacobsen and H. Saleur, An integrable spin chain for the SL(2, R)/U(1) black
hole sigma model, Phys. Rev. Lett. 108 (2012) 081601 [arXiv:1109.1119] [INSPIRE].

[16] C. Candu and Y. Ikhlef, Nonlinear integral equations for the SL(2, R)/U(1) black hole sigma
model, J. Phys. A 46 (2013) 415401 [arXiv:1306.2646] [INSPIRE].

[17] H. Frahm and A. Seel, The staggered six-vertex model: conformal invariance and corrections
to scaling, Nucl. Phys. B 879 (2014) 382 [arXiv:1311.6911] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nuclphysb.2019.02.017
https://arxiv.org/abs/1805.12555
https://inspirehep.net/literature/1675800
https://doi.org/10.1103/RevModPhys.80.1355
https://arxiv.org/abs/0707.4378
https://inspirehep.net/literature/804607
https://doi.org/10.1016/j.physrep.2006.05.001
https://doi.org/10.1016/j.physrep.2006.05.001
https://arxiv.org/abs/hep-th/0509155
https://inspirehep.net/literature/692742
https://doi.org/10.1002/andp.19945060702
https://arxiv.org/abs/cond-mat/9410040
https://inspirehep.net/literature/384867
https://doi.org/10.1016/S0550-3213(97)00300-3
https://arxiv.org/abs/cond-mat/9612223
https://inspirehep.net/literature/1461186
https://doi.org/10.1103/PhysRevB.60.6893
https://arxiv.org/abs/cond-mat/9810238
https://inspirehep.net/literature/522421
https://doi.org/10.1103/PhysRevLett.82.4524
https://arxiv.org/abs/cond-mat/9902063
https://inspirehep.net/literature/508629
https://doi.org/10.1088/0305-4470/31/21/009
https://doi.org/10.1088/0305-4470/31/21/009
https://doi.org/10.1088/0305-4470/32/1/016
https://doi.org/10.1088/0305-4470/32/1/016
https://arxiv.org/abs/cond-mat/9806129
https://doi.org/10.1088/0305-4470/32/41/303
https://doi.org/10.1088/0305-4470/32/41/303
https://doi.org/10.1016/j.nuclphysb.2005.01.021
https://arxiv.org/abs/cond-mat/0501197
https://inspirehep.net/literature/676603
https://doi.org/10.1016/j.nuclphysb.2011.01.026
https://arxiv.org/abs/1012.1753
https://inspirehep.net/literature/880016
https://doi.org/10.1016/j.nuclphysb.2012.04.019
https://arxiv.org/abs/1202.4676
https://inspirehep.net/literature/1089862
https://doi.org/10.1016/j.nuclphysb.2007.07.004
https://arxiv.org/abs/cond-mat/0612037
https://inspirehep.net/literature/778669
https://doi.org/10.1103/PhysRevLett.108.081601
https://arxiv.org/abs/1109.1119
https://inspirehep.net/literature/926536
https://doi.org/10.1088/1751-8113/46/41/415401
https://arxiv.org/abs/1306.2646
https://inspirehep.net/literature/1238307
https://doi.org/10.1016/j.nuclphysb.2013.12.015
https://arxiv.org/abs/1311.6911
https://inspirehep.net/literature/1266462


J
H
E
P
1
1
(
2
0
2
3
)
0
9
5

[18] V.V. Bazhanov, G.A. Kotousov and S.L. Lukyanov, Equilibrium density matrices for the 2D
black hole sigma models from an integrable spin chain, JHEP 03 (2021) 169
[arXiv:2010.10603] [INSPIRE].

[19] V.V. Bazhanov, G.A. Kotousov, S.M. Koval and S.L. Lukyanov, Scaling limit of the Z2
invariant inhomogeneous six-vertex model, Nucl. Phys. B 965 (2021) 115337
[arXiv:2010.10613] [INSPIRE].

[20] E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].

[21] É. Vernier, J.L. Jacobsen and H. Saleur, Non compact conformal field theory and the a(2)
2

(Izergin-Korepin) model in regime III, J. Phys. A 47 (2014) 285202 [arXiv:1404.4497]
[INSPIRE].

[22] É. Vernier, J.L. Jacobsen and H. Saleur, Non compact continuum limit of two coupled Potts
models, J. Stat. Mech. 2014 (2014) P10003 [arXiv:1406.1353].

[23] É. Vernier, J.L. Jacobsen and H. Saleur, The continuum limit of a(2)
N−1 spin chains, Nucl.

Phys. B 911 (2016) 52 [arXiv:1601.01559] [INSPIRE].

[24] N.F. Robertson, M. Pawelkiewicz, J.L. Jacobsen and H. Saleur, Integrable boundary
conditions in the antiferromagnetic Potts model, JHEP 05 (2020) 144 [arXiv:2003.03261]
[INSPIRE].

[25] N.Y. Reshetikhin, The spectrum of the transfer matrices connected with Kac-Moody algebras,
Lett. Math. Phys. 14 (1987) 235.

[26] M. Jimbo, Quantum R matrix for the generalized Toda system, Commun. Math. Phys. 102
(1986) 537 [INSPIRE].

[27] R.I. Nepomechie, R.A. Pimenta and A.L. Retore, The integrable quantum group invariant
A

(2)
2n−1 and D(2)

n+1 open spin chains, Nucl. Phys. B 924 (2017) 86 [arXiv:1707.09260]
[INSPIRE].

[28] H.J. de Vega, Families of commuting transfer matrices and integrable models with disorder,
Nucl. Phys. B 240 (1984) 495 [INSPIRE].

[29] E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988)
2375 [INSPIRE].

[30] R.I. Nepomechie and A.L. Retore, Factorization identities and algebraic Bethe ansatz for
D

(2)
2 models, JHEP 03 (2021) 089 [arXiv:2012.08367] [INSPIRE].

[31] A. Doikou and R.I. Nepomechie, Discrete symmetries and S matrix of the XXZ chain, J.
Phys. A 31 (1998) L621 [hep-th/9808012] [INSPIRE].

[32] F.P. Califano, A. Caruso, P. Spirito and G.F. Vitale, The functional equation method in the
theory of exactly soluble quantum systems, JETP 57 (1983) 691.

[33] H.J. de Vega and E. Lopes, Exact solution of the B(1)
n , D(1)

n , A(2)
2n , A(2)

2n−1, D(2)
n and E(2)

6
lattice models, Nucl. Phys. B 362 (1991) 261 [INSPIRE].

[34] M. Martins, Unified algebraic Bethe ansatz for two-dimensional lattice models, Phys. Rev. E
59 (1999) 7220 [solv-int/9901002].

[35] H. Frahm and S. Gehrmann, Finite size spectrum of the staggered six-vertex model with
Uq(sl(2))-invariant boundary conditions, JHEP 01 (2022) 070 [arXiv:2111.00850]
[INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP03(2021)169
https://arxiv.org/abs/2010.10603
https://inspirehep.net/literature/1824293
https://doi.org/10.1016/j.nuclphysb.2021.115337
https://arxiv.org/abs/2010.10613
https://inspirehep.net/literature/1824294
https://doi.org/10.1103/PhysRevD.44.314
https://inspirehep.net/literature/314576
https://doi.org/10.1088/1751-8113/47/28/285202
https://arxiv.org/abs/1404.4497
https://inspirehep.net/literature/1291414
https://doi.org/10.1088/1742-5468/2014/10/p10003
https://arxiv.org/abs/1406.1353
https://doi.org/10.1016/j.nuclphysb.2016.07.026
https://doi.org/10.1016/j.nuclphysb.2016.07.026
https://arxiv.org/abs/1601.01559
https://inspirehep.net/literature/1414220
https://doi.org/10.1007/JHEP05(2020)144
https://arxiv.org/abs/2003.03261
https://inspirehep.net/literature/1784310
https://doi.org/10.1007/bf00416853
https://doi.org/10.1007/BF01221646
https://doi.org/10.1007/BF01221646
https://inspirehep.net/literature/213089
https://doi.org/10.1016/j.nuclphysb.2017.09.004
https://arxiv.org/abs/1707.09260
https://inspirehep.net/literature/1613541
https://doi.org/10.1016/0550-3213(84)90240-2
https://inspirehep.net/literature/200041
https://doi.org/10.1088/0305-4470/21/10/015
https://doi.org/10.1088/0305-4470/21/10/015
https://inspirehep.net/literature/23533
https://doi.org/10.1007/JHEP03(2021)089
https://arxiv.org/abs/2012.08367
https://inspirehep.net/literature/1836660
https://doi.org/10.1088/0305-4470/31/37/001
https://doi.org/10.1088/0305-4470/31/37/001
https://arxiv.org/abs/hep-th/9808012
https://inspirehep.net/literature/474210
https://doi.org/10.1016/0550-3213(91)90564-E
https://inspirehep.net/literature/303296
https://doi.org/10.1103/physreve.59.7220
https://doi.org/10.1103/physreve.59.7220
https://arxiv.org/abs/solv-int/9901002
https://doi.org/10.1007/JHEP01(2022)070
https://arxiv.org/abs/2111.00850
https://inspirehep.net/literature/1957085


J
H
E
P
1
1
(
2
0
2
3
)
0
9
5

[36] C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with
repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].

[37] H.W.J. Blöte, J.L. Cardy and M.P. Nightingale, Conformal invariance, the central charge,
and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742 [INSPIRE].

[38] I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly,
Phys. Rev. Lett. 56 (1986) 746 [INSPIRE].

[39] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.
B 270 (1986) 186 [INSPIRE].

[40] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New
York, NY, U.S.A. (1997) [DOI:10.1007/978-1-4612-2256-9] [INSPIRE].

[41] J.L. Cardy, Logarithmic corrections to finite-size scaling in strips, J. Phys. A 19 (1986)
L1093.

[42] V.V. Bazhanov, G.A. Kotousov, S.M. Koval and S.L. Lukyanov, Some algebraic aspects of
the inhomogeneous six-vertex model, SIGMA 17 (2021) 025 [arXiv:2010.10615] [INSPIRE].

[43] J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, R) WZW model 1: the spectrum,
J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].

[44] A. Hanany, N. Prezas and J. Troost, The partition function of the two-dimensional black hole
conformal field theory, JHEP 04 (2002) 014 [hep-th/0202129] [INSPIRE].

[45] H. Frahm and K. Hobuß, Spectral flow for an integrable staggered superspin chain, J. Phys.
A 50 (2017) 294002 [arXiv:1703.08054] [INSPIRE].

[46] G.A. Kotousov and S.L. Lukyanov, On the scaling behaviour of an integrable spin chain with
Zr symmetry, Nucl. Phys. B 993 (2023) 116269 [arXiv:2305.03620] [INSPIRE].

[47] R.I. Nepomechie, R.A. Pimenta and A.L. Retore, Towards the solution of an integrable D(2)
2

spin chain, J. Phys. A 52 (2019) 434004 [arXiv:1905.11144] [INSPIRE].

[48] N.F. Robertson, J.L. Jacobsen and H. Saleur, Conformally invariant boundary conditions in
the antiferromagnetic Potts model and the SL(2, R)/U(1) sigma model, JHEP 10 (2019) 254
[arXiv:1906.07565] [INSPIRE].

[49] N.F. Robertson, J.L. Jacobsen and H. Saleur, Lattice regularisation of a non-compact
boundary conformal field theory, JHEP 02 (2021) 180 [arXiv:2012.07757] [INSPIRE].

[50] H. Frahm and S. Gehrmann, Integrable boundary conditions for staggered vertex models, J.
Phys. A 56 (2023) 025001 [arXiv:2209.06182] [INSPIRE].

– 31 –

https://doi.org/10.1063/1.1664947
https://inspirehep.net/literature/53049
https://doi.org/10.1103/PhysRevLett.56.742
https://inspirehep.net/literature/229560
https://doi.org/10.1103/PhysRevLett.56.746
https://inspirehep.net/literature/17876
https://doi.org/10.1016/0550-3213(86)90552-3
https://doi.org/10.1016/0550-3213(86)90552-3
https://inspirehep.net/literature/232845
https://doi.org/10.1007/978-1-4612-2256-9
https://inspirehep.net/literature/454643
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.1088/0305-4470/19/17/008
https://doi.org/10.3842/SIGMA.2021.025
https://arxiv.org/abs/2010.10615
https://inspirehep.net/literature/1824295
https://doi.org/10.1063/1.1377273
https://arxiv.org/abs/hep-th/0001053
https://inspirehep.net/literature/522878
https://doi.org/10.1088/1126-6708/2002/04/014
https://arxiv.org/abs/hep-th/0202129
https://inspirehep.net/literature/583186
https://doi.org/10.1088/1751-8121/aa77e7
https://doi.org/10.1088/1751-8121/aa77e7
https://arxiv.org/abs/1703.08054
https://inspirehep.net/literature/1518970
https://doi.org/10.1016/j.nuclphysb.2023.116269
https://arxiv.org/abs/2305.03620
https://inspirehep.net/literature/2657328
https://doi.org/10.1088/1751-8121/ab434d
https://arxiv.org/abs/1905.11144
https://inspirehep.net/literature/1736909
https://doi.org/10.1007/JHEP10(2019)254
https://arxiv.org/abs/1906.07565
https://inspirehep.net/literature/1740410
https://doi.org/10.1007/JHEP02(2021)180
https://arxiv.org/abs/2012.07757
https://inspirehep.net/literature/1836408
https://doi.org/10.1088/1751-8121/acb29f
https://doi.org/10.1088/1751-8121/acb29f
https://arxiv.org/abs/2209.06182
https://inspirehep.net/literature/2151073

	Introduction
	The D**((2))(3) spin chain
	The R-matrix
	The transfer matrix and its symmetries
	Bethe ansatz
	Hamiltonian

	Methodology of studying the scaling limit
	Considered class of states

	Root density approach for the ground state
	Analysis of the finite-size spectrum
	Compact part
	Spectrum flow of the compact modes under twists

	Continuous part of the spectrum
	Spectral flow for continuum states


	Conclusion
	Proofs of symmetries
	Crossing symmetry of the transfer matrix (2.21)
	W(0) symmetry of the transfer matrix (2.24)
	CPT symmetry of the transfer matrix (2.26)
	CP symmetry of the Hamiltonian (2.51)

	Introducing a diagonal twist in the Bethe ansatz

