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Abstract: Image restoration, as a fundamental research topic of image processing, is to reconstruct the original image from 
degraded signal using the prior knowledge of image. Group sparse representation (GSR) is powerful for image restoration, 
it however often leads to undesirable sparse solutions in practice. In order to improve the quality of image restoration 
based on GSR, the sparsity residual model expects the representation learned from degraded images to be as close as 
possible to the true representation. In this article, a group residual learning based on low-rank self-representation is 
proposed to automatically estimate the true group sparse representation. It makes full use of the relation among patches 
and explores the subgroup structures within the same group, which makes the sparse residual model have better 
interpretation, furthermore, results in high-quality restored images. Extensive experimental results on two typical image 
restoration tasks (image denoising and deblocking) demonstrate that the proposed algorithm outperforms many other 
popular or state-of-the-art image restoration methods. 
Key Words: Image Restoration, Group Sparse Representation, Low-rank Self-Representation, Group Residual Learning.

1. Introduction 
Image restoration is one of elementary task in image 

processing to reconstruct or recovery the original image 
from the degraded or corrupted signal [1]. It has been 
extensively studied, in general, can be formulated as 

 𝒀 = 𝑯𝑿+ 𝑬 (1) 
where 𝑿 ∈ ℝℎ×" , 𝒀 ∈ ℝℎ×"  and 𝑬 ∈ ℝℎ×"  are the 

original, degraded and noise of image respectively, and 𝑯 is 
a degradation operator. The restoration problem represented 
in Eq. (1) can differ greatly in terms of the degradation 
operator 𝑯 . For example, 𝑯  as an identity matrix 
corresponds to image denoising [2], a diagonal masking 
corresponds to image inpainting [3], and a blurring operator 
corresponds to image deblurring [4]. 

Evidence demonstrates that image priors are the 
foundation for image restoration, including total variation 
(TV) [5-7], sparsity [2, 8], low-rank [9-11], and deep image 
prior [12-20]. Particularly, sparsity prior is considered as 
one of the most remarkable for natural images [2, 8, 21-24]. 
On the basis of the strategies for manipulating sparsity prior, 
current algorithms are roughly divided into two classes, i.e., 
patch- [2, 25, 26] and group-based approaches [27-29, 8, 22], 
where the former ones independently perform image 
restoration for each patch, and the latter ones execute 
restoration task for each group of patches. 

In the past decades, patch-based image restoration 
has attracted great attention from researchers [2, 30], and 
those algorithms are devoted to identify the low-dimensional 
representation (also called patch code) under the assumption 
that each patch can be modeled with a linear combination of 
learned basis elements, known as dictionary [2]. The typical 
dictionary strategies are classified into two categories, i.e., 
analytic and learning ones, where former one includes 

discrete cosine transform (DCT), and wavelet and curvelet 
[31]. In comparison of the traditional analytic approach, 
dictionary learned from images is more adoptive and 
accurate since it can depict the local structure of images 
comprehensively. For example, the well-known dictionary 
learning method K-SVD [30] is of strong adaptability, 
which has been successfully applied to image denoising and 
other tasks [2, 30]. Furthermore, by imposing sparse 
constraint onto patch representation, patch-based sparse 
representation (PSR) achieves an excellent performance for 
image restoration, where each patch is represented with a 
linear combination of a few atoms of the learned dictionary. 

However, those algorithms are criticized for 
independently learning the dictionary and representation for 
each patch, resulting in two significant limitations. First, the 
patch-based methods are computationally time-consuming, 
hampering its application for large-scale image dataset. 
Second, these algorithms only exploit the intrinsic structure 
of each patch but ignores the correlation among various 
patches [26, 32], namely non-local self-similarity (NSS). To 
address the named issues, group-based approaches, such as 
group sparse representation (GSR) [33, 27, 28], learn the 
sparse coding and dictionary from a group of similar patches, 
where the strong correlation amongst them can be captured. 

Compared to patch-based methods, the GSR models 
[25, 26] achieves an outstanding performance in image 
restoration. For example, BM3D [26] performs collaborative 
filtering on groups of 3D patches. Mairal et al. [33] 
proposed learned simultaneous sparse coding (LSSC), which 
given a certain transform domain and simultaneously sparse 
encodes similar patches to enforce them have similar 
coefficients. Zhang et al. [27] proposed a GSR-based model 
for image restoration, which designs the self-adaptive 
dictionary for image patch group and solves sparse coding 
with  minimization. Xu et al. [34] learned an NSS prior 0
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for patch groups based on external image databases before 
image denoising, which can achieve excellent results when 
the distribution of external patch groups and target image 
patch groups is similar. To preserve the characteristics of the 
target image itself, a series of models combining internal 
and external priors are proposed in [35, 36]. To obtain the 
more correct sparsity solution under image restoration 
problem, Wang et al. [29] incorporated the nonconvex 
weighted ℓ#  minimization into GSR framework for image 
denoising. To avoid learning dictionary from patches of 
images, principal component analysis (PCA) is adopted to 
construct dictionary [27, 29]. Recently, Zha et al. [37] 
proposed low-rank guided GSR model, which utilizes low-
rankness to guide dictionary learning. However, due to the 
degradation of the observed image, the sparse representation 
obtained by the above methods can't reconstruct the original 
image faithfully. 

To tackle this problem, the residual models [8, 22] 
assume that the group of similar patches exist the truth 
representation, where the learned representation should not 
deviate from the truth one. In contrast to GSR, the residual 
model is much more difficult to train since it needs to 
estimate the truth representation, which is also the 
significant difference among various algorithms. For 
example, nonlocally centralized sparse representation model 
(NCSR) [8] utilizes the weighted average of group sparse 
representation to estimate the true sparse code, whereas 
NSSRC (for nonconvex structural sparsity residual 
constraint) [22] integrates structural sparse representation 
and non-convex sparsity residual constraint for the 
estimation of truth coding. In addition, the low-rank GSR 
model (LRGSC) [38] which estimates the true sparse code 
with low-rank prior is proved to be effective for image 
compressed sensing in [39].These methods significantly 
improve the accuracy of algorithms for image restoration, 
implying that residual model is promising for this issue. 

Even though great efforts have been devoted to the 
residual model for image restoration, there still many 
unsolved problems. Firstly, the relation among patches of 
the same groups is neglected since they only depict the 
distance between the patches and the centers of groups, 
which decreases the performance and interpretability of 
patterns. Secondly, conventional residual models employ the 
weighted linear function to obtain true sparse representation, 
where the weights of patches are difficult to select since the 
relative importance between them and exemplars is hard to 
measure. Thirdly, the existing algorithms ignore the 
specificity of patches when estimating the truth 
representation since they assume that patches within the 
same group share the same truth representation. 

To address these problems, a flexible and 
interpretable image restoration algorithm based on group 
sparse representation and residual learning is proposed in 
this paper. To make use of the relation among patches in the 
same group and remove the dependence on the exemplars, 
we define the estimate of the true sparse representation as 
the product of the learned sparse code and a weight matrix. 
To adaptively determine the weight matrix, we integrate the 
learning of weight matrix into self-representation learning, 
which estimates the weight matrix automatically. Each 
column of the weight matrix can be different, which enables 
preservation of the specificity for each patch. In addition, we 

impose the low-rank constraint on the weight matrix using 
the nuclear norm, which can further explore the sub-group 
structures of each patch group. Finally, the proposed 
algorithm jointly learns the sparse representation, sub-group 
structure and group residual by combining group sparse 
representation and residual learning. The experiments imply 
that the proposed method outperforms many mainstream 
SOTA methods of image restoration. 

The following is a summary of this research's main 
contributions. 

1. To enhance the quality of learned sparse 
representation, we propose a residual learning 
model based on self-representation, which makes 
full use of the relation among patches within the 
same group. The true sparse representation is 
estimated by the self-representation of the learned 
sparse representation, which improves the 
interpretability of the estimate. 

2. To preserve the specificity of the patches within the 
same group well, we impose the low-rank 
constraint on the weight matrix using the nuclear 
norm, which can further capture the sub-group 
structures of each patch group. 

3. The proposed algorithm jointly learns the patch 
representation, sub-group structure and group 
residual by combining group sparse representation 
and residual learning. In this case, the residual 
learning assists sparse representation to learn better 
patch representation, and the sub-group structure of 
each patch group can ensure that the learned 
representation preserves the specificity of patches. 

4. The experimental results on image denoising and 
deblocking, imply that the proposed algorithm 
outperforms many popular image restoration 
baselines in various quality measurements. 

The remaining sections of this article is arranged as 
follows. Section 2 introduces the preliminaries, Section 3 
elaborates the proposed algorithm for image restoration in 
detail, Section 4 presents the experimental results, and 
conclusions are drawn in Section 5. 

2. Preliminaries 
In this section, we will present the notations and 

preliminaries that are going to be used for the rest of the 
paper. 

 
2.1. Notations 

 
Let the bold upper, bold lower, and lower-case letters 

denote matrices, vectors, and scalars, respectively. Let 𝑿 ∈
ℝ$×%  be a 𝑛 ×𝑚  matrix, and 𝒙 ∈ ℝ&  be a vector with 𝑑 
elements, respectively. 𝑿′ is the transpose of matrix 𝑿. 

The Frobenius norm of matrix  is defined as  

 ||𝑿|| = 	/𝑡𝑟(𝑿′𝑿) = 	/𝑡𝑟(𝑿𝑿′), (2) 
where 𝑡𝑟(𝑿) is the trace of matrix 𝑿. ℓ'-norm of vector 𝒙 is 
defined as the sum of non-zero elements in 𝒙, i.e., 

 ||𝒙||' = ∑ |𝑥(|'( . (3) 

X
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ℓ)-norm of vector 𝒙 is the sum of absolute values of 
elements in 𝒙, i.e., 

 ||𝒙||' = ∑ |𝑥(|( . (4) 
ℓ#-norm (0 < 𝑝 < 1) of vector 𝒙 is defined as 

 ||𝒙||# = (∑ |𝑥(|#( ))/#. (5) 
||𝑿||', ||𝑿||) and ||𝑿||# denotes imposing ℓ'-norm, ℓ)-norm, 
and -norm on each column of matrix 𝑿, respectively. 

Nuclear norm of matrix 𝑿 is defined as 

 ||𝑿||∗ = ∑ |𝜆(|
%($(%,$)
(/) , (6) 

where 𝜆( is the 𝑖-th singular value of matrix 𝑿. 
 

2.2. Image Restoration 
 

To simplify the model in Eq. (1), we set the 
degradation matrix 𝑯 as the identity matrix. Then, given a 
degraded image 𝒀, image restoration is formulated as 

 𝒀 = 𝑿+ 𝑬, (7) 
where 𝑿 ∈ ℝℎ×"  and 𝑬 ∈ ℝℎ×"  denote the original image 
and additive noise, respectively. Without loss of generality, 
image prior is denoted by 𝜃 and then maximum a posteriori 
(MAP) framework [8, 27, 40] is employed, i.e., a posteriori 
function of the form 𝑙𝑜𝑔 𝑝 (𝑿|𝒀, 𝜃) is maximized 

 𝑙𝑜𝑔 𝑝 (𝑿|𝒀) = 𝑙𝑜𝑔 𝑝 (𝒀|𝑿, 𝜃) + 𝑙𝑜𝑔 𝑝 (𝑿|𝜃). (8) 
The likelihood term is the Gaussian distribution [8] 

 𝑝(𝒀|𝑿, 𝜃) = )
√123!

𝑒𝑥𝑝( − )
13!

" ||𝒀 − 𝑿||1), (9) 

where the 𝜎!" is the variance of noise. And then Eq. (8) is 
equal to 

 𝑚𝑖𝑛
𝑿

)
1
||𝒀 − 𝑿||1 + 𝜎51𝛩(𝑿), (10) 

where 𝛩(𝑿) is regularization term derived from prior 𝜃. 
 

2.3. Sparse Representation 
 

Given features 𝒅), … , 𝒅$, representation learning for 
a vector 𝒙 aims to obtain a linear function such that 

 𝒙 ≈ 𝑎)𝒅) +⋯+ 𝑎$𝒅$, (11) 
where 𝑎( is the coefficient for feature 𝒙(. 

Eq. (11) is solved by minimizing approximation, i.e., 

 𝑚𝑖𝑛 )
1
||𝒙 − 𝑫𝒂||1, (12) 

where 𝐷 = [𝒙#, ⋯ , 𝒙$], and 𝒂 = (𝑎), … , 𝑎$)′, respectively. 
The sparse representation learning expects most of 

coefficients are 0, where Eq. (12) is formulated as  

 𝑚𝑖𝑛 )
1
||𝒙 − 𝑫𝒂||1 + 𝛼||𝒂||', (13) 

where 𝛼 is a parameter.  
Furthermore, extension for sparse representation 

learning is needed. When multiple objects involve, i.e., 𝑿 =

[𝒙), … , 𝒙$], GSR simultaneously handles 𝑛 objects into an 
objective function, where Eq. (13) is re-written as 

 𝑚𝑖𝑛 )
1
||𝑿 − 𝑫𝑨||1 + 𝛼||𝑨||', (14) 

where  ||𝑨||'  is regularization item, denotes imposing ℓ' -
norm on each column of 𝑨. 

There are various strategies for constructing sparsity, 
i.e., ℓ)-norm [41, 42], and ℓ#-norm (0 < 𝑝 < 1), to bridge 
ℓ' and ℓ)  [43, 44]. 

3. Proposed Method 
In this section, we will present the proposed method 

in detail, including restoration model, optimization, 
parameter selection, and discussion on its computational 
complexity.  

The overview of the proposed algorithm is shown in 
Fig. 1, which consists of three major components, patch 
grouping, sparse representation learning and group residual 
learning. Patch grouping divides sub-blocks of the original 
images into different classes, where patches within the same 
groups are highly similar.  Sparse representation learning 
projects each group of patches into a subspace that spanned 
by columns of dictionary matrix to obtain the representation 
of patches, whereas group residual learning aims to 
automatically learn the true code of patch groups. 
 

3.1. Restoration Model 
 

In the patch grouping block, like other GSR-based 
restoration models [33, 27, 28], a patch-matching based 
approach is utilized. Specifically, the degraded image 𝒀 is 
divided into patches, where the size √𝑑 × √𝑑  of patches 
varies with downstream applications. For each reference 
patch, the closest 𝑚  patches within window of 𝑙 × 𝑙  are 
selected as a group, where patches belonging to multiple 
groups are allowed. To ensure the quality of groups, the step 
size of selected reference patches is small, where window 
size is large. In general, we set step size of selection 
reference patches as 3 or 4, and that of windows as 25 × 25. 
By stacking pixels each reference patch is denoted as 𝒚(, and 
the corresponding patch group is  𝒀( ∈ ℝ&×% , where each 
column corresponds to a patch within the group.  

In the sparse representation learning block, the most 
intuitive strategy is to project each group of patches into a 
subspace, where the low-dimensional representation of 
patches is obtained. Specifically, given patch group  𝒀(, the 
low-dimensional representation of patches is learned by 
minimizing the approximation, which is formulated as 

 𝒪(𝒀() =
)
1
||𝒀( −𝑫(𝑨(||1, (15) 

where 𝑫( ∈ ℝ&×& and 𝑨( ∈ ℝ&×% denotes the dictionary and 
coefficient matrix of 𝒀(, respectively. Sparse representation 
learning [30] expects the learned 𝑨( is sparse, i.e., the most 
elements are 0, which improves computational efficiency 
and interpretability of solutions.  By imposing  ℓ) -norm 
constraint to coefficient matrix 𝑨(, Eq. (15) is reformulated 
as 

p



4 
 

 
Fig. 1. The overview of our proposed image restoration algorithm, which consists of three major parts, namely patch grouping, 
sparse representation learning and group residual learning. 

 𝒪(𝒀() =
)
1
||𝒀( −𝑫(𝑨(||1 + 𝛽||𝑨(||), (16) 

where parameter  𝛽  determines the relative importance of 
sparsity constraint. Recently, evidence [43, 44] demonstrates 
that ℓ# -norm overcomes limitation of ℓ) -norm to fulfill 
sparsity of representation. Therefore, Eq. (16) is re-written 
as 

 𝒪(𝒀() =
)
1
||𝒀( −𝑫(𝑨(||1 + 𝛽||𝑨(||#. (17) 

However, the coefficient matrix 𝑨( in Eq. (17) is very 
likely to deviate from the true representation of the 
corresponding group of patches, due to various degradations 
(noise, compression, etc.) on 𝒀(. Thus, the residual model [8, 
22] enforces the learned representation 𝑨( to be in consistent 
with the truth representation of 𝒀( .  Given the truth 
representation 𝑩( ∈ ℝ&×% of patch group 𝒀(, the residual is 
defined as 

 𝑹( = 𝑨( −𝑩( . (18) 
Obviously, the learned sparse representation 𝑨( 

should be as close as possible to the truth sparse 
representation 𝑩(, that is, 𝑹( should be as small as possible. 
Thus, Eq. (17) can be extended as 

	𝒪(𝒀() =
)
1
||𝒀( −𝑫(𝑨(||1 + 𝛽||𝑨(||# +

6
1
||𝑨( −𝑩(||1, (19) 

where 𝛾 determines importance of residual. 
The typical advantage of the residual models in Eq. 

(19) is that it learns the low-dimensional representation of 
patches by preserving the truth distribution of patch group. 
However, solving the Eq. (19) is a great challenge. In other 
words, the dictionary matrix 𝑫( and truth representation 𝑩( 
are pre-requisites. Usually, principal component analysis 
(PCA) [27, 8] is a widely adopted strategy to construct 
dictionary 𝑫( . Specifically, each column of the dictionary 
𝑫( consists of the eigenvectors of the 𝒀( 's covariance matrix. 
However, the truth sparse representation 𝑩(   is difficult to 
estimate, due to we always only have degraded images 
without ground truth. 

To address this problem, existing algorithms assume 
that patches within each group share the common 
representation that can be learned from coefficient matrix 𝑨(.  
The most intuitive and straightforward strategy is to 

combine the representation of patches with a linear function 
to obtain the shared truth representation 𝒃 ∈ ℝ& as [8, 22] 

 𝒃 = )
%
∑ 𝑤7%
7/) 𝑨(,7 , (20) 

where  𝑤(  is the weight for patch 𝒀(  as Euclidean distance 
between the 𝑖 -th patch and the center of group, and 𝑨(,7 
denotes the 𝑗-th column of 𝑨(, respectively. Then, the truth 
representation set as  𝑩( = [𝒃,… , 𝒃]. 

In comparison to the sparse representation model, the 
residual model of Eq. (19) and Eq. (20) is more effective 
and efficient for image restoration. However, it also has 
three limitations on the estimation of 𝑩( .  First of all, it 
assumes that patches within the same group share the same 
truth representation, ignoring the specificity of patches. In 
other words, Eq. (20) achieves the desirable performance if 
and only if patches within the same group are homogeneous. 
Actually, patches groups can be further divided into sub-
groups, where each sub-group has a unique representation, 
indicating that there are multiple representations for the 
original patch group.   Second, the relation among patches 
of the same groups is also neglected since Eq. (20) only 
depicts the distance between patches and centers of groups 
decreasing the performance and interpretability of patterns. 
Furthermore, Eq. (20) employs the weighted linear function 
to obtain 𝑩(, where weights of patches are difficult to select 
since the relative importance between them and exemplars is 
hard to measure.   

To overcome these issues, we hypothesize that, for 
each patch group 𝒀(,  there is a close relation between the 
learned and truth representation of patches, i.e., 𝑩(  can be 
learned from 𝑨( . Specifically, the proposed algorithm 
automatically learns 𝑩( from 𝑨( as 

 𝑩( = 𝑨(𝑾( , (21) 
where the 𝑾( ∈ ℝ%×% is a weight matrix. Eq. (21) avoids 
sharing the unique center in the residual model in Eq. (20), 
where multiple centers are allowed. In this case, the 
relations among patches within the same groups are 
explicitly exploited, which provides a better strategy to 
characterize and model the truth representation of patches. 

Substituting Eq. (21) into Eq. (19), we have 

𝒪(𝒀() =
)
1
||𝒀( −𝑫(𝑨(||1 + 𝛽||𝑨(||# +

6
1
||𝑨( − 𝑨(𝑾(||1.(22) 
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Eq. (22) brings out three consequent advantages. 
First, the last term corresponds to the self-representation of 
learned representation 𝑨(, i.e.,  𝑩( is represented with linear 
combination of close patches of groups, improving 
interpretability of 𝑩(.  Second, the relation among patches is 
further exploited for learning the low-dimensional 
representation for patches, thereby, enhancing quality of 
representation in return.  Third, the weight matrix 𝑾(  is 
automatically learned under the guidance of the 
representation of patches, extending the application of 
models. 

Moreover, we also want to explore sub-groups of 
each patch group with an immediate purpose to further 
exploit intrinsic structure of representation. Evidence [45] 
demonstrates the nuclear-norm of matrix ensures the block 
structure of matrices. Therefore, we fulfil the sub-groups of 
patch group by imposing constraint on 𝑾(  with nuclear 
norm, then Eq. (22) can be reformulated as 

𝒪!𝐘𝑖"= 1
2||𝐘𝑖−𝐃𝑖𝐀𝑖||

2+𝛽||𝐀𝑖||𝑝
+𝛾
2||𝐀𝑖−𝐀𝑖𝐖𝑖||

2+𝜏||𝐖𝑖||∗
𝑠.𝑡.   𝐖𝑖=𝐖′𝑖.

 (23) 

where  determines the importance of low-rank constraint. 
The constraint ensures the symmetry of matrix 𝑾(, because 
each element of 𝑾(  can be regarded as similarity between 
corresponding sparse representations. Eq. (24) jointly learns 
the representation of patches, sub-group structure, and 
residuals for each patch groups. By summing all patch 
groups, the proposed algorithm learns representation of 
patches that is formulated as  

 𝒪(𝒀) = ∑ 𝒪( (𝒀(). (25) 
To restore the degraded image, the main model is to 

minimize the difference between the degraded and restored 
images, i.e., ||𝒀 − 𝑿||. Thus, the overall objective function 
of the proposed algorithm with the prior regulation terms 
mentioned above can formulated as 	
𝒪= 1

2 ||𝐘−𝐗||
2+𝒪&𝐗'

= 1
2 ||𝐘−𝐗||

2+ 𝛼
2∑ ||𝐐𝐢𝐗−𝐃𝐢𝐀𝐢||

2
𝑖 +𝛽∑ ||𝐀𝐢||𝑝𝑖

+ 𝛾
2∑ ||𝐀𝐢−𝐀𝐢𝐖𝐢||

2
𝑖 +𝜏∑ ||𝐖𝐢||∗𝑖

𝑠. 𝑡.						𝐖𝒊 =𝐖′𝐢,			∀𝑖 ∈ )1,2,… ,𝑛*,

 (26) 

where 𝑸( represents the matrix operator for the extraction of 
the 𝑖 -th patch group for 𝑿 , i.e., 𝑸(𝑿 = 𝑿( . In the next 
subsection, we will discuss the optimization technique for 
the objective function in Eq. (26). 
 

3.2. Optimization 
 

The nuclear norm of 𝑾( and ℓ# norm of 𝑨( result in 
the non-convexity of problem in Eq. (26), which cannot be 
solved directly with analytical solutions. Thus, an alternative 
iterative strategy is adopted by optimizing one variable by 
fixing the others until the algorithm converges or 
termination criteria are reached. 

Step 1. Update weight matrix 𝑾(: By fixing 𝑿 and 𝑨(, 
and removing irrelevant items, the objective function of Eq. 
(26) is equivalent to the following one with respect to 𝑾(, 
i.e.,  

 6
1
||𝑨( − 𝑨(𝑾(||1 + 𝜏||𝑾(||∗			𝑠. 𝑡.𝐖( = 𝑾′( . (27) 

According to [46], Eq. (27) can be effectively solved 
with singular value decomposition (SVD) of matrix 𝑨(, i.e., 
𝑨( = 𝑼(𝛬(𝑽′( , where 𝛬( = 𝑑𝑖𝑎𝑔({𝜆(}) is a diagonal matrix 
with singular values on the diagonal, the 𝑼( and 𝑽( are the 
left and right singular vector matrix, respectively. The 
optimal solution to Eq.  (27) is formulated as [46] 

 𝑾p( = 𝑽(𝒫@/6(𝜆()𝑽′( , (28) 
where 𝒫@/6 is defined as 

 𝒫@/6(𝜆() = r
1 − @

6A#
" ,		𝜆( > /𝜏/𝛾,

0,												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (29) 

Step 2. Update group sparse representation 𝑨(: By 
removing other items, the objective function of Eq. (26) in 
terms of 𝑨( is reformulated as  

B
1
||𝑿( −𝑫(𝑨(||1 +

6
1
||𝑨( − 𝑨(𝑾(||1 + 𝛽||𝑨(||#. (30) 

Even though ℓ#-norm of 𝑨( leads to non-convexity of 
Eq. (30), the generalized soft-thresholding (GST) algorithm 
[47] provides an efficiently iterative strategy to achieve 
desired solution. Specifically, the update rule for 𝑨(  is 
formulated as 

 𝑨( = 𝐺𝑆𝑇( 𝑺( , 𝜇, 𝑝, 𝑡), (31) 
where  is the number of iterations,  𝑺( and 𝜇 are defined as 

 z
𝑺( = 𝛼(𝑨( −𝑫(

C𝑿() + 𝛾𝑨((𝑰 −𝑾( −𝑾′( +𝑾(𝑾′(),
𝜇 = D

BE6‖𝑰H𝑾#‖"
.  

Step 3. Update restored image 𝑿: By fixing matrix 
𝑨( and 𝑾(, the restoration of images is formulated as 

 )
1
||𝒀 − 𝑿||1 + B

1
∑ ||𝑸(𝑿−𝑫(𝑨(||1( . (32) 

Since Eq. (32) is convex with respect to 𝑿 .  By 
setting the partial derivative of  𝑿 to zero, the closed-form 
solution for Eq. (32) is deduced as  

 𝑿| =	 (𝑰 + 𝛼∑ 𝑸′𝑸(( )H)(𝒀 + 𝛼∑ 𝑸′(𝑫(𝑨(( ), (33) 
where 𝑫(𝑨(  denotes the reconstructed patch for 𝑿|( ,  𝑸′(  is 
treated as the operator to put the restored patch back into the 
original image. Actually, (𝑰 + 𝛼∑ 𝑸′(𝑸(( )  is a diagonal 
matrix, whose inverse can be solved at the element-wise 
division. 

Therefore, Eq. (33) is interpreted as the weighted 
average of overlapped reconstructed patches and degraded 
image to reconstruct the image. 

 
3.3. Parameter Selection 
 

In order to achieve optimal performance results, we 
also employ the adaptive parameter adjustment strategy to 
adapt the proposed algorithm to various image structures. 
Firstly, we update the noise variance 𝜎51 using the iterative 
regularization strategy [6] 

 𝜎5
(J) = 𝑐'~�𝜎51 − �𝒀 − 𝑿|(J)�

1
�, (34) 

where 𝑘  denotes the 𝑘 -th iteration and 𝑐'  is a positive 
constant. 

Furthermore, inspired by the maximum a posteriori 
(MAP) framework [8], we assume that sparse code 𝑨( obeys 

t

t
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a hyper-Laplacian distribution [29, 48] and the sparsity 
residual 𝑹( follows a Gaussian distribution, then we have 

 𝛽 = 3!
"

K#EL
, (35) 

 𝛾 = 3!
"

K#
"EL
, (36) 

where 𝛿( is the standard variance of 𝑨(, estimated as 
in [10], and  is a very small constant to avoid dividing by 
zero. 

We also dynamically adjust the parameters 𝛼 and 𝜏 
as 

 𝛼 = 𝑐)𝜎51, (37) 
 𝜏 = 𝑐1𝛿( , (38) 
where 𝑐) and 𝑐1 are predefined positive constants. It 

means that the parameters 𝛼  and 𝜏  are proportional to the 
noise variance 𝜎51  and standard variance 𝛿(  of 𝑨( , 
respectively. 

 
3.4. Method Overview 
 

In summary, the proposed algorithm for image 
restoration can be implemented through the above 
alternating updating steps and parameter adjustment 
mechanism. The pseudocode of our proposed algorithm can 
be found in Algorithm 1. 

 
3.5. Computational Complexity Analysis 
 

We further analyze the computational complexity of 
our proposed method in theory in this subsection. For the 
space complexity of the proposed algorithm, it requires 
space (𝑚1𝑛). The space for matrix 𝑾(  is 𝑂(𝑚1) for each 
group. The space for matrix 𝑨(  and 𝑿(  is 𝑂(𝑑𝑚) for each 
group, where 𝑑  is the number of rows of 𝑨(  and 𝑿(  . 
Therefore, the total space complexity of our proposed 
algorithm is 𝑂(𝑚1𝑛), where  is the number of groups. For 
the time complexity analysis of our proposed algorithm, it 
consists of three major components, that is: 1) group 
residual learning, 2) sparse representation and 3) 
reconstruction. The time complexity for updating 𝑾(  is 
𝑂(𝑡𝑛𝑚M) , where 𝑡  is the number of iterations. The time 
complexity for updating 𝑨(  is 𝑂(𝑡𝑛𝑑𝑚) . The time 
complexity for group reconstruction is 𝑂(𝑡𝑛𝑏1𝑚). Thus, the 
total time complexity of the proposed algorithm is 𝑂(𝑡𝑛𝑚M). 

 
Algorithm 1 The proposed algorithm for image restoration. 
Input: The degraded image 𝒀. 
Output: The restored image 𝑿|. 
1:  Initialize 𝑿|(') = 𝒀, 𝑘 = 0, 𝜎5

('). 
2:  Set the parameters 𝑐', 𝑐), 𝑐1 and 𝑝. 
3:  while (𝑘 <= Max-Iter) do 
4:      for each reference patch 𝒙( in 𝑿|(J) do 
5:          Search similar patches to construct patch group 𝑿(. 
6:          Build dictionary 𝑫( by 𝑿( using PCA. 
7:          Update 𝑨( by 𝑨( = 𝑫′(𝑿(. 
8:          Update 𝜏 by Eq. (38). 
9:          Update 𝑾( by Eq. (28). 
10:        Update 𝛼, 𝛽 and 𝛾 by Eqs. (37), (35) and  (36). 

11:        Update 𝑨( by Eq. (31). 
12:     end for 
13:     Update 𝑿|(J) by Eq. (33). 
14:     Update 𝜎5

(J) by Eq. (34). 
15:     Until the convergence condition is met. 
16: end while 

4. Experimental Results 
To fully validate the performance of the proposed 

algorithms, extensive experiments are conducted on two 
typical image restoration tasks: denoising and deblocking. 
Please find the source code for this research at 
https://github.com/xkmaxidian/GSR_SRLR_IR .  

 
4.1. Experimental Setting 
 

1) Benchmark: As the proposed algorithm is self-
supervised learning, only testing data is needed to verify the 
proposed algorithm performance.  

For image denoising task, the benchmark dataset 
Set12 [49] (including 12 grayscale images) is used to 
validate the performance with comparisons. The noisy 
images are synthesized by adding Gaussian noise given a 
noise level. 

For image deblocking, we adopt two widely used 
datasets: LIVE1 dataset [50] and Classic5 dataset [51], 
including 29 and 5 natural images, respectively, Compress 
images are obtained by encoding each test image with the 
MATLAB jpeg encoder under different compression quality 
𝑄  and then the JPEG deblocking input images can be 
generated by a standard JPEG decoder. In addition to LIVE1 
and Classic5, we also use 8 fingerprint images to further 
verify the superiority of the proposed algorithm. 

2) Parameter Setting: For image denoising, the 
parameter settings of the proposed algorithm are as follows. 
The patch size is set to 7 × 7, 8 × 8 and 9 × 9 for 𝜎5 ≤ 30, 
30 < 𝜎5 ≤ 50 and 50 < 𝜎5 ≤ 100. The number of similar 
patches in a group is set to 60, 70, 80, 90, 100 for 𝜎5 ≤ 30, 
30 < 𝜎5 ≤ 40 , 40 < 𝜎5 ≤ 50 , 50 < 𝜎5 ≤ 75  and 75 <
𝜎5 ≤ 100. The parameter 𝑝 is set to 0.8, 0.85 and 0.9 for 
𝜎5 ≤ 30, 30 < 𝜎5 ≤ 40 and 40 < 𝜎5 ≤ 100.  

For image deblocking, the patch size is set to 7 × 7. 
The number of similar patches in a group is set to 60. The 
parameter 𝑝 is set to 0.9, 0.8 and 0.2 for 𝑄 ≤ 10, 10 < 𝑄 ≤
20 and 20 < 𝑄 ≤ 40. 

 
4.2. Compared Methods 
 

In image denoising task, we first compared the 
proposed algorithm with many SOTA image denoising 
baselines, including BM3D [26], EPLL [52], NCSR [8], 
PGPD [34], aGMM [53], AST-NLS [54], GSRC [55], 
NSSRC [22] and LGSR [37]. These methods are based on 
sparse representation or image non-local self-similarity prior. 
Among these methods, NCSR, AST-NLS, GSRC and 
NSSRC are models based on group sparsity residual, and 
NSSRC is the SOTA of these methods. In addition, we also 
compared our proposed algorithm with several deep learning 
image denoising models, including TRND [56], DnCNN 
[49], S2S [57], where TRND and DnCNN are supervised 
learning-based image denoising benchmark algorithms, and 
S2S is self-supervised learning algorithm.  

Ú

n
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For image deblocking, we compared our proposed 
method against BM3D [26], SA-DCT [58], PC-LRM [59], 
WNNM [60], ANCE [61], SSR-QC [62], COGL [63], JPG-
SR [64], NSSRC [22]. To further demonstrate the 
superiority of our proposed method, we also compared it 
with several DNN-based image deblocking baselines, 
including AR-CNN [65], TRND [56], DnCNN [49], DCSC 
[66], and MDDU (for model-driven deep unfolding method) 
[67]. Among these competing methods, AR-CNN is the 
most common deep learning model benchmark for 
compressed image artifacts removal, the TRND and 
DnCNN are universal image restoration methods, and the 
DCSC and MDDU are SOTA image deblocking methods. 

It should be emphasized that all comparison methods 
were tested using the default parameters set by the original 
authors. In particular, deep learning-based methods were 
tested using the official pre-training model. 

 
4.3.  Image Denoising 

 
Image denoising is the most common and basic 

image restoration task. In order to verify the effectiveness of 
our proposed model for image denoising, we use 
MATLAB’s random number generator to synthesize 
Gaussian White Noise (GWN) images for testing. In 
addition, we also selected some real images for denoising. 

1) Comparison with Classic Image Denoising 
Methods: We evaluated all the comparison classic denoising 
methods using six noise levels: 𝜎5 = 20, 30, 40, 50, 75, 
and 100. To quantify the effectiveness of the algorithms, we 
employ two quality measurements for restored image: PSNR 
and structural similarity (SSIM) [68]. The image denoising 
average results on dataset Set12 are summarized in Table 1 
(PSNR) and Table 2 (SSIM). The best results are 
highlighted in bold and it is obvious that our proposed 
algorithm outperforms all other competing methods on both 
PSNR and SSIM. It is worth noting that our method 
achieves better performance than other sparsity residual-
based methods, especially the NSSRC, where the rationale 
is two folds. On one hand, the proposed residual learning 
considers the relation among patches, where the quality of 
sparse representation in return is enhanced. On the other 
hand, the weight matrix automatically learned with the low-
rank constraint can explore sub-groups of each patch group, 
which enables the sparse representation learned to preserve 
the specificity of each patch within the same group. 

 
Fig. 2 The visual comparison denoising results of image 
Monarch on the Set12 dataset with 𝝈𝑬 = 𝟕𝟓. (a) Original 
image. (b) Noisy image. (c) BM3D (PSNR = 23.91 dB, 
SSIM = 0.7557). (d) EPLL (PSNR = 23.72 dB, SSIM = 
0.7396). (e) NCSR (PSNR = 23.68 dB, SSIM = 0.7657). (f) 
Ours (PSNR = 24.38 dB, SSIM = 0.7790). 

 
Fig. 3 The visual comparison denoising results of image 
Parrot on the Set12 dataset with 𝝈𝑬 = 𝟕𝟓 . (a) Original 
image. (b) Noisy image. (c) BM3D (PSNR = 24.19 dB, 
SSIM = 0.7307). (d) EPLL (PSNR = 24.04 dB, SSIM = 
0.7029). (e) NCSR (PSNR = 23.89 dB, SSIM = 0.7363). (f) 
Ours (PSNR = 24.48 dB, SSIM = 0.7469). 

Table 1 Average PSNR (dB) Results of Comparison with Classic Methods for Image Denoising on the Set12 Dataset 

𝜎5 BM3D EPLL NCSR PGPD aGMM AST-NLS GSRC NSSRC LGSR Ours 
20 31.01 30.70 31.02 31.02 31.02 31.16 30.93 31.19 31.27 31.28 

30 29.14 28.75 29.04 29.12 29.08 29.22 29.09 29.28 29.36 29.40 

40 27.65 27.40 27.65 27.82 27.67 27.81 27.80 27.97 28.04 28.07 

50 26.72 26.35 26.60 26.81 26.62 26.86 26.81 27.00 27.00 27.09 

75 24.91 24.48 24.65 24.98 24.67 24.98 25.04 25.15 25.25 25.28 

100 23.61 23.21 23.29 23.69 23.37 23.71 23.67 23.84 23.95 23.97 

Average 27.17 26.82 27.04 27.24 27.07 27.29 27.22 27.41 27.48 27.52 



8 
 

Table 2 Average SSIM Results of Comparison with Classic Methods for Image Denoising on the Set12 Dataset 

𝜎!  BM3D EPLL NCSR PGPD aGMM AST-NLS GSRC NSSRC LGSR Ours 
20 0.8719 0.8681 0.8711 0.8674 0.8716 0.8705 0.8660 0.8736 0.8738 0.8740 
30 0.8320 0.8223 0.8308 0.8286 0.8290 0.8260 0.8279 0.8339 0.8347 0.8350 
40 0.7944 0.7827 0.7951 0.7965 0.7909 0.7847 0.7965 0.8030 0.8044 0.8051 
50 0.7681 0.7475 0.7673 0.7666 0.7569 0.7618 0.7664 0.7780 0.7798 0.7784 
75 0.7065 0.6738 0.7095 0.7070 0.6832 0.7003 0.7101 0.7219 0.7236 0.7248 
100 0.6566 0.6154 0.6642 0.6525 0.6230 0.6578 0.6575 0.6807 0.6821 0.6827 

Average 0.7716 0.7516 0.7730 0.7698 0.7591 0.7669 0.7707 0.7819 0.7831 0.7833 

For further intuitive demonstration, we have made 
visual comparison with three representative methods: 
BM3D [26], EPLL [52] and NCSR [8]. BM3D is based on 
collaborative filtering after block matching, EPLL is based 
on statistical model (GMM), and NCSR is based on sparse 
residual model. The visual results on images Monarch and 
Parrot in Set12 with  𝜎5 = 75 are presented in Fig. 2 and 
Fig. 3, respectively. It can be seen that the images restored 
by BM3D are blurred or oversmoothed, and the images 
restored by EPLL and NCSR suffer from undesired visual 
artifacts. The proposed method not only reduces the noise 
more effectively than other methods, but also preserves 
many image details like edges and textures. 

2) Comparison with DNN-based Image Denoising 
Models: Deep neural networks (DNN) have achieved great 
success in various downstream tasks for both high level 
image understanding and low-level image processing. We 
therefore compared the proposed algorithm with several 
mainstream DNN-based image denoising models, including  
TRND [56], DnCNN [49], S2S [57]. The PSNR and SSIM 
results on the Set12 dataset are summarized in Table 3.  

Overall, the results show that our proposed method 
achieves better results even competing with DNN-based 
methods in image denoising tasks. Selected qualitative 
results with 𝜎5 = 50 are illustrated in Fig. 4 and Fig. 5, in 
comparison with TRND, DnCNN and S2S. It can be seen 
that the deep learning-based methods are prone to produce 
some artifacts or to be over-smoothing, while our method 
can restore image with more clearly details. Therefore, we 
conclude that although supervised deep learning can fit 
diverse image structures with the large training dataset, they 
hardly to capture the prior of the image itself, such as 
sparsity and NSS, while our algorithm can make good use of 
these priors. 

To fully verify the effectiveness of our proposed 
algorithm, we also selected two real noisy images for 
experiments. Since our model requires the noise variance of 
noisy image as a priori, we adopt a fast noise estimation 
method [69] to obtain the noise variance of the real image in 
advance. The denoising results are shown in Fig. 6, Fig. 7 
and Fig. 8. We compare our method with the deep learning-
based S2S [57] which is also a self-supervised model. It can 
be clearly seen that the restoration result of S2S is over-
smoothed, while our method preserved more image details. 

Table 3 Average PSNR (dB) / SSIM Results of Comparison 
with DNN-based Models for Image Denoising on the Set12 
Dataset. 

Methods 𝜎5 = 15 𝜎5 = 25 𝜎5 = 50 Average 

TRND 
32.51 30.04 26.78 29.78 
0.8970 0.8523 0.7672 0.8388 

DnCNN 
32.50 30.17 26.98 29.88 
0.8966 0.8549 0.7700 0.8405 

S2S 
32.07 29.94 26.12 29.38 
0.8891 0.8475 0.7382 0.8249 

Ours 
32.65 30.24 27.09 29.99 
0.8980 0.8535 0.7784 0.8433 

 
 

 
Fig. 4 The visual comparison denoising results of image 
House on the Set12 dataset with 𝝈𝑬 = 𝟓𝟎 . (a) Original 
image. (b) Noisy image. (c) TRND (PSNR = 29.40 dB, 
SSIM = 0.8058). (d) DnCNN (PSNR = 29.74 dB, SSIM = 
0.8059). (e) S2S (PSNR = 27.47 dB, SSIM = 0.7032). (f) 
Ours (PSNR = 30.36 dB, SSIM = 0.8221). 
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Fig. 5 The visual comparison denoising results of image 
Barbara on the Set12 dataset with 𝝈𝑬 = 𝟓𝟎. (a) Original 
image. (b) Noisy image. (c) TRND (PSNR = 25.78 dB, 
SSIM = 0.7450). (d) DnCNN (PSNR = 25.53 dB, SSIM = 
0.7361). (e) S2S (PSNR = 26.82 dB, SSIM = 0.7840). (f) 
Ours (PSNR = 27.92 dB, SSIM = 0.8231). 

 

 
Fig. 6 The visual results of real image 1 denoising. (a) Real 
image 1. (b) The result of S2S. (c) The result of our method. 

 

 
Fig. 7 The visual results of real image 2 denoising. (a) Real 
image 2. (b) The result of S2S. (c) The result of our method. 

 
 

 
Fig. 8  The visual results of real image 3 denoising. (a) Real 
image 2. (b) The result of S2S. (c) The result of our method. 

 
Fig. 9 The visual comparison deblocking results of image 
Caps on the LIVE1(image size: ) dataset at 𝑸 =
𝟏𝟎. (a) Original image. (b) JPEG compressed image (PSNR 
= 30.75 dB, SSIM = 0.8232). (c) SA-DCT (PSNR = 31.24 
dB, SSIM = 0.8634). (d) Ours (PSNR = 31.70 dB, SSIM = 
0.8734). 

 

 
Fig. 10 The visual comparison deblocking results of image 
LightHouse3 on the LIVE1(image size: ) dataset 
at 𝑸 = 𝟏𝟎. (a) Original image. (b) JPEG compressed image 
(PSNR = 27.52 dB, SSIM = 0.7561). (c) SA-DCT (PSNR = 
28.33 dB, SSIM = 0.7786). (d) Ours (PSNR = 28.78 dB, 
SSIM = 0.7951). 

 
4.4. Image Deblocking 
 

To further comprehensively verify the effectiveness 
of our proposed algorithm, we investigated the JPEG 
deblocking problem [58, 62, 65], reducing the block artifacts 
in the JPEG compressed images. Different to image 
denoising, the additive noise  is quantization noise in 
image deblocking. Thus, we employ a classical Gaussian 
model [58] which characterizes the noise quantization by 
estimating the noise standard variance 𝜎5.  

Table 4 Average PSNR (dB) Results of Comparison with Classic Methods for Image Deblocking on the LIVE1 Dataset 
(image size: 𝟐𝟓𝟔 × 𝟐𝟓𝟔) and the Classic5 Dataset (image size: 𝟐𝟓𝟔 × 𝟐𝟓𝟔). 

LIVE1 dataset (image size: 256 × 256) 
Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours 
10 26.37 27.16 27.23 27.24 27.24 27.25 27.26 27.38 27.29 27.43 27.45 
20 28.55 29.21 29.24 29.28 29.29 29.29 29.33 29.46 29.37 29.53 29.54 
30 29.86 30.45 30.48 30.54 30.57 30.55 30.60 30.74 30.75 30.85 30.87 
40 30.80 31.35 31.37 31.45 31.51 31.46 31.57 31.66 31.71 31.82 31.84 

Average 28.90 29.54 29.58 29.63 29.65 29.64 29.69 29.81 29.78 29.91 29.93 
Classic5 dataset (image size: 256 × 256) 

256 256´

256 256´

E
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LIVE1 dataset (image size: 256 × 256) 
Q JPEG BM3D SA-DCT PC-LRM ANCE WNNM SSR-QC COGL JPG-SR NSSRC Ours 
10 27.57 28.69 28.72 28.79 28.77 28.78 28.83 28.93 28.78 28.97 29.03 
20 29.90 30.87 30.89 30.98 30.96 30.98 31.07 31.13 31.12 31.23 31.26 
30 31.21 32.07 32.09 32.21 32.22 32.21 32.34 32.39 32.50 32.55 32.58 
40 32.14 32.94 32.96 33.09 33.16 33.10 33.30 33.29 33.46 33.54 33.54 

Average 30.21 31.14 31.17 31.27 31.28 31.27 31.39 31.43 31.47 31.57 31.60 

Table 5 Average SSIM Results of Comparison with Classic Methods for Image Deblocking on the LIVE1 Dataset (image size: 
𝟐𝟓𝟔 × 𝟐𝟓𝟔)) and the Classic5 Dataset (image size: 𝟐𝟓𝟔 × 𝟐𝟓𝟔). 

LIVE1 dataset (image size: 256 × 256)) 
Q JPEG BM3D SA-

DCT 
PC-

LRM 
ANCE WNNM SSR-

QC 
COGL JPG-

SR 
NSSRC Ours 

10 0.7611 0.7877 0.7869 0.7835 0.7879 0.7824 0.7859 0.7957 0.7931 0.7956 0.7979 
20 0.8423 0.8591 0.8571 0.8550 0.8585 0.8542 0.8576 0.8642 0.8630 0.8645 0.8658 
30 0.8791 0.8917 0.8903 0.8892 0.8913 0.8888 0.8913 0.8952 0.8967 0.8963 0.8976 
40 0.8998 0.9103 0.9093 0.9089 0.9102 0.9087 0.9099 0.9129 0.9145 0.9148 0.9155 

Average 0.8456 0.8622 0.8609 0.8592 0.8620 0.8585 0.8612 0.8670 0.8668 0.8678 0.8692 
Classic5 dataset (image size: 256 × 256)) 

Q JPEG BM3D SA-
DCT 

PC-
LRM 

ANCE WNNM SSR-
QC 

COGL JPG-
SR 

NSSRC Ours 

10 0.7715 0.8087 0.8060 0.8043 0.8081 0.8033 0.8094 0.8134 0.8134 0.8168 0.8199 
20 0.8519 0.8753 0.8728 0.8723 0.8730 0.8714 0.8740 0.8751 0.8796 0.8802 0.8811 
30 0.8844 0.9018 0.9002 0.9003 0.9002 0.8998 0.9017 0.9012 0.9063 0.9060 0.9065 
40 0.9036 0.9178 0.9168 0.9170 0.9172 0.9167 0.9180 0.9175 0.9225 0.9226 0.9225 

Average 0.8529 0.8759 0.8740 0.8735 0.8746 0.8728 0.8758 0.8768 0.8805 0.8814 0.8825 
 
1) Comparison with Classic Image Deblocking 

Methods: We evaluated the performance of all competing 
classic deblocking methods on two public benchmarks: the 
LIVE1 dataset [50] and the Classic5 dataset [51]. Similar to 
image denoising, we adopted two evaluation metrics, PSNR 
and SSIM, and the results are shown in Table 4 and Table 5. 
It is clear that our method outperforms other classical 
methods apart from SSIM metric on Classic5 with 𝑄 = 40. 
In particular, the proposed method is significantly superior 
to other competing methods on low compression quality 
images (𝑄 = 10,20,30), and close to or even exceeds SOTA 
methods on high compression quality images (𝑄 = 40). 

The SA-DCT [58] is the most popular image 
deblocking method, thus we present the visual comparisons 
shown in Fig. 9 and Fig. 10. From the qualitative results, we 
can conclude that the proposed method can effectively 
remove the block artifacts and preserve more image details. 

2) Comparison with DNN-based Image Deblocking 
Models: To further demonstrate the advantage of our 
proposed method on image deblocking task, we also 
compared it against several DNN-based methods, including 
AR-CNN [65], TRND [56], DnCNN [49], DCSC [66], and 
MDDU  [67]. The evaluation was carried out on the 
Classic5 [51] dataset, a popular benchmark for image 
deblocking. The results of the average PSNR and SSIM with 
different compression quality 𝑄 are listed in the Table 6. It 
shows that our proposed method achieves better result than 

AR-CNN and TRND, meanwhile it is comparable to 
DnCNN, DCSC, and MDDU. 

It is worth noting that these supervised deep learning 
methods require the large-scale image datasets to train 
image deblocking model. We notice that if the distribution 
of the training image dataset and the test images is identical 
or similar, then the deep learning model can effectively fit 
diverse image structures. 

However, we found that the deep learning method is 

prone to over-smoothing, especially for images with rich 

textures, as shown in Fig. 11. To further verify this finding, 

we collected eight fingerprint images from the NIST dataset 

as a testing benchmark. The eight fingerprint images are 

shown in Fig. 12 and the results for fingerprint image 

deblocking are summarized in  

 

Table 7. Our proposed method achieves better 
results than all the other competing deep learning-based 
image deblocking method. The visual comparison examples 
are shown in Fig. 13, where our proposed method can 
reconstruct better texture details than others. 
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Fig. 11 The visual comparison deblocking results of image 
Barbara on the Classic5 dataset at 𝑸 = 𝟏𝟎 . (a) Original 
image. (b) JPEG compressed image (PSNR = 25.78 dB, 
SSIM = 0.7621). (c) ARCNN (PSNR = 26.89 dB, SSIM = 
0.7934). (d) TRND (PSNR = 27.24 dB, SSIM = 0.8104). (e) 
DnCNN (PSNR = 27.59 dB, SSIM = 0.8161). (f) Ours 
(PSNR = 27.91 dB, SSIM = 0.8287). 

 
Fig. 12 The eight fingerprint test images from NIST dataset. 

 
Fig. 13 The visual comparison deblocking results of image 
01 on the fingerprint dataset at 𝑸 = 𝟏𝟎. (a) Original image. 
(b) JPEG compressed image (PSNR = 28.41 dB, SSIM = 
0.8737). (c) ARCNN (PSNR = 29.57 dB, SSIM = 0.8969). 
(d) TRND (PSNR = 29.73 dB, SSIM = 0.9008). (e) DnCNN 
(PSNR = 29.72 dB, SSIM = 0.9019). (f) DCSC (PSNR = 
29.82 dB, SSIM = 0.9045). (g) MDDU (PSNR = 29.82 dB, 
SSIM = 0.9081). (h) Ours (PSNR = 30.17 dB, SSIM = 
0.9089).  

Table 6 Average PSNR (dB) / SSIM Results of Comparison 
with DNN-based Models for Image Deblocking on the 
Classic5 Dataset 

Methods 𝑄 = 10 𝑄 = 20 𝑄 = 30 Average 

AR-CNN 
29.08 31.25 32.60 30.98 
0.7909 0.8514 0.8808 0.8410 

TRND 
29.29 31.48 32.79 31.19 
0.7996 0.8581 0.8841 0.8473 

DnCNN 
29.40 31.63 32.91 31.31 
0.8026 0.8610 0.8861 0.8499 

DCSC 
29.62 31.81 33.06 31.50 
0.8096 0.8641 0.8882 0.8540 

MDDU 
29.95 32.11 33.33 31.80 
0.8171 0.8689 0.8916 0.8592 

Ours 
29.36 31.52 32.88 31.25 
0.8041 0.8602 0.8857 0.8500 

 

 

Table 7 Average PSNR (dB) / SSIM Results of Comparison 
with DNN-based Models for Image Deblocking on the 
Fingerprint Images Dataset 

Methods 𝑄 = 10 𝑄 = 20 𝑄 = 30 Average 

AR-CNN 
30.23 33.04 34.76 32.68 
0.8859 0.9291 0.9480 0.9210 

TRND 
30.42 33.19 34.87 32.83 
0.8899 0.9317 0.9492 0.9236 

DnCNN 
30.31 33.07 34.73 32.70 
0.8894 0.9308 0.9485 0.9229 

DCSC 
30.52 33.13 34.78 32.81 
0.8934 0.9330 0.9497 0.9254 

MDDU 
30.45 32.95 34.35 32.58 
0.8961 0.9349 0.9508 0.9273 

Ours 
30.84 33.59 35.19 33.21 
0.8971 0.9348 0.9506 0.9275 

 

Table 8 The Average Computational Time (in seconds) of 
Ours Method for Image Denoising and Deblocking. 

Denoising on 13 Widely Used Test Images (256 × 256) 
𝜎5 20 40 75 100 

Time 136.50 116.49 171.02 249.60 

Deblocking on LIVE1 Dataset (256 × 256) 
Q 10 20 30 40 

Time 81.16 61.68 90.25 69.61 
 

4.5.  Convergence 
 

It is difficult to provide a theoretical proof for local 
convergence of our proposed algorithm, due to its patch 
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grouping operations, non-convex optimization, and 
parameter updates. Therefore, the empirical evidence is 
provided to verify the convergence of our proposed 
algorithm. We selected 5 test images from the Set12 dataset, 
and recorded the process of restoring these images. Fig. 14(a) 
and (b) shows variation curve of PSNR value during 
algorithm iteration process for image denoising with noise 
level 𝜎5 = 50  and image deblocking with compression 
quality 𝑄 = 10, respectively. It can be clearly seen that as 
the algorithm iterates, all PSNR curves of restored images 
are initially monotonically increasing and then gradually 
stabilizing. Therefore, the proposed algorithm possesses a 
good convergence property. 
 

4.6. Computational Time 
 

It is worth noting that our proposed method is 
based on a group sparse representation model, and each 
group can be processed independently. Therefore, we 
implement the algorithm with parallel code in MATLAB. 
All experiments were run on a laptop with Intel(R) Xeon(R) 
W-2223 CPU at 3.60GHz with 32-GB memory. We 
recorded the average time (in seconds) consumed by our 
algorithm for denoising on the 13 images of size 256 × 256 
shown in Fig. 15 and the average time consumed for 
deblocking on the LIVE1 dataset [50]. The statistical results 
are shown in Table 8. Our algorithm can complete image 
denoising in 2-4 minutes, and image deblocking in about 1.5 
minutes. Like other self-supervised algorithms, our method 
is difficult to achieve real-time, but it is suitable for scenes 
lacking ground truth (clean images) and high demand for 
restoration quality. 
 

4.7. Ablation Study 
To investigate the effectiveness of these different 

modules in our algorithm, we present the ablation study in 
this subsection, by removing the group residual constraint 
(𝛾 = 0) and the sparsity constraint (𝛽 = 0), respectively. Its 
variants are simplified into group sparse representation-
based restoration model (denoted as SR) and group residual 
learning-based restoration model (denoted as RL). In order 

to examine the contributions of SR, RL and our proposed 
model (SR+RL), we selected 13 test images which are 
widely used (as shown in Fig. 15) and applied these variants 
to image denoising. The average PSNR results are shown in 
Table 9. One can observe that both the group sparse 
representation and group residual learning play crucial roles 
in the success of our proposed model. 

 
Fig. 14  Convergence behaviour. (a) PSNR values curve 
with the number of iterations for image denoising with noise 
level 𝝈𝑬 = 𝟓𝟎. (b) PSNR values curve with the number of 
iterations for image deblocking with compression quality 
𝑸 = 𝟏𝟎. 

 

 
Table 9 Average PSNR (dB) Results of Ablation Study on Image Denoising with the 13 Widely Used Test Images. 

Modules 𝜎5 = 20 𝜎5 = 30 𝜎5 = 40 𝜎5 = 50 𝜎5 = 75 𝜎5 = 100 Average 
SR 31.17 28.57 27.35 27.24 24.87 23.74 27.16 
RL 31.08 29.81 28.32 25.90 22.73 23.33 26.86 

SR+RL 32.23 30.24 28.81 27.73 25.72 24.40 28.79 

 
Fig. 15 The 13 test images used for computational time and 
ablation study. 

 

 
Fig. 16 The visual comparison denoising results of image 
Miss with 𝝈𝑬 = 𝟕𝟓. (a) Original image. (b) Noisy image. (c) 
SR (PSNR = 26.38 dB, SSIM = 0.7646). (d) RL (PSNR = 
23.52 dB, SSIM = 0.5758). (e) SR+RL (PSNR = 27.61 dB, 
SSIM = 0.7944). 
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Fig. 17 The visual comparison denoising results of image 
Starfish with 𝝈𝑬 = 𝟕𝟓. (a) Original image. (b) Noisy image. 
(c) SR (PSNR = 23.12 dB, SSIM = 0.6716). (d) RL (PSNR 
= 21.67 dB, SSIM = 0.5711). (e) SR+RL (PSNR = 23.47 
dB, SSIM = 0.6788). 

 
To further reveal the role of each component of the 

proposed algorithm, we illustrated some image examples 
reconstructed by SR model, RL model and the proposed 
model (SR+RL). As shown in Fig. 16(c) and Fig. 17(c), the 
SR model is indeed an ideal image restoration tool, but it 
can be affected by noise leading to undesirable results. As 
shown in Fig. 16(d) and Fig. 17(d), the group residual 
learning model we proposed can also achieve the purpose of 
image restoration, but there are many artifacts in the results. 
Therefore, we consider that SR model provides initial 
denoising, while RL model provides constraints for the SR 
model. The mutual promotion of these two components 
makes the proposed algorithm successful in image 
restoration. 
 

5. Conclusion 
In this paper, a novel algorithm was proposed for 

image restoration, where group sparse representation and 
sparsity residual are simultaneously learned. Unlike 
conventional sparsity residual models which estimate the 
true sparse representation using the weighted average 
method, we first define the estimate of the true sparse 
representation as the product of the learned sparse 
representation and a weight matrix, and then our proposed 
group sparsity residual learning model automatically learns 
adaptive weight matrix via self-representation learning. 
Moreover, we explore the sub-group structure of each patch 
group using the low-rank constraint to better leverage the 
relation among patches within the same group. The 
proposed algorithm is comprehensively validated and 
compared with many other popular or SOTA image 
restoration methods on public benchmarks. The results 
demonstrate that, in image restoration tasks such as 
denoising and deblocking, our suggested approach performs 
better than those baselines. 

However, there are still shortcomings in this work, as 
it can only handle Gaussian additive noise. In future work, 
we will consider other distributions of noise, even 
multiplicative noise. 
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