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Abstract

We present an iterative scheme for the numerical analysis of propagating reaction front problems in porous
media satisfying an Arrhenius-type law. The governing equations consist of the Darcy equations for the
pressure and flow field coupled to two convection–diffusion–reaction equations for the temperature and
depth of conversion. Well-posedness, existence and uniqueness of the weak solution are first studied using a
fixed-point approach and then, analysis of the proposed iterative scheme is investigated. Numerical results
are also presented in order to validate the theoretical estimates and to illustrate the performance of the
proposed scheme. The obtained results are in line with our expectations for a good numerical resolution
with high accuracy and stability behaviors.
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1. Introduction

When the cold reactants are separated from the high-temperature reaction products by a relatively
narrow propagation zone in which an exothermic reaction takes place, this zone is known by reaction front.
From a modelling point of view, and in case of propagation in a saturated porous medium, many reaction
front problems are governed by coupling the convection-diffusion-reaction equations and the Darcy equation,
see for instance [6, 30]. Coupling the convection-diffusion equations with the Darcy law has been the subject
for several studies, see for instance [9, 15, 36, 35, 39]. The special case of reaction front propagations in
porous media occurs in many physical and engineering applications including, combustion modelling and
control, chemical reactor industry, insulation of equipment and buildings, nuclear waste disposal and carbon
dioxide geological storage among others, see [22, 6, 29, 30, 34]. From a mathematical point of view, the
existence and uniqueness of a weak solution for Darcy-convection-diffusion-reaction problems have been
presented for example in [9, 17, 21]. Optimal a priori error estimates have also been established based
on various approaches such as, the Brezzi-Rappaz-Raviart theorem, the modified polynomial projection
stabilized technique, see [28, 34, 35]. In the numerical framework, many methods have been presented for
solving these problems such as, implicit finite difference schemes, mixed finite element and finite volume
methods, spectral discretizations, Raviart-Thomas finite element methods, and semi-Lagrangian methods,
see for instance [2, 9, 28, 34, 35]. A temporal splitting scheme has also been studied in [22] for
solving a class of thermal single-phase flows and reactive transport in fractured porous media.
To the best of our knowledge, the well-posedness, the analysis and the efficient numerical approximation
of coupled Darcy-convection-diffusion-reaction problems is still a challenging area of research, especially in
the case where the viscosity and diffusion coefficients are nonlinear depending on some critical parameters
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in the governing equations. Note that such problems are strongly coupled so that inaccuracies in one
unknown directly influences all other unknowns in the system. In the case of convection-dominated problems,
especially when the diffusion coefficients are negligible compared to those of the flow field, convective terms
could be a source of instabilities and non-physical oscillations. Moreover, in some chemical reaction problems
with very complex interactions and mechanisms, numerical artifacts could be a source of completely illogical
and wrong predictions [5]. More often, the governing equations become dominated by the reaction term,
especially when it comes to exothermic chemical reactions. In such cases, the numerical solutions tend
to give rise to shocks, complex structures, sharp moving fronts and boundary layers, where considerable
physical and chemical phenomena occur, see for instance [18, 31, 40].

In the current study, we are interested in the particular case where reaction front problems are satisfying
the well-known Arrhenius law [3, 34, 38]. The governing equations consist of coupling the Darcy equations
for the pressure and velocity to two convection–diffusion–reaction equations for the temperature and depth
of conversion. It should be mentioned that the basis of the Arrhenius law is a principle of physical chemistry
which states that the temperature dependence of the reaction rate can be explained by applying the concept
of activation energy, see for instance [26, 27]. This concept is present in all kinetic theories, and it explains
the exponential nature of the Arrhenius empirical relationship [12]. Similar class of problems has been widely
investigated in the literature, see for example [2, 3, 34, 38]. In [3, 38], a linear stability analysis was performed
for a model similar to the one investigated in this study. This analysis focuses on the determination of the
instability thresholds depending on certain critical parameters such as the Rayleigh number, the Zeldovich
number and the Lewis number. Linear stability analysis is often useful when numerical methods become
limited in resolution and when it is particularly difficult to use them to find instability thresholds, or to
understand the inviscid nature of the instability in numerical models. For these and other technical reasons,
it is often necessary to carry out this analysis as a preliminary step before proceeding to the numerical
solution. For instance, a convergence analysis of iterative methods for a class of coupled Darcy-convection-
diffusion problems has been investigated in [19, 37]. In these references, a fixed-point algorithm is used
to study the existence and uniqueness of weak solutions for the considered problems. Numerical results
have also been presented in [19, 37] for several problems of natural convection problems in porous media to
demonstarte the accuracy and convergence of the iterative schemes. However, the governing equations for
the propagation of reaction fronts in porous media considered in this study are more challenging than those
coupled Darcy-convection-diffusion problems studied in [19, 37] such that the current problems include two
sets of coupled convection-diffusion equations for the temperature and depth of conversion with nonlinear
coefficients. Here, the nonlinearity in the present problem is very strong in the sense that nonlinear fluid
viscosity and coupled nonlinear reaction terms are accounted for in its modelling. It should be stressed that
in contrast to the study carried out in [19, 37], in the current work we seek for the velocity field a more regular
space such that the nonlinear terms in equations of temperature and depth of conversion are well defined.
In addition, because the spatial domain is assumed to be rectangular, an extension (lifting) of the Dirichlet
conditions is explicitly constructed and it is a very regular function. This would simplify the existence and
convergence analysis. The aim is to prove well-posedness, existence and uniqueness of the weak solution, and
also to establish a priori error estimates based on the well-known Brouwer’s fixed-point theorem [20, 23].
Next, we present an iterative scheme based on a Picard approach for the numerical solution of the associated
fixed point problem. The key idea is to solve at each iteration a linear Darcy equation with the previously
computed temperature solution of the preceding iteration. Subsequently, we introduce the known velocity
solution in the convection-diffusion-reaction equations with nonlinear coefficients obtained from the previous
fixed-point step. In order to evaluate the accuracy of the proposed iterative scheme, we present numerical
results for a test problem with known exact solution and also for the benchmark problem of reaction front
propagation in porous media. The obtained results are in good agreement with our theoretical expectations
and illustrate good numerical behaviors in terms of stability and accuracy.

The rest of the paper is structured as follows: The mathematical formulation of the reaction front
problem in porous media is presented in Section 2. Preliminaries, functional spaces and assumptions used
are introduced in Section 3. The variational formulation along with a priori error estimates are presented in
Section 4. The analysis of the proposed iterative scheme is presented in Section 5. Numerical results obtained
for two examples of reaction front propagations in porous media are illustrated in Section 6. Conclusions
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and perspectives are presented in Section 7.

2. Governing equations

Let Ω ⊂ R2 be a two-dimensional bounded domain with Lipschitz continuous boundary ∂Ω. The domain
is considered embedded in a saturated porous medium and subject to a thermal variation (T ′

H −T ′
C), where

T ′
H and T ′

C are temperatures of the hot and cold boundary walls. The thermo-physical properties of the
fluid and the medium are assumed to be isotropic and constant except for the fluid viscosity whose variation
results mainly from thermal effects, while the thermal conductivity and depth diffusivity depend only on
spatial variations. Under the Boussinesq approximation, the change in density, which leads a fluid movement,
may be neglected except for the buoyancy force. Under these assumptions, the governing equations are:
Darcy equations:

ϵµ(T ′) u′ = −Kp

(
∇p′ − g

gc
βρ0 (T

′ − T ′
0) e

)
, in Ω,

(1)∇ · u′ = 0, in Ω,

Energy equation:

ρ0cp (u
′ · ∇T ′)− ϵ∇ · (λ′∇T ′) = K(T ′, α′)Q′, in Ω, (2)

Depth of conversion equation:

u′ · ∇α′ − ϵ∇ · (γ′∇α′) = K(T ′, α′), in Ω, (3)

where ∇ =

(
∂

∂x′ ,
∂

∂y′

)⊤

denotes the gradient operator. Here, the primed functions and variables refer to

dimensional quantities. In the above equations, u′ = (u′, v′)⊤ in [ms−1] is the velocity field, p′ in
[Pa] is the pressure, T ′ in [K] is the temperature, α′ the depth of conversion, Kp in [m2] is the
permeability, ϵ is the porosity coefficient, µ(T ′) in [kg m−1s−1] is the dynamic fluid viscosity,
g in [ms−2] is the gravity acceleration, β in [K−1] is the coefficient of thermal expansion, ρ0
in [kg m−3] is the reference density, gc a conversion constant, e the unit vector associated
with the gravity, cp in [J kg−1K−1] is the specific heat at constant pressure, λ′ in [W m−1K−1]
is the thermal conductivity coefficient, γ′ in [m2s−1] is the depth diffusivity coefficient, Q′ in
[kg m−1s−2] is the adiabatic heat release. On the boundary, we consider the following conditions

T ′ = T ′
0, α′ = 0 and u′ = 0, on Γlow,

T ′ = T ′
∞, α′ = 1 and u′ = 0, on Γhigh.

(4)

where T ′
0 is the mean temperature and T ′

∞ is the ambient temperature, both in [K], the
boundary regions Γlow and Γhigh are defined as

Γlow =
{
x ∈ ∂Ω : u′ · n ≥ 0

}
, Γhigh =

{
x ∈ ∂Ω : u′ · n < 0

}
.

with n is the unit outward normal vector to the boundary ∂Ω. Notice that in the above and
in what follows bold face type denotes vector quantities.

In (2)-(3), the function K(T ′, α′) = k(T ′)Φ(α′) describes the reaction rate where the temper-
ature dependence is given by the Arrhenius law [34]

k(T ′) = ϵk0 exp

(
− E

R0T ′

)
, (5)
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where k0 in [s−1] is the pre-exponential factor, R0 in [J mol−1K−1] is the universal gas constant
and E in [J mol−1K−1] is the activation energy assumed to be very large in the present study.
The kinetic function Φα(α

′) is assumed to be independent of the reactant concentration and defined by the
first-order reaction approximation as

Φα(α
′) = 1− α′, 0 ≤ α′ ≤ 1. (6)

To reformulate the equations in a dimensionless form, we define the following dimensionless variables and
parameters

x =
x′c

κ
, y =

y′c

κ
, u =

u′

ϵc
, µ(T ) =

µ(T ′)

µ0
, p =

Kpp
′

ϵ2κµ(T ′)
, α = α′, T =

T ′ − T ′
∞

Q
, (7)

where µ0 is a reference dynamic viscosity, the heat release Q and thermal diffusivity κ are defined as

Q =
Q′

ϵρ0cp
= T ′

H − T ′
C , κ =

λ

ρ∞cp
, (8)

and c is the characteristic velocity given by [3, 34]

c2 =
k0κR0T

′2
∞

QE
exp

(
− E

R0T
′2
∞

)
.

We also define the following dimensionless parameters

Pr =
µ

κ
, Ra =

βgQκ2

µc3
, Rp =

Kpc
2PrRaρ0
ϵ2µ2gc

, Z =
QE

R0T ′2
∞
, Le =

κ

γ
, (9)

with

λ =
λ′

λ′
0

, γ =
γ′

γ′
0

, T0 =
T ′
∞ − T ′

0

Q
, δ =

R0T
′
∞

E
,

where Pr, Ra, Le and Z are the Prandtl number, the Rayleigh number, the Lewis number and the Zeldovich
number, respectively. Here, λ′

0 and γ′
0 are reference thermal conductivity and depth diffusivity, respectively.

Hence, equations (1)-(4) can be rewritten in a coupled dimensionless form as

µ(T )u+∇p = f(T ), in Ω,
(10a)

∇ · u = 0, in Ω,

for the Darcy problem and

u · ∇T −∇ · (λ∇T ) = K(T, α), in Ω,
(10b)

u · ∇α−∇ · (γ∇α) = K(T, α), in Ω,

for the convection-diffusion equations. Equations (10a)-(10b) are subject to the following boundary condi-
tions

T = −1, α = 0 and u = 0, on Γlow,

T = 0, α = 1 and u = 0, on Γhigh.
(11)

It should be stressed that for most free-convective heat and mass transfer applications in porous media, the
fluid viscosity µ(T ) is supposed to vary with temperature as

µ(T ) =
µ∞(

1 + ν(T − T0)
) , (12)
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where µ∞ and ν are constants whose values depend on the reference state and the thermal properties of the
fluid [25]. In equations (10b), the functions f and K are defined by

f(T ) = Rp (T + T0) e, K(T, α) = WZ (T ) Φα(α), (13)

where Φα(α) = 1− α according to (6), and WZ (T ) is the dimensionless reaction function defined as

WZ (T ) = Z exp

(
T

Z−1 + δT

)
. (14)

Notice that the exponent term −E/R0T
′ in the Arrhenius formula (5) represents the ratio between the

activation energy E and the average kinetic energy R0T
′. For most practical kinetic applications with

highly exothermic reactions, the dependence on the temperature is negligible compared to the activation
energy i.e., E >> R0T

′. Therefore, it becomes apparent with the negative sign in (5) that low rate is
obtained for high values of this ratio. This ensures that a high activation energy yields less substantial
effects on the exponential term and therefore its variation with temperature becomes very small, see for
example [41] for further details. Thus, the dimensionless Arrhenius function (14) can be interpreted as a
form of exponential decay law. As a consequence, K(T, α) in (13) is a bounded continuous real function
which can be approximated by a Lipschitz function. It should also be pointed out that in many
applications in front propagation problems (10), the heat is transferred through the fluid in
a laminar and stable manner for the considered values of the Rayleigh number Rp and The
Zeldovich number Z that are usually low. However, as these values increase, the temperature
gradients in the reaction zone become higher, the viscous effects become less important and
the buoyancy forces become stronger, so that the convection becomes the more dominant form
and the heat transfer becomes increasingly unstable. In the present study, the importance of
the choice of assumptions and the values relative to these characteristic parameters lies in the
fact that, on the one hand, it respects this physical property of this type of problems, and on
the other hand, it complies with their defining physical form. For example, the assumption on
Z required for the analysis is consistent with the defining formula of δ in (9) since, the average
kinetic energy R0T always remains lower than the activation energy E.

3. Preliminaries and assumptions

In this section, we introduce the main notations and assumptions to be used throughout this study. To
formulate the problem (10a)-(10b) in a variational form, we introduce the following standard Sobolev spaces,
see for instance [1, Chap. III and VII] for more details

L2(Ω) :=

{
q : Ω −→ R :

∫
Ω

q2dΩ < ∞
}
,

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dΩ = 0

}
,

with the norm and inner product in L2(Ω) are defined as

∥w∥L2(Ω) = (w,w)
1
2 , ∀ w ∈ L2(Ω),

and

(w1, w2) =

∫
Ω

w1w2 dΩ ∀ w1, w2 ∈ L2(Ω).
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respectively. We also introduce the following spaces

H(div,Ω) :=
{
v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)

}
,

H0(div,Ω) :=
{
v ∈ H(div,Ω) : v · n = 0, on ∂Ω

}
,

V (Ω) :=
{
v ∈ H0 (div,Ω) : ∇ · v = 0, in Ω

}
,

H1(Ω) :=

{
φ ∈ L2(Ω) : ∂kφ ∈ L2(Ω), ∀ |k| ≤ 1

}
,

and
H1

Γd
(Ω) :=

{
φ ∈ H1(Ω), φ = 0 on Γd

}
,

where Γd is a part of the boundary ∂Ω with non–negative measure. Let us recall the following Poincaré–
Friedrichs inequality

Lemma 3.1. There exists a non–negative constant CPF which depend only on Ω such that

∥φ∥ ≤ CPF ∥∇φ∥, ∀φ ∈ H1
Γd
(Ω).

Furthermore, if Ω is convex, the Poincaré–Friedrichs constant CPF satisfies

CPF ≤ d

π
, (15)

where d denotes the diameter of Ω defined by

d = sup {distance (x,y) ; (x,y) ∈ Ω} .

In the present study, the spatial domain Ω is assumed to be rectangular Ω =]0, 1[×]−L,L[, with L > 0 and
we denote by Γd its boundary parts defined by

Γd =
{
(x, y); 0 ≤ x ≤ 1; y = ±L

}
, Γn = ∂Ω \ Γd.

Note that this assumption is used here for simplicity in the presentation only, but the analysis presented in
this study is still applicable for general rectangular domains. Hence, using the assumption on the spatial
domain, the inequality (15) becomes

CPF ≤
√
L2 + 1

π
. (16)

On the other hand, the boundary conditions can be rewritten as follow

T = −1, α = 0 and u = 0, on y = L,

T = 0, α = 1 and u = 0, on y = −L.
(17)

In addition, we also assume that
δ Z < 1. (18)

Then, under (18), we get

Wm := Z exp

(
Z

1− δZ

)
≤ WZ(T ) ≤ Z exp

(
1

Z

)
:= WM , ∀ T ≥ −1. (19)

In addition, we consider the following assumptions
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Hypothesis 3.2. The functions µ, λ and γ are assumed to be:

(H1) µ is Lipschitz–continuous function with Lipschitz constant Lµ: for all ℓ, s ∈ R with

|µ(ℓ)− µ(s)| ≤ Lµ|ℓ− s|

(H2) bounded from above and from below by positive constants µi, λi and γi, i = 1, 2 for all ℓ ∈ R and for
all x ∈ Ω as

µ1 ≤ µ(ℓ) ≤ µ2, λ1 ≤ λ(x) ≤ λ2 and γ1 ≤ γ(x) ≤ γ2.

For any real function β, we denote by β+ and β− the following functions

β+ := max(β, 0) and β− := min(β, 0).

It should be noted that the above assumptions related to certain characteristic parameters are acceptable
from a physical view as long as they respect their definitional forms. For instance, in Assumption (18), if
expressions for δ and Z defined in (9) are considered, then δZ takes the form δ Z = Q

T ′
∞
, with T ′

∞ is the

highest ambient temperature reached during the exothermic reaction. This temperature relative to the heat
release Q defined in (8) always remains higher, leading to a form of δZ that always remains lower than 1.
Needless to mentiona that the considered assumptions are necessary for the analysis study of the existence
and uniqueness for the solution of the coupled problem (10a)-(10b).

4. Analysis of the variational formulation

The variational formulation of the coupling problem (10) can be written as follow: Find (u, p) ∈ L3(Ω)∩
V (Ω)× (H1(Ω) ∩ L2

0(Ω)) and (T, α) ∈ H1(Ω)×H1(Ω) such that (17) holds and that∫
Ω

µ(T )u · v dΩ+

∫
Ω

v · ∇p dΩ =

∫
Ω

f(T ) · v dΩ, ∀v ∈ L2(Ω), (20)∫
Ω

u · ∇q dΩ = 0, ∀q ∈ H1(Ω) ∩ L2
0(Ω), (21)

∫
Ω

u · ∇T φ dΩ+

∫
Ω

λ(x)∇T · ∇φ dΩ =

∫
Ω

WZ(T )Φα(α)φ dΩ, ∀φ ∈ H1
Γd
(Ω), (22)∫

Ω

u · ∇αη dΩ+

∫
Ω

γ(x)∇α · ∇η dΩ =

∫
Ω

WZ(T )Φα(α) η dΩ, ∀η ∈ H1
Γd
(Ω). (23)

Since the space D(Ω ∪ Γn) (defined as the set of functions in C∞(Ω ∪ Γn) which are compactly
supported in Ω ∪ Γn) is dense in H1

Γd
(Ω) (see for instance [8, 14]) the variational formulation (20)-(23) is

equivalent to the coupled problem (10) (in the sense of distribution), see for example [9].
Thanks to the following inf–sup condition [4]

∀q ∈ H1(Ω), sup
v∈L2(Ω)

∫
Ω
v · ∇q

∥v∥
≤ ∥∇q∥. (24)

Then, the variational Darcy problem (20)-(21) is equivalent to find u ∈ V (Ω) solution of∫
Ω

µ(T )u · v dΩ =

∫
Ω

f(T ) · v dΩ, ∀v ∈ V (Ω). (25)

Therefore (u, T, α) ∈ L3(Ω) ∩ V (Ω)×H1(Ω)×H1(Ω) is the solution of (25)-(22)-(23).
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We introduce the following functions and notations to establish all estimates in H1-norms. We set the
functions ᾱ and T̄ defined as

ᾱ(x, y) :=
2

L2
y(y − L) T̄ (x, y) :=

2

L2
y(y + L). (26)

It is clear that

r20 := ∥ᾱ∥2 = ∥T̄∥2 =
64L

15
, r21 := ∥∇ᾱ∥2 = ∥∇T̄∥2 =

56

3L
, and ∥ᾱ∥L∞ = ∥T̄∥L∞ =

1

2
. (27)

Let us also introduce these constants

κ1 =
γ2
2r

2
1

2γ2
1

+
2LWM

γ1
κ2 =

WMLr1
λ1π

+
W 2

ML2

λ2
1π

2
. κ⋆ = 1−

2R2
pL

2

λ2
1µ

2
1π

2
. (28)

Lemma 4.1. Assume that Hypothesis 3.2 holds. For any solution (u, T, α) ∈ L3(Ω) ∩ V (Ω) × H1(Ω) ×
H1(Ω) of problem (25)-(22)-(23), the followings estimates hold

−1 ≤ T (x) and 0 ≤ α(x) ≤ 1, a.e x in Ω (29)

Furthermore, if
Rp

µ1
<

π√
2L

λ1, (30)

then

∥∇T∥ ≤ MT :=

(
2R2

p

κ⋆
∥T0∥2 +

κ2

κ⋆

) 1
2

, (31)

∥u∥ ≤ Mu :=
Rp

µ1

(
∥T0∥+

√
L2 + 1

π
MT

)
, (32)

∥∇α∥ ≤ Mα :=

(
M2

u

2µ2
1

+ κ1

) 1
2

. (33)

Proof. We start by showing that the solution of (23) satisfies

0 ≤ α(x) ≤ 1, a.e in Ω.

Thus, taking η = α− which is an element of H1
Γd
(Ω) and using the definition of Φα, we obtain∫

Ω

WZ(T )α
− dΩ =

∫
Ω

WZ(T )αα− dΩ+

∫
Ω

u · ∇αα− dΩ+

∫
Ω

γ(x)∇α · ∇α− dΩ,

=

∫
Ω

WZ(T ) |α−|2 dΩ+

∫
Ω

u · ∇α− α− dΩ+

∫
Ω

γ(x) |∇α−|2 dΩ.

Since WZ(·) is non–negative and ∇ · u = 0 in Ω, we deduce that∫
Ω

WZ(T ) |α−|2 dΩ+

∫
Ω

γ(x) |∇α−|2 dΩ = 0.

Hence, α− = 0 a.e in Ω and thus α ≥ 0, a.e in Ω.
Next, taking η = (α− 1)+ which belongs to H1

Γd
(Ω) in (23), we obtain∫

Ω

u · ∇α (α− 1)+ dΩ+

∫
Ω

γ(x)∇α · ∇(α− 1)+ dΩ =

∫
Ω

WZ(T ) (1− α)(α− 1)+ dΩ.
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Then, ∫
Ω

u · ∇((α− 1)+) (α− 1)+ dΩ+

∫
Ω

γ(x)|∇(α− 1)+|2 dΩ = −
∫
Ω

WZ(T ) |(α− 1)+|2 dΩ.

According to the incompressibility condition, the first term in the left-hand side vanishes. Since the second
term is negative, we have

γ1∥∇((α− 1)+)∥2 ≤
∫
Ω

γ(x)|∇(α− 1)+|2 dΩ = 0.

Thanks to the Poincaré–Friedrichs inequality, we deduce that (α− 1)+ = 0, a.e in Ω, which is equivalent to
α ≤ 1, a.e Ω.

Concerning the temperature, for φ = (T + 1)− ∈ H1
Γd
(Ω) in (22), using the previous arguments and

0 ≤ WZ(T )Φα(α), a.e in Ω, yields
λ1∥∇((T + 1)−)∥2 ≤ 0.

Once again the Poincaré–Friedrichs inequality yields T ≥ −1, a.e in Ω, which complete the proof of (29).
By construction (27), it is clear that both functions η := α− ᾱ and φ := T̄ −T belong to H1

Γd
(Ω). Then,

taking η := α− ᾱ as a test function in (23), one obtains∫
Ω

u · ∇αα+

∫
Ω

γ(x)|∇α|2 +
∫
Ω

WZ(T )α
2 =

∫
Ω

u · ∇α ᾱ+

∫
Ω

γ(x)∇α · ∇ᾱ+

∫
Ω

WZ(T ) (α− ᾱ+ αᾱ) .

According to the incompressibility of the velocity, the first term in the left-hand side vanishes. Thanks to
assumption 3.2, (19), (27) and the Cauchy-Schwarz inequality, we obtain

γ1∥∇α∥2 +Wm∥α∥2 ≤ ∥u∥∥ᾱ∥L∞ ∥∇α∥∥ + γ2∥∇α∥∥∇ᾱ∥ + 2LWM

(
∥ᾱ∥L∞ + ∥α∥L∞ + ∥ᾱ∥L∞∥α∥L∞

)
,

≤ 1

2
∥u∥ ∥∇α∥∥ + γ2r1∥∇α∥+ 4LWM .

The Young’s inequality gives

γ1∥∇α∥2 ≤ 1

4γ1
∥u∥2 +

γ2
2r

2
1

4γ1
+ 4LWM +

γ1
2
∥∇α∥2.

Finally,

∥∇α∥2 ≤ 1

2γ2
1

∥u∥2 + κ1, (34)

To bound T in H1-norm, let φ = T − T̄ in (22) which is an admissible test function. Applying same
techniques as before, we obtain

λ1∥∇T∥2 ≤ WM∥1− α∥ ∥T − T̄∥+ ∥u∥∥∇T∥∥T̄∥L∞ + λ2∥∇T∥ ∥∇T̄∥.

Using successively the Poincaré–Friedrichs inequality, the Young’s inequality, (29), (27) and (29) we
obtain

λ1∥∇T∥2 ≤ WM∥1− α∥ ∥T − T̄∥+ ∥u∥∥∇T∥∥T̄∥L∞ + λ2∥∇T∥ ∥∇T̄∥,

≤ 2WMCPF

(
∥∇T∥+ ∥∇T̄ )∥

)
+

1

2
∥u∥∥∇T∥+ λ2∥∇T∥ ∥∇T̄∥,

≤ 2r1WMCPF + 2WMCPF ∥∇T∥+ r1
2
∥u∥+ 1

2
∥u∥∥∇T∥,

≤ 2WMCPF r1 +
W 2

MC2
PF

4λ1
+

1

8λ1
∥u∥2 + λ1

2
∥∇T∥2.

9



Then,

∥∇T∥2 ≤ 1

4λ2
1

∥u∥2 + κ2. (35)

On the other hand, we take v = u in Darcy equation, we get (25)

µ1∥u∥ ≤ Rp (∥T∥+ ∥T0∥) .

Thus, we use (35) and the Poincaré–Friedrichs inequality to obtain

∥∇T∥2 ≤
R2

pC
2
PF

2λ2
1 µ

2
1

∥∇T∥2 + 2R2
p∥T0∥2 + κ2.

We deduce the inequality (31) using (16) and the assumption (30). As a result, we proof the estimate (32)
and (33). □
Our next concern is the following well–posedness result:

Lemma 4.2. Assume that Hypothesis 3.2–(H2) holds. For any T ∈ L2(Ω), there exists a unique pair
(u, p) ∈ L2(Ω)×H1(Ω) solution of (20)-(21).

Moreover, if T belongs to H1(Ω). Then, for all non–negative real numbers s, with 2 ≤ s < +∞,

(u, p) ∈ Ls(Ω)×W 1,s(Ω),

and the following estimate holds
∥u∥H1 ≤ C∥T − T0∥H1 , (36)

where the non–negative constant depends only on µ,Ω, s and Rp.

Proof. We refer the reader to [10] (see Theorem 1.9, Chapter XIII) for the existence and uniqueness of the
solution (u, p) in L2(Ω)×H1(Ω). Next, if the temperature T belongs to H1(Ω) and in the case of variable
viscosity but not depending on T , we refer to [9] for the regularity of the velocity in H1(Ω) and estimate
(36).

Now, when µ depends on T , we follow ideas reported in [7] (See Chapter IV). Hence, we apply the
divergence operator to equation (10a), to obtain

∇ ·
(

1

µ(T )
∇p

)
= ∇ ·

(
1

µ(T )
(T − T0)

)
. (37)

Since T ∈ H1(Ω) and the Sobolev injection in dimension d = 2, we have T ∈ Ls(Ω) for all s, 2 ≤ s < +∞.

Hypothesis 3.2 infers that
1

µ(T )
(T − T0) belongs to Ls(Ω). Then, there exists a unique solution p of (37)

such that p ∈ H1(Ω) ∩ L2
0(Ω) and

1

µ(T )
∇p ∈ Ls(Ω). Furthermore, there exists a constant C > 0 depends

on s, Ω and Rp such that ∥∥∥∥ 1

µ(T )
∇p

∥∥∥∥
Ls

≤ C

∥∥∥∥ 1

µ(T )
(T − T0)

∥∥∥∥
Ls

.

Finally, back to the Darcy equation (10a), we have using the Sobolev injection from H1(Ω) into Ls(Ω)

∥u∥Ls ≤ C∥T − T0∥Ls ≤ C ′∥T − T0∥H1 .

□

Lemma 4.3. Assume that Hypothesis 3.2–(H2) holds. For any divergence–free function u ∈ L2(Ω) and
any function α ∈ L∞(Ω) such that 0 ≤ α(x) ≤ 1, a.e in Ω, the problem (22) admits a unique solution
T ∈ H1(Ω).
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Proof. The proof is based on the Schauder fixed point theorem. To this end, let the mapping

L : L2(Ω) 7→ L2(Ω),

T 7→ L(T ) = θ ∈ H1
Γd
(Ω),

which is the unique solution of the following formulation: ∀φ ∈ H1
Γd
(Ω)∫

Ω

u · ∇θ φ dΩ+

∫
Ω

λ(x)∇θ · ∇φ dΩ =

∫
Ω

WZ(T )Φα(α)φ dΩ−∫
Ω

u · ∇T̄ φ dΩ−
∫
Ω

λ(x)∇T̄ · ∇φ dΩ. (38)

Since ∥WZ(T )Φ(α)∥ ≤ Z exp( 1δ ) ∥Φα(α))∥, Hypothesis 3.2−(H2) and the incompressibility condition on u,
the existence and uniqueness of θ is a direct consequence of the Lax–Milgram theorem [13]. Next, taking
φ = θ in (38) and using −

∫
Ω
u · ∇T̄ θ dΩ =

∫
Ω
u · ∇θ T̄ dΩ, the Cauchy-Schwarz inequality combined with

(31), gives
λ1∥∇θ∥2 ≤ WM ∥Φα(α)∥∥θ∥+ ∥u∥ ∥∇θ∥∥T̄∥L∞ + λ2 ∥∇θ∥ ∥∇T̄∥.

We deduce from the Poincaré–Friedrichs inequality and (27) that

∥∇θ∥ ≤ 2LWM

πλ1
+

1

2λ1
∥u∥+ λ2r1

λ1
:= R.

Then, L : L2(Ω) 7→ K := {φ ∈ H1
Γd
(Ω), ∥∇φ∥ ≤ R}. It is clear that the set K is convex and thanks to the

Rellich theorem, K is compact in L2(Ω).
Now, let us prove that the mapping L : L2(Ω) 7→ L2(Ω) is continuous. To this end, we consider

a sequence (Tn)n ⊂ L2(Ω) such that Tn → T in L2(Ω). Since the sequence θn := L(Tn) belongs to
H1

Γd
(Ω) and it is uniformly bounded (∥∇θn∥ ≤ R), there exists a subsequence, still denoted by (θn)n for

simplicity, which weakly converges to θ in H1
Γd
(Ω) and strongly in L2(Ω), a.e in Ω. On the other hand,

the function ℓ 7→ WZ(ℓ) is continuous on [−1,+∞[, then lim
n→+∞

WZ(Tn)Φα(α) = WZ(T )Φα(α) a.e in Ω and

|WZ(Tn)Φα(α)| ≤ WMΦα(α) a.e in Ω. Using the Lebesgue dominated convergence (see, for instance [13]),
we have the strong convergence

WZ(Tn)Φα(α) −→ WZ(T )Φα(α), in L2.

We finally deduce that when n tends to +∞∫
Ω

u · ∇θn φ dΩ+

∫
Ω

λ(x)∇θn · ∇φ dΩ =

∫
Ω

WZ(Tn)Φα(α)φ dΩ−
∫
Ω

u · ∇T̄ φ dΩ−
∫
Ω

λ(x)∇T̄ · ∇φ dΩ,

converges to∫
Ω

u · ∇θ φ dΩ+

∫
Ω

λ(x)∇θ · ∇φ dΩ =

∫
Ω

WZ(T )Φα(α)φ dΩ−
∫
Ω

u · ∇T̄ φ dΩ−
∫
Ω

λ(x)∇T̄ · ∇φ dΩ,

which implies that θ = L(T ). Thanks to the uniqueness of the solution of problem (38), we deduce that the
whole sequence L(Tn) converges to L(T ) in L2(Ω). As a direct consequence, the application L maps the
convex K ⊂ L2(Ω) into itself and it is continuous. From Schauder theorem, there exists T ∈ K such that
L(T ) = T . Then, the problem (22) admits a unique solution in H1(Ω). □
Concerning the problem (23), since the solution α belongs to [0, 1], a.e in Ω, the integral

∫
Ω
u · ∇αη dΩ

is well defined for all divergence–free function u ∈ L2(Ω). Furthermore, the function WZ(·) is bounded
uniformly by WM . Therefore, same arguments used in the proof of Lemma 4.3 can be used to prove the
following lemma, then we skip it.

Lemma 4.4. Assume that Hypothesis 3.2–(H2) holds. For any divergence–free function u ∈ L2(Ω) and
any function T ∈ L2(Ω), the problem (23) admits a unique solution α ∈ H1(Ω) ∩ L∞(Ω).
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Theorem 4.5. We assume that Hypothesis 3.2 holds. In addition, if

δ ≥ 1

2
, Z ≤ 2δ − 1

2δ2
, (39)

and

K :=

(
M2

TC
2
S

λ1µ2
1

+
C

γ1µ2
1

)
(Rp + LµM

′
T )

2

[
λ1 −

8L2

π2

(
|W ′

Z(−1)|2 +
L2
(
|W ′

Z(−1)|2 +W 2
M )
)

π2γ1

)]−1

< 1, (40)

then, the problem (20)-(23) admits a unique solution (u, p, T, α) in L3(Ω)×(H1(Ω)∩L2
0(Ω))×H1(Ω)×H1(Ω),

where
M ′

T = (1 + CPF )MT . (41)

Proof. We use the fixed point of Banach theorem to establish this result. Thus, let the mapping F1 :
(T, α) 7→ u, such that u is the solution of (20)-(21). Thanks to Lemma 4.2, this mapping is well defined and
continuous from H1(Ω)×H1(Ω) to L3(Ω). Now, let the mapping F2 defined from L3(Ω) to H1(Ω)×H1(Ω),
which associates with any u ∈ L3(Ω) the solution (T, α) of problems (23)-(22). In order to apply the fixed
point of Banach theorem to the mapping F := F2 ◦ F1 defined from H1(Ω) × H1(Ω) into itself, we must
prove that F is a Lipschitz mapping with the Lipschitz constant K < 1. To this end, let (T1, T2, α1, α2) and(
T̂1, T̂2, α̂1, α̂2

)
in H1(Ω) and u1,u2 in L3(Ω) such that

F1((T1, α1)) = u1, F1((T2, α2)) = u2,

F2(u1) = (T̂1, α̂1), F2(u2) = (T̂2, α̂2).

First, taking v = u1 − u2 in (20), we obtain∫
Ω

µ(T1)|u1 − u2|2 dΩ+

∫
Ω

(µ(T1)− µ(T2))u1 · (u1 − u2) dΩ = RP

∫
Ω

(T1 − T2)e · (u1 − u2) dΩ.

Hypothesis 3.2, Cauchy-Schwarz inequality and Lemma 4.2 infer that

µ1∥u1 − u2∥2 ≤ Lµ∥T1 − T2∥L6 ∥u1∥L3 ∥u1 − u2∥+RP ∥T1 − T2∥ ∥u1 − u2∥.

Thanks to (36) and the Sobolev injection form H1(Ω) into L6(Ω) and the Poincaré–Friedrichs inequality,
we obtain

µ1∥u1 − u2∥ ≤ C (Lµ +Rp) ∥∇(T1 − T2)∥, (42)

On the other hand, the pair (U, P ) such that U = u1 − u2 and P = p1 − p2 satisfies the following Darcy
equations

U+
1

µ(T1)
∇P = F :=

Rp

µ(T1)
(T1 − T2)e+

µ(T1)− µ(T2)

µ(T1)
u1,

(43)
∇ ·U = 0.

Thanks to Lemma 4.2 and Hypothesis 3.2, the second term F belongs to Ls(Ω) for all 2 ≤ s < +∞. Then
(U, P ) ∈ Ls(Ω)×W 1,s(Ω) and

∥U∥Ls ≤ C∥F∥Ls , ∀s ∈ [2,+∞[,

12



in particular for s = 3. Thus using Cauchy-Schwarz inequality, it yields

∥U∥L3 ≤ CRp

µ1
∥T1 − T2∥L3 +

Lµ

µ1
∥(T1 − T2)u1∥L3 ,

≤ CRp

µ1
∥T1 − T2∥L3 +

Lµ

µ1
∥T1 − T2∥L6 ∥u1∥L6 .

Once again, thanks to (36) and the Sobolev injection H1(Ω) into L6(Ω), we deduce that

∥U∥L3 ≤ C

µ1
∥∇(T1 − T2)∥ (Rp + Lµ∥T1∥H1) ∥∇(T1 − T2)∥.

From (31), we conclude

∥u1 − u2∥L3 ≤ C

µ1
(Rp + LµM

′
T ) ∥∇(T1 − T2)∥, (44)

Next, taking φ = T̂1 − T̂2 and η = α̂1 − α̂2 as test functions in (22) and (23), respectively. Adding the two
obtained equations and according to the incompressibility condition on the velocity, we have

λ1∥∇(T̂1 − T̂2)∥2 + γ1∥∇(α̂1 − α̂2)∥2 +WZ(−1)∥α̂1 − α̂2∥2 ≤
∣∣∣∣∫

Ω

(u1 − u2)∇ · T̂1 (T̂1 − T̂2)

∣∣∣∣+∣∣∣∣∫
Ω

(u1 − u2)∇ · α̂1 (α̂1 − α̂2)

∣∣∣∣ ∣∣∣∣∫
Ω

(WZ(T̂1)−WZ(T̂2))(1− α̂1)
(
(T̂1 − T̂2) + (α̂1 − α̂2)

)∣∣∣∣+∣∣∣∣∫
Ω

WZ(T̂2)(α̂2 − α̂1)(T̂1 − T2)

∣∣∣∣ . (45)

From Lemma 4.1 and Lemma 4.2, Hypothesis 3.2 and Cauchy–Schwarz inequality we obtain

λ1∥∇(T̂1 − T̂2)∥2 + γ1∥∇(α̂1 − α̂2)∥2 +WZ(−1)∥α̂1 − α̂2∥2 ≤

MT ∥u1 − u2∥L3∥T̂1 − T̂2∥L6 + ∥WZ(T̂1)−WZ(T̂2)∥ ∥T̂1 − T̂2∥+

∥u1 − u2∥∥∇(α̂1 − α̂2)∥+ ∥WZ(T̂1)−WZ(T̂2)∥ ∥α̂1 − α̂2∥+WM∥α̂1 − α̂2∥∥T̂1 − T̂2∥.

Applying the mean value theorem to function WZ(·), Sobolev injection and the Poincaré–Friedrichs and
Young’s inequalities, we obtain

λ1

2
∥∇(T̂1 − T̂2)∥2 +

γ1
2
∥∇(α̂1 − α̂2)∥2 ≤ M2

TC
2
S

2λ1
∥u1 − u2∥2L3 +

1

2γ1
∥u1 − u2∥2 +

C2
PF

(
|W ′

Z(ξ1,T )|2 + C2
PF

|W ′
Z(ξ2,T )|2 +W 2

M

4 γ1

)
∥∇(T̂1 − T̂2)∥2,

where ξi,T , i = 1, 2 are between T̂1 and T̂2. Using (36) and (44), we get

λ1∥∇(T̂1 − T̂2)∥2 + γ1∥∇(α̂1 − α̂2)∥2 ≤
(
M2

TC
2
S

λ1µ2
1

+
C

γ1µ2
1

)
(Rp + LµM

′
T )

2 ∥∇(T1 − T2)∥2 +

C2
PF

(
2|W ′

Z(ξ1,T )|2 + C2
PF

|W ′
Z(ξ2,T )|2 +W 2

M

2 γ1

)
∥∇(T̂1 − T̂2)∥2. (46)

On the other hand, the second derivative of function WZ(·) is

W ′′
Z(x) =

ZWZ(x)

(1 + δZx)4
(
Z − 2δZ − 2δ2Z2 x

)
.
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For x ≥ −1, Z − 2δZ − 2δ2Z2 x ≤ Z − 2δZ +2δ2Z2. Thanks to (39), W ′′
Z(x) ≤ 0, hence the function W ′

Z

is decreasing on [−1,+∞[ and

W ′
Z(ξi,T ) ≤ W ′

Z(−1) =
Z2

(1− δZ)2
exp(

Z

δZ − 1
), i = 1, 2.

Consequently, for Z small enough and λ1, γ1 and µ1 are large enough such that hypothesis (40) hold, we
deduce that

∥∇(T̂1 − T̂2)∥2 ≤ K∥∇(T1 − T2)∥2.

Owing (40), we use the fixed point of Banach theorem to conclude. □

5. Analysis of the iterative scheme

For the numerical solution, we propose an efficient iterative scheme based on the Picard method to
deal with the nonlinearities present in the problem (20)-(23). In the Picard iteration procedure, the Darcian
velocity obtained using the temperature computed at the previous iteration, is substituted into the convective
terms of the temperature and depth of conversion equations. Thus, the implementation of the proposed
iterative scheme is carried out in the following steps:

1. Given an initial guess (u0, p0,Θ0,Ψ0).

2. Until convergence:

Step 1: Given (Tk), compute the solution (uk+1, pk+1) ∈ L3(Ω)× (H1(Ω) ∩ L2
0(Ω)) of equation∫

Ω

µ(Tk)uk+1 · v dΩ+

∫
Ω

v · ∇pk+1 dΩ =

∫
Ω

f(Tk) · v dΩ, ∀v ∈ L2(Ω), (47)∫
Ω

uk+1 · ∇q dΩ = 0, ∀q ∈ H1(Ω) ∩ L2
0(Ω). (48)

Step 2: Given the solution uk+1, compute Tk+1 ∈ H1(Ω) such that

Tk+1

∣∣∣
y=−L

= 0, Tk+1

∣∣∣
y=L

= −1,

and∫
Ω

uk+1 ·∇Tk+1 φ dΩ+

∫
Ω

λ(x)∇Tk+1 ·∇φ dΩ =

∫
Ω

WZ(Tk)Φα(αk)φ dΩ, ∀φ ∈ H1
Γd
(Ω). (49)

Step 3: Given the solution uk+1, compute αk+1 ∈ H1(Ω) such that

αk+1|y=−L = 1, αk+1|y=L = 0,

and∫
Ω

uk+1 · ∇αk+1 η dΩ+

∫
Ω

γ(x)∇αk+1 · ∇η dΩ =

∫
Ω

WZ(Tk+1)Φα(αk) η dΩ, ∀η ∈ H1
Γd
(Ω). (50)

To establish the convergence of the proposed iterative scheme, we shall prove the following theorem:

Theorem 5.1. Under the same assumptions as in Theorem 4.5, the iterative scheme (47)-(50) converges
strongly in L2(Ω)×H1(Ω)×H1(Ω)×H1(Ω) to the unique solution of problem (20)-(23). Furthermore, for
all k ≥ 1, ∥∥∥uk+1 − uk

∥∥∥
L3

≤ C

µ1
(Rp + LµM

′
T ) ∥∇(Tk − Tk−1)∥. (51)
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Proof. Taking v = uk+1 − uk in (47) and using same techniques in the last proof, we find

µ1∥uk+1 − uk∥ ≤ C (LµM
′
T +Rp)

∥∥∥∇(Tk − Tk−1)
∥∥∥, ∀k ≥ 1, (52)

where M ′
T is defined in (41). As previously, the pair (Uk, Pk) := (uk+1 − uk, pk+1 − pk) is solution of the

following Darcy system

Uk +
1

µ(Tk)
∇Pk = Fk :=

Rp

µ(Tk)
(Tk − Tk−1)e+

µ(Tk)− µ(Tk−1)

µ(Tk)
uk,

(53)
∇ ·Uk = 0.

Then, we can obtain for all k ≥ 1∥∥∥uk+1 − uk

∥∥∥
L3

≤ C

µ1
(Rp + LµM

′
T )
∥∥∥∇(Tk − Tk−1)

∥∥∥. (54)

Next, by taking test functions φ = Tk+1 − Tk and η = αk+1 − αk in (49) and (50), respectively, we have

λ1∥∇(Tk+1 − Tk)∥2 + γ1∥∇(αk+1 − αk)∥2 ≤
(
M2

TC
2
S

λ1µ2
1

+
C

γ1µ2
1

)
(Rp + LµM

′
T )

2 ∥∇(Tk − Tk−1)∥2 +

C2
PF

(
2|W ′

Z(ξ1,T )|2 + C2
PF

|W ′
Z(ξ2,T )|2 +W 2

M

2 γ1

)
∥∇(Tk+1 − Tk)∥2. (55)

Hence, we conclude that for all k ≥ 1∥∥∥∇(Tk+1 − Tk)
∥∥∥2 ≤ K

∥∥∥∇(Tk − Tk−1)
∥∥∥2,

where K < 1 is defined in (40). This gives the convergence of the sequence and to finish the proof, it is easy
to verify that the obtained limit satisfies problem (20)-(23), then we skip it. □

6. Numerical results

To evaluate the performance of the proposed iterative scheme, we present numerical results for two
examples of the coupled problem (47)-(50). In our computations, we use the quadratic P2 finite elements for
the temperature T and depth of conversion α whereas the mixed Raviart-Thomas RT1 elements are used for
the velocity and pressure, see [32] among others. It should be noted that the theory of this class of
mixed finite element formulations reported in [11] provides compatibility conditions on spaces
to ensure the numerical stability of the coupled problem (10). Here, the considered system
fits into the classical framework of perturbed saddle-point problems. Therefore, it ensures the
stability conditions relevant to the considered problems, following closely the well-established
Brezzi’s classical treatment [11]. It is also possible to describe the inf-sup test [16], which is
a numerical test widely used for checking the compatibility of specific functions spaces in the
discrete formulation. In addition, as demonstrated in [10], the mixed Raviart-Thomas RT1
elements preserve the local mass conservation. The numerical implementation of the considered finite
element methods is carried out using the Freefem++ software [24]. Here, to solve the resulting linear systems
of algebraic equations, we consider a preconditioned Generalized Minimal Residual (GMRES) iterative solver
proposed in [33] with a stopping criteria set to 10−6.
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Figure 1: Convergence results obtained for the accuracy test example using Z = 0.1 (first column), Z = 0.5 (second column)
and Z = 1.2 (third column) with Rp = 100 (first row), Rp = 10 (second row) and Rp = 1 (third row).

6.1. Accuracy test example

In this test example, we examine the convergence of the proposed iterative scheme (47)-(50) for solving the
coupled problem (20)-(23). The computational domain is assumed to be a squared domain Ω = [0, 1]× [0, 1].
We define the functions f and K in the problem (10a)-(10b) as follows

f(T ) = Rp (T + T0) e+ f0, K(T, α) = WZ (T ) Φα(α) +K0,

and we choose the right-hand side functions f0 and K0 such that the problem (10a)-(10b) has an exact
solution given by

u(x, y) = curlϕ, p(x, y) = cos(πx) cos(πy),

T (x, y) = xy(x− 1)(y − 1)ϕ(x, y), α(x, y) = xy(x− 1)(y − 1),

with

ϕ(x, y) = e−10
(
(x−0.5)2+(y−0.5)2

)
.

Notice that the boundary conditions are also computed using the above exact solutions. In our numerical
tests, we use the same form of fluid viscosity µ(T ) defined in (12) with µ∞ = 1, ν = 0.5 and T0 = 0, and we
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fix the thermal conductivity and depth diffusivity as λ = 0.1 and γ = 1, respectively. The Rayleigh number
Rp varies over the values 1, 10 and 100, and the Zeldovich number Z varies in the interval [10−5, 2]. Taking
into account Theorem 5.1, we may introduce the jth convergence rate Lj , j = 1, . . . as

Lj :=
∥Tj+1 − Tj∥H1(Ω)

∥Tj − Tj−1∥H1(Ω)

.

We then, define the convergence rate L of the algorithm (47)-(50) and its mean value L̄ as

L := LJ and L̄ :=
1

J − j0 + 1

j=J∑
j=j0

Lj ,

where the indexes J and j0 are the first iterations which, for the given tolerances, verify

∥TJ+1 − TJ∥H1(Ω) ≤ 10−10 and ∥Tj0+1 − Tj0∥H1(Ω) ≤ 10−5.

To illustrate effects of the change in the Rayleigh number Rp and the Zeldovich number Z, we present in
Figure 1 the plots of the errors between two successive iterative solutions. In all these results, we observe
that when we increase the value of the parameter Z, it leads to an increase of the numerical errors, in
particular when Z exceeds a certain threshold value namely, 1 for Rp = 1, 0.5 for Rp = 10 and 0.1 for
Rp = 100. It is also clear that the convergence of the iterative scheme is achieved for all values of the
Zeldovich number satisfying Z ≤ 1 which is expected according to Theorem 4.5. However, the numerical
results show that this can only be obtained for relatively small values of the Rayleigh number Rp. For the
considered test cases, we clearly notice that the error plots keep the same trend which is also consistent with
the error estimates proved in the estimate (54). It should be mentioned that other numerical simulations,
which are not presented here for brevity, were also performed outside this range of values for the parameters
Z and Rp, and the obtained results show the same patterns.

6.2. Problem of flame propagation in a porous medium

In this test example, we use the iterative scheme (47)-(50) for solving the problem of flame propagation
in a porous medium for which the mathematical governing equations are given by (20)-(23). Notice that in
the context of combustion, a flame propagation refers to the process by which a flame front advances through
a combustible mixture. Thus, the flame front is defined by the boundary between unburned and burned
regions of the mixture and it is mainly characterized by high gradients in the temperature and conversion
depth solutions. In thermal engineering, understanding dynamics of the flame propagation is important for
predicting the performance and emission of combustion systems, and for developing strategies to improve
combustion efficiency and reduce pollutant emissions. In this example, the computational domain is assumed
to be rectangular Ω = [−2, 2] × [0, 6] with side walls at x = −2 and x = 2 are maintained at constant cold
temperature Tcold and conversion depth αcold, see Figure 2 for an illustration. The upper wall is assumed
to be adiabatic whereas, the bottom wall is divided into two parts using the inlet region [−r0, r0] and the
following boundary conditions

T (x, y) =


Tcold + (Thot − Tcold)

(
1− x2

r20

)
, if x ∈ [−r0, r0],

Tcold, elsewhere,

and

α(x, y) =


αcold + (αhot − αcold)

(
1− x2

r20

)
, if x ∈ [−r0, r0],

Tcold, elsewhere,
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Figure 2: Illustration of the computational domain along with boundary conditions (left plot) and the unstructured mesh used
in simulations for Z = 0.1 and Rp = 10 (right plot).

are used for the temperature and conversion depth solutions, respectively. Except for the bottom wall, no-
slip boundary conditions are used for the velocity solution everywhere on the domain boundaries. Since the
inlet velocity affects the flame features in combustion, we impose a regularized profile using the hyperbolic
tangent to describe the velocity transition at the left to right ends of the inlet as

v(x, y) =



vm

(
tanh

(
1

τ

(
1− x

r0

))
x

)
, if x ∈]r0, 2[,

−vm

(
tanh

(
1

τ

(
1− x

r0

))
x

)
, if x ∈]0, r0[,

vm

(
tanh

(
1

τ

(
1 +

x

r0

))
x

)
, if x ∈]− r0, 0[,

−vm

(
tanh

(
1

τ

(
1 +

x

r0

))
x

)
, if x ∈]− 2,−r0[.

For this example, we use the following parameters Tcold = −1, Thot = 0, αcold = 0, αhot = 1, r0 = 1/20,
vm = 1 and τ = 0.02. The thermal diffusivity coefficient is set to λ = 0.1, depth diffusivity coefficient
γ = 1, the fluid viscosity is defined by (12) with µ∞ = 1, ν = 0.5 and T0 = 0. In order to evaluate the
efficiency of the proposed iterative scheme for solving problems of front propagation in porous media, we
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Figure 3: Results obtained for the temperature (first column), pressure (second column), conversion depth (third column) and
streamlines (fourth column) with Z = 0.1 using Rp = 100 (first row), Rp = 10 (second row) and Rp = 1 (third row) for the
front propagation problem.

consider three different values for the Rayleigh number namely Rp = 1, 10 and 100 while, the Zeldovich
number is set to Z = 0.1 and Z = 1. Unstructured triangular meshes as shown in Figure 2 are used in our
simulations and the associated numbers of elements and nodes are given in Table 1. Here, the selection of
these meshes is based on a convergence study which is not reported here for reasons of brevity. Note that
a refined mesh is considered near the flame injection to accurately capture its propagation for
the considered flow regimes. It should also be noted that the structure of the matrix system in
the corresponding linear systems depends on the selection of the computational mesh but the
considered solver show no difficulties in dealing with these linear systems. In this example, the
tolerance is set at ϵ = 10−7 such that when the variation resulting from two successive solutions is less than ϵ,
the iterations are terminated. Figure 3 illustrates snapshots of the temperature, conversion depth, pressure
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Figure 4: Results obtained for the temperature (first column), pressure (second column), conversion depth (third column) and
streamlines (fourth column) with Z = 1 using Rp = 1 (first row), Rp = 10 (second row) and Rp = 100 (third row) for the front
propagation problem.

and streamlines obtained at the final iteration for the considered values of the Rayleigh number Rp and
Zeldovich number Z = 0.1. Notice that in the front propagation problems, heat is transferred through the
fluid in a smooth laminar fashion for low values of the Rayleigh number. However, as the Rayleigh number
increases, temperature gradients in the reaction zone become higher and convection cells with a propagating
front are formed in the fluid leading to a rapid heat transfer. This also applies to the distribution of depth
conversion in the fluid as shown in Figure 3 which clearly depicts the influence of the Rayleigh number on the
position of the flame front and the flame propagation speed. A simple inspection of streamlines in Figure 3
reveals that, for low values of the Rayleigh number (Rp = 1 and Rp = 10) small recirculation zones near the
inlet. However, for the high Rayleigh number (Rp = 100) the streamlines exhibit large recirculation zones
near the flame inlet propagating upwards in the computational domain. In this case, the viscous effects
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Figure 5: Vertical cross-sections of the temperature at x = 0 for Z = 0.1 (left plot) and Z = 1 (right plot) using different values
of Rp for the front propagation problem.

become less important and the buoyancy forces become stronger such that the convection is the dominant
form of heat transfer in this front propagation problem.

In Figure 4, we present results obtained for the considered values of the Rayleigh number and for a
Zeldovich number set to Z = 1. It should be noted that the Zeldovich number is an important parameter
that determines the extent to which reactants are consumed during a combustion reaction as it propagates
through a fluid. In general, for low Zeldovich numbers, the reaction rate is high and the flame is expected to
propagate steadily through the fluid. However, for high Zeldovich numbers, reactants diffuse rapidly away
from the flame front causing it to become unstable and eventually extinguish. Therefore, controlling the
Zeldovich number is important for optimizing combustion processes and ensuring stable flame propagation.
The results shown in Figure 4 illustrate this effect of the Zeldovich number on the front propagation of the
flame especially when compared with those results presented in Figure 3. It is clearly seen that a higher
Zeldovich number quickly leads to changes in the streamlines which extend upwards from the inlet zone in the
computational domain. To further illustrate these effects, we compare in Figure 5 the vertical cross-sections
of the temperature at x = 0 using the considered values of the Rayleigh and Zeldovich numbers. It should be
mentioned that for high Rayleigh and Zeldovich numbers, numerical solutions are sensitive to the mesh size,
compare the mesh statistics in Table 1. Indeed, when the Rayleigh number increases, it yields a decrease in
the thickness of fluid layers adjacent to the wall surface and therefore, high velocity gradients appear near
the walls due to the no-slip boundary conditions. As a result, the numerical simulation for this case requires
a fine mesh discretization to obtain a converged solution. In addition, it is obvious from the results listed in
Table 1 that increasing the Rayleigh and Zeldovich numbers leads to an increase in the number of iterations
in the iterative algorithm. In this case, finer meshes are required and therefore, more iterations are needed
for convergence in the proposed iterative scheme. Finally, numbers of iterations required for the proposed
iterative algorithm to converge are shown in Table 1 for the considered Rayleigh and Zeldovich numbers.
It is evident that increasing the Rayleigh number leads to an increase in the number of iterations in the
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Table 1: Mesh statistics and numbers of iterations in the iterative algorithm using Rp = 1, Rp = 10 and Rp = 100 for the
considered Zeldovich numbers.

# Iterations

# Elements # Nodes Rp = 1 Rp = 10 Rp = 100

Z = 0.1 9808 5045 9 12 51

Z = 1 20008 10205 33 51 67

iterative algorithm. As expected, as the Rayleigh number increases, the nonlinear dependence between the
Darcy equations and the convection-diffusion-reaction equations becomes more important and the adopted
fixed-point technique takes longer to converge. Moreover, by analyzing the shape of the constant K in
(40) which is a sufficient condition for the convergence of the iterative scheme, we observe that when the
value of Rp increases, the constant K also increases and approaches 1 which slows down the procedure.
However, increasing the Zeldovich number Z while satisfying the condition (39), has little effects on the
constant K appearing in (40). This is consistent with the theoretical findings demonstrated in the previous
sections. In cases with high Rayleigh and Zeldovich numbers, regularization techniques could
be considered to extend the convergence analysis carried out in this study. For the numerical
simulations of these cases, stabilized mixed finite element method could also be an alternative
choice.

7. Conclusions

An iterative method is presented for the numerical analysis of propagating reaction front problems in
porous media satisfying an Arrhenius-type law. The governing equations consist of coupling the Darcy
equations for the pressure and flow field to a set of two convection-diffusion equations for the temperature
and depth of conversion with nonlinear viscosity and diffusion coefficients. Assumptions on these nonlinear
coefficients and reaction terms needed for the well-posedness of the coupled model are also discussed. To
prove the existence and uniqueness of weak solutions for the considered system, a fixed-point method is pro-
posed and an iterative algorithm is used for the solution of the associated fixed-point problem. Convergence
of the iterative method is also demonstrated for this class of nonlinear systems. To assess the performance
of the proposed method, numerical results obtained for an example with known analytical solution and for
a flame propagation problem are presented. Computational results obtained for both examples show good
numerical convergence and validate the established theoretical estimates. Future work will focus on estab-
lishing error estimates for the fully discrete problems. For instance, using a mixed finite element method
for the space discretization, the convergence of the iterative method could be achieved. Extension of this
analysis to unsteady propagation of reaction fronts in porous media is also considered for future work.
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