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1 Introduction

Among the most important questions about the dynamics of quantum fields is the task
of characterising features that are robust under renormalization flow. One such feature is
the anomalous behaviour of global symmetries [1],1 which are often captured via inflow [2]
from an invertible field theory in one dimension higher, known as the anomaly theory [3].

This inflow picture can be enriched whenever the QFT has local dynamics compatible
with inequivalent global structures (these can be detected by analysing multiple related
properties of the theory: the spectra of non-local operators, the spectrum of generalised
symmetries, or the partition functions on compact curved spacetimes). When that hap-
pens we can split off the choice of global form from the behaviour of the local degrees of
freedom, by viewing the local degrees of freedom of the QFT as a theory relative [4] to a
non-invertible theory in one dimension higher. A proper QFT, with a fully specified global
form, can then be interpreted as the compactification of the bulk non-invertible theory on

1In this paper by anomalies we always mean ’t Hooft anomalies for global symmetries.
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Figure 1. Left: inflow picture of anomaly matching for intrinsic QFTs: the anomaly is an invertible
TFT A in one dimension higher. Right: TFT matching for QFTs with global structure. The choices
of global structure are encoded by non-invertible TFT on an interval with a boundary condition
interface B to an anomaly theory. This symmetry TFT must match for the theories in the UV and
the IR, thus generalizing the anomaly matching procedure.

an interval: on one end of the interval the bulk theory couples to a gapped TFT responsi-
ble for choosing the global structure, and on the other end of the interval the bulk theory
couples to the local degrees of freedom.2 This structure is well-known in the context of
Lagrangian theories — for an enlightening discussion about the SU(N) versus PSU(N)
cases we refer our readers to section 6 of [7].

It is generically the case that the resulting QFT after reduction on the interface is
anomalous, in which case the picture above needs to be further refined, as elaborated on
in [8] (see also [6]): we consider a non-invertible theory on an interval, where a gapped
interface on the left connects it to the anomaly theory for the QFT of interest (different
global forms have different symmetries and therefore different anomaly theories, which
are connected via suitable interfaces to the same non-invertible theory), and the gapless
boundary on the right encodes the local degrees of freedom of the QFT. So in this case it
is the gapped interface that encodes the choice of global form. As in [8], we refer to the
non-invertible theory inside the interval as the symmetry theory.

In the presence of anomalies for continuous symmetries the symmetry theory includes
sectors of Chern-Simons type, or more generally η-invariants. In this note we focus on
the choice of global form, which involves discrete symmetries only, so we do not need to
worry about such sectors, and we can restrict ourselves to a part of the symmetry theory
which is a proper topological field theory (TFT). By an abuse of language, we will refer
to this TFT sector of the symmetry theory as symmetry TFT. It is natural to expect this
symmetry TFT to be invariant under RG flows triggered by deformations invariant under
the symmetries. Equivalently, we expect that the set of choices for the global form of the
theory persists at all energy scales — see figure 1.

2It is not always the case that diffeomorphism invariant choices of gapped boundary conditions exist.
The 6d (2, 0) theories associated to the algebra g are examples of consistent local dynamics whose associated
bulk theories are expected not to admit such choices for generic g. (See [5, 6] for an analysis of which g are
expected to admit diffeomorphism invariant gapped boundary conditions.) This is one way to understand
statements in the literature that such theories are not “genuine QFTs”. We expect that the bulk theories
associated to the 4d N = 2 theories studied in this paper always admit such choices.
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We will test this expectation on four dimensional QFTs in four space time dimensions
that admit a Coulomb phase, i.e. an infrared regime with an effective description in terms
of r independent Maxwell fields.3 Let us denote such theory T . In this paper we are
interested in determining the global structure of T from the perspective of such infrared
regime. All the examples we will consider in this note are N = 2 supersymmetric, but
we stress that supersymmetry in itself is not a necessary requirement for the discussion
below: the two assumptions we are making on T are that it has an infrared regime where
an effective U(1)r gauge theory description is valid, and that the structure of the massive
spectrum in this IR regime is sufficiently well understood. The restriction to N = 2 comes
from this second assumption, which in the N = 2 context we take to mean the (likely
weaker) assumption that the BPS spectrum, which we understand well enough for our
needs, is representative of the full spectrum.4

The class of N = 2 theories that we study naturally includes geometrically engineered
N = 2 SCFTs. In the geometric engineering program [11] one aims to establish a dictionary
between the properties of some version of string theory, denoted by S , on a singular
background5 X and a quantum field theory TS /X . From this perspective the symmetry
TFT can be recovered via the analysis of the effective theory arising after compactification
on ∂X , which captures the anomalies and other features of TS /X , including its higher form
symmetries in terms of defect groups [6, 8, 12–47]. In particular, if the theory TS /X has
non-trivial choices of global structure, in the simplest cases this has been understood [5,
16, 20, 41] in terms of a Heisenberg algebra of non-commuting FMS fluxes on ∂X [48, 49].
Below we will give an alternative purely field theoretical derivation of this same Heisenberg
algebra, showing that it also arises from the infrared perspective on theories with a Coulomb
phase. The advantage of this formulation is that it extends field theoretically the results
about theories with known Lagrangian formulations to arbitrary SCFTs with mutually
non-local massless excitations. In particular, we recover field theoretically the results on
global structures of four-dimensional Argyres-Douglas theories that have been obtained
via geometric string theory techniques in the literature, and also some results that have no
geometric understanding.

Our main result can be derived closely following [50]. In the pure u(1)r gauge theory,
before choosing a global form, one can in principle consider Wilson and ’t Hooft lines with
arbitrary rational dyonic charges. Once we include massive states, two things happen: the
set of allowable charges for the lines reduces to those mutually local with respect to the
charges of the dynamical states, and some of the line operators get screened. Depending
on the structure of the charge lattice of the theory non-trivial lines might remain after

3See e.g. [9, 10] for a similar application in the context of 2d field theories.
4We emphasize that this as an assumption. A known example where the non-BPS spectrum includes

states that would invalidate an analysis based on the BPS spectrum only is the type I string, with gauge
group Spin(32)/Z2. In this case the spinor representation appears as a non-BPS brane with discrete K-
theory charge; the BPS spectrum appears in vector representations only. In all examples without torsional
charges we know the BPS spectrum is representative. It is tempting to conjecture that this is a general fact.

5Here we let S denote also M-theory or F-theory, and by X we denote schematically the whole data
needed to prescribe a BPS background for S of the form Rd × X giving rise to a QFT in d spacetime
dimensions.
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screening. Generically not all remaining lines will be mutually local, so an specification of
a global form will consist, as in [50], on a specification of a maximal subset of lines that
will be genuine line operators in our theory. The rest of the lines should then be viewed as
open surface operators.

We emphasise that from this point of view the usual choice of having line operators
with arbitrary integer dyonic charge is a possible choice for the maximally commuting set
of line operators, but as shown below this is not the only possible choice given any fixed
lattice of charged states. (In making this statement we assume that we have normalised
our charges so that the lattice of charged states is a sublattice of Z2r, which will be the
case throughout the paper.)

The argument in terms of screening of lines given above can be recast as the derivation
of a symmetry TFT for the theory of the form6

S5d = 2πi
r∑

j=1
nj

∫
M5

b
(2)
e,j ∧ db

(2)
m,j (1.1)

where the nj are positive integers. Below we will give an explicit prescription for how to
extract the integers nj from the Coulomb phase of the theory. When some of these integers
differ from 1 we recover the Heisenberg algebra of non-commuting fluxes we found from
geometric engineering in terms of this bulk TFT.

All conventional 4d N = 2 gauge theories can be analysed with our methods: giving
generic vevs in the Cartan of the gauge group to the adjoint scalars in the N = 2 vector
multiplets, breaks the gauge group to U(1)r, giving us a plethora of consistency checks.
Moreover, this feature is also shared by all non-conventional 4d N = 2 SQFTs that have a
Coulomb branch of complex dimension r. In this case the integer r is known as the ‘rank’
of the corresponding non-conventional SQFT. From this perspective our results extend
and generalize results that have appeared previously in the literature by giving a common
ground for many computations of defect groups in various dimensions.

We conclude this paper by extending our formulation to other theories with IR phases
under control, namely 6d SCFTs with a tensor branch, and 5d SCFT with a Coulomb
branch. Also for those systems we find a symmetry TFT that has the structure of a BF
theory in 7 ad 6 dimensions respectively, which is responsible for the global structure of
the theories in question.

The structure of this paper is as follows. In section 2 we review some well-known
features of Maxwell type theories and their higher form symmetries to set up our notation
and conventions. We proceed by revisiting the field theoretical origin of global structures
for 4d theories from an infrared perspective. In section 3 we summarise the main features
of BF theories we will need, and derive our main result. Results in these two sections
only assume the theory under scrutiny has a Coulomb phase, and are independent from
supersymmetry. In section 4 however, we apply this result in the context of N = 2 theories
where the charge lattice of the theories can be explicitly calculated, from this we recover
the well-known center symmetries and global structures of conventional gauge theories,

6Throughout the paper we will use conventions where the b fields are periodic with period 1, instead of 2π.
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Figure 2. Aharonv-Bohm effect for lines: monodromies can give rise to phases proportional to
the corresponding Dirac pairings. Only lines which have charges satisfying the Dirac quantization
condition can be simultaneously genuine. The presence of non-genuine lines is the hallmark of a
relative QFT — see e.g. section 2 of [41] for a nice review.

and we also reproduce and extend the results obtained about non-conventional SCFTs via
geometric engineering methods. In section 5 we give a generalization of our findings to
theories in various dimensions. In section 6 we present our conclusions and comment on
future directions and applications.

2 Genuine and non-genuine lines from the infrared

2.1 Line operators from the Coulomb phase

In what follows we explore the constraints on the line operators of Maxwell theory that
arise from the presence of charge dyonic BPS states in the spectrum. Many important
aspects of the analysis below can be found in section 4.1 of [7], see also appendix C in [51].

The dynamics of a theory in a Coulomb phase can be described in terms of r copies
of the u(1) Maxwell theory coupled to massive states. (There can be non-generic points
where some of these massive states can become massless.) Ignoring the massive states for
a moment, at a generic point we have a higher 1-form global symmetry of the form(

U(1)(1)
e ×U(1)(1)

m

)r (2.1)

where U(1)(1)
e ×U(1)(1)

m are the 1-form global symmetries of Maxwell theory. The operators
charged under these symmetries are dyonic lines. We denote the electric and magnetic
charges of one such line by a 2r-component vector α. As in [50, 52], two lines with charges
α1 and α2 can only be genuine operators in the Maxwell theory (as opposed to open Gukov-
Witten surface operators [53, 54]) if their Dirac pairing

〈
α1, α2

〉
D

:= ∑r
i=1(α2i−1

1 α2i
2 −

α2i
1 α2i−1

2 ) is an integer.7 (See figure 2.) This is often accomplished by requiring α1, α2 ∈
Z2r, but in the absence of a dynamical spectrum of point particles this is not necessary for
consistency of the theory.

7Relatedly, we can determine the commutation relations of the line operators in a spatial slice using the
exponentiated form of the commutators found in [55], which leads to a commutator exp(2πi

〈
α1, α2

〉
D

).
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Figure 3. Top: action of a U(1)(1)-form symmetry on a line operator. Bottom: constraint on the
higher form symmetry in presence of charged particles (red dot at the end of the line). The presence
of a particle of charge q ∈ Z enforces eiθq = 1 which in turns entail that only rotations with phase
θ = 2πk/q are allowed, thus breaking U(1)(1) down to Z(1)

q .

This structure gets simplified once we couple the pure Maxwell theory to charged
dynamical states. We will refer to this theory as the “UV theory”, in contrast to the “IR
theory” by which we mean pure Maxwell with no dynamical states. The electromagnetic
charges of the dynamical states live on a lattice Γ ⊆ Z2r. In practice, it is convenient to
choose a basis γi of generators for Γ, and this gives rise to an explicit expression for the
Dirac pairing in terms of Qij = ⟨γi, γj⟩D ∈ Z.

The first effect of coupling the theory to charged dynamical states is that the spectrum
of admissible lines is reduced. Given a line with charges α, it is only admissible if〈

α, γ
〉

D
∈ Z for all γ ∈ Γ . (2.2)

In other words, α ∈ Γ∗, the dual lattice. The lines in Γ∗ do not need to commute — see
figure 2. Integrally charged line operators always commute, as pointed out in [49], but
Γ∗ is not necessarily an integral lattice. This is the Coulomb branch counterpart of the
effect discussed at length by [50, 52]: the same local dynamics can be compatible with
inequivalent global structures, and different global forms of the theory can be detected
from the spectrum of line defects in four-dimensions.

Moreover, the spectrum of allowed charges for genuine line defects is also constrained
as a sublattice of ΓL ⊂ Γ∗ consisting of a maximally mutually local collection of defect
charges satisfying the Dirac quantization condition ⟨α, α̃⟩D ∈ Z. Inequivalent global forms
of the theory correspond to inequivalent choices of sublattices ΓL after screening.

Indeed, a second effect is that the higher form symmetry group (2.1) is explicitly
broken to a subgroup via screening. This can be understood as follows: the line defects
can have endpoints corresponding to charged operators, and this constrains the electric

– 6 –
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and magnetic symmetry operators in the UV theory to be those under which lines which
can end are neutral. For an example see figure 3 where we illustrate the breaking of a
U(1)(1) higher symmetry to Zq

(1) in presence of a particle of charge q ∈ Z. From this
perspective, the symmetry (2.1) is an emergent symmetry in the IR, which is broken by
massive states that at sufficiently high energies become dynamical. For this reason the
UV theory has a much smaller 1-form global symmetry, which oftentimes is completely
trivial (corresponding to the cases when the spectrum of the theory is complete, meaning
that all defect charges can be screened).8 A related effect is that the potential background
fluxes that the theory admits get reduced: a background for U(1)e can be understood as a
modification for the quantisation condition for the magnetic flux (see e.g. section 5 of [57]
for a discussion), so in the presence of electrically charged states only those backgrounds
that result in quantisation conditions compatible with the charges of the dynamical matter
are allowed. For instance, if all of our electrically charged dynamical particles have even
charge, we can only have background magnetic fluxes with holonomies 0 and 1

2 . In general,
the holonomies of the electric and magnetic fluxes must be such that their Dirac pairing
with all dynamical states is integral.

The screening of Γ∗ with respect to Γ gives rise to 1-form factor of the defect group,
D(1) = Γ∗/Γ [12]. The actual higher form symmetry for a given theory corresponding to
the sublattice ΓL is ΓL/Γ [50, 52].

2.2 An example: the N = 2 su(2) theory on the Coulomb branch

As a simple illustration of the previous discussion, here we briefly review the results of [52]
about the global form of the su(2) gauge theories. From the Seiberg-Witten solution it
is known that the BPS spectrum of the su(2) theory can be generated as bound states of
two mutually non-local excitations with charges γ1 and γ2 such that ⟨γ1, γ2⟩D = −2. In
the choice of electromagnetic duality frame by Seiberg and Witten one can view γ1 as a
monopole of charge (0, 1) and γ2 as a dyon of charge (2,−1). To determine the dual lattice
Γ∗ we can proceed as follows

⟨α, γ1⟩D = α1 ⟨α, γ2⟩D = −α1 − 2α2 (2.3)

Then the first equation implies that α1 ∈ Z, while the second implies that α2 ∈ 1
2Z. Let us

consider the possible mutually local sublattices of Γ∗ from this perspective, with respect to
the corresponding screenings. There are three minimal defect charges which get nontrivial
monodromies with respect to one another, corresponding to non-integer quantized Dirac
pairings, namely

(1, 0)
(
0,

1
2

)
and

(
1,

1
2

)
. (2.4)

Let us first consider the sublattice Γ∗
(1,0) ⊂ Γ∗ that contains the line defect with charge

(1, 0). The requirement of maximal mutual locality then implies that

⟨(1, 0), α⟩D = α2 ∈ Z (2.5)
8For a recent discussion about this point and applications beyond the scope of the present work, we refer

our readers to the nice work [56].
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Hence the charges of the line defects in Γ∗
(1,0) have the form (n, m) where n, m are both

integers. Considering the screening by the charges γ1 and γ2 corresponds to identifying

(n, m) ∼ (n′, m′) + k1γ1 + k2γ2 (2.6)

where ki ∈ Z. We see that we are left only with two equivalence classes in Γ∗
(1,0), namely

[(1, 0)] and [(0, 0)], hence we obtain an electric 1-form symmetry (Z2)(1)
e corresponding (with

a natural choice of duality frame) to the gauge group SU(2). Now consider the lattice Γ∗
(0, 1

2 )
which contains the line with charge (0, 1

2). The requirement of maximal mutual locality for
this class of charges is

⟨
(
0,

1
2

)
, α⟩D = −α1

2 ∈ Z ⇒ α1 ∈ 2Z (2.7)

Hence the charges of the line defects in Γ∗
(0, 1

2 ) have the form (2n, m/2) where n, m are both
integers. The screening equivalence relation is again

(2n, m/2) ∼ (2n′, m′/2) + k1γ1 + k2γ2. (2.8)

We see that we are left with only two equivalence classes again [(0, 0)] and [(0, 1
2)] corre-

sponding to a magnetic 1-form symmetry (Z2)(1)
m which gives a gauge group SO(3)+. Now,

consider Γ∗
(1, 1

2 ): procceeding analogously, we obtain that

⟨
(
1,

1
2

)
, α⟩D = α2 −

α1
2 ∈ Z

⇒ (α1, α2) ∈ {((2n + 1), (2m + 1)/2)} or {(2n, m)} n, m ∈ Z
(2.9)

Again by screening we see that we obtain only two equivalence classes: [(0, 0)] and [(1, 1
2)],

corresponding to a (Z2)(1)
diag 1-form symmetry, which corresponds to the gauge group

SO(3)−.
We stress here that the above result is independent of the choice of electromagnetic

frame: we can choose to work with any different basis as long as we are preserving the Dirac
paring. For instance, one could do the analysis working with γ1 = (1, 1) and γ2 = (1,−1).
In this case the charges in Γ∗ have the form

⟨α, γ1⟩D = α1 − α2 ⟨α, γ2⟩D = −α1 − α2 (2.10)

And therefore one obtains

(α1, α2) ∈
{(2m + 1

2 ,
2n + 1

2

)}
or {(m, n)} m, n ∈ Z. (2.11)

With this choice of duality frame we have the following defect charges that would violate
Dirac quantization (1

2 ,
1
2

) (1
2 ,−1

2

)
and (0, 1) . (2.12)

These correspond to the three choices of lattices above, if we identify the direction (1, 1)
with the magnetic charge and the direction (0, 1) with the electric one.

– 8 –
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3 Symmetry TFT and global structure

We have just argued that whenever the lattice Γ of charges particles in Maxwell theory is
not unimodular we have the possibility of having choices of global structure, encoded as
choices of maximal sets ΓL of commuting elements in Γ∗/Γ. This is perhaps a surprising
statement, as we typically don’t think of Maxwell theory as admitting different global
forms. The key difference between our analysis and the usual analysis is that we do not
impose a priori integral quantization for the electric and magnetic fluxes in the theory,
but rather accept as valid any flux quantisation structure compatible with the dynamical
matter content. For instance, if all electrically charged states have even charge we include
half-integrally quantised fluxes in the path integral for Maxwell theory. If we are considering
theories with only electrically charged states (in some duality frame) then this is purely
a matter of convention, and the half-integrality can be rescaled away. In contrast, the
theories of interest to us are richer, and include dyonic states, which lead to genuinely
different prescriptions for which fluxes to sum over.

Our task is therefore classifying all the possibilities for flux quantisation conditions
compatible with the local dynamics. As mentioned above, the choice of quantisation for
the electric and magnetic fields can be understood as a choice of background fields for
the electric and magnetic 1-form symmetries. So our problem may be recast as the de-
termination of which choices of background fluxes are allowed in a given quantum theory,
given the dynamical matter content. This kind of problem has a familiar solution (see for
instance [58]): the possible flux choices can be understood as states in the Hilbert space of
a (generically non-invertible) BF theory in one dimension higher.

3.1 A quick review of BF theory in D + 1 dimensions

In this section we review some basic details of the BF theory, following the discussion
in [59]. These details are well-known, and can be skipped by cognoscenti. A BF theory is
a TFT in D + 1 dimensions with action

S = 2πin

∫
MD+1

b(q+1) ∧ db(D−q−1) (3.1)

where b(q+1) and b(D−q−1) are a (q + 1)-form and a (D − q − 1)-form. We stress that the
coefficient n which multiplies the action must be an integer for exp(−S) to be well defined
and compatible with the local U(1) gauge transformations

b(q+1) → b(q+1) + dλ(q) b(D−q−1) → b(D−q−1) + dλ(D−q−2) . (3.2)

Here we are being naive and focusing only on the local structure of these higher gauge
transformations. More refined experts might look into the full fledged gerby behavior of
these Deligne-Beilinson cocylces. For our purposes in this paper the above description will
suffice. Notice that upon a gauge variations we obtain

S → S + 2πin

∫
∂MD+1

λ(q) ∧ db(D−q−1) . (3.3)

– 9 –
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This boundary term is crucial for applications to inflow and generalizations that we are
after in this paper.

The theory is topological for a simple reason: the equation of motion for this theory are

f (q+2) = db(q+1) = 0 f (D−q) = db(D−q−1) = 0 (3.4)

and forbid any local propagating degree of freedom. The theory has nevertheless interest-
ing non-local gauge invariant operators corresponding to closed (q + 1)-dimensional and
(D − q − 1)-dimensional hypersurfaces of MD+1, that generalize the familiar Wilson lines:

WΣ(q+1) = exp 2πi

∫
Σ(q+1)

b(q+1)

WΣ(D−q−1) = exp 2πi

∫
Σ(D−q−1)

b(D−q−1)
(3.5)

To determine the algebra of these operators notice that the insertion of WΣ(q+1) in a correla-
tor can be absorbed in the action introducing a source term in the equations of motion (3.4)

nf (D−q) = δΣq+1 (3.6)

where δΣ(q+1) is the Poincaré dual to the cycle Σ(q+1) in MD+1. As a result we obtain that

⟨WΣ(q+1)WΣ(D−q−1)⟩ = exp
(2πi

n
ℓ(Σ(q+1),Σ(D−q−1))

)
(3.7)

where ℓ(Σ(q+1),Σ(D−q−1)) is the linking number of Σ(q+1) and Σ(D−q−1) in MD+1.
Equivalently, restricting everything along a spatial slice and considering a Hamiltonian
quantization, these generalized Wilson lines form a Heisenberg algebra

WΣ(q+1)WΣ(D−q−1) = exp 2πi

n

(
Σ(q+1) · Σ(D−q−1)

)
WΣ(D−q−1)WΣ(q+1) (3.8)

where · is the intersection pairing along the spatial slice for the Hamiltonian quantization.
Since this Heisenberg algebra is nontrivial the Hilbert space associated to a generic
codimension one submanifold MD will have dimension greater than one.

3.2 Global structures from the infrared

We now specialize the discussion in the previous section to the case of interest for this
paper in which D = 4 and q = 1. Our main claim is that the introduction of the dynamical
states on Maxwell theory leads to a 4d theory relative to the 5d theory9

S = 2πi

2

∫
M5

Qαβ b(2)
α ∧ db

(2)
β = 2πi

2

∫
M5

〈
b(2), db(2)〉

D
(3.9)

where the skew-symmetric matrix Qαβ is the 2r × 2r Dirac pairing for the BPS states in
4d, and b(2) is a 2r component 2-form (or more precisely, a 2r-dimensional vector of degree

9We stress that this is not the whole action of the symmetry TFT, just the part from which the choice
of global structures will follow.
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3 differential characters, but as mentioned above we will not need to worry about such
topological subtleties here).

This action can be justified as follows. Note first that since Q is an antisymmetric
matrix we can do an invertible integral change of basis to bring it into a block diagonal form

Q̃ =



0 n1 · · ·
−n1 0

. . . ...
... 0 nk

−nk 0
. . .

0 nr

· · · −nr 0

0f×f



(3.10)

with the ni integral and non-negative (see theorem IV.1 of [60] as well as the discussion
in [61]). In practice the ni can be obtained easily by going to the Smith normal form of
Q. If we name the components of b(2) = (b(2)

e,1, b
(2)
m,1, b2

e,2, . . .) we see that our 5d theory
becomes (up to boundary counterterms that we are neglecting)

S5 = 2πi
r∑

i=1
ni

∫
M5

b
(2)
e,i ∧ db

(2)
m,i . (3.11)

So our 5d theory decomposes into a sum of decoupled sectors.
In order to justify (3.11), consider the effect of going to the basis giving (3.10)

on the boundary field theory. The generators γi in this basis satisfy
〈
γ2i−1, γ2i

〉
D

=
−
〈
γ2i, γ2i−1

〉
D

= ni and zero otherwise. So the problem reduces to a situation similar
to what we found in the su(2) case in section 2.2. For simplicity we will henceforth focus
on the first block.

By an SL(2,Z) transformation we can further choose γ1 = (0, 1), γ2 = (n1, k), with
k ∈ Z. We see that all states in this basis have electric charge divisible by n1, so we
can consistently introduce ’t Hooft lines of charge 1/n1. Wilson lines, on the other hand,
necessarily have integral charge. More generally, the spectrum of allowed lines has charges
(p, q/n1), with p, q ∈ Z. This implies, in turn, that the electric background fields have
periodicity 1, but magnetic background fields have periodicity n1. This means that the
allowed flux operators on the 5d BF theory are of the form Wp

eW
q/n1
m , with p, q ∈ Z (but

n1 not necessarily dividing q). Equivalently, we can think of the line operators as being
the boundary of Gukov-Witten open surface operators, which when pulled to the 5d bulk
become the operators in the BF theory.
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A BF theory with action

S5 = 2πi

∫
M5

b(2)
e ∧ db(2)

m (3.12)

where b
(2)
m has periodicity n1 (so W1/n1

m is allowed) and b
(2)
e periodicity 1 is the same as a

BF theory with action
S5 = 2πi n1

∫
M5

b(2)
e ∧ db̃(2)

m (3.13)

with both b
(2)
e and b

(2)
m of periodicity 1 (via b

(2)
m := n1b̃

(2)
m ). Unwinding the choices of basis,

this proves that (3.9) is indeed the bulk theory for Maxwell theory with pairing Q.
From our review in section 3.1 it follows that this TFT has an algebra of generalized

Wilson lines of the form

We,i
Σ2 = exp 2πi

∫
Σ2

b
(2)
e,i Wm,i

Σ2 = exp 2πi

∫
Σ2

b
(2)
m,i (3.14)

which along a spatial slice satisfy an Heisenberg algebra

We,i
Σ2Wm,i

Σ̂2 = exp
(2πi

ni
(Σ2 · Σ̂2)

)
Wm,i

Σ̂2 We,i
Σ2 . (3.15)

This entails that whenever one of the ni’s is different from one, we obtain a Hilbert space
of dimension greater than one for the theory on the boundary. From the point of view
of the four dimensional theory, these generalised Wilson lines are the operators measuring
background flux for the 1-form symmetries, so the fact that they do not commute implies
that we cannot choose Dirichlet boundary conditions for all fluxes simultaneously, as argued
originally in the holographic context in [58]. In the specific case of geometrically engineered
four dimensional theories our field theory discussion will reproduce the results obtained
from geometry previously in [19, 20, 30].

4 Examples and consistency checks from N = 2 theories

In order to compute the Dirac pairing Q we need to know the charge lattice of the theory,
meaning the electromagnetic charges of the particles in the spectrum of the theory. In this
paper, for concreteness, we focus on examples arising in the context of 4d N = 2 theories
where we can easily extract this information exploiting BPS quivers [62]. Here we are
assuming that the BPS spectrum faithfully reproduces the charge lattice, meaning that
we are assuming that in any charge sector populated by states we can always find a BPS
representative. By definition of BPS quiver the Dirac pairing is captured by the quiver
exchange matrix

Qij = #( arrows i → j)−#( arrows j → i) (4.1)

where one works with an extended charge lattice with a number of generators that equals
the number of electric, magnetic and flavour charges (where the latter are taken in the
Cartan of the flavour symmetry F of the theory). The generators of the charge lattice are in
one to one correspondence with the nodes of the BPS quiver and all other stable BPS states
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g D(1)

An Zn+1 ⊕ Zn+1

Dn

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 if 2 | n

Z4 ⊕ Z4 if 2 ∤ n

E6 Z3 ⊕ Z3

E7 , Bn , Cn Z2 ⊕ Z2

E8 , G2 , F4 0

Table 1. Defect groups for the pure N = 2 SYM theories with algebra g.

have charges that can be expressed as linear combinations of the form γ = ∑2r+f
i=1 Miγi

where Mi ∈ Z≥0 for all i (particles) or Mi ∈ Z≤0 for all i (antiparticles). In particular, we
are granted that the γi are in the spectrum and hence our screening argument is faithfully
representing the 1-form symmetry.

4.1 Pure N = 2 SYM theories with algebra g

We begin considering the center symmetries of pure SYM theories with gauge algebra g.
The BPS quivers for all the ADE cases are described in [62, 63] and those for the non-
simple laced cases where given in [64]. We emphasize that in the latter case we have no IIB
geometric engineering construction for the BPS quiver, so the agreement that we will find
between the field theory expectation and the result from the analysis in terms of the BPS
quiver can be taken as evidence that our discussion above remains valid for those cases for
which the string theory analysis is not available.

We find that for all these semi-simple Lie algebras, the Dirac pairing Q can be written
in the block diagonal form and the corresponding defect groups are given in 1. This is clear
from the structure of the Dirac pairing for such models, which is given by

Qg =

Cg − Ct
g Ct

g

− Cg 0

 (4.2)

where Cg is the r × r Cartan matrix for the Lie algebra g. For example, the BPS quivers
for gauge groups SU(N + 1) and USp(2N) are

•1 // ◦2 . . .oo •N
oo

◦1

OOOO

•2
����oo . . .// ◦N

OOOO

//

•1 // ◦2 •3oo // . . . •N
oo

◦1

EEOOOO

•2
����

oooo // ◦3

OOOO

. . .// ◦N

OOOO

//

(4.3)
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respectively. From these we obtain the block diagonal forms

Q̃AN
=



0 N + 1
−(N + 1) 0

0 1
−1 0

. . .


Q̃CN

=



0 2
−2 0

0 1
−1 0

. . .


, (4.4)

respectively. Thus, it is clear that,

D(1)
AN

= (ZN+1)(1)
e ⊕ (ZN+1)(1)

m , D(1)
CN

= (Z2)(1)
e ⊕ (Z2)(1)

m . (4.5)

Moreover, the resulting Heisenberg algebra precisely reproduces the expected global forms
for the corresponding Lie groups [5]. The check for all other groups is carried in a similar
fashion and we consistently recover all results in table 1.

4.2 Example of N = 2∗ theories with algebra g

In order to obtain the N = 2∗ quivers for a simple gauge theory with gauge algebra of
ADE type, one can start from the affine quiver A(1, 1)□Ĝ and replace one of the Kronecker
subquivers that correspond to a node with Dynkin weight 1 in the affine Ĝ diagram with a
single node ∗, giving a ‘specialization’ of the corresponding quiver in the language of [64].
Graphically such operation corresponds to

. . . • //oo . . .

. . . // ◦

OO OO

. . .oo

−→

. . . . . .

∗

==aa

. . .

==

. . .

aa (4.6)

Using this trick, for instance, the BPS quiver for SU(N + 1) N = 2∗ is

•1

~~

// ◦2 . . .oo •N
oo

!!
∗

  

∗

~~
◦1

OOOO

•2
����oo . . .// ◦N

OOOO

//

(4.7)

where the nodes ∗ appearing on the left and on the right of the above equation need to
be identified. The resulting Qij can be read off straightforwardly from equation (4.1).
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Similarly, the BPS quiver for SO(2N) N = 2∗ is

•1 ◦2

��

// . . . ◦N−2oo •N
oo •N−1

xx

∗

77◦1

OOOO

•2
����oo . . . •N−2// ����

◦N

OOOO

// ◦N−1

OOOO

77

(4.8)

Also in these examples we obtain perfect agreement with the defect groups we expect from
gauge theory. For instance starting from the quiver of SU(N) N = 2∗ we obtain

Q̃SU(N)N=2∗ =



0 N

−N 0
0 1
−1 0

. . .


(4.9)

as expected.

4.3 Adding matter in various representations

The BPS quiver for a gauge theory with gauge group g and matter in an principal repre-
sentation R is easily obtained [62]. There is a one-to-one correspondence between principal
representations and nodes of the Dynkin diagram of g. We can schematically summarize
it as follows: the nodes of the Dynkin diagram are in one-to-one correspondence with the
basis elements of the weight lattice, and principal representations are such that their high-
est weight w(Ri) is w(Ri) = δijωj , where ωj is the weight basis. Graphically, the i-th node
in the Dynkin diagram

◦ ◦ · · · •i · · · ◦ · · · (4.10)

correspond to the principal representation Ri. For the pure SYM BPS quiver of type g there
is a one-to-one correspondence between the nodes of the Dynkin diagram and full Kronecker
subquivers. To obtain the quiver for SYM coupled to the i-th principal representation one
adds a node to the BPS quiver connected to the i-th Kronecker subquiver as follows

. . . • //oo . . .

. . . // ◦

OO OO

. . .oo

−→

. . . • //oo

!!

. . .

∗

}}
. . . // ◦

OO OO

. . .oo

(4.11)
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◦1

}}}}

•2oo //

����

◦2

∗10

!!!!

∗6

==

•1 //

OO OO

◦2

aa

•3oo

OO OO

Figure 4. The BPS quiver for SU(4) with matter in the 6 ⊕ 10.

Notice that this prescription is compatible with the prescription discussed in the previous
section about N = 2∗ theories whenever the adjoint is a principal representation (e.g. this
is the case for SO(2N) above).

In general, if the extra matter corresponds to a tensor product of principal represen-
tations Ri ⊗Rj the corresponding BPS quiver is obtained by connecting the extra node to
the rest of the quiver with an oriented triangle for each of the corresponding Kroneckers.
An example for this prescription is the BPS quiver for the adjoint of su(N) in the previous
section. The quiver in equation (4.7) is the BPS quiver for the representation

N ⊗ N = 1⊕ Adj. (4.12)

and it corresponds to the tensor product of the fundamental •1 · · · and the antifun-
damental · · · •N representations of SU(N).

It is amusing to check explicitly that the breaking of the center symmetry by the
N -ality of the corresponding representation is respected, thus giving further consistency
checks to our general result. As an explicit example of how this works in practice let us
discuss here the case of the BPS quiver for a Lagrangian theory with gauge group SU(4)
and matter in the direct sum of a symmetric two-index representation of SU(4) and an anti-
symmetric two-index representation. Since both the 6 and the 10 of SU(4) have quadrality
2, we expect the center symmetry of SU(4) to be broken down to Z2 in this example. The
resulting quiver is in figure 4. We indeed find a defect group D(1) given by two copies of Z(1)

2
and a single non-trivial BF coupling n1 = 2, compatible with the field theory expectations.

4.4 Non-Lagrangian theories

The results in this paper confirm field theoretically all the results we obtained from studying
the 4d N = 2 theories arising from IIB on isolated hypersurface singularities. This follows
from a simple remark: in the IIB geometric engineering of both Lagrangian and non-
Lagrangian theories the Dirac pairing is captured by the intersection form among the
special Lagrangian vanishing 3-cycles of the corresponding CY (see e.g. [65]). In that
context the charge lattice of the theory is a sublattice of H3(X ,Z) given by stable collections
of wrapped D3 branes. The quiver captures precisely this information, and the nodes of
the quiver give rise to a collection of 3-cycles that are always stable, in regions of the
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moduli space that are compatible with that quiver descriptions. The intersection pairing is
therefore identified with the Dirac pairing, and that is precisely the quantity which enters
in all the computations we carried out in our previous paper on the subject and that
determines the structure of the Heisenberg algebra of FMS fluxes. For all these examples,
therefore, our field theoretical results and the ones obtained from geometric engineering
agree by construction. In particular, this confirms previous results [19, 20, 30, 34, 36, 41, 66]
about the Argyres-Douglas theories of type (G, G′) constructed by Cecotti, Neitzke, and
Vafa [63], the various Arnol’d SCFTs [67, 68] and other theories originating from singularity
theory [69], as well as the SCFTs of type Dp(G) [70, 71].

We stress that our methods extend straightforwardly to all other theories with a known
BPS quiver.

As a further example of an application, we present in the rest of this section an analysis
of the rank one theories with known BPS quivers, namely theories in the I1 series and in
the I4 series in table 1 of [72]. Therefore we obtain examples in all possible characteristic
dimensions [73]. The BPS quivers for these theories have been obtained in [74] — see section
4 of [75] for a review (see also [62, 71, 76] for previous results on the topic as well as the nice
works [77, 78] for a more recent take on the subject). The resulting quivers have the form

◦

qK

��

∗1

a1

ff

∗2

a2

jj

· · · ∗f

af

ll

•

a1

88

a2

44

af

22 (4.13)

where:

• f is the rank of the flavor symmetry of the rank 1 theory of interest;

• qK is a positive integer denoting the multiplicity of the arrows ◦ → • determined as
follows:

qK =


3 for K = II∗, III∗, IV ∗

2 for K = I∗0

1 for K = II, III, IV

(4.14)

• a1, a2, . . . , af are positive integers denoting the multiplicities of the arrows • → ∗i →
◦, determined from the decomposition of the Kodaira fiber

K → I1, I1, I(a1)2 , I(a2)2 , . . . , I(af )2 . (4.15)

As an example for the E8 Minhan-Nemeshansky theory [79] we have K = II∗ and
II∗ → (I1)10, hence qK = 3, f = 8 and ai = 1 for all i = 1, . . . , 8. As another example,
for the Argyres-Wittig theory with a flavor symmetry with Lie algebra C5 we have
II∗ → (I1)6, I4, hence qK = 3, f = 5 and a1 = 2 while a2,3,4,5 = 1.

Exploiting the data of table 1 of [72] it is straightforward to read off the corresponding
BPS quivers for these theories, then by (4.1) the resulting BF levels follow by our method.
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The result we obtain is that for all these theories n1 = 1, but for the case K = I∗0 with
decomposition I∗0 → I1

2, I4 which corresponds to SU(2) N = 2∗. In this case we obtain
n1 = 2, as we already discussed above.

The result we obtain for the global forms of these theories can be also recovered ex-
ploiting the fact that these models arise as fixed points of supersymmetry enhancing RG
flows, starting from N = 1 Lagrangians [80]. Another interesting class of susy enhancing
RGs are those of Maruyoshi-Song type which give results for the theories in the I1 se-
ries [81–83]. For the theory in the I4 series with global symmetry USp(4) × U(1) as well
as for the E6 MN theory, UV N = 1 theories have been obtained by brane bending and
deconfinement [84]. In all these examples we reproduce easily the fact that the UV theory
has a trivial defect group, thus confirming our findings.

5 Generalization to other dimensions

In this section we quickly comment about the generalization of the argument above to
some other theories in higher dimensions. In general we expect the D + 1 TFT action will
contain terms of the following form (with an additional factor of 2 in the self-dual case)

ST F T
D+1 ⊇ 2πi

D∑
q=0

Qα,β
q

∫
D+1

b(q+1)
α ∧ db

(D−q−1)
β . (5.1)

The latter are relevant to probe more general global forms of QFTs in D-dimensions with
different kinds of higher q-form symmetries corresponding to defects with non-trivial gener-
alized Dirac strings. We stress that other couplings can be allowed, which in this paper we
are omitting. In these cases the symmetry properties of the matrices Qα,β

q depend crucially
on D and on q. For instance for D = 6 and q = 2, we have a symmetric pairing that
was explored in the context of defect groups and global structures of 6d (2,0) and (1,0)
theories [12, 15]. In what follows we quickly address the IR origin of the global structures
for the cases of 6d (2,0) SCFTs and of 5d SCFTs.

5.1 The case of 6d (2,0) theories

In the case of 6d (2,0) theories we have an analogue of the Coulomb branch, where the
nonabelian string dynamics reduces to an abelian one, the so-called tensor branch. Along
the tensor branch we have a (U(1)(2)

e )r higher 2-form symmetry, which has 3-form currents
J (3) = h

(3)
i corresponding to the anti-self-dual 3-form curvatures h

(3)
i = db

(2)
i where b

(2)
i are

the 2-form fields in the 6d tensormultiples. We can couple the latter to background fluxes
B

(3)
i , which have 3-form background gauge transformations analogous to the discussion we

had for the Maxwell theory. Also in this case, when we excite the (2,0) BPS strings, the
current conservation equation d ∗ J (3) = 0 is broken by the presence of sources for the h

(3)
i

fluxes, represented by the string charges.
The effect of such breaking is again detected by the inflow mechanism which associates

to the tensor branch a 7d BF like theory of the form

S7 ⊇ 2πi

2 Cαβ
g

∫
7

b(3)
α ∧ db

(3)
β (5.2)
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where Cαβ
g is the Cartan matrix of the Lie algebra of type g, which gives the BPS string

Dirac pairing for the (2,0) theory of type g in 6d, again accounting for the ’t Hooft screen-
ing [12].

There is a crucial difference between six dimensions and four dimensions: in six di-
mensions the Dirac pairing in 6d is a symmetric matrix, which is compatible with the
symmetry properties of the 7-form in the action 5.2. For this reason, 6d strings can be
non-mutually local with respect to themselves. As examples one can consider e.g. the rank
one non Higgsable cluster theories, 6d SCFTs with tensor branch of the form g

n. For these
models we obtain

S7 ⊇ 2πin

2

∫
7

b(3) ∧ db(3) (5.3)

This physical distinction comes together with a very important mathematical distinction:
while the theory of skew-symmetric integral bilinear forms relevant to the four dimensional
case is very simple (and in particular implies that a change of basis to the simple block
diagonal form (3.10) always exists), the theory of symmetric bilinear forms over the integers,
relevant in the six dimensional case, is significantly more complicated. For instance, one
can show that the Cartan matrix arising in the su(2) case cannot be taken to diagonal form
via an integral congruence [85].

Interestingly, it is the diagonal form that appears in the holographic result arising from
the reduction of the Chern-Simons couplings of M-theory [58, 86]

S7(AN−1) ⊇
2πi

2 N

∫
7

c(3) ∧ dc(3) + . . . (5.4)

The equivalence of this BF theory, up to an invertible sector, with the theory (5.2) is
shown in appendix F of [6].

5.2 The case of 5d theories

Another class of theories with interesting Coulomb phases is provided by the 5d SCFTs with
non-trivial ranks. Along a 5d Coulomb branch we have an emergent (U(1)(1)

e × U(1)(2)
m )r

higher form symmetry. The latter is similarly broken to subgroups by the spectrum and,
mutatis mutandis, the same logic applies. The resulting BF-theory in this case has the form

S6 ⊇ 2πiQαβ
∫

6
b(2)

e,α ∧ db
(3)
m,β (5.5)

where Qαβ is the Dirac pairing among the BPS electric states and the 5d BPS monopole
strings. This latter quantity determines the structure of the Heisenberg algebras of
non-commuting fluxes via a field redefinition to its Smith normal form, thus reproducing
all the results obtained via M-theory in this context (see e.g. [16, 17, 22, 46, 47, 87]).10

For this class of theories, it is known there might be further terms in the bulk TFT [8]:
it should be possible to recover the latter in terms of the infrared as well, however this
would go beyond the modest scope of this short note.

10The Dirac pairing Qαβ coincides with the intersection form between 2-cycles and 4-cycles relevant for
the computation of the global forms from M-theory geometric engineering.
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As a consistency check of the above formula, one can consider the 4d KK theory of
the corresponding SCFT, obtained from circle reduction. These systems have 5d BPS
quivers [88]. The latter can be exploited in a way analogous to the one we discussed above
to capture the global structure of the 4d KK theory so obtained. See reference [87] for an
application of this idea in the context of 5d orbifold SCFTs discussed e.g. in [89].

6 Conclusions

In this paper we have begun exploring a mechanism to recover the global structure of a
given QFT from an infrared phase which is under perturbative control. Our main result
is to recover, from Coulomb-like phases, the Heisenberg algebra of non-commuting fluxes
that was found in the geometric engineering analysis in purely field theoretical terms.

An interesting question that we leave for future analysis is to characterize the full
structure of the symmetry TFT from an IR perspective. We expect this to be possible by
a suitable extension of the ’t Hooft anomaly matching argument: while the theory on the
boundary flows, the symmetry TFT in the bulk must match along the flow. In this short
note, we recovered the term responsible for the possible choices of global structures, but
we stress that, for instance, we expect mixing terms between the various higher form fields
in the symmetry TFT. The latter are not captured by the argument presented here, but
are known to arise from a geometric engineering perspective [8, 44].

In this context a direction that we find particularly interesting is the question of
recovering higher group structures or more general non-invertible symmetries from the
IR. For two-groups, evidence that this is indeed possible in some cases was given in the
context of little string theories in the papers [25, 51, 90]. There it was shown that higher
group structure constants are related to specific terms in the anomaly polynomial of the
corresponding little strings. Based on that analysis we conjecture the anomaly theories on
the worldvolumes of the various BPS degrees of freedom of the boundary QFTs of interest
must know about these finer details of the symmetry TFT. A similar effect was recently
exploited to unravel certain non-invertible symmetries in [91, 92].
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