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ABSTRACT
We present a dissipative particle dynamics study of surfactant solutions under shear, which allows us to investigate their rheological properties.
We consider a variety of concentrations and phase structures, including micellar solutions and liquid crystal phases. It is shown that the
viscosity of micellar solutions increases as a function of concentration, in agreement with what is expected from experimental data. We also
show that micelles can exhibit shear-thinning behavior when a shear force is applied, which is a result of micelles breaking down into smaller
aggregates. Lamellar and hexagonal phases are found to orientate under the application of shear, in agreement with experimental observations.
It is normally suggested that lamellar phases under shear can exhibit a transition between orientations as the shear rate is increased, usually
as a result of lower viscosity. We calculate the viscosity for different lamellar phase orientations, showing that, although the viscosity of
perpendicular orientations is lower than that of parallel orientations, we do not observe a transition to the perpendicular phase at high shear
rates. Finally, we show that the choice of Schmidt number has a significant impact on the results, which is important for determining the
correct behavior via simulations.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152673

I. INTRODUCTION

Surfactants are common components of a wide range of prod-
ucts, particularly in the cleaning and personal care industries. Above
the critical micelle concentration, surfactants self-assemble into dif-
ferent structures (or “phases”) depending on their concentration in
an aqueous solution. Typical phases include micellar, hexagonal, bi-
continuous cubic, and lamellar structures. These different phases
have different properties; in particular, the rheological properties of
micellar solutions are distinctly different from those of the liquid
crystalline mesophases. Since the manufacturing processes for prod-
ucts containing surfactants most commonly involve the application
of shear, understanding the properties of surfactant solutions under
shear is of fundamental importance.

In this work, we focus on anionic sodium lauryl ether sulfate
(SLES) surfactants of the form CH3(CH2)12(OCH2CH2)nOSO3Na,
which are common components of personal care products. The
degree of ethoxylation n can vary in commercial products, typically

taking a distribution of values. At room temperature, aqueous SLES
solutions tend to progress through phase transitions from micel-
lar → hexagonal → lamellar1 with increasing concentration. Cubic
phases can appear between the hexagonal and lamellar phases when
the degree of ethoxylation is large (n ≥ 3).2

In this work, we present simulations of SLES surfactant solu-
tions under the influence of a shear force. These simulations are
performed using dissipative particle dynamics (DPD), a mesoscopic
technique that uses soft interaction potentials between coarse-
grained molecules to reproduce liquid behavior. We choose DPD
over other simulation techniques, such as molecular dynamics, since
DPD is able to reach longer time and length scales than such alter-
native approaches. This makes DPD ideal for studying the behavior
of surfactants while under shearing.

Experimentally, micellar sodium dodecyl sulfate (SLES with
n = 0) aqueous solutions are generally reported to be Newto-
nian, with the viscosity increasing with concentration.3,4 However,
the shear rates in experimental measurements using rotational
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rheometers are typically significantly lower5,6 (≈10−3 –103 s−1) than
those used in simulations5–7 (≈108 –1012 s−1). The shear rates used
in the manufacturing process of products containing surfactants are
also typically larger than those that can be accessed by standard
rheometer measurements. SLES-based products, such as shampoos,
are often created using high shear mixers, which can generate
shear rates ranging from 104–105 s−1 during the mixing process.8
For micellar systems, the viscosity is expected to be influenced
by the micellar shape, the concentration of micelles, and micellar
interactions.3,4,9,10 Therefore, it is of interest whether the application
of shear at large shear rates causes any changes to these properties,
thereby altering the viscosity of the system. Lyotropic liquid crys-
talline mesophases typically exhibit very different rheological behav-
ior, possessing a viscosity that is many orders of magnitude larger
than that of micellar systems. They can also show shear-thinning and
time-dependent3,11–16 properties.

A number of existing studies have used DPD to investigate the
rheological behavior of surfactant systems,17–21 although typically,
viscosity calculations can only be performed at relatively high shear
rates17,19,21,22 since they display a large amount of noise at decreasing
shear rates.17,22 Existing DPD studies predict shear-thinning behav-
ior for micellar systems,17,18,21 where micelles have been observed
to change shape due to the application of a shear force. Spheri-
cal micelles can also stretch under shear flow,20 where worm-like
micelles can then be broken up into small, spherical micelles at high
shear rates, resulting in lower solution viscosity.17,18 Using DPD, it
has been shown that surfactant molecules can stretch in length as a
result of shear,20 meaning that the radius of gyration can be depen-
dent on the shear rate.23 While existing studies could be found for
micellar solutions, there are relatively few prior DPD investigations
studying the effect of shear on liquid crystals. Therefore, we aim
to study solutions across a range of concentrations, specifically the
micellar, hexagonal, and lamellar phases.

One of the topics of interest in this work is the impact of
the Schmidt number, where the Schmidt number Sc is defined as
the ratio of kinematic viscosity ν and mass diffusivity D: Sc ≡ ν/D
= μ/ρD, where μ is the dynamic viscosity and ρ is the density. DPD
typically generates a Schmidt number that is more comparable to
that of a typical gas than a liquid. There is no general consensus
in the existing literature about how important the Schmidt number
is in DPD simulations and the impact it has on results, although
it is a topic of interest.24 In DPD studies of polymer chains,25 it
was found that the Schmidt number has no impact on the radius of
gyration of molecules Rg when no shear is applied. However, when
shear is applied, there is a large difference in Rg at different Schmidt
numbers. In contrast, other studies have reported that the Schmidt
number is unimportant in determining rheology,26 making this a key
area of interest.

Experimentally, it is generally reported that the lamellar and
hexagonal phases orientate under the application of shear.27–34

Therefore, one of the aims of this work is to investigate the ori-
entation that mesophases take under shear. Lamellar phases have
been shown to tend to take one of two orientations, with bilay-
ers stacking either parallel or perpendicular to the direction of
flow. For SLE3S solutions, textures viewed under a polarized optical
microscope indicate a parallel alignment under shear,2 which is gen-
erally the case for most surfactant systems. Both experiments31,32,35

and simulations34 have suggested that, for some systems, there is a

transition from the parallel orientation to the perpendicular orienta-
tion at very high shear rates (although for other systems, the parallel
orientation persists at high shear rates33). A commonly cited reason
for this transition is that the perpendicular orientation34,35 possesses
a lower viscosity. Similarly, hexagonal solutions tend to exhibit two
different orientations under shear: either an in-shear-plane orienta-
tion or an out-of-shear-plane “log-rolling” orientation.27 However,
the alignment of hexagonal rods along the flow direction is the most
commonly reported preference.28–30

This article begins with an overview of the DPD method used to
simulate SLES solutions at various concentrations. We then provide
details on how the viscosity is determined using two approaches:
a non-equilibrium method in which shear flow is induced using
Lees–Edwards boundary conditions and an equilibrium method
based on pressure fluctuations. We study the impact that shear has
on micellar solutions and how this influences the resulting viscosity.
In this study, we vary parameters such as concentration, degree of
ethoxylation, shear rate, and Schmidt number. The Schmidt number
can be varied with the application of an external thermostat, which
can be used to reproduce a Schmidt number closer to that of a real-
istic fluid than traditional DPD would allow. Finally, we present a
study of the impact that applying shear force has on lamellar and
hexagonal liquid crystal phases.

II. SIMULATION METHODOLOGY
A. Dissipative particle dynamics
1. Overview

The simulation method of dissipative particle dynamics (DPD)
uses coarse grains of molecules, representing groups of atoms as
“beads.” The coarse-graining used in this work for SLES molecules is
taken from the parameterization of Anderson et al. (2018),36 where
the coarse-graining is shown in Fig. 1, and water beads represent
two water molecules. The head group bead [CH2OSO−1

3 ]− is neg-
atively charged, and the positively charged counter ions Na+ are
partially hydrated with two water beads. The ethylene oxide groups
are represented as a single bead [CH2OCH2]. The alkyl chain is
coarse-grained such that one bead represents two carbon atoms
[CH2CH2], and the alkyl chain is terminated by a bead representing
a methyl group [CH3].

The force on an individual bead from non-bonded interactions
is made up of a combination of forces,

fi =∑
j≠i
(FC

ij + FD
ij + FR

ij + FE
ij), (1)

where Fij are the forces acting on bead i by bead j. FC
ij is the conser-

vative force, FD
ij is the dissipative force, FR

ij is the random force, and

FIG. 1. Coarse-grained representation of SLES molecules used in this work, where
beads are colored according to their type. The number of ethylene oxide beads, n,
is varied.
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FE
ij is the electrostatic force. The conservative force is repulsive and

takes the form

FC
ij =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

aij(1 −
rij

rC
)r̂ij , for rij < rC,

0, for rij ≥ rC,
(2)

where aij is an interaction parameter between beads i and j, rC is the
cut-off radius, rij = ri − rj, rij = ∣rij∣, and r̂ij = rij/∣rij ∣. The aij and rC
values for each bead pair are obtained from Anderson et al. (2018).36

The forces FD
ij and FR

ij are given by

FD
ij = −γωD

(rij)(r̂ij ⋅ vij)r̂ij , (3)

FR
ij = σωR

(rij)ζij r̂ijΔt−1/2, (4)

where ωD and ωR are distance-dependent weight functions that van-
ish for rC < r, γ is a friction coefficient, σ is the noise amplitude,
vij = vi − vj, ζ ij(t) is a randomly fluctuating Gaussian variable with
a zero mean and unit variance.

It was shown37 that one of the weight functions can be chosen
arbitrarily, and this fixes the other weight function in order to satisfy
the fluctuation-dissipation theorem. The relationship between the
two functions is

ωD
= [ωR

]
2, (5)

and the relationship between amplitudes

σ2
= 2γkBT, (6)

where kB is the Boltzmann constant and T is the temperature. These
two forces together form a thermostat, maintaining the temperature
of the system. The function used for ωD is

ωD
=

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

(1 −
rij

rC
)

2
, for rij < rC,

0, for rij ≥ rC.
(7)

To bond beads together to form long chain molecules, two
additional forces are introduced to Eq. (1). The first is a simple
harmonic spring force

FS
ij =∑

j
C(rij − l0)r̂ij , (8)

where the sum runs over all of the beads that are directly connected
(i.e., those that are chemically bonded) to bead i. C = 150 (DPD
units) is the spring constant, and l0 is an unstretched bond length.
Bond lengths are set according to the number of heavy atoms36 ni
and nj in the bonded beads, calculated as l0 = 0.1(ni + nj) − 0.01.

A further bonding force takes into account the molecular
stiffness, where the potential defining this force is

U =
1
2

K(θ − θ0)
2, (9)

where the angle θ is defined as the scalar product of the two bonds
connecting beads i − 1, i and i, i + 1 (in other words, the angle

between adjoining bonds), K = 5 (DPD units) is a bending constant,
and θ0 = 180○ is a preferred equilibrium angle.

Finally, to model the electrostatic pair potential between
charged beads, we use Slater-type charge smearing, where the
potential UE between two charged beads, i and j, is given by

UE =
Γqiq j

4πrij
[1 − (1 + β∗rij)e−2β∗rij

], (10)

where qi and qj are the charges, Γ = e2
/(kBTϵ0ϵrrC) is a dimen-

sionless electrostatic coupling parameter, and β∗ = 0.929r−1
C is the

tunable Slater parameter.

2. Thermostatting
DPD does not require a thermostat to maintain the tempera-

ture of the system, instead using dissipative and random forces to
control the temperature. The dissipative force parameter γ can be
used to alter the dynamic viscosity μ of the simulated fluid. How-
ever, the relationship between γ and μ in DPD is fairly complex.38

Furthermore, standard choices for parameters in FD
ij and FR

ij lead to
a viscosity that is extremely low compared to what is expected for
real fluids. Similarly, the mass diffusivity is also too high, and this
(combined with low viscosity) generates a fluid with an unrealisti-
cally small Schmidt number (on the order of ≈1). This low Schmidt
number is suitable for gases but too small for liquids (≈1000). Since
using standard DPD alone makes it difficult to simulate a realistic
fluid viscosity and Schmidt number, we apply the Stoyanov–Groot39

external pairwise thermostat during viscosity calculations. This also
allows us to vary the Schmidt number to investigate its influence on
the results.

The Stoyanov–Groot thermostat was specifically developed for
DPD particle systems and is a combination of the Lowe–Anderson40

thermostat and a thermostat similar to the Nosé–Hoover41 thermo-
stat, coupled in parallel. The thermostat works by selecting pairs of
beads and altering their velocity after each time step. The velocity
is altered such that the temperature of the system is maintained.
For each pair of beads that is selected, we choose between the
Nosé–Hoover thermostat and the Lowe–Anderson thermostat with
probability P = ΓΔt (where Δt is the integration time step and Γ an
exchange frequency). The resulting fluid viscosity is linearly pro-
portional39 to the choice of parameter Γ, while diffusivity D∝ 1/Γ,
meaning that Schmidt number Sc∝ Γ2. When the switching prob-
ability P is low, the Nose–Hoover thermostat dominates, producing
a fluid with a high diffusion coefficient and low viscosity. When P is
high, the Lowe–Anderson thermostat dominates, producing a fluid
with low diffusion and high viscosity. Switching between the two (in
the form of the Stoyanov–Groot thermostat) allows us to vary the
Schmidt number easily and significantly.

3. Geometrical size of micelles and molecules
The radius of gyration, RG, is used to quantify the size and shape

of micelles. This is calculated using

R2
G =

1
NM

NM

∑

k=1
(rk − rM)

2, (11)

where rk is the position of a particle in a micelle consist-
ing of NM beads and rM is the centre-of-mass for the micelle
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rM = ∑
NM
i miri/∑

NM
i mi. Similarly, the size and shape of individual

molecules are also quantified using their radius of gyration Rg (note
the variation of the subscript for the radius of gyration of molecules
Rg vs that for the whole micelle RG). This is defined as the average
squared distance of the beads making up the molecule from its center
of mass. Therefore, for a single molecule,

R2
g =

1
NS

NS

∑

k=1
(rk − rS)

2, (12)

where NS is the number of particles in the surfactant molecule and
rS is the centre-of-mass for the surfactant molecule.

B. Shear flow and viscosity
1. Equilibrium methods

A typical method for calculating viscosity in molecular sim-
ulations uses Green–Kubo relations42,43 using the auto-correlation
function (ACF),

η =
V

kBT∫
∞

0
⟨σαβ(t0)σαβ(t + t0)⟩t0 dt, (13)

where σαβ are the off-diagonal components of the stress tensor, α
and β represent the x, y, and z directions, and V is the simulation
volume. Angular brackets indicate an average over different time
origins t0. While the stress tensor consists of nine components σαβ
defining the state of stress at a point inside the simulation box, only
the off-diagonal components are required for calculating the viscos-
ity. Since σαβ = σβα, there are three unique off-diagonal components.
For isotropic phases, only integration over one of these stress tensor
components is required to calculate η since all off-diagonal com-
ponents should produce equivalent values for the viscosity. This
integrand decays to zero in the limit of a long t; in practice, the
integration is usually performed up to time tC, beyond which the
integrand is negligible. This method calculates a viscosity without
the application of shear and, therefore, calculates a zero-shear vis-
cosity. Therefore, it is most commonly used for Newtonian fluids
where the viscosity is independent of the shear rate.

2. Non-equilibrium methods
In order to investigate fluids that are expected to exhibit

non-Newtonian behavior, a non-equilibrium approach should be
taken. In this work, we used Lees–Edwards boundary conditions,44

which are an adaptation of standard periodic boundary conditions
for inducing shear flow. The theoretical implementation of these
boundary conditions is illustrated in Fig. 2. Domains that are peri-
odic to the simulation box are given a velocity that is proportional to
their vertical position (relative to the simulation box). As a bead in
the simulation box moves through the boundary at either the top or
the bottom of the domain, its velocity and tangential position change
as a result, generating a linear velocity profile over the simulation
box domain. We note that it has been shown that Lees–Edwards
boundary conditions for DPD can display non-physical jumps in
the velocity profiles.45,46 However, this behavior only manifests at
high dissipation rates [drag coefficient γ in Eq. (3)] and is due to the
velocity dependence of the DPD thermostat. In this work, we see no
unnatural jumps in the velocity profiles for the values of γ and shear
rate used.

FIG. 2. Illustration of Lees–Edwards boundary conditions44 for shear flow. The
shear rate γ̇ is calculated using the velocity vx of the box.

For an isotropic fluid, such as micellar solutions, the shear vis-
cosity can be simply calculated using the stress tensor σαβ and the
applied shear rate γ̇. For a shear flow defined by a velocity field
v = vx(y)x̂, there is only one non-zero off-diagonal component
of the stress tensor: σxy (or the equivalent σyx). The shear rate is
calculated as γ̇ = ∂vx/∂y, therefore, the viscosity is calculated by

σxy = −η
∂vx

∂y
. (14)

The stress tensor is calculated using the Irving–Kirkwood
definition47 by summing components of pairwise forces and vectors
between bead pairs. This is calculated as

σαβ =∑
i

⎛

⎝

mivi,αvi,β +∑
j>i

Fij,αrij,β
⎞

⎠

, (15)

where the sum is over all beads i in the system (although, as noted
earlier, only the component defined by α = x and β = y is needed to
calculate the viscosity). Averaging the value calculated over a large
number of time steps allows us to find an accurate value for η.

However, for a nematic or smectic liquid crystal, there can be
considered to be three different shear viscosity coefficients, depend-
ing on the direction of shear flow relative to the director D. Miesow-
icz viscosity coefficients η1, η2, or η3 are defined from the shear
viscosities when the director lies along the x, y, or z axes, respec-
tively (see Fig. 3). A summary of the three viscosities in relation to
the flow velocity v follows:48

FIG. 3. Definition of Miesowicz viscosity coefficients η1, η2, and η3. Measurement
of the coefficients ηi involved orientating the director of the liquid crystal D relative
to the flow velocity.
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● η1 is when director D is parallel to flow velocity.
● η2 is when D is parallel to the velocity gradient.
● η3 is when D is orthogonal to both the flow and the velocity

gradient.

III. SIMULATION SET-UP
The DPD phase structures for SLES solutions are reported in

previous studies,1 where it was observed that the micellar and lamel-
lar phases spontaneously form under equilibrium conditions, while
the formation of hexagonal phases requires a small amount of shear
to be applied to encourage equilibration. In this work, we initial-
ize our simulations at concentrations across the phase diagram,
using the pre-equilibrated phases from our previous work, where the
equilibrium phase diagram is summarized in Fig. 4.

Simulations are performed for cases with different degrees of
ethoxylation, where we vary the number of ethylene oxide groups
in the range 0 ≤ n ≤ 3. We also simulate a case with a distribution
of n (in order to replicate the distribution that would be found in a
commercial product) with an average n̄ ≈ 1, which we refer to in this
work as AES. Our simulated AES is made up of n = 0 (52.7 wt. %),
n = 1 (25.8 wt. %), n = 2 (14.0 wt. %), and n = 3 (7.5 wt. %).

A. Micellar solutions
For micellar solutions, we take two approaches to calculating

the viscosity. The first is using the stress tensor auto-correction
function, and the second is via the application of shear. In both
cases, the Stoyanov–Groot thermostat is used. Using the equilibrium
approach, a selection of collision parameter values is trialed, ranging
from Γ = 0 (i.e., a pairwise variation of the Nosé–Hoover thermo-
stat) to Γ = 250. The time step Δt = 0.01 is used for all micellar
calculations.

When shear is applied, we trial different shear rates varying
from γ̇ = 1.2 × 10−6 to γ̇ = 1.2 × 10−1 (DPD units). While there are
different approaches to the conversion of DPD units to SI units, one
common method for converting the time scale of DPD simulations
results from matching the energy kBT to the experimental value at
room temperature. This results in an estimate for the time scale of
τC = 2.16 × 10−12 s (see Appendix A for details). This means that
the shear rate γ̇ = 1 in DPD units converts to SI units of γ̇ = 4.61
× 1011 s−1. Since the rheometer measurements are typically1 con-
ducted at around γ̇ ≈ 10−3 –103 s−1, the usual shear rates used in

FIG. 4. Equilibrium phase diagrams for varying degrees of ethoxylation n, originally
presented in Hendrikse et al.1

simulations are very large. One of the main barriers to achieving
lower shear rates is the noise-to-signal ratio in the stress tensor.

For pure water at 25 ○C, experimentally determined values for
the self-diffusion coefficient and the viscosity find a Schmidt number
of approximately Sc ≈ 400. This means that an equivalent Schmidt
number in DPD would be generated with a collision parameter of
Γ ≈ 45 (see Appendix B), which is the primary value we use for these
calculations. In addition, we perform simulations using Γ = 250 in
order to investigate whether the Schmidt number has any influence
on the behavior of micelles under shear and the quantities that we
calculate.

B. Lamellar and hexagonal phases
Lamellar and hexagonal phases are expected to show shear-

thinning behavior and, therefore, the auto-correlation function
method is not appropriate for determining their viscosity. Instead,
we perform simulations to study the behavior of the liquid crys-
tal phases under the application of shear. Lyotropic liquid crystals
typically have very high viscosity values1 and very low values of
diffusion. The water self-diffusion coefficient in micellar solutions
typically takes a value that is close to that of water self-diffusion in
pure water49 (2.3 × 10−9 m2s−1 at 25 ○C50). In contrast, the water
self-diffusion in liquid crystals is typically measured to be up to an
order of magnitude smaller.49,51 Similarly, the self-diffusion coef-
ficient for the surfactant molecules can be up to two (or greater)
orders of magnitude smaller in the liquid crystalline phases vs the
micellar solutions.49,52

The effect of higher viscosity and a lower diffusion coefficient
generates an even larger value of the Schmidt number, although due
to the non-Newtonian nature of the liquid crystals, it is not possible
to obtain an exact value. For these cases, we chose to simulate using
collision parameter Γ = 250, which requires a lowering of the time
step to Δt = 0.001. This choice of Γ generates a Schmidt number for
water beads of ≈10 000 (i.e., 25 times larger than in the micellar solu-
tions using Γ = 45). This value is selected due to it being one of the
largest Schmidt numbers obtainable without having to further lower
the time step (see Appendix B).

Experimentally, both the hexagonal27–30 and lamellar31–34

phases have been shown to exhibit phase orientation under the
application of shear. For a lamellar phase, there is generally a prefer-
ence to orientate in either the parallel or perpendicular orientation

FIG. 5. Lamellar layers that are stacked in (a) the direction of the velocity gradient
(parallel orientation) and (b) those that are stacked along the velocity gradient-
neutral plane (perpendicular orientation). Both orientations can form under the
application of a shear force.
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FIG. 6. When shear flow is induced (here in the x-direction as indicated by the blue
arrow), the rods in the hexagonal phase align either in (a) an in-shear-plane or (b)
an out-of-shear-plane (log-rolling) orientation.

(see Fig. 5), while the hexagonal rods at low temperatures tend to
align in the direction of shear flow (see Fig. 6).

In order to form a perfect parallel or perpendicular arrange-
ment of lamellar layers under the application of shear (i.e., an
arrangement such that the lamellar layers are parallel with one of
the cubic box surfaces), the box size L should be chosen to be an
integer multiple of the equilibrium d-spacing. If a non-integer box
size is chosen, then the layers can form at diagonal orientations,
even under the application of shear. This is likely to be because the
potential energy benefit of forming at the correct d-spacing value
is greater than the impact of shear. The equilibrium d-spacing was
reported in previous studies,1 calculated in boxes of size L = 40.
For the n = 0 with c = 70 wt. % case, the equilibrium d-spacing is
reported as d = 5.71, and an integer number of lamellar layers are
formed by a box of size L = 40 (seven layers). Additional simu-
lations are conducted for the n = 1 and AES distribution of n at
70 wt. %, where we use a box size of L = 39 for n = 1 (equilibrium
d-spacing value d = 6.49, producing six layers) and L = 25 for AES
(equilibrium d-spacing value d = 6.32, producing four layers). Shear
is applied so that the flow velocity is directed along the x axis and a
linear velocity profile is generated along the y axis.

IV. RESULTS AND DISCUSSION
A. Viscosity of micellar solutions

In this section, we calculate the viscosity using the autocorre-
lation method [Eq. (13)], where no external shear force needs to
be applied for the calculation. Data acquisition of the stress ten-
sors σxy, σxz , and σyz occurs after the micellar simulation boxes
are equilibrated (i.e., after they have reached an equilibrium num-
ber of micelles as quantified in previous work1). The equilibrium
aggregation numbers for different micellar solutions are given in
Table I, where we reported that the aggregation numbers are under-
predicted when compared with experimental results. For example,
experimentally, the mean aggregation number of sodium dodecyl
sulfate (SDS) solutions (n = 0) at concentrations of 10 wt. % pos-
sesses aggregation numbers Nagg = 104 − 108,53,54 and similarly at
higher concentrations Nagg = 104 − 112.53,55 This means that the
aggregation numbers at 10 and 20 wt. % in DPD are around ≈50 and
≈70 wt. % of the experimental values, respectively.

The aggregation number is calculated as a number average and,
therefore, Nagg is defined as the mean number of molecules per
micelle. Molecules are defined as being in the same aggregate when

TABLE I. Final mean aggregation number Nagg for micellar solutions of varying
concentration c and degree of ethoxylation n.

c = 7 wt. % c = 10 wt. % c = 20 wt. %

n = 0 40 52 75
n = 1 37 44 88
n = 2 38 50 87
n = 3 36 47 77
AES 43 53 85

the distance between their tail beads is less than a defined cut-off,
rc-off, which we chose as rc-off = rC = 1. Only one tail bead pair’s
distance must be less than this cut-off for them to be defined as
belonging to the same micelle.

For the calculation of viscosity, one must apply a cutoff in
Eq. (13), for which to integrate over time t. We choose the cutoff
tC = 1.8 for all simulation cases for consistency, at a value at which
all auto-correlation functions have decayed to approximately zero.
Figure 7 shows the viscosity for solutions with varying concentra-
tions when the collision parameter Γ = 0 is used (for reference, the
viscosity of water obtained using Γ = 0 is η = 0.70). The viscosities
for different ethoxylation values n are very similar, with no trend in
n being observable due to overlapping error bars. However, there is a
clear increase in viscosity with increasing concentration. The rate of
growth with concentration is, however, at a reduced rate when com-
pared with what is expected from experimental measurements.3 This
could partially be explained by the under-prediction of the aggre-
gation number in the simulations since there is evidence that the
viscosity increases with increasing aggregation number.

While Γ = 0 produces an unrealistically low Schmidt number
for fluids, the autocorrelation function decays as a function of time
more slowly when Γ is small. Therefore, for low Γ values, it is easier
to find a value for the viscosity. It was found that at larger Γ values,
the autocorrelation function decayed too quickly to calculate precise
viscosity values (see Appendix C for more details).

However, we investigate the impact that Γ has on the molec-
ular radius of gyration Rg. The radius of gyration is found to be

FIG. 7. Viscosity of micellar solutions using the autocorrelation method (Γ = 0).
The error bars represent the standard deviation of the values obtained from
different off-diagonal stress tensor components.

J. Chem. Phys. 158, 214906 (2023); doi: 10.1063/5.0152673 158, 214906-6

© Author(s) 2023

 09 N
ovem

ber 2023 18:25:46

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Average Rg for micellar solutions with n = 0 and c = 20 wt. % when colli-
sion parameter Γ is varied. The uncertainties represent the standard deviation over
the data acquisition period.

Thermostat
parameters Radius of gyration Rg

Γ = 0 0.8541 ± 0.0007
Γ = 10 0.8548 ± 0.0006
Γ = 45 0.8546 ± 0.0005
Γ = 250 0.8543 ± 0.0005

independent of the collision parameter Γ for all simulation cases
of n and concentration c. An example of this for one simulation
case is shown in Table II. This is in agreement with previous DPD
work for polymers.25 Therefore, we conclude from these calculations
that although the choice of Γ does not necessarily lead to a physi-
cally meaningful value for the Schmidt number, the DPD simulated
results under equilibrium are not particularly sensitive to it. Follow-
ing this, we now investigate whether this is also true for micellar
solutions which are not under equilibrium conditions when shear
is applied.

B. Micellar solutions under shear
In this section, we study the impact that shear has on the

micelles and the calculated viscosity. Simulation cases investigated
include when n = 0 (10 and 20 wt. %), n = 1 (10 and 20 wt. %), and

AES (10 and 20 wt. %). We first present the impact of the shear
rate on the micellar shape and the impact this has on the molecules
before calculating the viscosity as a function of the shear rate.
Figures 8 and 9 show examples of micellar solutions under shear for
two different collision parameters Γ = 45 and Γ = 250, which will be
analyzed in this section.

1. Micellar shape
a. Collision parameter Γ = 45. When the shear rate is low

(γ̇ ≤ 1.2 × 10−4
), there is little change in micellar shape com-

pared with equilibrium simulations. However, at high shear rates
γ̇ ≥ 1.2 × 10−3, changes in shape are observed, as illustrated in Fig. 8.

At higher shear rates, longer and more worm-like micelles
become aligned in the direction of the shear flow. An increase to
γ̇ = 1.2 × 10−2 causes micelles to noticeably elongate in the direction
of shear flow. Finally, an increase to γ̇ = 1.2 × 10−1 breaks down the
micelles into a nematic phase. This abrupt change occurs at the same
shear rate for all concentrations and ethoxylation values simulated.

The shape and aggregation number Nagg has a significant
impact on the micellar radius of gyration RG, as shown in Fig. 10.
Moderate amounts of shear slightly enhance the aggregation number
by encouraging free molecules to join aggregates. Once the micelles
start to significantly stretch, they break into smaller aggregates,
decreasing the mean aggregation number. The radius of gyration
RG grows significantly under shear, mostly due to the stretch of
the micelles; once they break down into smaller aggregates at a

FIG. 8. A micellar solution (c = 20 wt. % and n = 1) at varying shear rates, where shear is applied in the x-direction. Note that only surfactant molecules are shown for
clarity. Calculation performed using collision parameter Γ = 45.
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FIG. 9. A micellar solution (c = 20 wt. % and n = 1) at varying shear rates, where shear is applied in the x-direction. Note that only surfactant molecules are shown for
clarity. Calculation performed using collision parameter Γ = 250.

high shear rate, RG drops accordingly. Both the 10 and 20 wt. %
concentrations show similar trends with increasing shear rate.

Figure 11 shows the impact of shear rate on the radius of
gyration of the individual molecules, Rg, with the effects most pro-
nounced when micelles have completely broken down. It might be
expected that Rg would increase with shear rate due to stretching;
however, the opposite trend is found.

b. Collision parameter Γ = 250. The impact of shear on the
n = 1 with 20 wt. % concentration case is shown in Fig. 9 (equivalent
to the case in Fig. 8 with Γ = 45), and we observe the same transition
from spherical micelles to work-like micelles, followed by a break-
down of micellar structure. Increasing the value of Γ is, however,
found to lower the value of the shear rate at which the transi-
tion from spherical micelles to stretched micelles occurs. Therefore,
disaggregation also occurs at a lower shear rate.

The impact of Γ on the mean aggregation number and radius
of gyration of micelles is shown in Fig. 12. There is relatively little
difference between the two choices of Γ at lower shear rates. Some
slight differences begin to appear at higher shear rates, although this
is likely to be related to the transition from non-spherical micelles
occurring at a lower shear rate when Γ = 250.

It was shown in Sec. IV A, that varying the collision parameter
Γ had minimal effect on the radius of gyration of molecules Rg when
no shear is applied. The variation of Rg with the shear rate for both
values of Γ trialed is shown in Fig. 13. The radius of gyration dis-
plays very different behavior at extremely high shear rates when
the micelles have largely broken down, indicating that the choice

of Γ has more of an influence on the individual molecules than it
does on micelles. Symeonidis et al.25 reported for polymer systems
that the radius of gyration of molecules grows with increasing shear
rate, irrespective of Γ. An increase in Rg with shear rate has been
observed in simulations by other authors56 as well as in theory57

and experiment.58 This increase can be explained by a stretch of the
molecule. In our case, the radius of gyration does indeed increase
when Γ = 250, at shear rates when micelles have largely been bro-
ken down (γ̇ > 1.3 × 10−3

). However, we find that when Γ = 45, the
radius of gyration decreases at high shear rates. This decrease coin-
cides with micelle breakdown (γ̇ > 1.3 × 10−2

). This decrease could
be explained by the fact that micelle formation has been shown to
increase the radius of gyration.59 We believe that there are two com-
peting factors influencing Rg, and there is a competition between the
influence of the shear rate and phase structure.

2. Viscosity calculation
Equation (14) is used to calculate the viscosity when shear is

applied. It is found that there is too much noise in the stress tensor
when γ̇ < 1.2 × 10−4 in order to obtain a converged value for viscos-
ity. Therefore, Fig. 14 shows the viscosity calculated at higher shear
rates for varying concentrations and degrees of ethoxylation.

We observe shear thinning behavior, which is related to the
change in the micellar shape and their breakdown. As discussed in
Sec. III A, the shear rates used are high when compared with those
used in typical experiments. This explains why we do not see a New-
tonian relationship since the shear rates used in the experiment are
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FIG. 10. Effect of shear rate on the mean aggregation number Nagg and micellar
radius of gyration RG for solutions with n = 0, n = 1, AES, and concentrations
c = 10 and c = 20 wt. %. Calculation performed using collision parameter Γ = 45.

unlikely to lead to any micellar breakdown or shape changes like the
ones observed in the simulation.

Due to the difficulty in accessing lower shear rates, it can’t be
determined if the viscosity eventually plateaus to a Newtonian rela-
tionship with the shear rate at lower shear rate values (i.e., in the
region in which the micelles are not thought to be changing shape).
However, at the lowest shear rate value, the viscosity calculated for
AES and n = 1 solutions at 20 wt. % is significantly larger than when
n = 0. This is in contrast with the 10 wt. % case, where the viscosity
calculated for n = 0, n = 1, and AES is more similar. The large dif-
ference in viscosity at 20 wt. % and minimal difference at 10 wt. %
between n values is qualitatively consistent with the experiment.1,3

C. Orientation of liquid crystals
In this section, we consider the behavior of higher concentra-

tion systems that form liquid crystal phases. We begin by performing
experiments on simulation boxes with an initially random place-
ment of molecules in order to determine the preferred orientation of
the hexagonal and lamellar phases under shear. For lamellar phases,
we investigate solutions with 70 wt. % concentration and observe
that the lamellar layers orientate in the parallel orientation under
shear γ̇ ≤ 6 × 10−2 for all values of n trialed (n = 0, n = 1, and AES).

FIG. 11. Effect of shear rate on the radius of gyration Rg of molecules with
(a) n = 0 and (b) AES. Calculation performed using collision parameter Γ = 45.

This is consistent with experimental observations for SLES sur-
factants.2 While it has been reported that some DPD simulations
have shown a transition from the parallel orientation at low shear
rates to the perpendicular phase at higher shear rates,60–62 this is
not observed in this work. An increase to γ̇ = 6 × 10−1 leads to a
breakdown of the parallel layers, and the system is no longer in a
lamellar phase. The phase most closely resembles a nematic liquid
crystal phase at these high shear rates due to the fact that although
the lamellar layers have broken down and there is now no posi-
tional order, the molecules still possess orientational order where
molecules are parallel to each other. These two cases, along with the
orientation of the director, are shown in Fig. 15.

For the lamellar phase, the director of the box is approximately
defined as being in the direction parallel to the normal of the layers
(along the y axis). Upon transition into the nematic phase, the direc-
tor aligns approximately along the direction of the shear flow (along
the x axis). The director vector is calculated as the average orienta-
tional vector for all surfactant molecules in the system, where the
orientation vector is defined as the vector between the sulfate head

FIG. 12. Comparison of the values of Nagg and RG obtained using different values
of Γ. Results are shown for two different concentrations c and n = 1.
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FIG. 13. Comparison of the values of Rg obtained using different values of Γ for
molecules with n = 1. Results are shown for two different concentrations c.

bead and the final tail bead in each molecule. For the case shown in
Fig. 15, the director for the nematic phase is calculated as (0.96, 0.29,
0); in other words, it is at an angle of 17○ to the x axis. The alignment
of the director for a nematic crystal as parallel to the shear surface
is in agreement with what is most commonly reported experimen-
tally.63 A selection of intermediate shear rates between γ̇ = 6 × 10−2

and γ̇ = 6 × 10−1 is trialed in order to investigate the possibility of an
intermediate perpendicular orientation (at shear rates γ̇ = 9 × 10−2

and γ̇ = 3 × 10−1); however, no evidence is found for the formation
of a perpendicular phase.

For the hexagonal phase, we study concentrations of 40 wt.
%, and it is found that when shear (γ̇ = 6 × 10−3

) is applied to
the simulation box, hexagonal rods lie in the in-shear-plane ori-
entation, as described in Fig. 6. This orientation of the hexag-
onal phase is consistent with experiments on general surfactant
systems.27–30

D. Lamellar viscosity
Since the lamellar phases in this work take a parallel orienta-

tion, calculating the viscosity would result in a calculation of the
Miesowicz viscosity component η2, as described in Fig. 3. Although

FIG. 15. Solution with n = 0 and c = 70 wt. % under shear, at γ̇ = 6 × 10−2

(a) and γ̇ = 6 × 10−1 (b). Flow velocity is in the x-direction, and the velocity gradi-
ent is in the y-direction. An arrow represents the director, and beads are colored
by surfactant (pink), sodium ion (orange), and water (light blue).

we see no evidence of a natural transition to the perpendicular ori-
entation of the lamellar layers, simulations can still be performed in
order to investigate the viscosity component η3 (perpendicular ori-
entation). Since the perpendicular phase is not induced at any shear
rate from an initially random configuration, this can be performed
by taking a lamellar phase that is already in a parallel orientation and
rotating it to the perpendicular before undertaking the viscosity cal-
culation. Some authors34,35,60 have argued that the transition to this
perpendicular phase occurs naturally due to the perpendicular ori-
entation having a lower viscosity than the parallel. A comparison of
the calculated viscosity components η2 and η3, at high shear rates,
is shown in Table III. Although a transition to the perpendicular
orientation is not naturally observed at high shear rates, we do con-
clude that the viscosity calculated for the perpendicular orientation
(η3) is indeed lower than the parallel orientation (η2). This suggests
that the transition from the parallel orientation to the perpendicular
case is not entirely determined by the viscosity and that other factors
may influence the preferred orientation of the lamellar phase. It is of
interest that it has been observed31 that, in Couette gap experiments,
the orientation distribution is not always constant across the gap. In
particular, there can be wall effects that result in a preferred parallel
orientation at high shear rates.

FIG. 14. Viscosity calculated at varying shear rates from applying shear in DPD calculations. Individual plots correspond to the ethoxylation n, while in each plot, two different
concentrations are shown. Error bars correspond to the standard error. The horizontal black line indicates the viscosity of water at a value of Γ = 45.
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TABLE III. Comparison of the perpendicular and parallel viscosities (DPD units) for
lamellar systems, calculated for two shear rates.

Shear rate Perpendicular viscosity Parallel viscosity

6 × 10−4 178 ± 8 300 ± 10
6 × 10−5 82 ± 10 206 ± 41

FIG. 16. Illustration of the orientation of the molecules under shear. The molecules
retain their parallel layers but are no longer parallel with the normal of the layer.

E. Molecular changes to the hexagonal
and lamellar phases

We now discuss the impact that shear has on the molecules in
liquid crystal phases. While the structure of the phases is visually
unchanged with varying shear rates (i.e., the shape and structure of
the lamellar layers and hexagonal rods remain visually unchanged),
the molecules may undergo stretching or shape changes within the
layers as a result of the shear force.

Consider angle Ψ, which is defined as the angle between the
normal to the lamellar layer surface n̂ and the director of the sur-
factant molecules. This is illustrated in Fig. 16. Under shearing, the
lamellar layers remain parallel to the x–z plane and, therefore, the
normal to these layers remains n̂ = (0, 1, 0). The angle between the
director and the normal of the layers is shown in Fig. 17, where the
molecules rotate at an angle within the lamellar layers.

This movement has an effect on the molecular radius of gyra-
tion, Rg, which is demonstrated in Fig. 17. While a significant
amount of reorientation of the molecules is found for shear rates
at γ̇ = 6 × 10−4, only a small amount of growth in the radius of
gyration is found. When the shear rate increases to γ̇ = 6 × 10−3,
the molecules significantly orientate themselves, and the molecules’
stretch corresponds to a growth in the radius of gyration.

At a shear rate of γ̇ = 6 × 10−2 (not shown in Fig. 17), the
lamellar phase breaks down, and the molecules no longer exist in
parallel layers. Based on the rate of growth of angle Ψ in Fig. 17,
the molecules at γ̇ = 6 × 10−2 would have angle Ψ ≈ 1.2 rad (lin-
ear extrapolation of the angle vs the log values corresponding to
γ̇ = 6 × 10−3 and γ̇ = 6 × 10−4). This is likely to be the reason that
the lamellar phase breaks down in the simulation box at this shear
rate. A similar change in director orientation under shear has been
reported in other simulation studies of the lamellar phase.34

The radius of gyration for the hexagonal phase as a function
of the shear rate is shown in Fig. 18. Similarly to the lamellar case,
there is little change in the radius of gyration except at very high

FIG. 17. Angle Ψ between the normal to the lamellar layers and the director of
the surfactant molecules, as well as the radius of gyration, both as a function of
shear rate for molecules in the lamellar phase with concentration c = 70 wt. % and
n = 0.

shear rates. Unlike the lamellar phase, the structure of the hexagonal
phase is allowed more freedom to adjust its periodicity (inter-rod
spacing r) since it can rotate in the y–z plane. It is found that at
almost all values of increasing shear rate, there is no change in the
value of its average inter-rod spacing r until reaching a shear rate
of γ̇ = 6 × 10−2. At this point, r increases from r = 7.52 to r = 7.85.
It was discussed in our previous work1 that we observe a prefer-
ence for hexagonal phases to orientate their unit cell in the y–z
plane (as well as rod alignment parallel to the x axis) when subjected
to shear. In experiments, this is typically one of two orientations,
as demonstrated in Fig. 19. In our simulation work, we observe a
small preference for parallel orientations. However, the unit cell of
the hexagonal phase is also restricted by the need to satisfy periodic
boundary conditions, so perfect hexagonal lattices cannot form (that
is, the unit cell is described by two vectors of different lengths), and
the lattice must stretch in some way. Therefore, there is competi-
tion between the preference for forming a parallel orientation in the
y–z plane and forming a lattice that is as close to a perfect hexago-
nal lattice as possible. We believe the change in r we see at higher

FIG. 18. The radius of gyration as a function of shear rate for molecules in the
hexagonal phase with concentration c = 40 wt. % and n = 0.

J. Chem. Phys. 158, 214906 (2023); doi: 10.1063/5.0152673 158, 214906-11

© Author(s) 2023

 09 N
ovem

ber 2023 18:25:46

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 19. If shear flow is induced in the x direction by shearing using the x–z plane,
rods in the hexagonal phase tend to align along the x axis. The perpendicular
plane (y–z plane), experimentally, takes one of the two orientations that are given
the name parallel (a) or perpendicular (b).

shear rates is due to this competition. The orientation of the phases
when r = 7.52 is close to being in the parallel orientation but not per-
fectly (there is a small angle between the z axis and unit vector), while
r = 7.85 is in the perfect parallel orientation (unit vector parallel to
z). This indicates that the preference for forming parallel orienta-
tions strengthens at high shear rates, compared with the trade-off of
a non-desirable inter-rod spacing.

V. CONCLUSION
In this work, we calculate the viscosity of micellar solutions

using two different methods. Using an equilibrium approach, we
show that the viscosity of micellar solutions increases as a function
of concentration, as is expected from the experiment. We also show
that the Schmidt number has no influence on the molecular radius
of gyration when no shear is applied. Our second approach to calcu-
lating viscosity is a non-equilibrium one, and we apply shear using
Lees–Edwards boundary conditions. Moderate shear rates mildly
encourage the aggregation number to increase by encouraging free
surfactant molecules to join micelles. A typical problem encoun-
tered in DPD and other simulation methods is the under-prediction
of the aggregation number.1,36 Therefore, it is hypothesized that
the equilibration of micellar systems can be encouraged by apply-
ing a small amount of shear during the micelle formation period in
order to increase the mean aggregation number toward values found
experimentally.

We observe that at high shear rates, spherical micelles can
stretch into worm-like micelles, stretching in the direction of shear
flow. As a result of micellar breakdown, we observe a shear-thinning
effect for micellar solutions. This is particularly important con-
sidering the large shear rates typically used in high-shear mixers,
potentially leading to structural and viscosity changes during the
manufacture of surfactant-containing products. We also show that
the Schmidt number has a significant effect on the phase structure of
micellar solutions under shear, including the radius of gyration. This
is in contrast to what we find under equilibrium conditions. This
is an important consideration for research comparing DPD simula-
tions to real micellar solutions, given that standard DPD parameter
choices result in unrealistic Schmidt numbers.

The lamellar and hexagonal phases are found to orientate rela-
tive to the direction of applied shear in a way that is consistent with
the experiment. We find no evidence of a transition to a perpendic-
ular phase at high shear rates for lamellar phases, despite the parallel

phase having a higher viscosity. This is of interest since the transi-
tion to perpendicular phases is often explained by its lower viscosity
alone.

For the lamellar layers, we apply shear by setting the box size
based on an integer multiple of the equilibrium d-spacing value. This
allows us to ensure an integer number of lamellar layers between
the two shearing planes. However, we assume that there is no
change in the d-spacing value with varying shear rates. Experimen-
tally, lamellar structures have been observed to exhibit changes in
their d-spacing as a result of high shear rates.64,65 However, it is
rarely reported that there is a transition to a nematic phase where a
breakdown of layers occurs. It is more often reported that parallel
orientation persists at high shear rates33 or that there is a transi-
tion to perpendicular orientations,31,32,35 or “onions,”12 at high shear
rates. Therefore, it is possible that the lamellar layers should not dis-
integrate at a high shear rate, as they do in the simulations (although
no experimental data could be found in the existing literature for
SLES d-spacing under shear specifically). In the simulations, the dis-
integration is suspected to be due to the orientation of the molecules
within the layers. The orientational change of the molecules would
be expected to decrease the d-spacing by decreasing the thickness
of the surfactant layer. However, due to the box size being chosen
based on equilibrium d-spacing, the spacing and thickness of the
lamellar layers are unable to vary as a function of the shear rate.
This may mean that the thickness of the layers is forced to main-
tain an undesirable d-spacing value under the application of shear. It
would be interesting for further work to investigate the effect of vary-
ing box size and lamellar spacing when subjecting lamellar phases to
shear.

Finally, we show that the inter-rod spacing of the hexagonal
phase can be altered depending on the shear rate applied. Hexagonal
phases are typically difficult to form under equilibrium conditions
in DPD simulations, so an approach to encouraging their formation
is via the application of a small amount of shear.1,66 Therefore, one
must take care during this process that the shear rate chosen does
not impact the resulting inter-rod spacing if the aim is to study the
phase under equilibrium conditions.
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APPENDIX A: CONVERTING DPD TIME SCALE
TO REAL UNITS

Most work using DPD is usually presented in reduced DPD
units, in which the unit of length is the particle size rC = 1, the unit of
mass is the particle mass m = 1, and the unit of energy is defined by
setting kBT = 1. One method of converting the units used in DPD to
real units is by matching the density of water in the simulation to a
known experimental value; therefore, a value for rC can be obtained
in real units.

The parameterization used in this work, presented by Ander-
son et al. (2018),36 groups two molecules together to form the water
bead in the simulation. Therefore, the mass of one DPD bead of
water m is the mass of two water molecules; in real units, this is
m = 5.98 × 10−26 kg. The number density ρ of beads in the simula-
tion box is defined by ρr3

C = 3, which is a common choice for ρ across
DPD literature due to the work of Groot and Warren.24 The number
density can be calculated as ρ = ρm/m, where ρm is the mass density.
Therefore, combining relationships ρ = ρm/m and ρr3

C = 3 produces
the following relation for rC:

rC = (
3m
ρm
)

1/3
. (A1)

Using the fact that the density of water at room temperature is
≈1000 kg/m3, this finds a value for rC in real units to be
rC ≈ 5.65 × 10−10 m.

The temperature in the simulation is calculated using the
velocity v using

1
2

m⟨v2
⟩ =

3
2

kBT. (A2)

By saying that the distance in real units is dReal = dDPDrC, the time in
real units tReal = tDPDτC, and vDPD = dDPD/tDPD, we can show that

m
2
⟨(

dDPDrC

tDPDτC
)

2

⟩ =
3
2

kBT, (A3)

(
rC

τC
)

2
m⟨(

dDPD

tDPD
)

2

⟩ = 3kBT, (A4)

(
rC

τC
)

2
=

kBT
m

. (A5)

Using kBT = 4.11 × 10−21 J at room temperature and the previously
calculated values of rC = 5.65 × 10−10 m and m = 5.98 × 10−26 kg, we
find a value for the time scale of τC = 2.16 × 10−12 s.

APPENDIX B: RELATIONSHIP BETWEEN
Γ AND SCHMIDT NUMBER

We investigated how the Stoyanov–Groot thermostat behaves
when applied to a simple simulation case. This allowed us to choose
appropriate Γ values for our simulations. A variety of simulations

FIG. 20. Relationship between collision parameter Γ and
the resulting Schmidt number of bulk water. Two time steps,
Δt = 0.01 and Δt = 0.001, are tested. A fit of the form
Sc = AΓ2

+ B, where A and B are constants, is applied to
the points from Δt = 0.001 for Γ ≤ 250.
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FIG. 21. Examples of the autocorrelation functions obtained for different values of
the collision parameter Γ.

were performed on simulation boxes containing only water beads
with box size L = 20. We calculate the viscosity using Eq. (14) and
use a shear rate of γ̇ = 0.006. The diffusion coefficient D is calculated
using the mean squared displacement

D =
⟨(r(t) − r0)

2
⟩

2td
, (B1)

where r0 is the initial position at time t = 0, d is the number of
dimensions of the simulation box (in this case d = 3), and the angled
brackets indicate an average over all beads. We vary the collision fre-
quency Γ and time step Δt. The Schmidt number can be calculated
from the viscosity and diffusion coefficients.

Figure 20 shows the relationship between Γ and the Schmidt
number, confirming an Sc∝ Γ2 relationship. This relationship
breaks down for high values of ΓΔt. Therefore, in order to increase
the Schmidt number by increasing the collision parameter, it may
require a decrease in the time step.

APPENDIX C: COLLISION PARAMETER Γ
AND THE AUTO-CORRELATION FUNCTION

For simulation boxes consisting of pure water, the viscosity is
calculated using a variety of different Γ choices, and a selection of
autocorrelation functions is illustrated in Fig. 21. It is shown that as
the value of Γ increases (i.e., the friction increases), the autocorrela-
tion function decays more rapidly. This poses a problem for using
this method (based upon integration over time) at high Γ values.
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