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Abstract

Understanding the relationship between climate and vegetation requires climate data
to be linked with ecological data, including habitat types and vegetation mapping. Our
new R package climenv allows researchers to efficiently acquire, extract, and
visualise datasets that are commonly used by researchers to quantify the climatic
envelope of vegetation. climenv offers integrated downloading and processing
capabilities for three globally recognised data sets, including WorldClim 2, CHELSA,
and NASA's SRTM elevation data. The package allows users to easily download and
extract these data sets for single and multi-geospatial polygon and point datasets,
facilitating studies that explore the relationship between vegetation and climate.
Furthermore, climenv allows users to plot traditional Holdridge Life Zone
classification, Walter-Lieth climate diagrams, and new customised plots, which
combines aspects of both these systems with other biologically relevant climate
variables. By enhancing the usability and flexibility of these datasets, c1imenv helps
to explore the intricacies of the relationships between climate and vegetation. Our
package is accessible from CRAN (https://CRAN.R-project.org/package=climenv) or
GitHub (https://github.com/jamestsakalos/climenv).
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Introduction

Understanding the intricate relationship between climate and vegetation is crucial for
predicting the impact of future climate patterns, safeguarding biodiversity, and
informing policy and decision-making for our planet's future (Cavender-Bares, Gamon,
& Townsend 2020). Building upon centuries of research that initially linked specific
vegetation types with climatic zones, altitude, and latitude, modern studies heavily rely
on historical data analysis to explore this crucial relationship. However, the diverse
nature of climate data, with variations in sources, formats, and resolutions, poses
significant challenges for selecting, integrating, and quantifying the climate-vegetation
relationship (e.g., Nash et al., 2021; Reig-Gracia et al., 2021).

To the challenges of working with climate data, researchers face a series of decisions,
encompassing the selection of data sources, software for downloading, extracting,
analysing, and graphically illustrating the trends. Even in a simplified case where there
are only two choices for each step of selecting, downloading, and extracting, eight
potential pathways emerge (i.e., 2 x 2 x 2). The landscape of climatic data sources is
extensive, including options like WorldClim (Fick & Hijmans, 2017) and climatologies
at high resolution for the earth’s land surface areas (i.e., CHELSA, Karger et al. 2017).
Researchers have many software options to choose from for downloading data, such
as Google Earth Engine, web browsers and Python scripts. Extraction of climate data
for a specific coordinate or over the extent of an area can be accomplished using tools
like ESRI's ArcMap, Quantum Geographic Information System or the R environment
for statistical computing and graphics (R Core Team, 2023). The combination of these
options results in 18 (i.e., 2 x 3 x 3) pathways. This underscores the urgent need to
enhance open science through the development of a simple and clear workflow that
unifies these processes, producing more precise and reliable analyses with
meaningful ecological interpretations.

The current landscape of R packages on the CRAN repository includes approximately
19,000 packages, of which 126 are related to climate data. However, there is a
pressing need for a comprehensive and user-friendly package that seamlessly
manages the selection, download, extraction, and preparation of climate data for
diverse terrestrial areas or specific sampling points. While existing packages are used
by scientists in various research fields such as agriculture (Brown, de Sousa & van
Etten, 2023) and forestry (Reyer et al., 2020), they often provide specialised solutions
focused on specific regions or limited spatial resolutions, lacking a unified and user-
friendly workflow. This gap in the current landscape of R packages has motivated the
development of our c1imenv R package, short for 'climatic envelope.'

Our new climenv R package, hosted by the CRAN and GitHub repositories, serves
as a unified solution, providing tools and illustrative examples to streamline the
download, extraction, processing, and preparation of climatic variables. What sets
climenv apart is its enhanced adaptability and versatility through geospatial data
extraction capabilities. Preliminary versions of the package have played a pivotal role
in identifying biomes across Europe (Mucina, Divisek & Tsakalos, 2023), Southern
Africa (Mucina et al.,, 2022), South America (Luebert 2021) and the Southern
Hemisphere (Mucina, 2023). By providing user-friendly vignettes and powerful
functionalities, our package aims to empower ecologists engaged in descriptive
vegetation science (e.g., Preislerova et al., 2022; Wiser et al., 2022), equipping
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researchers with the necessary tools to overcome the challenges of working with
climate data and fostering accurate analysis and meaningful ecological interpretations.

Software description

climenv provides functions to download (ce download), extract (ce extract),
and plot (plot h, plot wl and plot ce)climatic envelopes in areas defined by
geospatial multi-point or multi-polygon data sets. ce download sources WorldClim 2
(Fick & Hijmans, 2017) or CHELSA (Karger et al., 2017, 2021) climatic data. Because
of the close relationship between temperature and altitude (i.e., 0.6—1 °C per 100 m),
our package also includes access to digital elevation data NASA Earth Explorer's
SRTM (Farr et al., 2007) or Mapzen terrain tiles (Hollister & Shah, 2018). ce extract
extracts point intersects or average surface values (i.e., polygons) of the downloaded
data (i.e., monthly-minimum, -maximum and -average temperature and -average
precipitation, and elevation). plot h, plot wl, and plot c presents this data in
Holdridge, Walter-Lieth, and custom plotting formats.

The main functions provided by the package are as follows:

1. ce download(output dir, location, Cc_source, e source)
downloads climatic and elevation data into the output directory (output dir). The
user must supply a geospatial point or polygon location file to define the
download extent. Users can control the climatic source (¢ _source) by supplying
“WorldClim” or “CHELSA” and can control the elevation source (e source)
using “SRTM” or “Mapzen”.

2. ce extract(output dir, location, location g) extracts the climate
and elevation data stored in the output directory for the supplied 1ocation. The
data can be extracted for every object in the location file, or the data can be
grouped (location g) by shared attributes.

3. plot c(data, geo id, ..) isa function that produces our new custom
climatic envelopes. The extracted data can be plotted for different geographic
features (geo_id) contained in the data. Plotting functions plot h, plot wl,
for Holdridge and Walter-Lieth diagrams, follow the same syntax.

climenv presents three additional functions, including chelsa (), worldclim()
and elev (). These functions allow climate and elevation data to be downloaded
separately. For example, a user who requires only elevation data, may use elev ().
The package manual, which is available upon sourcing our package from CRAN or
GitHub provides details on the usage of all the functions within the package.
Furthermore, we have developed an online resource that provides a package
description, installation instructions, references to all functions, and an article
explaining how to use the package, all accessible through a standard web browser.
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lllustrative examples

The subsequent section illustrates the main functions of c1imenv, demonstrating the
download, extraction and visualisation of climate and elevation data from the Italian
Biome polygon data set (“it py”) included with the package. This geospatial data
set, capturing the Mediterranean and Nemoral Biomes of Italy (Mucina, DiviSek &
Tsakalos, 2023), demonstrates the package's functionality to extract biologically
meaningful information across extensive mapped regions. The package is also
effective when working at finer scales or with geospatial point data.

Step 1. Downloading climate and elevation data

ce download downloads both climate and elevation data. A user may select climate
data from either WorldClim 2 (Fick & Hijmans, 2017) or CHELSA (Karger et al., 2017,
2021). For elevation, a user can select either the NASA Earth Explorer's SRTM (Farr
et al., 2007) or Mapzen terrain tiles (Hollister & Shah, 2018).

CHELSA and WorldClim are available at a spatial resolution of 30 arc-seconds
(~1 km?). The data are provided freely as a series of raster tiles (one for each month),
with their spatial extent spanning the globe. Specifically, the function downloads the
mean, minimum, and maximum temperature and mean precipitation using the climatic
predictions for 1979-2013 (CHELSA) and 1970-2000 (WorldClim2). The
approximate download size of CHELSA is ~ 6.5 GB. As for the WorldClim data, if you
wish to download it for the entire globe, it will be ~ 13.5 GB. However, in the case of
this specific dataset, we offer the option to download smaller, tiled sections to save
space and time. It is important to note that due to the substantial file sizes involved,
the execution of the function may require a significant amount of time, especially if you
have limited internet connectivity.

The ce download function conveniently integrates the elevation 3s function from
the geodata R package (Hijmans et al., 2023), allowing easy access to NASA's
SRTM data. Our function streamlines the process by automatically downloading and
merging high-resolution (~90 m) tiles across latitudes from -60° to 60° into a single
raster scene. Furthermore, ce _download also incorporates the get elev raster
function from the elevatr R package (Hollister & Shah, 2018) to access the Mapzen
terrain tiles. In this case, our function enables the download of a single tile at a
resolution of ~611.5 m at 60° latitude, ~864.8 m at 45° latitude, and 1223 m at 0°
latitude. It is important to note that Mapzen tiles, a synthesis product, encompass
NASA's SRTM, ArcticDEM and EUDEM (a digital elevation model covering Europe;
Mouratidis & Ampatzidis, 2019). This expanded coverage allows the Mapzen tiles to
span larger global areas, including regions north of 60° latitude.

library(climenv)
data (“it py”)

ce download (output dir=“../training”, location=it py)

Step 2. Extracting the zonal statistics for each climatic variable
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After downloading climate and elevation data, the next step is to use ce extract to
extract the climatic data using the italy py geospatial data set. This function reads
the downloaded data as raster stacks and then crops and masks the data according
to features from the geospatial data set. For example, the code below extracts data
for all features in the “location_ g” argument.

data <- ce_extract (
path = “../training”,
location = it py,
location g = “GB”

)

The ce extract function returns an object of class list with a length of 12. Out of
these, 11 objects are data frames, while the last object is a compilation note. Among
the data frames, eight contain climate data, providing information on the mean and
standard deviation of variables such as tmax, tmean, tmin, and prec. Each column
within these data frames represents a month (Jan-Dec), while each row represents a
geospatial polygon feature (i.e., Mediterranean or Nemoral Biome). The returned
values are either degrees Celsius for (tmax, tmean, tmin) or mm (prec). The remaining
three data frames show the elevation (mean and standard deviation), latitude and
absolute minimum temperature for each month. Critically, these data sets are
amenable to further use by the user, such as covariates in any number of exercises
such as ordinations which reveal the potential drivers of the present-day distribution
of plant communities (Tsakalos et al., 2018; Bonari et al., 2021), and variables for
species distribution modelling (Mateo et al., 2019).

Step 3. Visualising the climatic and elevation data

One of our graphical outputs is the Holdridge (1967) life zone classification plot.
Holdridge's life zone classification plot, also known as the Holdridge Life Zone System
or Holdridge Bioclimatic Classification System, is based on three main factors that
influence the distribution of vegetation globally. By combining temperature,
precipitation, and potential evapotranspiration Holdridge’s classification plot divides
the Earth’s surface into distinct life zones or biomes (sensu Holdridge). It allows for
the identification and characterisation of different biomes, such as tropical rainforests,
deserts, grasslands, and tundra, based on their distinct climatic conditions and
provides a unified framework for studying vegetation patterns, ecological dynamics,
and potential shifts in response to climate change. For example, the Mediterranean
Biome across Italy features potential evapotranspiration ratios between 1—-2 and mean
annual precipitation between 500-1000 mm rendering it within Holdridge’s (1967)
“Very Dry Forest” life zone (Figure 1). To simplify the visualisation of life zone data,
we have implemented the automatic creation of Holdridge plots by the addition of the
plot h function which provides a convenient wrapper from within c1imenv for the
function PlotHoldridge within the Ternary R package (Smith 2017), which has
been developed to complement c1limenv.

plot h(data, geo id = “MED”)
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Figure 1 Position of the Mediterranean Biome within the territory of Italy derived using
WorldClim climate within Holdridge’s (1967) life zone classification. The surface
shading in the background is a new addition to the original life zone classification. It
helps interpretation by converting a point in evapotranspiration-precipitation space to
an appropriate cross-blended hypsometric colour — in this intuitive instance colours
tending towards the red spectrum feature higher temperatures blended with lower
precipitation while colours leaning towards the blue colour spectrum have lower
temperatures and higher precipitation.
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Another common graphical output is the Walter-Lieth (1960) climatic diagram. Here
our package is a wrapper for the existing diagwl function of the climatol R
package (Guijarro, 2019). This diagram consists of two primary components:
temperature and precipitation, which, when combined in a single diagram, is supposed
to allow for a comprehensive visualisation of climate patterns. Specifically, it provides
insights into seasonal variations, the duration and intensity of wet and dry periods, and
the overall climate regime of a particular location (or the average for an area
encompassed by a spatial polygon) throughout the year. By analysing the position and
shape of the climatic zones represented in the graph, one can identify different climate
types, such as mediterranean-type, tropical, temperate, or arid regions. The red-
shaded region in Figure 2 clearly depicts the dry summer period, a predominant
feature in mediterranean-type climates such as those exhibited by the Mediterranean
Biome of Italy (Mucina, DiviSek & Tsakalos, 2023).

plot wl(data, location g = “MED”)
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Figure 2 Walter-Lieth climatic diagram (1960) of the Mediterranean Biome within Italy
derived using WorldClim. When precipitation is > 100 mm, the scale increases from 2
mm C' to 20 mm C-' (as indicated by the black horizontal line) to avoid too-high
diagrams in very wet locations. A black horizontal line indicates this change, and the
graph over is filled in solid blue. When the precipitation graph lies under the
temperature graph (P < 2T) we have a dry period (filled in dotted red vertical lines).
Otherwise, the period is considered humid (filled in light blue). The daily maximum
average temperature of the hottest month and daily minimum average temperature of
the coldest month are labelled in black on the left margin of the diagram.

Lastly, we present our custom diagrams which incorporate elements from Holdridge's
(1967) life zone classification, Walter-Lieth climatic diagram (1960), and the widely
utilised bioclimatic variables (Hijmans et al., 2005) commonly employed in ecological
and environmental research. These variables are crucial in describing environmental
factors that shape the distribution and behaviour of organisms, including plants, as
evidenced by the high citation count of works by Holdridge, Walter-Lieth, and Hijmans.
Our diagram offers a unique approach by incorporating these sources and presenting
the variables in a tabulated format alongside the classic temperature/precipitation plot.
This combination allows for a comprehensive and insightful representation of climatic
conditions, distinguishing it from other packages like c1imatol (Guijarro, 2019).

plot c(data, location g = “MED")

Figure 3 Custom diagram showing the climatic envelope of the Italian Mediterranean
Biome. The abbreviations used are as follows: biotemperture (BioT), isothermality
(ISO), mean annual temperature (MAT), temperature seasonality (TS), number of dry
months with < 50 mm rainfall during the month (Dry mo), mean annual precipitation
(MAP), potential evapotranspiration (PET), precipitation seasonality (PS), seasonal
rainfall percentage in Summer (S), Autumn (A), Winter (W), Vernal (V), elevation (Elv)
and latitude (Lat).

The package includes a vignette that offers an additional two demonstrations. Firstly,
it showcases the complete set of functions using fully simulated climate, elevation, and
spatial location data sets. This can be helpful for users who are unsure about the
specific structure of the required data. Secondly, it explores the properties of the Italian
Biome data sets, using the full suite of functions. Furthermore, within this section, a
data-driven approach is described. This approach employs the Random Forests
machine learning algorithm (Breiman, 2001) to quantify the climatic envelope of the
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Biomes of ltaly using climatic variables (including Bioclim and Holdridge’s) and
elevation variables. Users can also estimate variable importance from the model
output of the Random Forest algorithm. This vignette demonstrates how to quantify
the 'climatic envelope' empirically and assists users in selecting climatic variables that
are closely related to their study sites. Users can access the vignette through the
package or can interact with it online (https://jamestsakalos.github.io/climenv/).

Discussion

In this manuscript, we present the new R package c1imenv. We made this package
to facilitate easy downloading, extraction, and visualisation of three of the most
globally recognised modeled data sets, including: WorldClim 2 (Fick & Hijmans, 2017),
CHELSA (Karger et al., 2017, 2021) and NASA's SRTM elevation data (Farr et al.,
2007). It allows a user to download and visualise data corresponding to a specific
region or points of interest. c1imenv works with multi or single geospatial polygon
and point data, and the extracted data outputs can be used, for example, as
covariates, for any number of ecological studies. Easy access and extraction of
globally recognisable data sets extend this package's usability and flexibility for
various applications.

Further considerations should be taken regarding the choice of modeled climatology
data (e.g., Maria & Udo, 2017; Morales-Barbero & Vega-Alvarez, 2019). We propose
two specific considerations in this regard.

Firstly, it is highly recommended that users conduct their review and inspection of the
extracted data, comparing it against local literature sources and climate stations. This
ensures the utilisation of the most appropriate modelled climatology for the study
regions. Emerging local climatic variables, as observed in Sardinia (Canu et al., 2015),
Brazil (Ramoni-Perazzi et al., 2022), and Chile (Pliscoff et al., 2014), often provide
improved accuracy due to their comprehensive collection of local weather patterns.
Future versions of this package could incorporate access to these higher-quality
climate data sources, offering users greater flexibility in data selection.

Secondly, carefully selecting climate and derived variables is crucial for effectively
quantifying specific regions or points of interest. To determine suitable climatic
variables, various data-driven approaches can be employed. For instance,
researchers can use machine learning algorithms such as CART, random forests,
boosted regression trees, and others to identify the most appropriate variables that
empirically define 'climatic envelopes' robustly and ecologically meaningfully. These
methods also offer ways to sift through the numerous potential climatic and derived
variables to select the most important ones. In our vignette, we used the Random
Forests algorithm on the Italian Biome dataset and a complete set of climatic variables.
Through this analysis, we identified the mean temperature of the coldest quarter,
minimum temperature of the coldest month, mean annual biotemperature, and
precipitation seasonality as essential factors for delineating between the
Mediterranean and Nemoral Biomes. By employing these methods, one can make
more informed decisions about the choice of climatic variables that play a key role in
characterising and distinguishing the climatic envelopes of the various biomes in their
study areas.
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In conclusion, the cl1imenv R package is a valuable tool for researchers studying
climate-vegetation relationships. By providing seamless access, extraction, and
visualisation capabilities for globally recognised climate datasets such as WorldClim
2, CHELSA, and NASA's SRTM elevation data, c1imenv enables users to explore
the intricate relationship between climate and vegetation efficiently. With specialised
plotting functions for generating traditional Holdridge life zone classifications, Walter-
Lieth climate diagrams, and custom plots, climenv enhances the usability and
flexibility of analysing climate data. Overall, c1imenv empowers researchers to gain
insights into the complex dynamics between climate and vegetation, contributing to a
better understanding of our changing environment.
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