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Is the order of learning numerals universal? Evidence from eight countries and 

six languages. 

Abstract 

AUTHOR (2018) proposed that numerical symbol identification may constitute a universally 

predictive measure of early mathematical development. While a broad pathway to learning 

number symbols is unsurprising, lack of systematic variation in acquisition order relative to 

factors such as teaching, age, country, progression stage, is. This study evidences 

unidimensionality of measurement of the order of ability clusters of numbers, showing that 

variations are minor across eight countries and, importantly, six instructional languages. This 

invariance suggests early symbol identification could represent a universal measurement 

which could a) instructionally inform teaching and learning of classroom mathematics, b) 

work predictively as an educational research tool and c) offer a foundation for valid 

international comparisons of the mathematical development of children. Tentatively, this 

study suggests numerical symbol identification may be a universal measure to assess 

mathematical cognition in early years education that is unaffected by language of instruction, 

gender, time of assessment and country.  

Introduction 

Modern Hindu-Arabic numeracy owes its legacy to three historical advances: distinct 

symbols for the first nine digits and zero, counting via base 10 and place-value. This 10-

symbol approach evolved in Kerala region of India, with the oldest place-value document 

using base 10 emerging from the same region (Joseph, 2009). These innovations spread 

globally to emerge as the established way to represent numbers. Although we know the 

origins of number symbols, our understanding of how we learn to recognise them is not 

entirely clear. 
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Nevertheless, research has suggested that the ability to map number words to their 

Hindu-Arabic counterparts is related to early informal mathematics or ‘Number Sense’ 

(conceptually including abilities such as counting, cardinality, arithmetic. - Malofeeva et al., 

2004; National Mathematics Advisory Panel, 2008; Siegler & Booth, 2004). Mathematical 

development is cumulative, with advanced skills and core concept connections developing 

from consolidation of early skills (Gersten et al., 2005). Failure to grasp early concepts is a 

key indicator of later mathematical difficulty. 

AUTHOR, (2018) suggested that the development of number identification may have 

a single developmental pathway and that knowledge of children’s position along it can be 

instructionally informative to help foster and measure progress. They hypothesised and 

empirically tested the proposition that children learn numbers in stages, learning single digits, 

teens, double digits, triple digits and so on. Between each stage were measurable jumps in 

difficulty. This suggests that children consolidate earlier numeral knowledge before gradually 

understanding and applying place-value to identify larger numbers.  

Moreover, they showed that this pathway did not vary by sex, country (England and 

Scotland) socioeconomic background between the beginning and end of the first year of 

formal education. This is particularly interesting as it suggests a potentially invariant progress 

measure by which all children could be assessed regardless of circumstances, and to which 

future mathematical attainment could be anchored to. Last but not least is the potential for it 

to be used as an effective tool for meaningful international comparisons. In this extension of 

the original work, we examine if this same pathway exists across multiple countries and 

languages.   

How do individuals identify numbers? 
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Several cognitive models of Hindu-Arabic number recognition, based on the widely 

studied patterns of functionally dissociated deficits in neurological patients, have been 

proposed (Dotan & Friedmann, 2018; McCloskey et al., 1985). While reviewing all of the 

technical differences between these models is beyond the scope of this paper, they propose 

the use of syntactic frames in number identification, which then transform into number word 

frames once digit size and the position of 0 is accounted for. Briefly, when a numeral is 

presented, lexical processing identifies its elements while syntactical processing assesses 

relations between elements to arrive at the correct identification. Lexical retrieval requires the 

selection of the correct lexical class (such as Ones, Teens and Tens) and then the correct 

number word from within that class. A frame based on the presented numerals is generated 

from which the number words (Ones, Tens, Teens) and decimal words (Hundreds, Thousands 

) from the lexicon can be inserted, as well as combined with function words such as ‘and’. 

For example, 1234 becomes 1 (1 Ones Thousand) 2 (2 Ones hundreds) 3 (3 Tens) and 4 (4 

Ones). The lexicon of each word is also linked to the phonological and symbolic 

representations of the number word to allow for verbal or written production of the numerals 

(in this example, one thousand, two hundred and thirty-four). This process is underpinned by 

a number of independent sub processes, which will not be detailed here but see Dotan and 

Friedmann (2018) for a comprehensive overview of recent cognitive models of numerical 

processing.  

It is important to recognise that numerals can be comprehended successfully but 

inaccurately produced verbally or in writing (Benson & Denckla, 1969; McCloskey et al., 

1985). There is also acknowledgement that some numbers can be identified by alternative 

cognitive routes because they are ‘lexicalized’. These include common numbers such as 100, 

or numerals read as dates such as ‘2001’ (Cohen et al., 1994). Finally, most of these 

processes are functionally independent of word reading (Dotan & Friedmann, 2018). 
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How, and in what order, do children learn number symbols? 

The models above outline how number symbols are processed into an identifiable 

number output in cognitively functional individuals. What we know less about is how 

children acquire the knowledge required to functionally operate the syntactic framework and 

number word frames. It may first appear that learning to identify numerals in order from ‘1’ 

upwards to ‘n’ should be unsurprising. But why should we expect arbitrary mappings of 

phonemic to symbolic representations to occur in any order at all? This requires a brief 

explanation of the context within which learning early numeracy skills occurs. Numeracy 

develops in overlapping phases between counting and quantity mapping, often referred to as 

informal mathematics (Purpura & Ganley, 2014) and are the bases upon which formal 

mathematical skills develop. Number identification however does not conform to the 

definition on formal or informal mathematics (Baroody & Wilkins, 1999), which has led to 

the recent suggestions that ‘number knowledge’, which includes identification, may be a 

bridge between the formal and informal (Purpura et al., 2013), making it a vital prerequisite 

of advanced skills development.  

Although generally emerging at approximately age 3 (Gelman & Gallistel, 1978), 

symbolic mapping can occur as early as 18 months (Mix, 2009). The use of symbols is 

complex and requires three abilities: awareness of the relation between symbol and referent; 

mapping the corresponding elements from one to the other and drawing an inference about 

one based on knowledge of the other (DeLoache et al., 1999). 

Number word meanings develop in conjunction with counting, and understanding 

magnitude and cardinality (Carey, 2004; Krajewski & Schneider, 2009; Sarama & Clements, 

2009), although use of count words is often independent of actual counting in the very young 

(Wagner & Walters, 1982). Litkowski et al., (2020) found that by age three, 55.8% can 
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identify ‘1’ while 3.8% identify ‘15’. By age five, these proportions are 95.7% and 40.9% 

respectively, suggesting rapid progress with age. These developments coincide with 

neurological changes suggestive of increasing specialisation in the left intraparietal sulcus 

(Merkley & Ansari, 2016) as well as alongside growth in other informal skills (particularly 

counting, cardinality and one-to-one correspondence (Litkowski et al., 2020). Children begin 

to understand that some single digits such as 1 to 5, represent smaller quantities than others 

such as 6 to 9, sometimes independently of precise meaning and magnitude quantification (Le 

Corre & Carey, 2007). As children map words to symbols, proficiency at this grows quickly, 

potentially supported by anchoring to earlier mappings (Mix et al., 2014). Indeed, Baroody et 

al., (1983) demonstrated that reading and writing of number symbols in a stepwise manner as 

they progress through early schooling.    

 Multi-digit numbers can also be identified from as early as three-and-a-half (Mix et 

al., 2014), suggesting that number identification is possible without formal instruction, 

although generally this is a more difficult skill  (Claessens et al., 2014). A clear 

understanding of multi-digit identification is complex as it includes: some understanding of 

place-value, associating multi-unit names with written position, some comprehension of the 

distinctive nature of zero, the link between written position and base-10 values, that unlike in 

reading, size increases right to left, as well as linguistic irregularities in some languages, such 

as -teen and -ty in English (Baroody et al., 1983; Byrge et al., 2014; Fuson, 1990). These 

processes would culminate in the number word frames discussed earlier (Dotan & 

Friedmann, 2018).  Mix et al., (2014) demonstrated that pre-schoolers have some informal 

understanding of place-value, which allows some comprehension of multi-digit numbers and 

that performance increases with age. Ceiling effects begin to emerge in second graders, 

presumably coinciding with formal place-value instruction. Mix et al. further suggested that 

this learning occurs through exposure to appropriate but numerically complex stimuli,from 
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building blocks to phone numbers, in the developmental environment. AUTHOR, (2018) also 

suggested (based on Benford’s Law, 1938) that the distribution of numerals in natural number 

sets (lower numerals being more frequent) may also play a role in consolidating the order in 

which numerals are learned. Common benchmark numbers such as 10, 100 and higher appear 

often in informal learning games, parental interactions and early instruction (Byrge et al., 

2014), which may explain why some large multi-digit values are sometimes more easily 

identified by young children than expected (Byrge et al., 2014; AUTHOR, 2018) and may 

suggest some form of ‘lexicalised’ response (Cohen et al., 1994).    

Taken together, evidence on early symbol identification suggests that number 

identification is progressive from simple single digits to more complex multi-digits. 

AUTHOR, (2018) empirically tested this pathway on large representative samples of children 

in the UK and demonstrated that this indeed appeared to be the case, with numerals 1 to 5 

being learned first, followed by 6 – 9, teens, two digits and three digits. There were 

noticeable jumps in difficulty between each stage, the size of which decreased in line with 

increased progress. Some numbers (e.g., 100) were, as suggested above, more easily 

recognisable relative to other numbers of the same size but, overall, a single pathway with 

stepwise difficulty jumps (Baroody et al., 1983) was clearly identifiable.      

The ability jumps are important to note. Why should there be a noticeable jump 

between 5 and 6? It is, after all, one extra symbol? Assuming we just learn symbols in order 

would not predict this to happen, yet this and other jumps like it are evident in the data. This 

pathway suggests that there is some form of cognitive shift at various points in the sequence. 

If these pathways represent changes in cognition, then the question becomes, are these too 

universal? If so, then knowing them can be useful to early years researchers and practitioners 

alike in assessing early competencies in young children and delays in this progression may 

account for variation in later mathematical ability.     
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The predictive power of number identification ability 

Research consistently demonstrates that symbolic number processing is a key predictor of 

later mathematics development and achievement. Moreover, studies have consistently found 

a greater correlation between early symbolic measures of number representation and 

mathematical achievement when compared to non-symbolic measures (Lyons et al., 2014; 

Martin et al., 2014). Martin et al., (2014) suggest that symbolic number identification and 

symbolic number comparison were better predictors of mathematical achievement in Grade 1 

(fluency, computation and math problem solving) when compared to counting (procedural 

and conceptual) measures. Lyons et al., (2014) also found that symbolic number processing 

predicted arithmetic ability more strongly than non-symbolic processing.  

Further studies report that a child´s early ability to identify numbers is a good 

predictor of later attainment at the beginning of elementary education and later in their school 

career. Chard et al., (2005), observed a correlation of .58 between number identification and 

number knowledge tests at the beginning and end of the academic year for both kindergarten 

and first grade. Jordan et al., (2007) found that early number competency (number 

identification, quantity discrimination, identifying missing number in sequences) at the end of 

kindergarten is a good predictor of mathematics outcomes in first grade. A similar tendency 

was found at the third grade, when mathematics becomes more complex and one could 

expect a weaker correlation. Jordan et al., (2009) found a correlation between early number 

competence and later math achievement measures at the end of 3rd grade that varied from .60 

to .52.  Furthermore, this study also observed that the rate of growth in early number 

competences was a good predictor of mathematics performance in 3rd grade. AUTHOR 

(1999) found a substantial correlation between number identification for children on entry to 

school in the UK, age 4 years, and mathematics (.60) at age 7. The correlation was similar for 

reading (.64) at age 7. Predictive validity of number identification measures consistently 
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suggests that it is a strong, possibly the strongest, predictor of later formal mathematics 

abilities (Lembke & Foegen, 2009; Purpura et al., 2013) 

Finally, lack of fluency in identification of numbers, among other measures, can be 

used as a reliable indicator of potential mathematics difficulties (Gersten et al., 2005). These 

findings all point to the potential of number identification measures as a diagnostic and 

screening instrument and for early intervention for children starting school. 

International variation and number identification 

Although there are distinct advantages to number identification being a useful 

predictive classroom and research tool, it is reasonable to suspect that this ability varies 

internationally due to substantive differences in language and cultural practices. We now 

discuss each in turn. Language skills and number identification are linked. Identifying 

number symbols correlates with early vocabulary and phonics (LeFevre et al., 2010) while 

early difficulties in numeracy often co-occur with language difficulties (Purpura & Reid, 

2016). This is even the case though the relation between print and speech in symbolic 

numeral representation is very different to that of text (Mix et al., 2002). Language 

differences do perhaps impact symbol interpretation, however. Seron and Fayol (1994) 

showed that Belgian Walloon speakers (where multi-digit decades are regular) were more 

accurate in transcoding tasks than French speakers where some decades are irregular e.g. 70 

is soixante-dix (sixty-ten) and 99 is quatre-vingt-dix-neuf (four-twenty-ten-nine). In a novel 

design to better control for culture, data showed that there are more errors on inverted than 

non-inverted systems, for example, where the number word is one-and-twenty rather than 

twenty-one. Pixner et al., (2011) showed that in Czech children, whose  language is unique in 

that it has inverted and regular systems held in parallel, errors were greater using the inverted 

system. Miller et al., (2005) found that the base-10 structure of symbol identification in 
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Chinese seemed to allow for children to count to 100 earlier than English speaking peers. 

Language may thus impact on how and in what order children begin to learn to recognise 

numerals. 

Isolating sources of variation between language and culture is difficult, Pixner et al’s., 

(2011) study being a rare exception. There are a great many potential cultural confounds that 

may affect how children learn early number concepts. Age of formal schooling varies 

dramatically, ranging from age 5 in England to age 7 in Bhutan (Chartsbin, 2018). Some 

countries lack compulsory starting ages altogether. Pre-school provision is equally as variable 

(Oberhuemer, 2005). Related to this is the value placed on children’s informal knowledge on 

entry to preschool or school. In some cases, informal knowledge such as finger counting 

(necessary for learning base-10) can be viewed as a disadvantage rather than an asset 

(Dehaene, 2011). Teaching methods also vary from abstract manipulations to concrete 

approaches (Dehaene, 2011). Representation of numbers in the curriculum can also differ, 

with more concrete methods being prevalent in Asia. For example, the Chinese regular 

notation consists of only 13 symbols for the digits 1 through 9 and numbers 10, 100, 1,000, 

and 10,000. The number 2,342 is written as ‘2 1000 3 100 4 10 2’; a word-for-word 

transcription of ‘two thousand three hundred forty-two’ (Dehaene, 2011). Thus, Chinese 

children learn numbers by  simple rules such as  11 = ten one, 12 = ten two, 20 = two ten,) 

whereas American children learn different number rules from 0 to 10, from 11 to 19, and tens 

from 20 to 90. By age 4, Dehaene (2011) reviews evidence that Chinese children could count 

to 40 whereas American children counted only to 15, taking a year to catch up . 

Although evidence suggests differences between Chinese and American children in 

terms of rate of counting ability, Miller et al., (1995) noted that decade boundaries seemed to 

be increasingly difficult for both cultures. While Chinese students may accelerate more 

quickly in counting ability than English speakers, they still appear to share the same 
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difficulties. AUTHOR, (2018) also showed that despite age and curricular differences within 

the first year of schooling in England and Scotland, the order in which children learned to 

identify numbers was invariant across the two countries. We take this as tentative evidence to 

suggest that although children may have different rates of progression in identifying number 

symbols, the order in which they learn them, and the difficulty jumps they encounter, are 

potentially universal.  

Universal measures 

There have been attempts to produce common measures for use in countries across 

the world, including the Trends in Mathematics and Science Study (TIMSS). Beginning in 

1995, its most recently completed iteration (TIMSS, 2015) involves 57 countries. 

International comparisons are made, using Item Response Theory (IRT) to construct scales 

for each of Grades 4 and 8 (Mullis et al., 2016) providing rich information about students’ 

mathematics attainment across different languages and cultures. Scaling however, is within-

grade and so while TIMSS measurement scales are potentially universal, they report 

attainment at single time-points within grades.  

Mathematics curricula often present content areas such as number sense, operations, 

measurement, shape and space, data analysis, which may be considered to form different 

dimensions (Burg, 2008). Multi-dimensions are problematic for psychometric measurement 

models, which assume unidimensionality. Burg’s analysis suggested that mathematical skills 

overlap and that students do not learn skills in isolation. A mathematics test including 

questions spanning a range of content areas, could thus theoretically represent a 

unidimensional construct. We are not currently aware of models that successfully reflect this 

ideal. Furthermore, Burg proposed the possibility of constructing a vertical scale covering 

students over a range of ages. Further research in this area (Stenner et al., 2015) led to the 
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development of the Quintile Framework for Mathematics, which proposed a developmental 

taxonomy of mathematics skills and concepts. The Quintile Framework, in the USA is a 

vertical scale for mathematics skills and understanding, covering Kindergarten to Grade 12, 

and has been successfully used in 24 countries (www.metametricsinc.com). It should be 

noted however that researchers in the past have often found that early mathematics abilities 

often form multi-dimensional structures (for instance, Ryoo et al., 2012). 

Although international studies have progressed towards generating universal measures 

of mathematics, the methodology proposed by Burg (2008) and Stenner et al., (2015) 

suggests vertical scaling could assist in equating development across countries. The next 

challenge is to explore the possibility of generating universal measures using such 

techniques. 

The current study 

The reviewed literature and an understanding of the logic behind number systems 

provide a basis for supposing that simpler numbers will be learned before more complex 

numbers. This study aims to extend the findings of AUTHOR, (2018) by aiming to replicate 

the hypothesised pathway from 1 to 999 through learning number identification across 

different languages and countries. If the findings of this original paper hold, we would expect 

to see the same pathway demonstrated across different languages, cultures and countries. The 

scale should also demonstrate progression over the first year of formal education. In short, it 

should be possible to empirically demonstrate near universal invariance and progress across 

any demographic classification when it comes to learning number symbols. Should this be the 

case, then we may have a universal measure, predictive of future attainment, that could be 

used for international comparisons in the early years.  The research hypotheses for this study 

are thus as follows: 

http://www.metametricsinc.com/
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1) A unidimensional scale for numbers 1 through 999 should be identifiable. 

2) Identifiable difficulty clusters of numbers should be present in the scale.  

3) A scale should be invariant across languages, countries, sex, and educational 

stage. 

4) Children should make progress on this scale over the first year of formal 

schooling.  

Method 

Sample 

Data from schools was gathered from eight different countries using the International 

Performance Indicators in Primary School assessment (IPIPS, http://www.ipips.org/home) as 

part of existing research projects operating in Australia, Brazil, England, New Zealand, 

Scotland, Serbia, Slovenia and South Africa’s Western Cape (AUTHOR, 2019; AUTHOR, 

2019; AUTHOR, 2014; 2016; 2017; AUTHOR, 2009). The Australian sample is divided into 

two complete areas (A and B) and the Western Cape sample was split among schools of 

different primary language mediums (English, Afrikaans and isiXhosa). In total, we measured 

eleven areas over eight countries on a combined sample of 18,531 children  who completed 

both the baseline and the end of year assessment. Languages spanned four language groups 

(Germanic (English, Afrikaans), Romance (Portuguese), South Slavic (Serbian and 

Slovenian) and Bantu (isiXhosa)). Some notable differences in numerical language exists 

between these groups beyond pronunciation and unit names, particularly around differences 

in convention for numbers in the teens. 

Mean ages across sampled countries ranged from 4 years, 6 months to 7 years, 1 

month years at baseline and 5 years, 4 months to 7 years, 5 months years at follow up. See 

Supplementary Information for full demographic details and for an accounting of sampling 

http://www.ipips.org/home
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and curriculum differences due to national contexts. As this secondary analysis used data 

aggregated from multiple projects, ethnicity, socioeconomic and pre-education background 

were not comparable due to local recording differences. However, AUTHOR, (2018) 

demonstrated that differential item functioning (DIF) was not evident in such measures across 

England and Scotland where recording mechanisms were comparable. 

Table 1: Summary of data from Countries and Areas 

Area N at 

Baseline 

N at 

follow 

up 

Age 

(years & 

months) 

at 

Baseline 

Age 

(years & 

months) 

at follow 

up 

Sex (% 

female) 

School 

Language 

Additional 

language 

(%) 

Australia A  1310 1280 5Y 8M 6Y 4M 46 English 3 

Australia B 3457 3475 5Y 5M 6Y 6M 48 English 11 

Brazil 162 146 5Y 2M 5Y 10M 54 Portuguese 0 

England  6316 4544 4Y 7M 5Y 4M 49 English 17 

N. Zealand 2320 1440 5Y 1M 6Y 11M 48 English 14 

Scotland 6627 6627 5Y 11M 5Y 10M 50 English 2 

Serbia 159 159 6Y 2M 6Y 9M 51 Serbian 28 

Slovenia 328 328 6Y 3M 6Y 5M 48 Slovene 2 

W. Cape A 1198 644 6Y 11M 7Y 4M 51 English 19 

W. Cape B 1451 471 7Y 10M 7Y 5M 46 Afrikaans 5 

W. Cape C 999 697 6Y 10M 7Y 5M 51 IsiXhosa 2 

 

Although the samples from England, Scotland and the Western Cape are nationally 

representative, samples from other locations are not necessarily so (see Appendix 1 for 

sampling strategy information within each country). However, if the theoretical pathway 

proposed is universal (as hypothesized) this should not be an issue. The difficulty jumps 

expected should still emerge regardless of area, language, school type, assessment medium 

and other sources of difference. In this case, the diversity of the samples should not be 

problematic for this analysis.    
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Ethical approval from relevant, university Ethics Committees was granted prior to 

commencement in all participating countries. Local permissions for data collection and 

anonymised usage for research were also obtained. 

Measures and Procedure 

Children’s abilities were measured on the first and second occasions using the IPIPS 

assessment. The assessment includes measures of language,such as letter recognition, 

phonics, word recognition and reading, and mathematics, such as number reading, counting, 

cardinality, simple addition, and subtraction. Children are assessed one-to-one by a teacher or 

researcher for both the baseline assessment and end of year follow-up within their school 

environment. The assessment can be delivered via an electronic device  such as a smart-

phone, tablet, or computer, or on paper, and takes approximately 20 minutes to administer.  

 Using the computer adaptive version, the number identification subscale presents the 

child with a Hindu-Arabic numeral and is asked “What is this number?” after which a verbal 

response is recorded as right or wrong. For multidigit numbers, the correct articulation of the 

word must be produced to be considered correct. For instance,121 is one hundred and twenty-

one not one-two-one. No prompts are provided by the assessor. Numerals are presented in an 

approximate difficulty order from single digits, teens, double and triple digits. Numerals 0 

through 9 are presented in the following order: 4, 1, 3, 2, 5, 7, 6, 9, 8, 0, with the exception 

being Slovenia(see Table 2). Children then progress though three teens, three two-digits and 

five three-digits (6 in Slovenia) numerals. A maximum of 21 items are presented (with an 

exception of 22 in Slovenia). If a child answers four items incorrectly or is unable to answer, 

or makes three consecutive errors or omissions, the assessment ends. Responses to items after 

the stopping rule has been activated are recorded as missing rather than incorrect. There is no 

time limit to the section. Reliability of this section exceeds .90 (AUTHOR, 2018).  
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 The sample is split into two groups for the purpose of this study. Group 1 used the 

standard computer adaptive section with random numbers. Group 2 used a paper version 

where numbers were specified in advance for teens, two-digits and three-digits. Scoring 

mechanisms and stopping rules are consistent across methods. Table 2 shows the assessment 

composition and numeral order by country. For group 2 countries, the selected numbers to be 

assessed were locally determined by practitioners and researchers. Equivalency of the method 

of data analysis was examined via DIF analysis. Only the number 12 showed evidence of 

DIF, appearing to be slightly easier in the computer version than on paper (-2.43 and -4.37 

logits respectively). The two assessment methods are thus considered equivalent for this 

analysis.  

Table 2:  Numerals shown in different Countries 

Group Country Units  

(0-9) 

Teens  

(10-19) 

Tens 

(20-99) 

Hundreds  

1 Australia  4 1 3 2 5 7 6 9 8 0 Rnd x 3 Rnd x 3 Rnd x 5 

1 England  4 1 3 2 5 7 6 9 8 0 Rnd x 3 Rnd x 3 Rnd x 5 

1 N. Zealand 4 1 3 2 5 7 6 9 8 0 Rnd x 3 Rnd x 3 Rnd x 5 

1 Scotland 4 1 3 2 5 7 6 9 8 0 Rnd x 3 Rnd x 3 Rnd x 5 

2 Brazil  4 1 3 2 5 7 6 9 8 0 14 19 33 92 41 60  136 342 563 742 901 

2 Serbia 4 1 3 2 5 7 6 9 8 0 10 15 13 20 40 55 25 43 36 100 281 479 

2 Slovenia 4 1 7 9 5 0 11 15 10 12 20 40 55 41 68 92 

25 43 36 

300 281 479 

2 W. Cape  4 1 3 2 5 7 6 9 8 0 10 15 13 20 40 55 25 43 36 100 281 479 

*Rnd = Random Number 

Groups 1 and 2 had differences in the administered numerals. The data for Group 1 

used all numbers from 1 to 9 as well as 0; thereafter random samples of numbers from groups 

of numbers were presented to the students. Group 2 used specific numbers throughout. 

Data Analysis 
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A Rasch measurement model (Rasch, 1960; Bond & Fox, 2015) was implemented for 

analysis because it seeks to establish a unidimensional latent construct, the existence of which 

can be tested. It can also determine if relative difficulty of items varies by groups (DIF), 

handle missing data and, be used to assess other threats to the validity. Initially, Rasch 

models were constructed for all items and all students. Reliabilities were recorded and, for 

items, given the large samples, these were expected to be above .90. For students they were 

expected to be above .70. Wright maps, which plot item difficulties and students’ abilities on 

the same scale, were compared against theoretical expectations. Item fit was checked using 

Infit (Information-weighted mean square residual goodness-of-fit statistic) mean-square 

statistics, which is appropriate due to its greater sensitivity to the inlying patterns of overall 

performance than outliers and extremes. Items with figures greater than 1.30 or less than 0.70 

and significant to p<.05 were identified (Smith, 2000). Analyses were conducted using 

Winsteps (V4.0.1) 

Results 

In this section, we begin with the descriptive statistics for the measure before tests for 

each hypothesis are examined in turn. An additional analysis regarding the potential for 

tautological findings is then conducted.  

 Tables 3 and 4 show the key statistics for the measurement instrument by country for 

the items and participants (persons). The statistics were calculated separately for each 

country. For items, reliabilities are consistently close to 1.00. For persons, reliabilities across 

countries are in excess of .90 at the start of year and in excess of .80 at the end of year, the 

exception being New Zealand. Combined with the separation statistics, the results suggest 

that a consistent hierarchy of item difficulties is identifiable in the data and that individuals of 
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low and high ability can be reliably identified. Mean Infit values are consistently close to 

1.00 suggesting that the model shows good overall fit.  

Table 3: Descriptive statistics for the items by country 

Country Start of Year 

  

  End of Year 

Reliability Separation Mean Infit 

(SD) 

 Reliability 

 

Separation 

 

Mean Infit 

(SD) 

Australia A 0.96 5.22 0.73 (0.30)  0.94 3.90 0.83 (0.39) 

Australia B 0.97 6.21 0.83 (0.22)  0.98 6.41 0.83 (0.27) 

England 0.97 5.95 0.81 (0.31)  0.97 6.06 0.85 (0.23) 

N. Zealand 0.94 3.91 0.77 (0.78)  0.94 3.99 0.77 (0.57) 

Scotland 0.98 6.94 0.85 (0.22)  0.99 10.96 0.86 (0.22) 

Brazil 0.98 7.51 0.92 (0.20)  0.99 9.07 0.82 (0.40) 

Serbia 0.99 13.08 0.82 (0.19)  0.98 6.71 0.86 (0.25)  

Slovenia 1.00 19.09 0.89 (0.23)  0.99 10.18 0.94 (0.19) 

W. Cape 1.00 65.97 0.77 (0.21)  1.00 22.97 0.93 (0.13) 

Overall 0.99 14.04 0.83 (0.16)  1.00 15.68 0.85 (0.16) 

 

Table 4: Descriptive statistics for the persons by country 

Country Start of Year  End of Year 

 Reliability Separation Mean Infit 

(SD) 

 Reliability 

 

Separation 

 

Mean Infit 

(SD) 

Australia A 0.91 3.13 0.83 (1.05)  0.85 2.35 0.70 (0.98) 

Australia B 0.92 3.29 0.85 (1.00)  0.88 2.73 0.67 (1.00) 

England 0.93 3.55 0.87 (0.97)  0.90 3.02 0.77 (1.18) 

N. Zealand 0.91 3.21 0.83 (0.95)  0.77 1.84 0.60 (1.32) 

Scotland 0.92 3.46 0.82 (1.06)  0.84 2.33 0.69 (1.11) 

Brazil 0.90 3.07 0.80 (1.04)  0.92 3.30 0.69 (1.38) 

Serbia 0.97 5.76 0.79 (0.85)  0.93 3.64 0.78 (0.62) 

Slovenia 0.96 5.09 0.83 (0.85)  0.92 3.34 0.82 (0.76) 

W. Cape 0.97 6.19 0.71 (1.06)  0.81 2.07 0.81 (1.26) 

Overall 0.93 3.77 0.85 (0.99)  0.88 2.66 0.72 (1.12) 

 

Unidimensionality 

The first test is to examine if the items within the assessment form the hypothesised 

unidimensional pathway. Table 5 illustrates the results from a principal components analysis, 

calculated separately for each country, with the amount of variance explained by the measure, 

the first and the second contrast. As evident in Table 5, overall, the measures explain 72.8% 
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of the variance at the start of the year and 78.5% of the variance at the end of the year. First 

and second contrasts explain very little additional variance, the highest being Brazil at the 

start of year and Serbia at the end of year. This analysis suggests that across the nations 

studied and when combined, the number identification scale is unidimensional.  

Table 5: Results of PCA Analyses for each country 

Country Start of Year  End of Year 

 Percentage of variance 

explained by… 

 Percentage of variance explained 

by… 

 Measures 1st 

Contrast 

2nd 

Contrast 

 Measures 1st 

Contrast 

2nd 

Contrast 

Australia A 76.7 0.5 0.5  78.7 0.4 0.4 

Australia B 74.4 0.5 0.5  79.3 0.4 0.4 

England 70.5 0.8 0.7  79.6 0.4 0.3 

New Zealand 73.5 0.7 0.6  84.1 0.5 0.4 

Scotland 75.7 0.4 0.4  80.8 0.3 0.3 

Brazil 71.0 5.0 3.3  81.8 2.9 2.7 

Serbia 74.3 2.3 2.2  64.8 4.6 4.4 

Slovenia 70.1 2.9 2.3  68.8 2.8 2.6 

W. Cape 72.5 2.1 2.0  69.0 3.0 2.1 

Overall 72.8 0.5 0.5  78.5 0.4 0.4 

 

Are there identifiable ability bands? 

Wright maps were used to examine if the difficulties of various items clustered in the 

order hypothesised and demonstrated in the previous works of AUTHOR, (2018) can be 

replicated. Figure 1 shows the Wright map for all items and persons combined on the same 

scale. This plots the difficulty of the items (right) against the ability of the children (left) on a 

single logit scale (far left).  The numeral bands identified by AUTHOR, are clearly visible 

although the interface between teens and two-digit numbers is narrow. 1 to 5 are 

approximately between -14 and -12 logits, 6 to 9 between -10 and -7, teens between -5 and -

2, two digits between -2 and 2 and three digits largely greater than 6 logits. Some numbers 

(100 and 300 for example) also appear easier than expected. One will also note that 



RUNNING HEADER: Is the order of learning numerals universal? 
 

19 
 

individuals (on the left) extend the entire range of the scale. Figure 2 illustrates the item 

bands more clearly via a box and whisker plot, demonstrating where some items are slightly  

MEASURE    PERSON - MAP - ITEM 

               <more>|<rare> 

 

   10       .######  + 

                  .  | 

    9            .# T+ 

                  .  |T 742 

    8            .#  +  563      901 

                  .  |  Random 3 digit number 1, 2, 3, 4 and 5 

    7            .#  +  281      342      479 

                  .  |  136 

    6             .  + 

                     | 

    5             .  + 

                 .#  |S 

    4 .############  + 

                  . S|  300 

    3             .  + 

                  .  | 

    2            .#  + 

               .###  |  31 37 51 57 71   

                 .#  +  21 32 34 35 38 39 49 52 53 54 58 59 60 61 68 73 75 79 81 87 89 91 92 

95 96 97 98 

                 .#  |  23 24 26 27 28 29 30 36 41 42 43 45 46 47 48 50 55 56 63 64 65 67 69 

70 72 74 76 77       

      78 80 82 83 84 86 88 90 93 94 74 76 77 78 80 82 83 84 86 88 90 93 94 

        

    0           .##  +M 25       33       62       66       85 

                 .#  |  40       44 

   -1        .#####  +  22 

                .##  |  100     13 
   -2           .## M+  15       19       99 

                 .#  |  12       20 

   -3           .##  +  16       17       18 

                 .#  |  14 

   -4            .#  + 

                .##  |S 

   -5          .###  +  11 

                .##  | 

   -6            .#  + 

                 .#  | 

   -7          .###  +  10 

                 .# S|  9 

   -8          .###  +  8 

                  .  |T 0 

   -9            .#  +  6 

                 .#  |  7 

  -10             .  + 

                .##  | 

  -11                + 

                 .#  | 

  -12             .  +  5 

                 .#  |  2 

  -13             .  +  3        4 

                 .# T| 

  -14             .  +  1 

                  .  | 

  -15          .###  + 

               <less>|<freq> 

 

 EACH "#" IS 469: EACH "." IS 1 TO 468 

 

Figure 1: Wright map demonstrating item and person difficulties 
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Figure 2: Box and Whisker plot of items by their hypothesised band.  

 

*Note that 0 is the first item on the chart but is more difficult than items 1-5 (appearing in band 6-9). Dotted lines are inserted 

to aid interpretation by showing approximate positions of clusters (and do not represent confidence intervals). 

Figure 3: Item difficulties by country 



RUNNING HEADER: Is the order of learning numerals universal? 
 

21 
 

easier or harder than anticipated while still being in the general difficulty area. Figure 3 

shows the pattern for individual countries from a Differential Item Functioning (DIF) 

analyses of all the data together. One will note the consistency of item difficulties within each 

band across nations. This analysis suggests that the numeral bands 1-5, 6-9, teens, two-digits 

and 3-digits are empirically consistent and observable. 

Invariance 

DIF analysis was further used to examine if items differed substantively and 

significantly in their difficulty level between the identified groups of interest. These were sex, 

country, language, additional language and occasion. In group 1, as all 4 nations were native 

English speakers, language was not considered but the presence of an additional language 

was. The presence of DIF was examined using Mantel-Haenszel statistics and deemed a 

potential issue in items where there was both a) substantive differences in item difficulty 

between groups (defined as >0.64 logits) and b) the Mantel-Haenszel statistic was significant 

at p < .05 (Linacre, 2015). 

 For sex and additional language, there was no evidence of DIF across any of the 

items. 

For DIF by country, 5.7% comparisons were recorded with p<.05 and DIF>0.64. The 

largest difference was of 2.5 logits p=0.0011 for Item number 73, which was easier in New 

Zealand than in England. Generally, DIF contrasts were small (≤ 2.5 logits) in comparison of 

the range under consideration (22 logits).   

Within most countries there was a single dominant language. However, in South 

Africa’s Western Cape, the assessments were carried out in three languages, English, 

IsiXhosa and Afrikaans, with approximately equal numbers of students. Accordingly, DIF 

was examined only for IsiXhosa and Afrikaans against the other languages. This involved 
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130 comparisons and, of these, 30 (23%) were significant (p<.05) and exhibited DIF>.64. 

The largest contrast was 2.50 for number 281, which was easier in IsiXhosa than Serbian. 

The presence of DIF for items by language, over and above country DIF, is at a higher rate 

than would be expected under the null hypothesis (5%). However, as with country DIF, the 

contrasts were generally small (<2.5) in comparison of the range under consideration (22 

logits).   

In terms of testing occasion, between the start and the end of the year, there was one 

instance of DIF for the number 4, which was easier at the start of the year than the end by 

1.06 logits. All other item difficulties remained relatively constant between the start and end 

of the first year at school. 

Progress in the first school year 

The mean ability of each sample increases between the start of year and end of year 

assessment, suggesting that children make progress on average in the first year of formal 

schooling. Of those present for both assessments, the progress scores for children were 

analysed to determine what proportion of assessed children make progress over the period. 

1005 or 5.48% were omitted due to maximum scores on the first assessment and 1176 or 

6.41% for  minimum scores on the second occasion, to remove the impact of ceiling and floor 

effects. Of the children who participated in both the start and end of year assessments, only 

1.60% failed to make any progress over the period between assessments.  

Item Dependencies 

One possible explanation of the findings given the nature of the methodology is that 

the order may result due to the nature of the selected numbers, their order of presentation and 

the use of a stopping rule after children answer incorrectly. As such, the order of numbers 

presented may be considered tautological. AUTHOR, (2018) used a range of methods 
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(including mathematical simulations) to show that, in the English and Scottish data, this is not 

the case using the IPIPS assessment. They simulated scores for 300,001 students and 

difficulties for 21 items. These were used to calculate the probability of each individual 

getting each question correct. The stopping rules were then applied to simulate an assessment 

using the probabilities alone. Thus, new item difficulties were calculated. This process was 

repeated 1000 times and it was shown that there was a very close correspondence between 

the original and newly estimated item difficulties. Furthermore, the observed groupings of 

item difficulties remained constant. Although some numerals altered slightly in difficulty, 

these were within bands only; i.e. digits 3 and 4 may switch difficulties, but not 4 and 7, 

which crosses a band. It was concluded that there was no tautology.  

In this study, data was examined to detect potential item dependencies.  Andrich and 

Kreiner (2010) suggest that dependencies can be identified by examining the correlations 

between the residuals of observed and expected responses where larger correlations would 

suggest potential dependencies. Table 6 shows a tabulation of these correlations. The average 

correlation strength is around .001 (with a SD of .02). No moderate to large correlations were 

recorded. This analysis (showing results almost identical to AUTHOR, (2018)) suggests that 

localised item dependencies are not an issue in this data set.  

 

 

 

 

Table 6: Average residual correlations between observed and expected responses by country 

 Start of Year  End of Year 



RUNNING HEADER: Is the order of learning numerals universal? 
 

24 
 

 Average standardised 

residual correlation 

for items 

SD  Average standardised 

residual correlation 

for items 

SD 

Australia A -0.002 0.046  -0.003 0.040 

Australia B -0.003  0.032  -0.002 0.029 

England -0.003 0.043  -0.002 0.024 

N. Zealand -0.004  0.028  -0.003 0.068 

Scotland -0.003 0.026  -0.002  0.022 

Brazil -0.053 0.154  -0.034 0.212 

Serbia -0.038 0.120  0.040 0.166 

Slovenia -0.034 0.096  0.028 0.080 

W. Cape -0.010 0.063  -0.009 0.080 

Overall -0.002 0.024  -0.001 0.026 

 

Discussion 

This study had four empirically testable hypotheses: unidimensionality, identifiable 

ability clusters, invariance, and progression during the first year. This section addresses each 

of these in turn before discussing number identification ability more broadly. 

 With regards to the first hypothesis, the results of the principal components analysis 

suggest that, across the countries studied, the assessment used in this study explain in excess 

of 70% of the available variance in the ability to identify numerals. Although this varies 

slightly from country to country, there is little evidence of substantive clustering in the 

residuals to suggest that some other, yet unidentified ability or trait is being measured by this 

assessment. The evidence therefore suggests that the ability to identify numerals could be a 

unidimensional construct, supporting the first hypothesis. 

 The second hypothesis suggested that there should be distinct and detectable ability 

bands. AUTHOR, (2018) suggested that these should occur at items 1-5, 6-9, teens, 2-digits 

and finally, 3-digits. The analysis of this international data set confirms that this appears to be 

the case, with these bands being clearly identifiable. Furthermore, this banding is clearly 

consistent across all examined countries, with very little evidence suggesting that the 

numbers within these bands cluster differently. Children internationally appear to learn to 
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identify numerals in the same order. The second hypothesis appears well supported and 

generally agrees with existing literature on how children progress in number identification 

(AUTHOR, 2018; Mix et al., 2014; Wynn, 1992). Although there were some numbers that 

did appear to deviate from this structure (such as 100 and 300), these do not undermine the 

overall thesis of this paper. Some numbers, despite their complexity, appear easier to grasp 

than others. This likely reflects the greater regularity of these numbers in the developmental 

environment of children and their prominence in the wider environment as a whole rather 

than some great leap in understanding behalf of a child (Byrge et al., 2014; Mix et al., 2014). 

Alternatively, it may reflect lexicalisation of some common numbers, which are perhaps 

processed differently (Cohen et al., 1994).  

 The third hypothesis suggested that this potential unidimensional scale should be 

invariant across different groups. In this study, invariance by sex, language, country, 

additional language, and testing occasion was considered. Sex and additional language 

showed no evidence of meaningful differences on items. Occasion only showed DIF on one 

item, the number 4, well below the 5% suggested by the null hypothesis. Country and 

language showed some evidence of variance between some items in excess of the 5% that 

would be suggested by the null hypothesis. Items 73 and 281 appeared to show larger 

differences between countries. However, there is no apriori reason to suggest why these 

should differ and unless they were replicated, may represent chance here. If they were 

replicated, the difference may be due to age of children. In the countries that found these 

larger items easier, they were normally at least half a year older than their comparator on 

average. It may thus be that they had developed cognitively in a way that would make 

recognition of these symbols easier. However, these are generally small when one considers 

the range of the logit scale. It should also be noted that while some individual items do differ 

between countries and language, they do not differ to the extent that they fall into different 
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ability bands.Numerals 4 and 5 may differ in difficulty but still fall within the same band, i.e. 

numeral 4 does not suddenly appear in the teens, or even the higher single digits. This is 

borne out clearly in Figure 3. Whilst item 12 showed evidence of DIF between the computer 

and paper versions of the assessment, this difference also was not large enough for it to 

appear in different bands between Group 1 and 2. As such, the general pathway in which 

children appear to learn numerals does not appear to differ substantively between countries, 

languages and methodologies. Taken together, the data presented are therefore generally 

supportive of the third hypothesis.  

For the fourth and final hypothesis, and in line with AUTHOR, (2018), only a small 

number of children failed to make progress within the first year of formal education (<2%). 

Of this small number, some will have had odd results due to sampling errors, whilst some 

may genuinely have regressed, perhaps due to special educational needs and, or illness at the 

time of assessment. However, it is clear to see that children generally progress through the 

stages highlighted by this study and supports previous work (Chard et al., 2003; Litkowski et 

al., 2020) that suggests that children make much progress in this domain during the first 

school year.  

Universality 

Taken together, the evidence presented here is further evidence that the pathway to 

understanding numerals is likely a singular one through which all children navigate in the 

early years. This is an important finding although see the limitations section below. Although 

to some this may seem like a simple common-sense conclusion, why should number 

identification follow this universal pattern if all we are doing is mapping words to symbols? 

One may think that it represents the way children begin to count, each number increasing by 

a magnitude of one. However, were it that simple, then difficulty should ascend from 1 
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through 2, 3, 4, 5, 6, 7, 8 and so on. That is not the case in these results, with the difficulty 

order actually being 1, 3, 4, 2, 5, 7, 6, 0, 8 and so on; with other deviations from the standard 

count sequence throughout. This also would not really account for difficulty jumps between 

bands 1-5 and 6-9 given the linear increase in magnitude. Simplistic, “common sense” 

interpretations are therefore questionable.     

This data cannot address why and how this is pathway would be universal. There are 

several possible explanations, however. An innate biological sequence through maturity of 

cognition is a tempting proposition but, one could easily point to potential learnability as an 

explanation, where a necessary sequence of learned facts and concepts must be consolidated 

before it becomes usable. Cross cultural similarities in how we teach mathematics is also a 

possible contender. More work would be required to explore this further which we discuss 

below in limitations and future work.    

What we can focus more on here is the utility of this pathway. Given the suggested 

unidimensionality of the measure and its largely invariant nature, a measure of number 

identification (which on a Rasch scale, is interval in nature) may be an early universal 

yardstick on which all children internationally could be meaningfully compared. To recap, 

the scale does not appear to be unduly influenced by sex, languages, nations, additional 

languages and teaching practice in the first year of schooling and, as discussed earlier, 

number identification ability is also strongly predictive of later mathematical skills and 

difficulties (Gersten et al., 2005; Jordon et al., 2009; Lyons et al., 2014; Martin et al., 2014; 

AUTHOR, 1999). The implications for number identification as a practical classroom tool 

and a viable internationally comparative research tool cannot be overstated.  

Learning to identify numerals 



RUNNING HEADER: Is the order of learning numerals universal? 
 

28 
 

This research describes the general order of progression of numeral recognition. The 

difficulty jumps identified in Figures 1, 2 and 3 may provide some insight into how children 

are beginning to learn these numbers. Purpura et al. (2013) suggested that ‘numeral 

knowledge’ may be the bridge between informal and formal mathematics as more formal 

operations require connections to be made between early informal skills, such as counting, 

cardinality, quantity, and the written symbols used in more advanced mathematics. This may 

help explain why number identification is consistently one of the strongest predictors of 

future mathematics performance (Purpura et al., 2013; Lembke & Foegen, 2009). The 

difficulty jumps in number recognition may perhaps represent key points where informal 

mathematical knowledge is consolidated and assimilated into a wider ‘numeral knowledge’. 

Doubtless the first digits that are recognised are simply symbols corresponding to 

words that the children have learned. Much like count sequences (Fuson, 1988; Gelman & 

Gallistel, 1978) there may or may not, at least in the very youngest of children, be any deeper 

understanding of numerosity. But as the numbers become more advanced, there surely is 

understanding developing with them as recent work by Litkowski et al., (2020) suggests. 

Their work attempted to illustrate trajectories of early informal skills such as one-to-one 

correspondence, cardinality and counting in particular, in relation to children’s ability to work 

with early numbers from 1 to 16 from ages 3 to 5.5 years. These informal skills are positively 

and moderately correlated with each other and with number identification ability. They also 

develop progressively with age as applied to higher numerals although, their study stops in 

the mid-teens. The ability to identify numerals perhaps represents the culmination of informal 

skills and the stages identified in this research may correspond to children’s progressive 

consolidation of them. The sample in this study. beginning at age 4 and progressing to age 7, 

suggests consolidation of some of these skills will still be taking place.  
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Small subsets of numbers such as arrays between 1 and 5 objects, can be processed 

very quickly from an early age via subitizing; a quantitative evaluation of small arrays 

without formal counting. This ability appears early in development and normally applies to 

arrays of around three objects (increasing to as many as five as they mature – Starkey & 

Cooper, 1995). Benoit et al., (2004) suggest that subitising is the mechanism by which 

children in fact acquire their first number words. As such, in Hindu-Arabic numerals, the first 

five symbols are the most widely used to recognise and describe small arrays in environments 

and are easily grasped by even very young children (see introduction). The understanding and 

competency in other informal mathematics abilities required to grasp these first symbols is 

likely to be comparatively low.   

The difficulty gap transitioning from numerals 5 to 6, 7, 8, 9. is likely large because it 

potentially accompanies the transition from relying on subitising small arrays to the 

integration of other informal skills such as ono-to-one correspondence, verbal counting and 

cardinality. At this point, children need to begin making connections between different 

numerosity concepts to make sense of the count sequence relative to actual quantities, 

number words and symbol representations. This integration of skills increases the cognitive 

complexity of the task. The next large difficulty jump is to the early and later teens, where the 

Hindu-Arabic system has both a necessity to begin to understand some form of place-value 

but also, in some languages such as English, an irregular nomenclature e.g. where there is no 

one-teen, two-teen and three-teen, they become eleven, twelve and thirteen onwards. This 

likely requires additional learning. The jump between teens and two digits is less pronounced 

and likely reflects increasing consolidation of the early informal skills, as well as confidence 

in their use, and the beginnings of understanding rudimentary place value as they learn to 

decode more numbers. The jump between two and three digits is larger compared to teens 

and two digits, perhaps because the child needs to consolidate all these earlier principles 
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effectively to scale them to three digits. Whilst not examined in this study, it would be a 

logical prediction that the jumps between 3 and 4 digits and beyond, would become 

successively smaller as children demonstrate mastery of the integration of these principles. 

As experience and exposure to numbers grow and children are interpreting them more 

regularly, confidence and competence in early numerical skills, such as decoding, (below) 

will likely make successive jumps to larger, unfamiliar numbers, easier.    

Cognitive models of number decoding (Dotan & Friedmann, 2018; McCloskey et al., 

1985) all centre upon syntactic and number-word frames in the process of identifying and 

producing a presented numeral. Single digits require a simple insertion from the lowest 

lexical class (‘Ones’). Decoding multi-digit numerals however requires understanding of the 

relation between classes to ultimately deduce the correct number word. For the teens it may 

also be that there is simple symbol recognition rather than actual decoding. ‘Lexicalising’, 

rather than decoding, some or potentially all of the numerals 11 through 19 is probably not 

impossible for young children and may even be a first strategy for children learning numerals 

prior to grasping early informal principles and place-value. This would allow some children 

to recognise some numerals without necessarily consolidating all the necessary informal 

skills to this point. But as two-digit numbers get higher, an understanding of place-value 

becomes essential for effective, accurate decoding. This continues into three digits and 

beyond. Whilst some larger numerals may be ‘lexicalised’ such as common benchmarks like 

100 or environmental regularities such as a child’s house number, the vast majority will not 

be common across all children and decoding is the only way to interpret the majority of 

presented numerals.  

Decoding processes, mastery of informal mathematical skills and increasingly 

sophisticated place-value understanding likely develop together in young children to make 

numeral identification possible (Litkowski et al., 2020). It should be noted however that the 
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processes such as decoding have been simplified for discussion here and consists of multiple 

functionally independent sub and peripheral processes rather than singular centralised 

mechanisms (Dotan & Friedmann, 2018). A breakdown of any one or more of these could 

lead to identification or production errors, or cascade in such a way as to hamper the normal 

development of the identification process. As such, the pathway described in this paper likely 

applies to the normal development of Hindu-Arabic number identification and does not 

preclude the possible existence of additional or compensatory pathways emerging through 

developmental or acquired deficits to cognition.     

Limitations  

There are several limitations within this study that should be acknowledged. Firstly, 

the present analyses appear to suggest that local item independence is not problematic within 

this dataset, and this suggests the described pathway is not an artefact of the method. The use 

of stopping rules however does present limitations. It may mask some subtle elements of 

number identification. For instance, digits 6 and 9 are often harder to discriminate between 

(Gibson & Levin, 1975), and 0 is often understood later than other single digits (Wellman & 

Miller, 1986). Our analysis in fact bears this out, with these three numerals having higher 

difficulties than digits 1 to 5. As such, children may still struggle with these digits despite 

having knowledge of others. However, it is possible that children who identified them and 

one other numeral incorrectly, but could potentially identify other numbers, are exited from 

the assessment and are unable to demonstrate their knowledge. Differences in teens may also 

be masked. For example,11, 12 follow a different pattern to 13, 14. Future studies should 

consider implementing more liberal stopping rules to overcome this limitation. The most 

robust way of assessing the pathway without fear of tautology would be to give children all 

numbers 0 to 100 in a random order without any stopping rule. However, this is likely 

unfeasible both ethically and pragmatically, as forcing young children to continue when they 
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are clearly making mistakes can lead to distress, and even without errors, boredom, and test 

fatigue. Unwieldy as they are, a stopping rule of some specification is a necessity.   

Although we tentatively suggest that this pathway is universal, it must be 

acknowledged that the countries participating in this project have well developed, 

westernised education systems using Hindu-Arabic numerals assessed on entry to formalised 

education systems. Additional work is required however to examine if this pathway extends 

to additional languages and cultures, particularly with linguistic rule exceptions or different 

numerical structures. Testing this hypothesis on a large, nationally representative sample of 

individuals developing under different numeral systems would be elucidative, although this 

may be difficult given the almost universal adoption of Hindu-Arabic numerals across the 

globe. There are some cultural exceptions that may show that this pathway is limited. For 

instance, research has shown several different count systems in regions such as Papua New 

Guinea (Saxe, 2012). Would we expect our yardstick to work equally well for those 

developing in such systems? The explicit base-10 structure used in Chinese numerical 

language may also mean that the teens and general two-digit differences may not exist in this 

language. It must be acknowledged that different educational systems and practices 

(particularly systems that are not universally accessible or are less developed or formalised) 

may foster different patterns of learning in this domain. Although there is no specific apriori 

theoretical reason to suggest why this pathway, or the skills underpinning it, should vary, any 

true test of universality would need to consider this possibility. Similarly, differences in home 

circumstances or pre-school variability were also not accounted for due to differences in 

reporting methods across projects. Home background in the early years has a clear effect on 

early numeracy development (Jordan et al., 2007; 2009) and examining this pathway relative 

to socioeconomic factors in the early years would be informative. Interestingly however, 

socioeconomic background was examined in AUTHOR, (2018) and invariance of the 
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pathway remained although this test is limited to only two countries. Pre-school variability 

has also been noted to be a factor in early informal mathematical skills development (Engel et 

al, 2016).  Further exploration here is required as this pathway may not be replicable when 

comparing with nations that are very different in terms of educational culture and practice. 

Should the pathway be demonstrated however, this scale may provide further novel insights 

into how children are mentally using, representing, and mapping number. 

Finally, data from these projects were not longitudinal beyond the first year in formal 

education. This limits the ability to track further progress with increased age and schooling, 

such as recognition of numbers of four or more digits, as well as prevents examining the 

relationship between the progress made and future attainment. However, as reviewed 

previously, there is a strong literature that suggests the predictive long-term effects of early 

number identification. This could also be extended into pre-school/kindergarten given that 

many children, as noted earlier, can recognise multi-digit numbers before entry into formal 

education. Are the ability jumps the same in younger children? Our model suggests they 

should not be, but very young children tend to subitise arrays of 1 to 3, with 4 and 5 being 

possible in older children (Starkey & Cooper, 1995). As such, it may be that in the very 

young, we see a further transition as we move from 3, to 4 and 5.     

Future work 

 There are multiple research questions that could be considered from the findings 

presented within this study. Firstly, and perhaps most obviously, extending these findings to 

other language groups should be a priority although, without good reason to the contrary, we 

would anticipate confirmation of this pathway. Secondly, can the scale be used to compare 

the developmental levels of children within and across countries? If so, what does that 

developmental level relate to, for example, mathematical or cognitive development more 
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generally, teaching and training, the language used for numbers? Thirdly, to what extent is 

the scale predictive of future success in literacy and numeracy? We reviewed earlier that 

number identification does appear predictive of these in the early years but only at specific 

time points (Chard et al., 2005; Jordan et al., 2009; AUTHOR, 1999). How predictive is this 

ability of later qualifications in secondary or tertiary education, requiring more longitudinal 

designs to answer?  Fourthly, in what way does this number identification scale relate to the 

development of other facets of mathematical development, both concurrently and 

predictively? Litkowski et al., (2020) seems to suggest that informal skills are developing 

together but more testing and specific designs would be needed to answer this question more 

clearly. Finally, does the scale extend to older age groups, possibly even adults, and can it be 

used productively in studies on such populations?  

Psychological and Educational Implications 

 While this finding of a pathway may initially be considered educationally obvious at 

face value to practitioners in the early years, understanding this pathway may be more 

beneficial on closer consideration. A simple assessment of numeral knowledge, taking 

minutes to administer, on entry to school can offer an insight into initial mathematical 

competency. Indeed, the IPIPS assessment from which this measure originates was intended 

to do just that alongside other competencies and provides useful information for teachers, 

illustrating ‘next steps’ in addition to simply identifying a child’s position in their learning.  

Understanding that number identification occurs in stages, however, is also useful and 

knowing what numbers children can and cannot identify will give an insight into their 

learning and consolidation of related skills such as facets of informal mathematics and place 

value. Number based activities can thus be appropriately tailored to children based on which 

stage of number identification they are at, as this study suggests that children need to 
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consolidate understanding of each step in turn whilst moving through the stages seems to get 

easier the more they learn. Many practitioners may be tempted to think that the ability jump 

between 25 and 35 is larger than the ability jump between 5 and 6 when this in fact is not so 

according to this data. Possessing such knowledge may encourage alternative ways of 

teaching number in the first year of school and may allow for greater classroom 

differentiation based upon on entry ability. Finally, research also shows that failure to grasp 

early numerical competencies such as number identification is an early sign of numerical 

processing difficulties in later education (Gersten et al., 2005). This is presumably because it 

represents a failure to consolidate those earlier informal mathematical skills (Purpura et al., 

2013). As such, a simple number identification assessment at points in the first year may be a 

useful screener for practitioners. Children who are making little or no progress in number 

identification in the first year of school can be quickly identified for further specialist 

investigation and intervention. Our analysis shows that whilst the overwhelming number of 

pupils make progress in that first year, 1.6% do not. These children may be amongst the most 

at risk and require some form of intervention.     

This study also provides tentative evidence for the validity of using the scale within 

national or international comparative frameworks. International assessments such as PISA, 

PIRLS, TIMSS are highly prized by researchers and policy makers alike despite the 

limitation that they do not have a baseline assessment to which progress can be mapped from 

(AUTHOR, 2004). A simple number identification paradigm could be used internationally to 

achieve such an end. In a similar vein, many national progress measures are similarly flawed 

(AUTHOR, 2004) because they lack information regarding a child’s ability on entry to 

formal education. As number identification ability appears invariant across many different 

demographic factors in this data at least, early assessment of this ability may assist schools 

and authorities in monitoring and tracking progress, and which may subsequently improve 
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reporting and accountability metrics (which vary considerably internationally – AUTHOR, 

(2017)).    

Conclusion 

This investigation extends a more restricted paper based on two similar English-

speaking countries using the same assessment (AUTHOR, 2018), and together these papers 

provide support for the view that there may be a universal developmental pathway, which 

children follow as they learn to identify number symbols. Number identification measures 

may thus prove a useful tool for both researchers and practitioners alike, particularly within 

an international context.  
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