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Abstract

The graph exploration problem requires a group of mobile robots, initially placed arbitrarily
on the nodes of a graph, to work collaboratively to explore the graph such that each node
is eventually visited by at least one robot. One important requirement of exploration is
the termination condition, i.e., the robots must know that exploration is completed. The
problem of live exploration of a dynamic ring using mobile robots was recently introduced by
Di Luna et al. [DC 2020]. More specifically, they studied the problem of live exploration in a
dynamic ring and proposed multiple algorithms to solve this problem in the fully synchronous
and semi-synchronous settings with various guarantees when 2 robots were involved. They
also showed that, under certain assumptions, exploration of the ring using two robots was
impossible. An important question left open was how the presence of 3 robots would affect
the results. In this paper, we try to settle this question in a fully synchronous setting and
also show how to extend our results to a semi-synchronous setting.

In particular, we present algorithms for exploration with explicit termination using 3
robots in conjunction with either (i) unique IDs of the robots and edge crossing detection
capability (i.e., two robots moving in opposite directions through an edge in the same round
can detect each other), or (ii) access to randomness. The time complexity of our deterministic
algorithm is asymptotically optimal. We also provide complementary impossibility results
showing that there does not exist any explicit termination algorithm for 2 robots even when
each robot has a unique ID, edge crossing detection capability, and access to randomness. The
theoretical analysis and comprehensive simulations of our algorithm show the effectiveness
and efficiency of the algorithm in dynamic rings. We also present an algorithm to achieve
exploration with partial termination using 3 robots with unique IDs in the semi-synchronous
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setting, when robots have access to edge crossing detection capability and randomness but
do not know a bound on the size of the ring or have access to a landmark or are guaranteed
that robots have common chirality. Our algorithms are fully decentralized, lightweight, and
easily implementable.

Keywords: multi-agent systems, mobile robots, exploration, uniform deployment,
distributed algorithms, dynamic graph, ring graph

1. Introduction

The research area of autonomous mobile robots in a graph setting has been well stud-
ied over the years. Many fundamental problems have been studied in this area, such as
exploration [2, 3], dispersion [4, 5], gathering [6, 7], and scattering [8, 9] among others. In
particular, the problem of exploration has attracted much interest [10, 11, 12, 13, 14, 15, 16].
In this problem, multiple robots are placed on nodes in the graph and the goal is to design
an algorithm, run by each robot, such that all robots collectively visit each node at least
once as quickly as possible. As this fundamental problem has been solved to a large degree
in most vanilla settings [17, 18, 19, 20, 21], its study has been extended to more exotic, but
realistic, settings.

One such setting is a dynamic network. In the real world, dynamism is seen fairly
regularly in networks. Like most things in real life, the dynamism that appears in the real
world is quite complex. In order to work towards a deeper understanding of this complexity,
we first start with a simple model of dynamism, which is a restricted version of 1-interval
connectivity applied to a ring in the synchronous setting. We now describe this version of
dynamism. Consider n vertices, v0, v1, . . . , vn−1, with an undirected edge between every node
vi and v(i+1) mod n, ∀i : 0 ≤ i ≤ n − 1. In each round, the adversary can choose to remove
at most one edge of the ring. Note that if the adversary removes an edge (vi, vi+1) from the
ring in some round, the edge is removed only for that round. In the subsequent round, all
edges are considered to be present and the adversary chooses from among all edges at most
one to remove (the adversary may choose to remove the same edge again).

In this setting, Di Luna et al. [22] were the first to study the problem of graph exploration
when robots do not know what the adversary will do next (live or online dynamism). This is
contrasted with another scenario, called post-mortem dynamism, where robots have complete
knowledge of how the adversary will control dynamism in every round. In [22], Di Luna et
al. studied both fully synchronous systems and semi-synchronous systems where nodes are
anonymous, i.e., nodes do not have unique IDs. In the fully synchronous setting, they
have shown that by using just 2 robots without unique IDs, subject to some assumptions,
deterministic exploration of a ring in the presence of 1-interval connectivity is possible with
termination detection. These assumptions include a mix of the following ideas: (i) robots
have knowledge of the value of n, (ii) there exists a landmark (a unique node that can be
identified by robots as being unique), (iii) robots have common chirality (a common sense
of clockwise/counterclockwise). They differentiate between explicit termination detection
where all robots can detect the completion of exploration and subsequently terminate, and
partial termination detection where at least one of the robots (but not necessarily all of them)
detects completion and terminates. They have shown that deterministic ring exploration with
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explicit termination is possible with 2 robots with the aforementioned assumptions. They
have also provided matching impossibility results that deterministic exploration with partial
termination is impossible with 2 robots when n is unknown and no landmark is available,
even in the presence of robots with unique IDs and common chirality. They have also
shown that if n is unknown, no landmark is available and the robots are anonymous, then
regardless of the number of robots initially deployed on the ring, deterministic exploration
with partial termination is impossible. This impossibility holds even if those robots have
common chirality. An important question left unanswered is if exploration with ≥ 3 robots
is possible when no knowledge of n is known and no landmark is available but robots may
have IDs. In this paper, we further extended the exploration problem in the dynamic ring
and try to settle this question in the fully synchronous setting and provide partial results in
the semi-synchronous setting.

1.1. Our Contributions
In this paper, we look into exploration of a dynamic ring with 3 robots and show various

positive results when certain assumptions are made.
We show that deterministic exploration of a dynamic ring of size n with explicit termi-

nation detection is indeed possible with 3 robots when n is unknown and no landmark is
present. In fact, not only is exploration possible, but the running time of our algorithm
(which is linear in the size of the ring) is asymptotically optimal. We require robots to
have unique IDs and have the capability of edge crossing detection, i.e., two robots passing
through the same edge in a given round in opposite directions can detect that they passed
each other in that round. We also implement our algorithm and show that it outperforms the
theoretical time bound for different parameter ranges. Further, we show that the algorithm
also works for variable length IDs of the robots (see Section 5.3).

We subsequently remove the need for the edge crossing detection assumption with the
help of randomness. We also show how to use randomness to remove the need for robots to
have unique IDs. Note that this result – we achieve explicit termination with 3 anonymous
robots, no landmark, no knowledge of n, but access to randomness – is in sharp contrast
to the impossibility result of [22] where even partial termination with any number of robots
is impossible under the same setting but without access to randomness. We also show how
to modify our algorithm to achieve partial termination with better runtime. Our positive
results are summarized in Table 1.

One may wonder if either the use of edge crossing detection or the use of randomness
is sufficient for 2 robots to bypass the impossibility result from [22]. We show that when
robots only have access to edge crossing detection, exploration with partial termination of 2
robots is impossible. We further show that even when the use of randomness is also allowed,
exploration with explicit termination of 2 robots is impossible. Thus, we see that only
with the use of 3 robots do either of these capabilities provide sufficient power to overcome
the impossibility of exploration with explicit termination. Our impossibility results are
summarized in Table 2 along with a comparison to the impossibility result from [22].

Finally, we show how to use the ideas we built up throughout the paper to achieve partial
termination in the semi-synchronous setting when robots neither know an upper bound on
the value of n nor have access to a landmark. The algorithm uses 3 robots with unique IDs
and access to the edge crossing detection capability.
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Table 1: Fully synchronous setting, possibility with 3 robots.
Assumptions Running time (for explicit termination)

Non-anonymous robots, Edge crossing detection O(n) rounds
Non-anonymous robots, Access to randomness O(n log n) rounds on expectation∗

Access to randomness O((n+ n · 2l) log n) rounds on expectation∗∗

∗ Explicit termination with probability ≥ 1− 1/n.
∗∗ Explicit termination with probability ≥ (1−O(1/2l))(1− 1/n), where l is an input to the algorithm.

Table 2: Fully synchronous setting, impossibility results.
Paper # Robots Assumptions Even with Assumptions Which termination

impossible
[22] 2 No knowledge of n, No landmark Non-anonymous robots, Chirality Partial

[22] Any No knowledge of n, No landmark, Chirality PartialAnonymous robots

This paper 2 No knowledge of n, No landmark Non-anonymous robots, Chirality, PartialEdge crossing detection

This paper 2 No knowledge of n, No landmark Non-anonymous robots, Chirality, ExplicitEdge crossing detection, Access to randomness

1.2. Organization of Paper
In Section 2, we discuss related work in the area. In Section 3, we elaborate on the exact

model of the system. In Section 4, we present our impossibility results for termination with
just 2 robots. In Section 5, we develop our algorithm to achieve exploration with explicit
termination using 3 robots and provide experimental data to illustrate its efficiency. In
Section 6, we show how to remove the requirement of edge crossing detection and unique
IDs for robots in our algorithm through the creative application of access to randomness.
In Section 7, we extend our deterministic algorithm to achieve exploration with partial
termination using 3 robots in the semi-synchronous model. Finally, we conclude with the
future research directions in Section 8.

2. Related Work

Exploration of static anonymous graphs using mobile robots has been studied for a very
long time. A good survey on the topic is presented in [23, 24]. Exploration on anonymous
graphs with 1-interval connected dynamism is relatively new and the first paper to study
it in the current model is [22]. In the paper, they look at exploration problem in a ring
under 1-interval connected dynamism and provide various deterministic algorithms to solve
the problem using 2 robots for various assumptions. It should be noted that the way 1-
interval connectivity is defined in their paper and also in the current paper is different from
the original definition proposed in [25, 26]. Specifically, the original definition of 1-interval
connectivity allows for permutations of the nodes of the graph, whereas in [22], the nodes
remain stationary and the adversary can only choose whether to temporarily remove at most
one of a fixed set of edges per round.

A randomized approach to graph exploration is presented in [27] via random walk, how-
ever the model of dynamism they look at is slightly different. Their approach is that of a
lazy random walk, but when the rate of change of the graph is very fast, i.e., every round the
adversary changes the graph, then things become complicated. Essentially their approach
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may take Ω(n2) time to explore a dynamic ring of size n, however, it cannot guarantee any
termination.

There are other works in literature which have addressed the problem of exploration on
dynamic graphs. The exploration problem on dynamic rings for the T-interval connected
case is addressed in [28]. They have addressed the problem in two scenarios. In one scenario,
the robot knows about all changes in the dynamic ring. In another case, the robot has no
knowledge about the changes but the edges are δ-recurrent. They have extended their work
in [29] and addressed the exploration problem on cactus graph when changes in the graph
topology are known to the robot. There are other works like [30, 31] which address the
exploration problem for general graphs in centralized environment when the change in the
graph topology is already known. There are works [32, 33] which address the live or online
version of the exploration problem in a distributed environment for periodically varying
graphs. In this case, there are a finite number of carriers in the graph and an edge between
two nodes exists only when a carrier moves from one node to the other. They have assumed
that the movement of each carrier is periodic. A very recent work [34] studies exploration in
time-varying graphs (including 1-interval connectivity) of arbitrary topology and investigates
the number of robots that are necessary and sufficient to explore such graphs. There have
been other papers that look at different problems such as gathering [35] and dispersion [36, 37]
on dynamic graphs under 1-interval connectivity.

3. Network Model and Assumptions

Graph. We consider an undirected, 1-interval connected dynamic ring R of size n as con-
sidered in [22, 24]. As R is a ring, each node in R has two neighbours connected via two
ports. The ring is anonymous, i.e., nodes are indistinguishable. We assume that the nodes
are fixed, but the edges of R may change over time. More precisely, in any round at most
one of the edges might be missing from R. An adversary decides which edge is to be re-
moved in a round. Such a dynamic ring is called a 1-interval connected ring [22, 38]. The
adversary controls the edge deletion with the knowledge of the algorithm and current states
and positions of the robots. However, for the randomized algorithms, the outcome of coin
tosses made by each robot is not known to the adversary.

Robots. There are three robots R1, R2, and R3 which explore R. Each robot is equipped with
a finite memory, say O(log n) bits, and computational capabilities. Each robot has a unique
identifier (ID) and initially a robot only knows its own ID. Furthermore, we assume that the
IDs are k-bit strings such that the length k is O(1). It is sufficient to represent 3 distinct IDs
with a constant number of bits. The ID of a robot is represented as bk−1bk−2 · · · b1b0. Initially,
robots do not know the size of the ring (not even a bound on it). The robots do not share any
common chirality, i.e., the clockwise and anti-clockwise directions for the robots may differ.
During movement, at any node a robot can differentiate between the port through which
it enters the node and the other port. All the robots execute the same protocol. Multiple
robots can reside at a single node at the same time. When multiple robots are on the same
node they can sense each other’s presence and exchange information. The robots can move
from one node to a neighboring node in some round if the corresponding edge is available
in that round. A robot can successfully move towards a fixed direction if the corresponding
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adjacent edge is available in the dynamic ring; otherwise, if the edge is missing, the robot
waits until the edge is available. At this waiting period, the robot can sense presence of
other robots and can exchange information with them. For some of our algorithms, we make
use of the edge crossing detection capability, i.e., two robots moving in opposite directions
on the same edge in the same round can detect that they passed each other in that round
and exchange information.

Time. For the majority of our work, we consider a synchronous system which progresses
in time steps, called as rounds. In a single round, the sequence of operations executed is
as follows: (i) each robot performs some local computation and decides whether or not to
move from the current node and, in case it moves, the direction of that movement, (ii) the
adversary removes at most one edge from the ring for this round, (iii) the robots execute
their movements, if any, as long as the edge they wish to move over is present.

We also consider a semi-synchronous system in Section 7. In this setting, in every round,
the adversary chooses a subset of robots to be active in that round and the remaining robots
are put to sleep. The adversary is restricted to ensure that every robot is activated infinitely
often. We consider the scenario when the passive transport of robots is allowed.4 Informally,
passive transport allows a robot to move along an edge even when it is asleep. In more
detail, consider a round i where an awake robot wants to move through an edge e that the
adversary removed in that round. Now, suppose the adversary subsequently puts the robot
to sleep from round i + 1 to some round j. If e is present again for the first time in some
round k : i + 1 ≤ k ≤ j, then the robot moves along the edge in round k even though it is
asleep. In short, when a robot is awake, it can perform all the tasks like moving, deciding
direction, communicating with co-located robots, etc. When a robot is asleep, it can only
perform movement if it was already slated to move on that edge earlier while it was awake.
Each robot does not have knowledge of whether it was asleep in the previous round or not.

4. Impossibility of Exploration with 2 Robots

In this section, we extend the impossibility results from [22] to the scenario where robots
also have the edge crossing detection capability and access to randomness. First, we make a
similar observation to Observation 2 from [22].

Observation 1. The adversary can prevent two robots starting at different locations from
meeting each other even if they have unlimited memory, common chirality, distinct known
IDs, and the edge crossing detection capability when n ≥ 3. When robots also have access to
randomness, then it is required that n ≥ 5.

This observation is clear to see when robots do not have access to randomness by consid-
ering the following strategy of an adversary. If the two robots are on adjacent nodes, then
the adversary removes the edge between those two nodes. If the robots are at distance two
from each other but will move into the same node, then the adversary can remove the edge
between the center node and one of the nodes with a robot on it. However, when robots
have access to randomness, it is not clear how the robots will move. Thus, when robots have

4There exist other types of transport models not considered here; see [22] for details.
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access to randomness, the adversary has the same above strategy for robots on adjacent
nodes. If the robots are at a distance two from each other, the adversary removes one of the
edges adjacent to the centre node between the nodes the robots are on. This is the reason
why the minimum sizes of the ring are different for when randomness is involved and when
it is not. If robots have access to randomness, then in order to apply the previous strategy,
the ring should be of size at least 5. Now, using this observation, we are able to prove the
following impossibility result, which is a more general version of that seen in [22]. Note that,
the nature of the proof is similar to that of Theorem 1 in [22].

Theorem 4.1. There does not exist any exploration algorithm with partial termination of
anonymous rings of unknown size (≥ 3) by two robots, even when robots have distinct IDs,
common chirality, the edge crossing detection capability, and when the scheduler is fully
synchronous.

Proof. Let there exist an algorithm A that achieves exploration with partial termination
with two robots, say R1 and R2. Run this algorithm on a ring of size n and consider any
adversary strategy that prevents R1 and R2 from ever meeting. From Observation 1, we know
such a strategy is possible. Let us assume that, without loss of generality, R1 terminates
first after T (n) rounds. We now construct a ring and adversary strategy such that A will
fail, i.e., never achieve exploration.

Consider the ring of size 4T (n) + 4 and place R1 and R2 on nodes that are at distance
2T (n)+2 from each other, i.e., at opposite “ends” of the ring. Have each robot run A and let
the adversary act such that R1’s local view at each time step is similar to its view when R1

ran A on the ring of size n.5 Thus, after T (n) time steps (rounds), R1 will terminate and by
Observation 1, R1 never came into contact with R2. Subsequently, in each future round the
adversary will remove any edge that R2 may want to traverse and thus ensure that R2 does
not explore any more nodes. After T (n) rounds, R1 and R2 would have collectively explored
at most 2T (n)+2 nodes and thus A fails to achieve exploration, which is a contradiction.

We now provide a similar impossibility result when robots have access to randomness.
Note that for this result, we are showing the impossibility of explicit termination and not
partial termination. Also note that the proof is similar to that of the previous theorem with
a few subtle but significant changes.

Theorem 4.2. There does not exist any exploration algorithm with explicit termination of
anonymous rings of unknown size (≥ 5) by two robots, even when robots have distinct IDs,
common chirality, the edge crossing detection capability, access to randomness, and when the
scheduler is fully synchronous.

Proof. Let there exist an algorithm A that achieves exploration with explicit termination
with two robots, say R1 and R2. Run this algorithm on a ring of size n. Define T (n) to be
the running time of A with high probability, i.e., with probability ≥ 1−1/n, over all choices
of randomness and all adversarial strategies that prevented R1 and R2 from meeting. By

5Here, the local view of robot R1 is the set of all other robots currently co-located with it, which may be
empty, and the set of ports R1 sees on the node.
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Observation 1, we know that such strategies exist. Define an execution j of A as a vector
of all the random choices, information communicated, local computations, and movements
performed by both robots until termination. Define VR1(i, j) as the vector of local views of
R1 for all rounds up to round i for some execution j of A. Define VR1(j) as the vector of
local views of R1 for all rounds up to termination for some execution j of A. Define VR∞ as
the set of all VR1(j) across all executions j of A for all possible choices of randomness and all
possible adversarial strategies subject to the condition that R1 and R2 never meet. We now
construct a ring and adversary strategy such that A will fail, i.e., never achieve exploration.

Consider the ring of size 4T (n) + 4 and place R1 and R2 on nodes that are at distance
2T (n) + 2 from each other. Now, the adversary focuses on R1 and acts so that the local
view of R1 in round i, VR1(i, j) will always belong to VR∞ for the current execution j of A.
This is possible because R1 and R2 never meet in any of the executions we considered and so
the local view of R1 in a given round is influenced only by which edge has been removed in
that round. Furthermore, since R1 and R2 are located at distance 2T (n)+2 away from each
other, R2 will never meet R1 within T (n) rounds, so we can safely ignore how R2 behaves.
Now, after T (n) rounds, R1 will terminate.

We subsequently have the adversary focus on R2 and trap the robot within a strip of two
nodes. Consider two adjacent nodes u and v and let R2 be present on one of them. The
adversary always removes the edge from the node that is not the edge between u and v.
Thus, R2 will either terminate or indefinitely move between these two nodes.

In the course of the execution, R1 could explore at most T (n)+1 nodes before it terminates
and R2 could similarly explore at most those many nodes before being trapped. Thus,
no more than 2T (n) + 2 nodes could ever be explored, resulting in A failing. This is a
contradiction and thus we see that no such A can exist.

The reason the above impossibility result works for explicit termination but not for partial
termination is that when we allow robots to use randomness to make choices, it no longer
becomes clear which robot terminates first. This is not an issue for explicit termination
because we leverage the fact that both robots eventually terminate and consider that running
time. However, for partial termination, when utilizing the adversary to mimic the local view
of one of the robots, it is unclear which robot we should focus on initially. And since we
cannot focus on both simultaneously, if we pick the incorrect robot initially, we cannot
guarantee that it will eventually terminate, and thus cannot move on to focus on the other
robot.

Note that, the above proof strategy and observation can be extended to multiple robots
when the adversary is made more powerful. For this, let us define an adversarial strategy,
called t-adversary which can remove at most t edges in the graph in a given round. Note
that, Observation 1 holds for t + 1 robots starting at unique positions on a ring of size at
least t + 2 when robots do not have access to randomness and of size at least 2t + 3 when
they do. Thus, we can use a similar proof strategy to prove the following theorems.6

6We briefly recap the strategy. First, run a supposed exploration algorithm A on a ring of size n that
terminates in T (n) rounds. Subsequently, construct a ring of size (t+1)(2T (n)+2) and place the t+1 robots
equidistant from each other. Now, for partial termination (explicit termination), run A on this larger ring
and simulate the execution on the smaller ring for 1 robot (t robots) until it settles down and subsequently
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Theorem 4.3. There does not exist any exploration algorithm with partial termination of
anonymous rings of unknown size at least t+2 by t+1 robots in the presence of a t-adversary,
even when robots have distinct IDs, common chirality, the edge crossing detection capability,
and when the scheduler is fully synchronous.

Theorem 4.4. There does not exist any exploration algorithm with explicit termination of
anonymous rings of unknown size at least 2t + 3 by t + 1 robots in the presence of a t-
adversary, even when robots have distinct IDs, common chirality, the edge crossing detection
capability, access to randomness, and when the scheduler is fully synchronous.

5. Deterministic Exploration with 3 Robots

In Section 4, we have shown that it is impossible to explore an anonymous dynamic ring
of unknown size with two robots and achieve explicit termination. In this section, we present
a deterministic solution for this exploration problem using three robots. We assume that
each robot has a unique ID which is not known to the other robots unless they meet. For
simplicity of the algorithm, let us first assume that the length of the IDs of the robots are
same. Later we show how the algorithm works for variable length IDs in Section 5.3. We
further assume that when two robots cross an edge (from opposite directions) in the same
round, they sense each other and that the meeting happened.7 Note that this edge crossing
detection assumption does not help two robots (with unique IDs) solve the exploration
problem (see Section 4).

Let us now describe the algorithm. It works in four stages: (Stage 1) first meeting of
(any) two robots, (Stage 2) second meeting of two robots, (Stage 3) exploration detection,
and (Stage 4) termination.

Stage 1 ensures the first meeting of any two robots at some node or via edge crossing
in the ring. For this, we need to make sure that at least two of them move in opposite
directions; otherwise, if all the three robots move in the same direction at the same speed,
they may never meet even if the adversary never deletes any edge. Thus, we have to break
this symmetry deterministically. For this, each robot moves based on the bit string of its
ID. Each robot moves in phases and each phase consists of several rounds. More precisely,
the number of rounds in the i-th phase is 2i. Without loss of generality, say that a robot
moves in what it considers the clockwise (right) direction in phase i when bi mod k = 0. When
bi mod k = 1, the robot moves in the other (left) direction. The first stage ends when at least
two robots meet. Let us mark or name these two robots A and B, where the larger ID one
is A and the other one is B. Note that, the third robot may not know about this meeting
and hence is unaware of the end of the first stage. Let us call the third robot as C.8 If these
three robots are present at the same time (at some node) then the smallest ID robot gets
named C.9 Notice that if two or three robots are positioned at the same node initially then

trap the remaining t robots (1 robot) on already explored nodes. The total explored number of nodes will
fall short of the total size of the ring and hence A is incorrect.

7Here by ‘sense’ we mean the two robots can detect the edge crossing and can exchange information
including IDs.

8The third robot gets named C only after it meets either A or B at the end of Stage 2.
9Note that this situation can only occur initially.
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the algorithm starts from Stage 2.
Then Stage 2 starts (which is known to at least A and B). The robots A and B

start moving in opposite directions from the meeting point (node or nodes adjacent to the
edge they crossed by each other) from Stage 1 and never change their directions until they
terminate the algorithm. A and B each maintain a counter which counts the number of steps
the robot successfully moves. Furthermore, each robot stores the ID of the other. Note that
a robot cannot move in a particular direction in a round if the corresponding edge is missing
(i.e., deleted by the adversary). Each of the robots continues to move until one of them
meets the third robot. Stage 2 ends when either of A and B meets the third robot, which
subsequently gets named C. Without loss of generality, assume that A and C meet. Then A
shares the following stored information with C: ID of B, the direction of B’s movement and
the number of steps A has successfully moved after Stage 1.10 C stores all this information.
A and C also store each other’s IDs.

Then Stage 3 starts, which ensures the completion of the ring exploration by at least two
robots. This can happen in two ways. (I) if A and B meet (again) then it is guaranteed that
exploration of the ring is complete. This scenario is depicted in Figure 1. (II) The adversary

B A

First meeting of
two robots

B A

A

C

A meets un-
marked robot

B
A

C

B meets A

(a) (b) (c)

Figure 1: Continuous, dashed and dotted lines shows the movement of robot A, B and C respectively. (a)
Shows the scenario when two unmarked robot meet and get marked as A and B, i.e. Stage 1 ends and Stage
2 starts. (b) Shows the scenario when A and the unmarked robot meet and the unmarked robot gets marked
as C, i.e. Stage 2 ends Stage 3 starts, (c) Shows the scenario when A and B meets, i.e. Stage 3 ends.

can prevent the meeting of A and B by removing an edge between them. Recall that A and B
are moving in opposite directions. Eventually these two robots will reach two adjacent nodes
and may wait for the (missing) edge to move. In this scenario, exploration is completed but
A and B do not know this as n is unknown. If the adversary does not remove the edge in
one round, then A and B will meet. Therefore, the adversary will need to remove the edge
indefinitely. In this situation, robot C is used to determine the completion of exploration.

10Note that even if A and C do not have shared chirality, the direction of B can be conveyed as follows.
Depending on how A and C meet, C will immediately know the direction A moves in or can take a round
to understand this based on how A and C both move in their “clockwise” direction and see if they moved to
the same node or not. Once C determines the naming mechanism A uses for directions, C can understand
exactly which direction B is moving in.
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From the meeting point of A and C in Stage 2, robot C starts moving towards the opposite
direction of A (i.e., in the same direction of B) and A continues moving in its fixed direction.

Robot B does not know that A and C met in Stage 2, and continues to move in its
fixed direction. Robot C moves towards B until it catches B. Subsequently, C changes its
direction and move towards A until it catches A. C then repeats this process and moves
back to B. Essentially, C performs a zig-zag movement between A and B, and checks if the
distance (i.e., the hop distance) from A to B, and B to A are the same. For this, the robot
C maintains two variables AtoB and BtoA. AtoB stores the number of successful steps
(moves) towards B, starting from A until it meets B, and BtoA stores a similar number.

B A

First meeting of
two robots

B A

A

C

A meets un-
marked robot

B
C

(a) (b) (c)

A and C meets C meets B

(d) (e) (f)

C

C

C meets B

C

C

A

C
B

C meets A and
(AtoB = BtoA)

C

C

A
u

v
u

v
B

Figure 2: Continuous, dashed, and dotted lines show the movements of robots A, B, and C respectively. (a)
Shows the scenario when two robots meet for the first time and get marked as A and B, i.e., Stage 1 ends
and Stage 2 starts. (b) Shows the scenario when A and the third unmarked robot meet and the unmarked
robot gets marked as C, i.e., Stage 2 ends Stage 3 starts. (c) Shows the scenario when C meets B and finds
AtoB ̸= BtoA. (d) Shows the scenario when C again meets A at node v and finds AtoB ̸= BtoA. (e) Shows
the scenario when C again meets B at node u and finds AtoB ̸= BtoA. (f) Shows the scaenario when C
again meets A at node v and finds AtoB = BtoA and Stage 3 ends. u and v are two consecutive nodes in
R. As nodes in R are not identifiable, the names of nodes are used here only for the ease of understanding.

When these two distances are equal, i.e., AtoB = BtoA, the algorithm determines that
exploration is complete, as this condition implies that A and B lie on two adjacent nodes
and the edge between those two nodes has been removed by the adversary. Thus, C has
explored the entire graph. This scenario is depicted in Figure 2.
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Therefore, either A and B meet and detect that exploration is completed, or C deduces
the completion of exploration from the hop distance counts. In the latter case, C would be
co-located in a node with either A or B and can thus inform that robot about the completion
of exploration. Thus, at least two robots detect the completion of exploration, but the third
robot may be unaware of this. Then we begin Stage 4 to ensure that all robots are made
aware of the completion of exploration and can terminate.

In Stage 4, the two robots which detected the completion of exploration move in order
to inform the third robot about this, and all robots terminate (to guarantee the explicit
termination). Recall that the robots A and B maintained a counter of their successful moves
starting from their meeting in Stage 2. If A and B meet at some node again, then the sum
of their counters is exactly n. If they meet by crossing each other, then the sum of their
counters is exactly n+1. If they do not meet but the scenario from Stage 3 plays out, then C
and one of the two robots knows the value of n− 1. In any case, there are two robots which
know that exploration is completed and know the value of n at some node. Then these two
robots start moving in opposite directions to each other for at most n rounds. When one of
them meets the third robot, it informs the third robot about the completion of exploration
and they both terminate. The other robot also terminates after n rounds (if it does not meet
the third robot). After n rounds, at least one of the robots (which detects the completion
of exploration) meets the third robot and informs it about the completion of exploration.

The formal pseudocode of the algorithm is given in Algorithm 1, which is run by all
robots in parallel. Each robot maintains the following variables:

• size: current estimate on size of the ring (initialized to ∞).

• step: stores the number of successful steps or moves of a robot.

• mark: takes value in {A,B,C}. Initialized to NIL for all the robots.

Different events are defined below, which may occur when two or more robots meet during
the execution of the algorithm.

• meetSmall: when a robot meets with a smaller ID robot and mark = NIL for both
the robots.

• meetLarge: when a robot meets with a larger ID robot and mark = NIL for both the
robots.

• meetMark: when a robot, whose mark = NIL, meets another robot whose mark ̸=
NIL.

• meetUMark: when a robot, whose mark ̸= NIL, meets another robot whose mark =
NIL.

• meetX: when a robot, whose mark ̸= NIL, meets another robot whose mark = X for
X ∈ {A,B,C}.

• meetTer: when a robot meets another robot which is executing startTermination
procedure.

12



Notice that when two robots meet and the meetSmall event occurs for one robot, the meet-
Large event occurs for the other robot at the same time. In the pseudocode, the following
functions are used:

• Move(dir): By executing this function a robot moves one step towards the direction
specified in dir. Here value of dir can be left or right.

• getMark(): When two robots meet, this function returns the value stored in variable
mark of the other robot.

• getSteps(): When two robots meet, this function returns the value stored in variable
step of the other robot.

• askTerminate(): When two robots meet, using this function one robot sends a signal
to the other robot to start termination.

• recTerminate(): When two robots meet, this function detects whether a robot has
received a signal to start termination or not. This function returns 1 if signal to start
termination is received.

In a ring there are two possible directions to move in at each node. A robot chooses a
direction arbitrarily and calls that direction as left (anti-clockwise) and the other direction
as right (clockwise). Since the robots do not share common chirality, the left and right
directions of a robot may differ from the other robots (initially). When two robots meet,
they can decide upon a common set of directions and then share a common chirality.

Each robot starts executing the algorithm Explore-Dynamic-Ring-3-Robots by ex-
ecuting the pseudocode described in Algorithm 1. Lines 1 to 7 of Algorithm 1 handle the
scenario when all three robots are co-located on a single node. In this case, the robot with
the largest ID, second largest ID, and smallest ID become robot A, B, and C respectively.
Lines 8 to 12 of Algorithm 1 handle the scenario when two robots are co-located on the same
node. In this case, the robot with the larger ID becomes robot A and the other one becomes
robot B. The case when all three robots are placed in different nodes is handled in lines 13
to 20. In this scenario, each robot moves following the bit pattern in its respective ID by
executing the Explore procedure.

The procedure Explore is described in Algorithm 2. This procedure takes the direction
and an integer i as inputs. While executing this procedure, a robot tries to move for 2i steps
in the inputted direction unless a meeting event occurs. The robot becomes either robot A,
B, or C depending on if the event is meetSmall, meetLarge, or meetMark respectively.

Whenever two robots meet or two robots are co-located, Algorithm 1 or Procedure 2
calls the procedure BeRobotAB or BeRobotC. Procedure 3 gives the pseudocode of
BeRobotAB, which is followed by a robot when it is either robot A or robot B. The input
parameter indicates whether it is robot A or robot B. In lines 4 to 10 of Algorithm 3, robots
A and B move in directions left and right respectively and increases the number of steps by
one for each successful movement. In lines 11 to 25 of Algorithm 3, when a meetB or meetA
event occurs, the robots exchange the number of steps they have moved and determine the
size of the ring and start the termination stage through Procedure startTermination.
Then, lines 26 to 33 handle the scenarios when a meetC or meetTer event occurs. When
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meetC with recTerminate() = 1 occurs, both robots start the termination stage. Note
that when event meetC with recTerminate() = 0 or meetUMark occurs, neither robot A
nor robot B needs to do anything. If event meetTer occurs, the robot terminates.

BeRobotC described in Procedure 4 gives the pseudocode to be followed by a robot
when it is robot C. Robot C does the zigzag traversal between robot A and robot B until
the number of steps in two consecutive A to B and B to A traversals are equal, or it meets
a robot executing the termination stage. Robot C moves in one direction and whenever a
meetB or meetA event occurs, it compares the number of steps covered in this traversal with
the previous traversal. Lines 1 to 28 of Procedure 4 describes these steps.

startTermination described in Procedure 4 describes the pseudocode to be followed
by a robot when it is executing termination stage. In this stage the robot tries to move for n
(size of the ring) steps. If it meets any other robot while moving, it terminates after asking
the other robot to terminate.

Algorithm 1 Explore-Dynamic-Ring-3-Robots
1: if all three robots are on the same node then
2: if robot’s ID is largest then
3: BeRobotAB(A)
4: else if robot’s ID is 2nd largest then
5: BeRobotAB(B)
6: else
7: BeRobotC()
8: else if any two robots are on the same node then
9: if robot’s ID is larger then

10: BeRobotAB(A)
11: else
12: BeRobotAB(B)
13: else
14: i := 0
15: while (1) do
16: if bi mod k = 0 then
17: Explore(left, i)
18: else if bi mod k = 1 then
19: Explore(right, i)
20: i := i+ 1

Procedure 2 Explore(dir, i)
1: for tstep = 0 to (2i − 1) do
2: if meetSmall then
3: BeRobotAB(A)
4: else if meetLarge then
5: BeRobotAB(B)
6: else if meetMark then
7: BeRobotC()
8: Move(dir)
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Procedure 3 BeRobotAB(recMark)
1: step := 0
2: if mark = NIL then
3: mark := recMark
4: while (1) do
5: if mark = A then
6: Move(left)
7: else
8: Move(right)
9: if move successful then

10: step := step+1
11: if meetB or meetA then
12: if mark = A then
13: recStep := getSetps()
14: if meeting on a node then
15: size := step + recStep
16: else if meeting by edge crossing then
17: size := step + recStep - 1
18: startTermination(A, left, size)
19: else
20: recStep := getSetps()
21: if meeting on a node then
22: size := step + recStep
23: else if meeting by edge crossing then
24: size := step + recStep - 1
25: startTermination(B, right, size)
26: else if meetC and recTerminate() = 1 then
27: size := getSteps() + 1
28: if mark = A then
29: startTermination(A, left, size)
30: else if mark = B then
31: startTermination(B, right, size)
32: else if meetTer then
33: terminate
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Procedure 4 BeRobotC()
1: AtoB := 0
2: BtoA := 0
3: recMark := getMark()
4: mark := C
5: if recMark = A then
6: dir := right
7: else if recMark = B then
8: dir := left

9: while (1) do
10: Move(dir)
11: if move successful then
12: step := step+1
13: if meetB then
14: AtoB := step
15: if AtoB ̸= BtoA then
16: step := 0
17: else
18: size := step + 1
19: askTerminate()
20: startTermination(C, left, size)
21: else if meetA then
22: BtoA := step
23: if AtoB ̸= BtoA then
24: step := 0
25: else
26: size := step + 1
27: askTerminate()
28: startTermination(C, right, size)
29: else if meetTer then
30: terminate

Procedure 5 startTermination(mark, dir, size)
1: Ttime := size
2: while (1) do
3: Move(dir)
4: Ttime := Ttime-1
5: if Ttime = 0 then
6: terminate
7: else if (meetA or meetB or meetC) then
8: terminate
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5.1. Correctness and Time Complexity Analysis
We first discuss the correctness of the algorithm in the following lemma.

Lemma 5.1. The proposed algorithm correctly explores the dynamic ring and guarantees
explicit termination.

Proof. We first show that by the end of Stage 3, the ring is explored (by at least two robots).
Stage 3 ends when one of the following two cases occurs: (I) robots A and B meet again or
(II) robot C meets A and finds AtoB = BtoA (after zig-zag movement) or C meets B and
finds AtoB = BtoA.
Case I: Robots A and B meet again after their first meeting in Stage 1. Since they move in
opposite directions and never change directions after their first meeting, it is obvious that
when they meet again, exploration is completed. The robots can also calculate the value of
n when they meet again.
Case II: Robot C meets either of A and B, and learns that AtoB = BtoA. This implies
that robot C has traversed the same number of steps in two consecutive zig-zag movements.
This scenario is only possible if both A and B are trying to traverse the same edge from
adjacent nodes, since the adversary can remove only one edge at a time. Thus, when robot
C determines that AtoB = BtoA after two consecutive zig-zag movements, it is guaranteed
that C has explored all nodes in the ring and the size of the ring is AtoB + 1 (equivalently,
BtoA+ 1).

Thus, in both cases, at least two robots detect that exploration is completed by the
end of Stage 3. Moreover, the robots which detect this also learn the size of the ring n.
Thus, in the termination stage (Stage 4), these two robots, which detected the completion of
exploration, start moving in two opposite directions for at most n rounds and terminate. As
these two robots start moving in opposite directions from the same meeting point, it follows
from the proof of Lemma 5.2 (below) that after n rounds, at least one of them meets the
third robot. So the third robot also gets the information about the completion of exploration
and terminates. Thus, explicit termination is guaranteed at the end of Stage 4.

Lemma 5.2. If two among the three robots move in opposite directions in a dynamic ring
of size n, then at least two of them meet in at most n− 2 rounds.

Proof. If any two among these three robots are initially located at the same node in the ring,
then this lemma holds trivially.

We assume that the three robots are initially located on three different nodes in the
ring. Recall that a robot always tries to move in some specified direction as long as the
corresponding edge is available, i.e., it does not voluntarily remain stationary.

As we are considering a dynamic ring, there are two robots which are moving in the same
direction. Let us assume two robots R1 and R2 are moving in the same direction. The other
robot R3 is moving in a different direction. Recall that the adversary can remove only one
edge in each round. Thus, the distance between R1, R3 and the distance between R2, R3

decrease by at least one in each round. All three robots are located on three different nodes
and size of the ring is n. Thus, after (n−2) rounds, if R3 does not meet either of R1, R2, the
distance between them is 1 and R1, R2 are co-located on the same node. Hence the lemma
holds.
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Let us now analyze the time complexity of the exploration algorithm. We calculate the
time taken in each stage of the algorithm.

Lemma 5.3. In Stage 1 of the proposed algorithm, there exists a phase i ∈ [(j− 1)k, jk− 1]
for j ≥ 1 when at least one robot moves in the direction opposite to the direction followed by
other two robots, where k is the length of the ID bit-string of the robots.

Proof. Recall that in the ith phase a robot moves in some direction for 2i rounds. It then
changes its direction of movement in the next phase iff the next bit in its ID is different.
Consider the scenario where all robots move in the same direction starting from the first
phase (otherwise the lemma is trivially true). There are two scenarios to consider. Either
all robots share the same chirality or they do not.

Consider the scenario where all robots share the same chirality. Since the IDs of the
robots are different, at least one bit in the ID of each pair of the robots are different. Hence,
there will be at least two phases in (j−1)k to jk−1 for j ≥ 1 when one of the robots moves
in a direction opposite to the direction followed by the other two robots.

Consider the scenario where robots do not share the same chirality. Since chiralities can
be different, two robots with different chiralities can have IDs that are complementary (e.g.,
000 and 111) and thus move in the same direction in all phases. However, since all IDs are
different, the third robot’s ID will be such that there will exist at least one phase where one
of the robots moves in a different direction from the other two.

Lemma 5.4. Stage 1 of the proposed algorithm finishes in at most n+ n · 2k rounds, where
k is the length of the ID bit-string of the robots.

Proof. We show that there exists a phase i ∈ [0, j(k − 1)] when at least two robots meet in
Stage 1, where k is the length of the IDs of the robots and j is some positive integer. It
follows from Lemma 5.3 that there exists a phase i ∈ [0, k − 1] when at least two robots
move in the opposite directions to each other. The number of rounds in that phase is 2i. If
2i ≥ n− 2 then it follows from Lemma 5.2 that any two robots meet. However, it might be
the case that 2i < n−2 for that i in [0, k−1]. Then according to our algorithm (see Stage 1),
these two robots (again) move in the opposite directions in each of the phases j(k−1)+ i for
j = 1, 2, . . . , and hence Stage 1 finishes when 2j(k−1) ≤ n− 3 and 2j(k−1)+i ≥ n− 2 for some
positive integer j. Thus, Stage 1 takes at most

∑j(k−1)+i
t=0 2t rounds. The sum is bounded

above by (n + n · 2i), since 2j(k−1) ≤ n − 3. Therefore, Stage 1 of the proposed algorithm
finishes in at most n+ n · 2k rounds, since i < k.

Lemma 5.5. Stage 2 of the proposed algorithm finishes in at most n rounds.

Proof. Stage 2 finishes when any of the two robots A and B meets C after their (A and B)
first meeting in Stage 1. Note that A and B start moving in opposite directions after Stage 1
ends. Thus it follows from the proof of Lemma 5.2 that one of them meets C in at most
n− 2 rounds.

Lemma 5.6. Stage 3 of the proposed algorithm finishes in at most 4n rounds.

Proof. Stage 3 finishes when either (I) A and B meet again (which ensures that exploration
is completed), or (II) robot C detects the completion of exploration from the step-counts of
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its zig-zag movement, i.e., when AtoB = BtoA. Since robot A and robot B move in opposite
directions over the ring, they can meet in at most n rounds if there are no edge deletions.
However, the adversary may remove edges to prevent or delay their meeting. Despite that,
the two robots reach two adjacent nodes of an edge in n− 1 rounds (since they are moving
in opposite directions and the adversary can remove at most one edge at a time).

Now we claim that if A and B do not meet in 4n rounds, then (II) happens, i.e., the
robot C detects the completion of exploration within this 4n rounds. The robot C performs
zig-zag movement between A and B until AtoB = BtoA. Notice that AtoB will be equal to
BtoA when A and B are at the adjacent nodes of an edge. This takes at most n− 1 rounds,
as explained before. Suppose the robot C changes its direction of movement just before A
and B reach the two adjacent nodes. Suppose C was at the side of B at this point. Then it
will take another n− 1 rounds (at most) for C to reach the other endpoint i.e., the adjacent
node where A is waiting. Then C takes another n− 1 rounds to reach the other endpoint B
(and then the count AtoB becomes n− 1). Finally, it requires another n− 1 rounds for C to
reach A and get the condition AtoB = BtoA satisfied. Therefore, C detects the completion
of exploration from the step-counts of its zig-zag movement in 4n rounds.

Thus, Stage 3 finishes in at most 4n rounds.

Lemma 5.7. Stage 4 of the proposed algorithm finishes in at most n rounds.

Proof. In Stage 4, two robots, which have detected the completion of exploration, move for
at most n rounds and terminate. Since these two robots move in opposite directions, it
follows from Lemma 5.2 that at least one of them meets the third robot in n− 2 rounds and
they both terminate. Hence Stage 4 takes at most n rounds.

Now we state the main result of this section.

Theorem 5.8. The proposed algorithm correctly explores a 1-interval connected dynamic
(anonymous) ring of size n in O(n + n · 2k) rounds with 3 robots where each robot has a
unique ID of length k bits, the robots have no knowledge of n, and the robots do not have
common chirality.

Proof. The correctness of the algorithm follows from Lemma 5.1.
The running time of the algorithm follows from the time complexity analysis of the four

stages in Lemmas 5.4, 5.5, 5.6 and 5.7. Thus by summing up the individual runtimes, we
get the time complexity as (n+ n · 2k) + n+ 4n+ n = 7n+ n · 2k.

Hence, the proposed algorithm explores a dynamic ring of size n with three robots in
(7n+ n · 2k) rounds.

Corollary 5.8.1. There exists an algorithm which explores a 1-interval connected dynamic
(anonymous) ring of size n in O(n) rounds with 3 robots having unique IDs of length O(1)
bits, edge crossing detection, and without the knowledge of n and without common chirality.

5.2. Simulation Results
We perform an experimental evaluation and highlight the effectiveness and efficiency of

our algorithm in dynamic rings for different parameter ranges. In particular, we evaluate
the performance of our algorithm by computing the running time for different sizes of the

19



dynamic ring (i.e., number of nodes in the ring) and also for different ID lengths of the
robots. In the simulations, we assume that the robots are placed at random nodes in the
beginning. Furthermore, each robot decides its initial direction of movement randomly, i.e.,
each robot decides clockwise (right) or anti-clockwise (left) direction randomly.

We assume an adversary determines the dynamic ring in each round. In particular, the
following four different adversarial strategies are considered for the simulations.

• Random Edge Deleted (RED): In each round, the adversary randomly selects an edge
in the ring and deletes it. The previously deleted edge gets added back to the ring.

• Same Edge Deleted (SED): The adversary randomly selects an edge in the ring and
keeps the edge deleted throughout the execution.

• Random Robot Blocking (RRB): In each round, the adversary targets a random robot,
and blocks the movement of the robot in that round. This is done by deleting the edge
through which the robot decides to move in that particular round.

• Same Robot Blocking (SRB): The adversary randomly selects a robot and blocks the
movement of the robot throughout the execution by deleting appropriate edges. That
is, the robot is not allowed to move from its initial position.

The robots have no knowledge about the adversarial strategies, but the adversary knows
the robots’ current positions including the edges through which the robots decide to move.
Thus the above adversarial strategies are adaptive. In all the cases, the dynamic ring remains
connected throughout the execution.

Varying the Size of the Ring (Figure 3): In this experiment, we consider a dynamic ring
of five different sizes, i.e., n = 20000, 40000, 60000, 80000, and 100000. The robots have IDs
of length 3; in fact, the ID-bits are 100, 101 and 111 for the 3 robots. We run the algorithm
5 times for each value of n and count the average number of rounds taken to explore the
ring. We plot the results in Figure 3, where the x-axis represents the ring size n and the
y-axis represents the actual number of rounds taken to explore the ring in the experimental
set up. Observe that the time or the number of rounds to explore the ring increases when
the size of the ring n increases. However, in all the cases, the running time of our algorithm
is bounded by 5n for all the different adversarial strategies. The running time is less than
3n for the strategies RED and RRB. This shows that the simulation results outperform our
theoretically proven time bound– 7n+ n · 2k, where k is the ID length of a robot.

Varying the ID Length of the Robots (Figure 4): In this experiment, we consider
a ring of size 32768. The length of the IDs of each robot varies from 3 to 15 (notice that
log n = 15 as 32768 = 215). In particular, the ID lengths of the robots considered for the
simulations are 3, 6, 9, 12, and 15. The ID-bits are generated randomly. In this case also,
we run the algorithm 5 times for each different ID length and count the average number of
rounds taken to explore the ring. Again we perform the simulations for the four adversarial
strategies. We plot these simulation results in Figure 4, where the x-axis represents the
ID length and the y-axis represents the rounds taken by the algorithm to explore the ring.
Observe that, in all the cases, the running time of the algorithm is bounded above by 5n,
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Figure 3: Varying n, the size of the ring.

where n is the ring size. In fact, the running time is less than 3n for the strategies RED
and RRB. In this case also, the simulation results outperform our theoretically proven time
bound.
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Figure 4: Varying the ID length of the robots.

5.3. Variable Length Identifier
The proposed algorithm assumes that the ID-length of the robots are the same. We now

discuss how to remove the assumption. Recall that in Stage 1 of the algorithm, two robots
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are required to meet in order to move to the next stage. Lemmas 5.3 and 5.4 show that to
ensure this meeting, there should be one phase when two robots need to move in opposite
directions for (n− 2) rounds, where n is the size of the ring. When the IDs are distinct but
with the same length for all the robots, the scheme where each robot moves following the bit
patterns generated by repeated concatenation of the IDs works for our purpose. If the IDs
are of different lengths, then this strategy may not work. For example, consider the scenario
when the IDs of the robots are 101, 101101, and 101101101. Then the bit-strings generated
by concatenating the IDs repeatedly are identical (although the IDs are distinct). In this
case, if the robots are located at different nodes and have common chirality, then they will
never meet even in a static ring. Thus we need to make sure that the generated ID-strings
are distinct for the robots.

One modification in the above bit-string generation process overcomes this issue. As
the length of IDs are variable, we assume that the length of the ID of the jth robot is kj
(j = 1, 2, 3). In the algorithm, in Stage 1, each robot moves in phases. In phase i, if the ith

bit of kj is 0 robot j moves towards the clockwise (right) direction for 2i rounds. It moves
towards the anti-clockwise (left) direction if the ith bit of kj is 1. After processing the kth

j

bit, the robot repeats the same bit pattern, i.e., at i = kj + 1 the jth robot moves according
to the 0th bit in its ID and so on. In other words, the robots concatenate their ID bits to
generate bit-strings which are different from each other.

We modify the bit-string generation process as follows. The jth robot appends kj number
of 0 bits with its ID on the right side. Let us call this combined ID consisting of the
original ID followed by the kj number of 0s as the padded ID of the jth robot Rj, denoted
by padID(Rj)

11. Then each robot generates a bit-string by repeatedly concatenating this
padID(Rj) and follows that generated bit-string to decide the direction of movement in
Stage 1. We name this 0-padding scheme as Variable-ID-Padding. Notice that if the
length of two IDs are different, then the ID-lengths will break the symmetry in the generated
bit-string of the robots, since the number of padded 0s are different. If ID lengths of two
robots are the same, then we show that the generated IDs will differ in at least one bit
position. This ensures that the bit patterns followed by two robots differ in at least one bit.
Below we prove this claim.

Lemma 5.9. Let the two robots with IDs R1, R2 have the generated padded IDs padID(R1),
padID(R2) respectively using the Variable-ID-Padding scheme. Let l1 = len(padID(R1))
and l2 = len(padID(R2)) be the length of the padded IDs. Let X and Y be two bit-strings
of the same length l∗, where l∗ = l.c.m.(l1, l2)

12, generated by l∗/l1 and l∗/l2 number of
concatenations of padID(R1) and padID(R2) respectively.13 Then, X and Y differ in at
least one bit.

Proof. Let k1 = len(R1), k2 = len(R2). When k1 = k2, the lemma directly follows from
the assumption that each robot has a unique identifier. Consider the case when k1 ̸= k2.

11W.l.o.g, we assume that the IDs with all 0s are the same irrespective of their length.
12l.c.m.(l1, l2) is the least common multiple of integers l1 and l2.
13This concatenation is done from the left to the right, i.e., the padID is concatenated at the right end of

the already generated bit pattern.
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W.l.o.g., assume that k1 < k2. In this case, when R1 is not a substring of R2, the lemma
holds straightforwardly. Thus, we need to consider the case when R1 is a substring of R2.

As k1 < k2, the number of padded 0s in padID(R1) is less than the number of padded 0s
in padID(R2). To generate X, padID(R1) is concatenated l∗/l1 times. Similarly, to generate
Y , padID(R2) is concatenated l∗/l2 times. There are two possible scenarios when R1 is a
substring of R2: (i) either k2 ≥ 2k1 or (ii) k2 < 2k1. Let us assume that the string X is
xl∗−1xl∗−2 · · ·x1x0 and the string Y is yl∗−1yl∗−2 · · · y1y0.
Case 1 (k2 ≥ 2k1): In this scenario, l2 ≥ 2l1 and k2 ≥ l1. As the lengths of X and Y are
equal, the substring xl1−1xl1−2 . . . x0 of X and the substring yl2−1yl2−2 . . . y0 of Y are exactly
equal to padID(R1) and padID(R2) respectively. Thus, all the bits from yk2−1 to y0 of Y
are 0s. Since k2 ≥ l1 and there is at least one 1 bit in the substring xl1−1xl1−2 . . . x0 of X, X
and Y differ in at least one bit. Figure 5(a) shows one example of this scenario.

R1 = 010, R2 = 010010

padID(R1) = 010000

padID(R2) = 010010000000

Y = 010010000000

X = 010000010000

(a)

R1 = 0100, R2 = 010001

padID(R1) = 01000000

padID(R2) = 010001000000

Y = 010001000000010001000000

X = 010000000100000001000000

(b)

R1 = 0100, R2 = 010000

padID(R1) = 01000000

padID(R2) = 010000000000

Y = 010000000000010000000000

X = 010000000100000001000000

(c)

Figure 5: Example of different cases of Lemma 5.9 when R1 is a substring of R2 and k1 < k2. Coloured
bits are the compared bits of X and Y to find the mismatched bit. The mismatched bit is shown in red.
(a) Shows an example of Case 1, when k2 = 2k1. (b) Shows an example of Case 2a. The first k1 bits (from
MSB) in Y and X are shown in blue. Green bits are the next d bits in X and Y (The mismatched bit among
those d = 2 bits is shown in red). (c) Shows an example of Case 2b. Here d = 2, k1 = 4, k2 = 6. Blue bits
are the 0 bits among the compared bits due to padding in padID(R1) and padID(R2). Green bits are the d
0 bits for R2 from LSB. Purple bits are the bits that are the 0 bits along with the first 1 bit from the right
side (LSB) of R1. As R1 is a substring of R2, those purple bits are present in R2 also.

Case 2 (k2 < 2k1): Let k2 − k1 = d > 0, since k1 < k2 by our assumption. Then k1 > d,
since k2 < 2k1. For simplicity, let us break this case into two subcases.

Case 2a: Suppose there is at least one 1 in the first d bits of R2 (from LSB). In this
scenario, if we compare the bits from xl∗−1 to xl∗−k2 of X with the bits from yl∗−1 to yl∗−k2 of
Y , then xl∗−1 to xl∗−k1 bits of X and yl∗−1 to yl∗−k1 bits of Y are the same with R1 because
R1 is a substring of R2. There are d number of 0s in between xl∗−k1 to xl∗−k2 of X because
d < k1. According to our assumption, there is at least one bit with 1 in between yl∗−k1 to
yl∗−k2 of Y . Hence the lemma holds. Figure 5(b) shows one example of this scenario.

Case 2b: Suppose there is no 1 in the first d bits of R2 (from LSB), i.e., the first d bits
are all 0 (from LSB). Let for R1 (starting from b0) bd1−1 be the first bit which is 1. As R1

is a substring of R2, in this scenario for R2, bd+d1−1 is the first bit which is 1 in R2 starting
from b0. Now, if we compare X and Y starting from x0 and y0, then for X, xk1+d1−1 is the
first bit which is 1 but for Y , yk2+d+d1−1 is the first bit which is 1. As d > 0, the lemma
holds. Figure 5(c) shows one example of this scenario.
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From Lemma 5.9 and the proof of Lemma 5.4, it ensures the meeting of any two robots
in Stage 1 of the Algorithm 1 when the ID-lengths of the robots are different. Thus the
algorithm works with the remaining stages unchanged. The following corollary shows the
running time of Stage 1 of the algorithm.

Corollary 5.9.1. If the length of the IDs of the robots are different, then Stage 1 of the
proposed algorithm (Algorithm 1) takes n + n.2l

∗ rounds using the Variable-ID-Padding
scheme, where n is the size of the ring and l∗ = 2 · l.c.m.(k1, k2, k3) where k1, k2, k3 are the
ID-lengths of robots.

Therefore, in this case the algorithm finishes in O(n+n.2l
∗
) rounds, since the time bound

of Stage 1 dominates the time bounds of the other stages.

6. Exploration with Randomness

We can remove the need for edge crossing detection through the creative use of ran-
domness, resulting in an algorithm that is both Las Vegas and Monte Carlo in nature. In
Section 6.1, we bound the algorithm’s expected running time and success probability. Sub-
sequently, in Section 6.2, we show how to further use randomness to remove the requirement
of having unique IDs initially assigned to each robot.

6.1. Removing Edge Crossing Detection
In this section, we first discuss the changes that are required to be made to the algorithm

in Section 5. We then provide bounds for the running time and correctness of the modified
algorithm. Note that we assume that the length of the robot IDs, k, is a constant.

Notice that edge crossing detection is used when two robots are located at adjacent nodes
and must move in opposite directions along the same edge in the same round. A simple way
to get the robots to meet is to force one to be stationary while the other moves. This can
easily be achieved by having each robot flip a fair coin to decide if it should move or not.
If the result of the coin toss is heads, then the robot performs the movement it initially
planned to do. If the result is tails, then the robot does not move. Call this subroutine
Random-Movement.

Random-Movement can be run as a subroutine by every robot in every round, after
deciding to move (and where to) but before the actual movement. We now describe further
modifications to the algorithm in Section 5, in addition to using the subroutine, that are
required so that we may remove the need for edge crossing detection.

In Stage 1, notice that if the algorithm required a robot to move for s steps in r rounds,
then directly using Random-Movement in the algorithm may cause that robot to move
for less than s steps in r rounds, even when the adversary does not block any movement
of the robot. This is slightly problematic as we require that there exists a phase in which
robots can move for at least n steps, and we do not want to drastically increase the running
time. An easy fix is to extend the number of rounds of each phase i by a constant factor,
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say 8, in order to ensure that on expectation and with high probability, the number of steps
a robot moves through is at least 2i when 2i ≥ n.14

For Stage 2 to occur, we need two robots to come into contact with each other and be
marked A and B. Notice that the probability that two robots that were supposed to move
through the same edge meet instead is 1/2. Thus, on expectation, at least one such meeting
occurs in two opportunities to meet within k phases once 2i ≥ n. Note that, in a phase j
each robot attempts to move for 8 · 2j rounds in one particular direction. This ensures that
in phase j there will be at least 2 meeting opportunities between two robots on expectation
when 2j ≥ n and the robots are moving in opposite directions. Thus, on expectation after
O(n) rounds, Stage 1 is over and Stage 2 begins.

Now, in Stage 2, we require either A or B to come into contact with the third robot.
Notice that this third robot is not constrained to only move in one direction, but may move
in both directions. Thus, it may only come into contact with either A or B as a result of
crossing an edge. Again, through the use of Random-Movement, it takes 2 such attempts
on expectation at edge crossing between the third robot and either A or B before contact is
made and the third robot gets marked as C. Then the algorithm moves to Stage 3. Notice
that before the third robot becomes marked, it is possible that A and B meet again, thus
sending the algorithm directly into Stage 4 (since A or B may miss to meet C as there is no
edge crossing detection).

If the algorithm is in Stage 3, then the third robot has been marked C. Now, either A
and B meet again or the adversary blocks A and B at adjacent nodes and C moves back
and forth between them. In the latter case, it takes O(n) rounds with high probability15 to
move to Stage 4 and C, and one of A and B will know the exact value of n.16 In the former
case, after some cn rounds, where c is a positive constant, A and B will meet on expectation.
Thus, A and B will know an upper bound cn of n.

In Stage 4, let us assume that without loss of generality, two of the robots A and B learn
an upper bound N on the value of n, i.e., N = cn for some constant c. Now, either the
third robot is marked or it is not. Either way, our goal in this stage is to inform this third
robot that exploration is complete. It is possible that every interaction of A or B with the
third robot is a situation where edge crossing would normally occur. In the event of one
such interaction, the probability of the third robot being informed is 1/2. After 2 logN such
interactions, the probability of the third robot being informed is at least 1 − 1/n. Recall
that in this stage, robots A and B use a counter and will stop after N rounds. If we change
the counter to end at 16N logN instead, then the third robot has 2 logN opportunities with
high probability to interact with either robot. Thus, with probability at least 1 − 1/n the
third robot will interact with at least one of the robots and terminate, eventually resulting
in explicit termination.

14The expectation is easy to see. The high probability bound can be seen by applying a simple Chernoff
bound [39].

15The high probability is a result of the use of Random-Movement.
16It is possible that A and B may have crossed each other several times before the adversary blocks them

at adjacent nodes and the latter case occurs. In this case, C and the robot it finally interacts with will know
an upper bound on n. Note that if A and B cross each other at least twice, then on expectation they will
meet, leading to the former case.
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Construct the new algorithm Modified-Explore-Dynamic-Ring-3-Robots using
the above mentioned modifications to the stages and the use of Random-Movement.

Theorem 6.1. When three robots with constant length IDs run Modified-Explore-
Dynamic-Ring-3-Robots, exploration of the ring with explicit termination occurs with
probability at least 1− 1/n in O(n log n) rounds on expectation.

Proof. The increase in running time is a result of the modifications to Stage 4 by adding
O(n log n) rounds. Note that the increase in the number of rounds to each phase only results
in an increase of a constant factor to the running time. The change from exact running time
to expected running time is a result of using the Random-Movement subroutine.

The change from explicit termination to explicit termination with high probability is a
result of the modification to Stage 4. As we have two robots surely terminating after a
certain number of rounds, we can only guarantee with probability at least 1− 1/n that the
third robot will terminate as well.

Remark 1. If we relax our termination condition to partial termination, we can elimi-
nate Stage 4 of Modified-Explore-Dynamic-Ring-3-Robots entirely and simply have
robots terminate instead of moving to Stage 4. Then the exploration of the ring with partial
termination occurs with high probability in O(n) rounds on expectation.

6.2. Assigning Unique IDs
Throughout this paper, we made the assumption that each robot was initially assigned a

unique ID from the range [1, 2k] prior to the start of the algorithm, where k is the length of
the ID bits. This assumption can be removed by having each robot pick an ID uniformly at
random from a range of numbers [1, 2l], where l is a parameter to the algorithm.17 It is easy
to see that the probability that all robots have unique IDs is (1−1/2l)(1−2/2l) = 1−O(1/2l).
It should be noted that although l can be made arbitrarily large to improve the probability
that each robot has a different ID, a larger value of l possibly results in a longer runtime of
the algorithm (refer to Lemma 5.4).

Theorem 6.2. When three robots run Modified-Explore-Dynamic-Ring-3-Robots
and choose IDs uniformly at random from the range [1, 2l], exploration of the ring with explicit
termination occurs with probability at least (1 − 1/n)(1 − O(1/2l)) in O((n + n · 2l) log n)
rounds on expectation.

7. Exploration in Semi-Synchronous Setting (SSYNC)

In this section, we show how to extend our ideas to the passive transport semi-synchronous
model proposed in [22] in order to achieve exploration with partial termination using 3 robots
even in the absence of a landmark or the knowledge of n. Recall that in the semi-synchronous
setting, in every round, an adversary keeps awake a subset of the robots while the rest are
put to sleep with the restriction that every robot is active infinitely often. Furthermore,

17Since the total number of robots 3 is known to the robots, they can use it to set a value for l, e.g.,
l = 23 + 12 = 20.
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recall that we consider the passive transport scenario where a robot that tries to move over a
missing edge in some round may complete that move while asleep in a future round subject
to some conditions.

In this setting, Di Luna et al. [22] have shown that with 3 robots and either the knowledge
of an upper bound on n or the presence of a landmark, they were able to achieve exploration
with partial termination. We show that it is possible for 3 robots to achieve exploration with
partial termination without either of the above two requirements, so long as the robots have
the ability of edge crossing detection. We assume that robots have unique IDs, but that
requirement can be removed through the use of randomness as described in Section 6.2.

We consider the four stage algorithm presented in Section 5 and show how to modify it
to achieve exploration with partial termination in this passive transport semi-synchronous
model. Stage 1 proceeds is essentially the same, but instead of having each robot count the
number of rounds per phase, it instead counts the number of successful moves per phase.
Stage 2 proceeds as described in the original algorithm. Stage 3 is modified as follows.
Robot C will check for an additional condition before determining that the ring has been
explored. If AtoB = BtoA, and A and B were both trying to move on an edge removed
by the adversary, then C determines that the ring has been explored. Note that it is not
necessary that A and B were awake when C visited, but merely that they were attempting
to move.

The reasoning behind the above changes is that Stage 1 and Stage 4 require robots to
rely on counting the number of rounds. The simple trick of counting successful moves solves
the Stage 1 problem, but there is no immediate fix to the problems present in Stage 4.
However, as only partial termination is considered, Stage 4 of the algorithm is not required.
For Stage 3, we require the above change in order to protect against the adversary simply
putting A and B to sleep while C moves back and forth between them (and accidentally
terminating prematurely). The condition ensures that C has to see them both wanting
to move (but not necessarily awake) and prevented by the adversary before deciding to
terminate. Since the adversary can only keep a robot asleep for a finite number of rounds
and only remove at most one edge from the graph, eventually, one of the robots will make
progress on the ring until either the condition is met or A and B meet.

There is the following subtlety to take into account. Suppose that two robots cross the
same edge in the same round (or end up co-located at the same node) and at least one of
them is asleep. We need both of them to detect that such an edge crossing (or meeting)
occurred and furthermore, be able to swap data with one another. This data should include
information about whether one of the robots tried to move along an edge while awake but
was subsequently put to sleep before the move could be completed.

With the above modifications, we get an algorithm with the following properties.

Theorem 7.1. There exists an algorithm that correctly explores a 1-interval connected dy-
namic (anonymous) ring of size n with partial termination in O(fn) steps, where f is the
largest interval of time between two consecutive activations of any robot, using 3 robots with
unique IDs and edge crossing detection that have neither common chirality, nor knowledge
of an upper bound on n, nor access to a landmark.

Note that we measure number of steps moved and not running time. Furthermore, note
that the number of steps is O(fn) and not O(n). This is due to the fact that the adversary
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can put A and B to sleep for an arbitrarily long time in Stage 3, but not an infinitely long
time.

8. Conclusion

In this paper, we have looked into the problem of exploration of a dynamic ring in
the presence of 1-interval connectivity. We have first shown that exploration with explicit
termination subject to some constraints with just two robots equipped with unique IDs
even with access to edge crossing detection and randomness is impossible. Subsequently, we
have presented a deterministic algorithm where three uniquely identifiable robots with edge
crossing detection capability explore any 1-interval connected dynamic ring in optimal time.
We have also shown how to remove the requirement of this capability and allow the robots to
be anonymous while still achieving explicit termination with high success probability through
the use of randomness. We have finally extended our results to the semi-synchronous setting.

There is an interesting line of future research. Our algorithms intimately used advance
knowledge of the number of robots present in the system. If that knowledge is unknown and
≥ 3 robots are present, is there an algorithm to solve exploration with explicit termination?
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