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Abstract
We consider weighted sums of independent random variables regulated by an incre-
ment sequence and provide operative conditions that ensure a strong law of large
numbers for such sums in both the centred and non-centred case. The existing cri-
teria for the strong law are either implicit or based on restrictions on the increment
sequence. In our setup we allow for an arbitrary sequence of increments, possibly ran-
dom, provided the random variables regulated by such increments satisfy some mild
concentration conditions. In the non-centred case, convergence can be translated into
the behaviour of a deterministic sequence and it becomes a game of mass when the
expectation of the random variables is a function of the increment sizes. We identify
various classes of increments and illustrate them with a variety of concrete examples.

Keywords Law of large numbers · Weighted sums of independent random variables ·
Toeplitz matrices

Mathematics Subject Classification (2020) 60G50 · 60F15

1 Setup, Literature and Overview

In what follows all random variables are defined on a probability space (�,F , P)

and E denotes expectation with respect to P. Let X:={ Xk, k ∈ N } be a sequence of
independent real valued random variables with finite mean, E[Xk] < ∞ for all k ∈ N
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and let A = (an,k ∈ R+; n, k ∈ N) be a Toeplitz summation matrix, i.e., A satisfies

an,k ≥ 0, ∀ n, k ∈ N,

lim
n

an,k = 0, (1.1)

lim
n

∑

k

an,k = 1, (1.2)

sup
n

∑

k

an,k < ∞. (1.3)

A simple example of Toeplitz summation matrix is an,k = n−11{k≤n}, more exam-
ples are given in Sect. 4. In this setup, one seeks conditions on X and A to ensure
convergence in probability or almost sure convergence for the sequence { Sn, n ∈ N },
where

Sn :=
∑

k

an,k Xk .

These questions, known as weak/strong Law of Large Numbers (LLN), have been
investigated since the birth of probability theory, see [5], and have been extensively
studied in the XX century, for different summation methods, such as Voronoi sums,
Beurling moving averages, see [6, 7] for more summation methods. We also refer to
[14] and references therein for a classical account of the subject and to [12] for a more
recent account. The quest for operative conditions that apply to a wide range of (X, A)

and ensure weak/strong convergence of Sn has been the subject of [11, 13, 15, 16].
When the elements of X are i.i.d. mean zero random variables, the weak LLN

is equivalent to limn maxk an,k = 0, see [13, Theorem 1]. In [13, Theorem 2], the
following sufficient conditions for the strong LLN are given:

E

[
|X1|1+

1
γ

]
< ∞ and lim sup

n
nγ max

k
an,k < ∞, for some γ > 0. (1.4)

For (mean-zero) independent but not identically distributed variables, similar suffi-
cient conditions have been examined in [11, 15, 16]. In particular, in analogy with the
two conditions in (1.4), these references require that the variables Xk’s are stochasti-
cally dominated by a random variable X∗ satisfying a moment condition, and that the
associated coefficients an,k decay sufficiently fast as a function of n.

Unlike the above references, in this paper we impose concentration conditions onX

and obtain sufficient conditions for the weak/strong LLN when lim supn maxk an,k >

0. Here, as in [11], we consider a family of weights, referred to as masses,
m:= (mk ∈ R+, k ∈ N).We seem as an element ofR

N+, i.e. we considerm : N → R+
to be such that m(k) = mk . We assume that the mass sequence m is such that

∑

k∈N
mk = ∞. (1.5)
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Set Mn := ∑n
k=1 mk and

an,k :=
{

mk
Mn

if k ≤ n,

0 otherwise.
(1.6)

For A = (an,k, n, k ∈ N), conditions (1.2) and (1.3) hold true by definition. Also,
because (1.5) implies limn Mn = ∞ it follows that (1.1) is in force and therefore
A is a Toeplitz summation matrix. We notice in particular that if the sum in (1.5) is
finite, then no LLN can be expected. Indeed, if for some k, Xk is not degenerate and
mk > 0, then the limit random variable will have finite yet strictly positive variance,
what precludes convergence to a constant. To describe our results we depart from the
setup of [11] and consider Xk = Xk(m) to be a one parameter family of random
variables.

First contribution The first goal of this paper is to provide (near to) optimal operative
conditions on X to ensure that for any sequence of positive masses m ∈ R

N+ that
satisfies (1.5),

Sn = Sn(m):=
n∑

k=1

mk

Mn
Xk(mk) (1.7)

converges to zero as n → ∞ both in a weak and in a strong sense. This allows us to
go beyond the fast coefficient decay assumptions made in the existing literature. Due
to the nature of the coefficients in (1.6) we will refer to the sum in (1.7) as incremental
sum. The conditions for the weak LLN are necessary and sufficient for convergence
in the centred case, see Sect. 2.3.1. This is reminiscent but not equivalent to the weak
LNN for the classical average, see Theorem 1 in [9, Chap 7, p. 235] or Theorem 2.2.12
in [8].

Motivation and applications in random media Our original motivation to look at this
type of incremental sums came from the analysis pursued in [1, 2, 4] of the asymptotic
speed, and related large deviations, of a Random Walk (RW) in a particular class of
dynamic random media, referred to as Cooling Random Environment (CRE). This
model is obtained as a perturbation of another process, the well-known RWRE, by
adding independence through resetting. RWCRE, denoted by (Zn)n∈N0 , is a patchwork
of independent RWRE displacements over different time intervals. More precisely,
the classical RWRE consists of a random walk Z · = (Zn)n∈N0 on Z with random
transition kernel given by a random environment sampled from some law μ at time
zero. To build the dynamic transition kernel of RWCRE we fix a partition of time into
disjoint intervals N0 = ⋃

k∈N Ik then, we sample a sequence of environments from a
given law μ and assign them to the time intervals Ik . To obtain the sum in (1.7) we let
|Ik | = mk and consider Sn = ZMn/Mn . In this case, Sn represents the empirical speed

of RWCRE at time Mn and Xk(mk) = Z (k)
mk
mk

, where (Z (k)· , k ∈ N) are independent
copies of RWRE sampled from μ.

This type of time-perturbation ofRWREby resetting in reality gives rise to a slightly
more general sum than the incremental one in (1.7). Hence we will prove statements
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for the above incremental sum but also for the more general one, referred to as gradual
sum, as defined in (2.2)–(2.3) below. It is worth saying that this patchwork construction
can be used to perturb (in time or even in space) other models in random media, for
example, to describe polymagnets [17] based on juxtaposition of independent Curie-
Weiss spin-systems [10] of relative sizes mk’s.

A first partial analysis of the asymptotic speed for RWCRE started in [4, Thm.
1.5] and in [1, Thm. 1.12]. The new results here offer a full characterization of when
existence of the asymptotic averages in (1.7) holds.

Second contributionOur second goal is to explore, in the non-centred case, conditions
on themassesm that ensure convergenceof theweighted sums in (1.7). In particular,we
will identify different classes of masses and characterize the limit of the corresponding
weighted sums. The limit in (1.7) depends on the relative weight of mk and this is
what we call the game of mass. To illustrate it we construct examples for each of these
classes. In Sect. 4.4 we also treat the case of random masses, a natural question when
the increments sizes are regulated by a random processes, for instance, the return times
to the origin of an auxiliary independent random walk.

Structure of the paper We start in the next two sections by collecting all the main
new results. In Sect. 2 we state the general LLNs for centred random variables: Theo-
rems 2.1 and 2.2, respectively, contain theweak and the strong laws for the incremental
sums; Theorem 2.3 contains the strong law for the more general gradual sums. A dis-
cussion on the hypotheses in our main theorems, illustrated by counterexamples, as
well as on possible extensions, is presented in Sect. 2.3.4. Section3 is devoted to the
game of mass were we explore convergence criteria for non-centred variables. The
subsequent Sect. 4 illustrates in details the subtleties of the game of mass for non-
centered variables by presenting a rich palette of concrete examples of various type.
Section5 contains the proofs of the main theorems organized in successive subsec-
tions, each of them starting with a brief description of the proof steps and main ideas.
Finally, Appendix A covers a technical lemma adapted from [11] and used in the proof
of Sect. 5.2.

2 LLNs for Mean-Zero Variables

In this section we state and discuss the general theorems in the centred case.

2.1 Incremental Sums

Let X = { Xk(m),m ∈ R+, k ∈ N } be a family of integrable random variables that
are independent in k.

Theorem 2.1 (Weak LLN) Assume that X satisfies the following conditions:

(C) (Centering)

∀m ∈ R+, k ∈ N; E [Xk(m)] = 0.
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(W1) (Concentration)

lim
m→∞ sup

k
P (|Xk(m)| > ε) = 0, ∀ε > 0.

(W2) (Uniform Integrability)

lim
A→∞ sup

k,m
E
[|Xk(m)|1|Xk (m)|>A

] = 0.

Let Sn be as defined in (1.7). Then, for any sequence m ∈ R
N+ that satisfies (1.5),

lim
n→∞ P (|Sn| > ε) = 0, ∀ε > 0. (2.1)

To obtain a strong LLN in the centred case we impose further conditions on X. In par-
ticular the concentration conditionwill be strengthened by requiring amild polynomial
decay and the uniform integrability by a uniform domination.

Theorem 2.2 (Strong LLN) Assume that X satisfies (C) and

(S1) (Polynomial decay) There is a δ > 0 such that for all ε > 0 there is a C = C(ε)

for which

sup
k

P (|Xk(m)| > ε) <
C

mδ
.

(S2) (Uniform domination) There is a random variable X∗ and γ > 0 such that
E(|X∗|2+γ ) < ∞ and for all x ∈ R

sup
k,m

P(Xk(m) > x) ≤ P(X∗ > x).

Let Sn be as defined in (1.7). Then for any sequence m ∈ R
N+ that satisfies (1.5),

P

(
lim
n→∞ Sn = 0

)
= 1.

Remarks 2.1 In general, it is not possible to removeAssumption (C) fromTheorem2.2.
If X satisfies (S1) and (S2), the limit of Sn would coincide with the limit of its mean,
which may or may not exist. See Corollary (3.1) and Sect. 3 for a discussion of when
this limit exists.

Random walks with independent dominated steps provide a simple class of exam-
ples for which Theorem 2.2 applies. More precisely if Xk(m):=m−1 ∑m

i=1 Yk,i with
E[Yk,i ] = 0,

∣∣Yk,i
∣∣ ≤ Y∗ a.s. for all k, i ∈ N where Y∗ is such that E[(Y∗)2+δ] < ∞.

A broader class of examples for which the above applies are systems build as patch-
works of finite lengths of a given converging processes, such as the above mentioned
RWCRE model. In the case of RWCRE we see two applications: the limit speed and
cumulant of the process can be obtained from a non-centred version of Theorem 2.2,
see Theorem 1.10 and Lemma 4.2 in [1] for details.
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2.2 Gradual Sums

Motivated by the random walk model in random media in [1, 4], we next focus on a
more general sum by considering a time parameter t that runs on the positive real line
partitioned into intervals Ik = [Mk−1, Mk) of size mk : [0,∞) = ∪k Ik . As t → ∞
the increments determined by the partition are gradually completed as captured in
definition (2.3) below. For m ∈ R

N+, let

�t = �t (m):= inf{ � ∈ N : M� ≥ t }, (2.2)

and set t̄ := t − M�t−1. We define the gradual sum by

St = St (m) :=
�t−1∑

k=1

mk

t
Xk(mk) + t̄

t
X�t (t̄). (2.3)

The next theorem, is an extension of Theorem 2.2 to treat the gradual sum St , for
which we require the following concentration condition to hold.

(S3) (Oscillation control) For every ε > 0 there exist β > 1 and Cε > 0 such that
for every t, r > 0:

sup
k

P

(
sup
s≤m

|(r + s)Xk(r + s) − r Xk(r)| ≥ tε

)
≤ Cεmβ

tβ
.

Theorem 2.3 (Generalized strong LLN) If X satisfies (C), (S1), (S2), (S3) andSt is
as defined in (2.3), then for any sequence m ∈ R

N+ that satisfies (1.5)

P

(
lim
t→∞St = 0

)
= 1. (2.4)

Remarks 2.2 (a) Note that the incremental sum is a subsequence of the gradual sum,
as can be seen by the relation

tk = Mk ⇒ Stk = Sk .

Therefore, if X satisfies the conditions of Theorem 2.3 then it follows that that
St → 0 almost surely and in particular Sk → 0 almost surely. In this sense we
can see Theorem 2.3 as an extension of Theorem 2.2.

(b) Assumption (S3) controls the oscillations between the times Mn’s. For exam-
ple, if the sequence sXk(s) is a martingale, Doob’s L p inequality yields (S3);
alternatively, if there is f : R+ → R+ for which

P

(
|(r + s)Xk(r + s) − r Xk(r)| ≤ f (s)

)
= 1 (2.5)

then one also obtains (S3). In Sect. 2.3.3 we will argue via a counter-example that
an assumption like (S3) is indeed required.
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(c) Theorem2.3 is closely related toTheorem1.10 in [1]which dealswith non-centred
random variables in the case of divergent increments, i.e mk → ∞, see also
Sect. 4.2. The result for gradual centred sums stated here has weaker assumptions,
notably, in the context of RWRE of [1] the family X is satisfies (S1), (S2), and

(S3) by construction. Indeed, in that framework, for any k,m ∈ N, Xk(m) = Z (k)
m
m ,

where Z (k)
m is the m-th step of RWRE starting from the origin. Condition (S1)

is obtained from the large deviation estimates for the annealed law of RWRE
under the conditions mentioned in Proposition 1.7 in [1]. The nearest neighbour
property of RWRE starting from the origin implies P(|Xk(m)| ≤ 1) = 1, which
gives condition (S2). Finally, again the nearest neighbour property of the walk
implies that (2.5) holds with f (s) = 2 s, which gives condition (S3).

2.3 On the Necessity of the Hypotheses & Possible Extensions

In this sectionwediscuss nature of the various hypotheses in the previous theorems.We
start discussing the necessity of the hypotheses in Theorem 2.1. We next elaborate on
the near to optimality of condition (S1) in Theorem 2.2 and the necessity of condition
(S3) in Theorem2.3, see Sects. 2.3.2 and 2.3.3 respectively. Finally possible extensions
are mentioned in Sect. 2.3.4.

2.3.1 Weak LLN (Theorem 2.1): Necessity of (W1) and (W2)

Both conditions (W1) and (W2) are necessary for the weak LLN. The necessity of
condition (W1) is shown in [11, Theorem 1]. We show below that condition (W2) is
necessary by means of a counter-example.

Counter-example: Consider a sequence {Uk, k ∈ N } of i.i.d. uniform random vari-
ables on (0, 1) and Xk(m):=Vm(Uk), where

Vm(u) =

⎧
⎪⎨

⎪⎩

Am if u ∈ [0, g(m)/2),

−Am if u ∈ (g(m)/2, g(m)],
0 else.

with this definition, it follows that P (|Xk(m)| > 0) = g(m). Assume that g : R →
(0,∞) is a strictly decreasing continuous function such that limm→∞ g(m) = 0. Let
mk := inf{m : g(m) ≤ 1/k }. This implies that mk → ∞ as k → ∞ and so (1.5) is
satisfied. Furthermore by the definition of Xk(m), the assumptions (C) and (W1) in
Theorem 2.1 are verified. Now choose { Amk , k ∈ N } to be such that

mn

MN (n)

Amn > 1 +
n−1∑

k=1

Amk ,
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where N (n) is such that

P(∃ n ≤ j ≤ N (n) : X j (m j ) �= 0) >
1

2
.

Such an N (n) exists and is finite. Indeed, since P(Xk(mk) �= 0) = g(mk) > 1/k,
we have

∑
k g(mk) = ∞. Therefore, by the second Borel–Cantelli Lemma, and the

continuity of probability measures:

1 = P(∃ j ≥ n : X j (m j ) �= 0) = lim
N→∞ P(∃ n ≤ j < N : X j (m j ) �= 0).

With this choice of Amn it follows that if there is a j , i ≤ j ≤ N (i) for which∣∣X j (m j )
∣∣ > 0 then

∣∣SN (i)
∣∣ > 1. Therefore for any i ∈ N,

P
(∣∣SN (i)

∣∣ > 1
)

>
1

2
.

As P(Sn > 0 | |Sn| > 0) = 1
2 , we conclude that the weak LLN does not hold.

2.3.2 Incremental SLLN (Theorem 2.2): Near Optimality of (S1)

One could try to improve the condition in (S1) by requiring a decay smaller than
polynomial, that is:

P (|Xk(m)| > ε) <
Cε

f (m)
, (2.6)

for some f : R+ → R+. When we look for a scale that grows slower than any
polynomial, f (m) = log(m) is a natural candidate. However, as illustrated next, this
already allows for counterexamples.

Counter-example: Let {Uk, k ∈ N } be a sequence of i.i.d. uniform random variables
on (0, 1) and let Xk(m):=gm(Uk) where

gm(x):=

⎧
⎪⎪⎨

⎪⎪⎩

1 if x ∈
(
0, 1

2 log2 m

)
,

−1 if x ∈
[

1
2 log2 m

, 1
log2 m

)
,

0 else.

Note that X fulfills assumptions (C), (S2), (S3), and instead of (S1) it satisfies

P (Xk(m) = 1) = 1

2 log2 m
, and P (Xk(m) = −1) = 1

2 log2 m
.
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Now take m with mk = 4k . For such an m we see that the incremental sum Sn does
not satisfy the strong LLN. Indeed, as

∞∑

k=1

P (Xk(mk) = 1) = ∞, and
∞∑

k=1

P (Xk(mk) = −1) = ∞

by the second Borel–Cantelli lemma,

P (Xk(mk) = 1, i.o.) = 1, and P (Xk(mk) = 1, i.o.) = 1.

Note that Mn = (4n+1 − 4)/3 and that by (1.7)

|Sn − Xn| ≤ 1 − 4n

Mn
+

n−1∑

k=1

4k

Mn
= 2

4n − 4

4n+1 − 4
≤ 3

4
.

Therefore

P

(
|Sn − 1| <

3

4
i.o.

)
= 1, and P

(
|Sn + 1| <

3

4
i.o.

)
= 1,

which means that almost surely Sn does not converge.
In light of the above example, we see that the condition (S1) is near to optimal.

Indeed, to improve it, we would need to find f (m) in (2.6) satisfying

logk(m) << f (m) << mδ ∀ k ∈ N, δ > 0.

2.3.3 Gradual SLLN (Theorem 2.3): Necessity of (S3)

Let (B(k), k ∈ N) be independent standard Brownian motions on R and define

Xk(m) := B(k)(g(k,m))

m
√
g(k,m)

, (2.7)

where g : N × R+ → R is a function to be suitably chosen and which will serve to
obtain X which satisfies (C), (S1), (S2) and for which (S3) and (2.4) fail.

Note first that (C), (S1), and (S2) hold for the variables defined in (2.7). Consider
an increment sequencem = (mk, k ∈ N) with mk ≥ 2 for all k. We now claim that it
is possible to choose g for which both (S3) and (2.4) fail. To see this, let the oscilation
between points r , t ∈ R+ be defined by

ωX (r , t) := sup
s1,s2∈[r ,t]

|Ss1 − Ss2 |.
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Define also for any c > 0

w(k, c):=P

(
sup

1≤s≤2
|sXk(s)| > c

)
.

Now note that

w(k, c) = P

(
sup

1≤s≤2
|sXk(s)| > c

)
≤ P

(
sup

1≤s≤2
|Xk(s)| > c/2

)

= P(ωX (tk−1, tk−1 + 2) > c/2).

Finally, note that

w(k, c) = P

(
sup

1≤s≤2

∣∣sXk(s)
∣∣ > c

)
= P

(
sup

g(k,1)≤s≤g(k,2)

∣∣∣∣
B(k)(g(k, s))√

g(k, s)

∣∣∣∣ > c

)
.

Now, if limk g(k, 2)− g(k, 1) = ∞, for example when g(k,m):= exp(km), it follows
that limk w(k, c) = 1. Moreover, given the sequence m we may choose g to be such
that w(k, Mk) → 1 and therefore (S3) fails. To see that (2.4) also fails, it suffices to
note that if tk = Mk then by Theorem 2.2 limk Stk = 0 almost surely. On the other
hand

lim sup
t

|St | ≥ lim sup
k

ωX (tk−1, tk−1 + 2)

and since

∑

k

P(ωX (tk−1, tk−1 + 2) > 1/2) ≥
∑

k

w(k, Mk) = ∞,

it follows from the second Borel–Cantelli lemma that

P

(
lim sup

t
|St | > 0

)
≥ P(ωX (tk−1, tk−1 + 2) > 1/2 i.o.) = 1.

2.3.4 Possible Extensions

We conclude the discussion on the LLNs by commenting on possible extensions for
more general weighted sums that could have been pursued.

1. IndependenceOur examples above and proofs below are based on the independence
in k of { Xk(m),m ∈ R+, k ∈ N }. However, for certain choices of well-behaved
mass sequences m, it seems possible to adapt our arguments and still obtain a
weak/strong LLN in presence of “weak enough dependence”, though the notion of
“weak enough dependence” would very much depend on the weight sequence and
this is why we did not pursue this line of investigation.
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2. Relaxing condition (3.3) In the game of mass described in Sect. 3, for simplicity,
we have restricted our analysis to variables with expected value independent of
k, as captured in assumption (3.3). We note that this is not really needed, as we
might, for example, consider Xk(m)’s with expected value, say, vm and v′

m �= vm
depending on the parity of k. Yet, the resulting analysis would branch into many
different regimes depending on how exactly condition (3.3) is violated.

3. Fluctuations and large deviations It is natural to consider “higher order asymp-
totics”, such as large deviations or scaling limit characterizations, for the sums in
(1.7) or (2.3). However, the analysis for this type of questions relies heavily on
the specific distribution of the sequence of variables X thus preventing a general
self-contained treatment. Still, it is interesting to note that these other questions
can give rise to many subtleties and anomalous behaviour. This is well illustrated
by the specific RWCRE model in random media introduced in [4] that motivated
the present paper, we refer the interested reader to [2–4] for results on crossovers
phenomena in related fluctuations, and to [1] for stability results of large deviations
rate functions.

3 Non-centred RandomVariables: The Game of Mass

If the random variables X are not centred, the convergence of (Sn, n ∈ N) in Theorem
2.2 and the convergence of (St , t ≥ 0) in Theorem 2.3 corresponds to the convergence
of their mean. Indeed, consider X̃ = (

X̃k(m),m ∈ R+
)
with X̃k(m):=(

Xk(m) −
E[Xk(m)]) and decompose the sum in (1.7) as

Sn =
n∑

k=1

mk

Mn
Xk(mk) =

n∑

k=1

mk

Mn
X̃k(mk) + E[Sn]. (3.1)

Similarly, decompose the sum in (2.3) as

St =
�t−1∑

k=1

mk

t
Xk(mk) + t̄

t
X�t (t̄) =

�t−1∑

k=1

mk

t
X̃k(mk) + t̄

t
X̃�t (t̄) + E[St ]. (3.2)

Now note that X̃ satisfies (C). If X̃ satisfies (S1) and (S2) then, by Theorem 2.2, the
random term on the right hand side of (3.1) converges to 0 almost surely. Moreover,
if X̃ also satisfies (S3), then, by Theorem 2.3 the random term on the right hand side
of (3.2) converges to 0 almost surely. This gives us the following result.

Corollary 3.1 (Non-centred strong LLN) Assume that X satisfies (S1), (S2) and let Sn
be as defined in (1.7). If limn E[Sn]=:v exists then

P

(
lim
n→∞ Sn = v

)
= 1.
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Moreover, if X also satisfies (S3), St is as defined in (2.3) and limt E[St ]=:v exists
then

P

(
lim
k

Stk = v

)
= 1.

We remark that it is not sufficient to examine the sequence (tk = Mk, k ∈ N), as
the boundary term in the gradual sum may not be negligible. For instance, if

E[Xk(m)] = 2k − m

max{2k,m} ,

then for mk = 2k we have E[Xk(mk)] = 0 and so for tk :=Mk = 2k+1 − 2,
limk E(Stk ) = 0. However, for t ′k :=Mk−1+2k−1 = 2k+2k−1−2, we have t ′k = 2k−1,

limk E[X�t ′k
(t ′k)] = 1

2 , and by equation (3.2)

lim
k

E(St ′k ) = lim
k

t ′k
t ′k

E

[
X�t ′k

(t ′k)
]

= 1

6
.

Interestingly, if E[Xk(m)] = vm depends only ofm, one can relate the convergence of
(St , t ≥ 0) to the structure of m. This is what we call the game of mass and explore
in the sequel.

In light of Corollary 3.1, it is natural to seek conditions on (X,m) that guarantee
convergence of the full sequence (St , t ≥ 0). In this section, for simplicity (see Item
2. in Sect. 2.3.4), we assume that the expectation of Xk(m) depends only onm and not
on k, that is:

E [Xk(m)] = vm ∀ k ∈ N. (3.3)

We also assume that

m �→ vm is a bounded continuous function in R̄+, (3.4)

where R̄+ = [0,∞] := R+ ∪ {∞} is the compact metric space with the metric

d(x, y) := |arctan(x) − arctan(y)| , (3.5)

where arctan(∞) = π/2.
We first divide the mass-sequences m into two classes: regular and non-regular.

Roughly speaking, a sequence is regular when its empirical measure admits a weak
limit. In Sect. 3.1 we give the rigorous definition of regular masses and show that,
contrary to the non-regular ones, the LLN always holds true. In Sect. 3.2, we consider
other notions of regularity and examine how they relate to the convergence of the
empirical measures.
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3.1 Regular Mass Sequences

Let P̄ be the space of probability Borel measures on R̄+, where R̄+ is seen as the
compact metric space with metric given by (3.5). Recall (2.2) and, for a given mass
sequence m ∈ R

N+, let (μt (·) = μ
(m)
t (·), t ≥ 0) be the sequence of empirical mass

measures on R̄+, where μt (·) is given by

μt (·) :=
�t−1∑

k=1

mk

t
δmk (·) + t̄

t
δt̄ (·). (3.6)

Given a measure λ ∈ P̄ and a measurable function f : R̄+ → R, let
∫

f (m)dλ(m)

represent the integral of f with respect to λ. Consider λ∗ ∈ P̄ , (λt , t ≥ 0)with λt ∈ P̄
for each t ≥ 0.

Definition 3.1 (w convergence) We say that λ∗ is the w limit of (λt , t ≥ 0) as t → ∞
and we write λ∗ = w– lim λt or λt

w−→ λ∗ if for any bounded continuous function
f : R̄+ → R we have

lim
t→∞

∫
f (m)dλt (m) =

∫
f (m)dλ∗(m).

Note that this definition allows for λ∗({∞}):=1 − λ∗(R+) to be strictly positive.

Definition 3.2 (Regular mass sequence) We say thatm is a regular mass sequence if
(μt = μ

(m)
t , t ≥ 0), with μt as in (3.6), converges weakly, i.e., if there is μ∗ ∈ P̄ for

which

μt
w−→ μ∗. (3.7)

The following proposition determines the limit of (St , t ≥ 0) for regular mass
sequences.

Proposition 3.1 (Limit characterization for regular sequences) If X satisfies (S1)–
(S3), (3.3) and (3.4), then, for m ∈ R

N+ and t ≥ 0:

E[St ] =
∫

vmdμt (m). (3.8)

In particular, if m is regular and (3.7) holds true, then

P

(
lim
t
St =

∫
vmdμ∗(m)

)
= 1. (3.9)

Proof Note first that by (3.4) v ∈ Cb(R̄+). To prove (3.8) we note that

E[St ] = E

[
�t−1∑

k=1

mk

t
Xk(mk) + t̄

t
X�t (t̄)

]
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=
�t−1∑

k=1

mk

t
vmk + t̄

t
vt̄ =

∫
vmdμt (m) = 〈μt , v〉.

Now, by (3.7) we have that 〈μt , v〉 → 〈μ∗, v〉 and (3.9) follows from Corollary 3.1. ��
Remarks 3.1 Whenm is not regular, almost sure convergence is not prevented, in fact,
if vm = 0 for all m, then by Theorem 2.3, (St , t ≥ 0) converges almost surely to 0.
On the other hand, Examples XI, XIII presented in Sect. 4.2 below show that almost
sure convergence may not hold for irregular masses.

3.2 Regularity and Stability of Empirical Frequency

There are other possible notions of regularity rather than the one in Definition 3.2. For
example, instead of the empirical measure in (3.6), we may examine the empirical
mass frequency (Ft = F(m)

t , t ≥ 0), where Ft ∈ P̄ is given by

Ft :=
�t−1∑

k=1

δmk

�t
+ δt̄

�t
. (3.10)

The reason we consider other notions of regularity is that it allows for a finer control
of the convergence for L1 bounded sequences of increments, see Example XIV below.

We note that, for any t ≥ 0 and any arbitrary function f , the following relation
between μt and Ft is in force:

∫
f (m) dμt (m) = �t

t

∫
m f (m) dFt (m). (3.11)

In particular, if we take f (m) = vm and f (m) ≡ 1, we obtain, respectively, that

E[St ] = �t

t

∫
vmm dFt (m),

and

t

�t
=

∫
m dFt (m). (3.12)

The relation in (3.11) may suggest to consider weak convergence of Ft as an alternative
notion of regularity. However, as shown in the Proposition 3.1 below, these two notions
are not equivalent. We find more convenient to adopt the notion in Definition 3.2
for the following two reasons. First, there are masses for which both (μt , t ≥ 0)
and (Ft , t ≥ 0) converge weakly to some μ∗ and F∗, respectively, but the limit of
(St , t ≥ 0) is determined by μ∗ and not by F∗, see Examples II, IX, and VII below.
Second, among the unbounded masses, those divergent in a Cesàro sense will always
be regular according to Definition 3.2, while the corresponding (Ft , t ≥ 0) is not
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guaranteed to admit a limit, see Examples VIII and X. Yet, it is interesting to look at
the LLN from the perspective of masses with “well-behaved” frequencies.

Proposition 3.2 below clarifies how the relation between μt and Ft expressed in
(3.11) behaves in the limit. In particular it shows how to relate the behaviour of the
empirical frequencies and empirical masses under different modes of convergence,
which we next define. For this proposition we introduce some definitions to deal with
convergence of the integral of continuous functions which may be unbounded near 0
or +∞, corresponding to Definition 3.3 and Definition 3.4 below. Consider λ∗ ∈ P̄ ,
(λt , t ≥ 0) with λt ∈ P̄ for each t ≥ 0.

Definition 3.3 (w−1 convergence) We say that λ∗ is the w−1 limit of (λt , t ≥ 0) and

we write λ∗ = w−1– lim λt or λt
w−1−−→ λ∗ if λt

w−→ λ∗ and

lim
t→∞

∫
m−1 dλt (m) =

∫
m−1 dλ∗(m) < ∞.

Definition 3.4 (w+1 convergence) We say that λ∗ is the w+1 limit of (λt , t ≥ 0) and

we write λ∗ = w+1– lim λt or λt
w+1−−→ λ∗ if λt

w−→ λ∗ and

lim
t→∞

∫
m dλt (m) =

∫
m dλ∗(m) < ∞. (3.13)

If a sequence λ = (λt , t ≥ 0) in P̄ is such that λt
w+1−−→ λ∗ we say that λ is w+1-

stable, similarly, if λt
w−1−−→ λ∗ we say that λ isw−1-stable. If thew, respectivelyw±1,

limit does not exist for (λt , t ≥ 0)we write �w-lim λt , respectively �w±1-lim λt . One
may note that w+1 convergence in P̄ is the same as L1 convergence of Borel real
valued probability measures on R, see [8, Thm. 4.6.3, p. 245]. The reason we usew±1

is to unify notation.

Proposition 3.2 (Regularity and stable frequencies) Assume m ∈ R
N+ is such that for

�t = �t (m), the limit A:= limt→∞ �t
t ∈ R̄+ exists. Then:

(a) Ft
w+1−−→ F∗ �= δ0 ⇒ μt

w−→ μ∗ with
∫

f (m)dμ∗(m):=A
∫
m f (m) dF∗(m),

(b) μt
w−1−−→ μ∗ �= δ∞ ⇒ Ft

w−→ F∗ with
∫

f (m)dF∗(m):= 1
A

∫ 1
m f (m) dμ∗(m).

Furthermore, in both cases above A ∈ (0,∞).

Proof We first prove item (a). By (3.12), (3.13) we have that

t

�t
=

∫
mdFt (m) → A−1 =

∫
mdF∗(m). (3.14)

Note that A−1 ∈ (0,∞) since by (3.13), we have that
∫
mdF∗(m) < ∞ and by

assumption (a), we have that F∗ �= δ0. Finally, by (3.11) and (3.14), it follows that for
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any f ∈ Cb(R̄+)

μt ( f ) = �t

t

∫
m f (m) dFt (m) → A

∫
m f (m) dF∗(m).

We now turn to the proof of item (a). Since μt
w−1−−→ μ∗, we have the convergence of∫

f (m)dμt (m) when f (m) = 1/m, that is,
∫

f (m)dμt (m) → ∫
f (m)dμ∗(m) < ∞.

Moreover, by the assumption that μ∗ �= δ∞ we have that
∫ 1

m dμ∗(m) > 0 and thus

�t

t
=

∫
1

m
dμt (m) →

∫
1

m
dμ∗(m) = A ∈ (0,∞). (3.15)

Therefore, for any f ∈ Cb(R̄+), by (3.11) and (3.15) we conclude that

∫
f (m)dFt (m) = t

�t

∫
1

m
f (m) dμt (m) → 1

A

∫
1

m
f (m) dμ∗(m). ��

In the next section, with the help of several explicit examples, we explore more how
these notions of weak and L1 convergence for (Ft , t ≥ 0) relate to the regularity of
(μt , t ≥ 0), all these examples are labeled with roman numbers that can be visualized
in Fig. 1.

Proposition 3.2 explains part of the different relations depicted in Fig. 1 between
the dotted boxes corresponding to masses for which (Ft , t ≥ 0) convergences weakly
and in L1.

4 Concrete Examples of the Game of Mass

In this section we explore the relation between these different concepts of regularity
of masses and their relation to convergence of the mean. Section4.1 is devoted to
examples of bounded masses and their relation to the previously defined notions. In
Sect. 4.2, we identify the regular regime of mass sequences that diverge. Finally, in
Sect. 4.4 we investigate what can be said when the mass-sequence m is random. The
many cases of the game of mass we explore here are summarized in Fig. 1.

4.1 BoundedMasses

In the following sections, whenever the limit exists, we denote byμ∗ = w- limμt , the
w- lim of the empirical mass measures (μt , t ≥ 0) as defined in (3.6) and we denote
by F∗ = w- lim Ft , the w- lim of the empirical mass frequencies (Ft , t ≥ 0) as defined
in (3.10). By Proposition 3.1 when the sequence is regular the a.s. limit of (St , t ≥ 0)
exists and is given by v = ∫

vm dμ∗(m). The following examples show how regular
masses relate with weak convergence of empirical mass frequencies.

I (Regular + ∃ w-lim Ft �= δ0) When supk mk < ∞, w convergence of the empirical
mass frequencies plus uniform integrability implies w+1 convergence. If F∗(m) �= δ0,
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Fig. 1 Summary of the game of mass for (X,m). The above rectangle offers a visual classification of
the possible different mass sequences m. The region in gray corresponds to masses for which the LLN
is valid, that is, (St , t ≥ 0) converges. The vertical line divides the masses between regular (left) and
irregular (right) ones according to Definition 3.2. The horizontal line separates the mass sequences between
bounded (down) and unbounded (up). Among the unbounded masses, those divergent in Cesàro sense, and
in particular those divergent in a classical sense, are always regular. The dotted and dashed boxes correspond
to those masses for which the related frequencies are asymptotically stable, respectively, in a weak and in a
w+1 sense, as described in the left upward corner of each box. The roman numbers in each of the different
sub-classes correspond to the labels of the different illustrative examples from Sect. 4. Note that XIV is
associated to two linked bullets in this diagram because it refers to random increments sampled according
to a finite mean law, which may have bounded or unbounded increments. Note also that labels IV, V, XII,
XIII are associated to two linked bullets in this diagram, because convergence of irregular sequences may
or may not hold true depending on the value of the speeds, for instance if the random variables have zero
mean then (St , t ≥ 0) converges, see Sect. 4 for details

then the formula for the limit of (St , t ≥ 0) can be given in terms of F∗. Indeed, by
item (a) of Proposition 3.2 it follows that

P

(
lim
t→∞St = v

)
= 1 where v = A

∫
vmm dF∗(m), A := lim

t

�t

t
∈ (0,∞).

II (Regular + ∃ w-lim Ft = δ0) This example shows that if F∗ = w − lim Ft = δ0
then μ∗ may not be given by the expression in item (a) of Proposition 3.2.

Consider the triangular array
(
ai, j , i, j ∈ N, j ≤ i

)
defined by ai,1:=1 and for

1 < j ≤ i , ai, j :=2−i , see Fig. 2.
For the sequence of increment, take mk to be the k-th term of this array, more

precisely let i(k) be such that

(i(k) − 1)i(k)

2
≤ k ≤ i(k)(i(k) + 1)

2
and j(k):=k − (i(k) − 1)i(k)

2
. (4.1)
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Fig. 2 Triangular array representing the increment sizes of the sequence

Let

mk :=ai(k), j(k). (4.2)

Note that

∑

k

mk1{mk<1} =
∑

k

k

2k
< ∞.

Therefore, in this example, Ft
L1→ δ0 while μt

w→ δ1. This shows that the w+1 limit
of (Ft , t ≥ 0) is not sufficient to describe the limit of (St , t ≥ 0), which is given by
v1 = ∫

vm dμ∗(m).

One could think that, for bounded mass sequences, if the empirical mass measures
(μt , t ≥ 0) converge then the empirical mass frequencies (Ft , t ≥ 0) will also con-
verge. This is not true, the following is an example of bounded regular mass sequence
for which the w-lim of (Ft , t ≥ 0) does not exist.

III (Regular + � w- lim Ft ) Consider the sequencem defined by the algorithm below:

(i) Set m1 = 1,
(ii) while FM(k)({1}) > 1/4 set mk = ai(k), j(k) as in (4.2). Otherwise, go to (iii),
(iii) while FM(k)({1}) < 3/4 set mk = 1. Otherwise, go to (ii).

The difference between themass sequence in this example and the one in Example II is
that we introduced increments of size 1 in the middle of the original sequence defined
in (4.2) in such a way that 3/4 ≥ lim supt Ft ({1}) �= lim inf Ft ({1}) ≤ 1/4. In this

case, μt
w→ δ1 and Ft does not converge.

Note that if m is not regular, then depending on the function v ∈ Cb(R̄+), the
sequence (E[St ], t ≥ 0)may not converge. If there are K , L ∈ R+ such that vK < vL ,
as in the example below, it is simple to construct a sequencem forwhich (E[St ], t ≥ 0)
does not converge.

IV (Irregular + � w-lim Ft ) Let m be the sequence composed of Ai increments of
size K followed by Bi increments of size L where the sequences (Ai , Bi , i ∈ N)

will be determined later. More formally, let (Ai , Bi , i ∈ N) be given, define τ0:=0
τn :=τn−1 + An + Bn and set

mk =
{
K if k ∈ (τn, τn + An+1] for some n ≥ 0,

L if k ∈ (τn + An+1, τn+1] for some n ≥ 0.
(4.3)
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Choose (Ai , Bi , i ∈ N) such that for all n ∈ N, An < An+1, Bn < Bn+1 and

L(B1 + . . . + Bn)

K (A1 + . . . + An+1)
≤ 1

n and
K (A1 + . . . + An+1)

L(B1 + . . . + Bn+1)
≤ 1

n .

If vK < vL then (E[St ], t ≥ 0) does not converge as

lim sup
t

E[St ] = vL �= vK = lim inf
t

E[St ].

V (Irregular + ∃ w+1-lim Ft ) If we combine the sequence defined in Example II
with the one defined in Example IV we can construct an irregular sequence for which
Ft

w→ F∗. More precisely, letm′
k be the sequence defined in Example IV and consider

a triangular array ai, j defined by ai,1:=m′
i and for 1 < j ≤ i , set ai, j :=2−i . To

conclude, setmk :=ai(k), j(k) with i(k), j(k) as defined in (4.1). Note that this sequence

is irregular even though Ft
L1→ δ0.

By item (a) of Proposition 3.2 we see that w−1 convergence cannot occur in any
of the examples of bounded regular mass for which the empirical frequency does
not converge. Indeed, all those example have a significant amount of increments of
negligible mass, and as such, they modify the empirical frequency without affecting
the limit of the mass sequence. We now move to the study of unbounded masses.

4.2 Unbounded Cesàro’s Divergent Masses

We say that a sequence of masses m is divergent when

lim
k→∞mk = ∞, (4.4)

and we say that a sequence of masses m is Cesàro’s divergent when

lim
n

m1 + . . . + mn

n
→ ∞. (4.5)

In either case μt
w→ δ∞. Therefore the divergent/Cesàro divergent mass sequences

are always regular and by Proposition 3.1 it follows that

P(lim
t
St = v∞) = 1. (4.6)

A particular case of Cesàro divergence is given by the divergent masses as captured in
the next example, which is a very well-behaved class of divergent mass sequences.

VI (Divergent mass⇒ w- lim Ft = δ∞) Since (4.4) implies (4.5) and therefore, for
any divergent mass sequence, we have that (4.6) holds true. Note also that if (4.4)
holds true then Ft

w→ δ∞. This is a consequence of the fact that limt Ft ([0, A]) = 0
for any A > 0.
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The case (4.4) is covered by Theorem 1.10 in [1] in the context of random walks
in dynamic environment. Theorem 2.3 can actually be seen as a generalization of
Theorem 1.10 in [1]. As mentioned in Sect. 2.3.4, the present proofs could actually
cover even more general cases, if, for example, we relax the assumption in Equa-
tion (3.3). The following example shows that in the Cesàro divergent regime, the
sequence (Ft , t ≥ 0) may converge, but may not be able to capture the limit of
(St , t ≥ 0).

VII (Cesàro divergent mass + ∃ w-lim Ft + μ∗ = δ∞) Consider the sequence m,
where

mk :=
{
1 if k is odd, and

k if k is even.

Informaly, half the increments are 1, and the other half diverges. More precisely,

Ft
w→ 1

2
δ1 + 1

2
δ∞.

As such, one might be tempted to say that E [St ] → 1
2v1 + 1

2v∞ as t → ∞. This is
not the case because one has to take into account the relative weights of the sequences.
As it turns out, the mass of increments of size 1 for this particular sequence vanishes
in the limit. Indeed, note that the sum of the first 2k increments, M2k is

M2k = k(k + 1) + k = k2 + 2k.

Now note that k
M2k

→ 0 and therefore

E[SM2k ] = k

M2k
v1 + 1

M2k

k∑

i=1

ivi → v∞.

Also in this example, if v1 �= v∞, then the weak limit of (Ft , t ≥ 0) does not determine
the limit of (St , t ≥ 0), even if it is well defined.

As in the bounded case, see Example III, also Cesàro divergent sequences may not
have well behaved empirical frequencies, as shown in the next example.

VIII (Cesàro divergentmass +� w-lim Ft ) Take an irregular sequencem′ = (m′
k, k ∈

N) such as the one defined in (4.3) and intercalate it with a huge increment so that
it diverges in the Cesàro sense. To be more concrete, for k ∈ N let m2k−1:=m′

k and

m2k := k
∑2k−1

i=1 mi . In this example we have that Ft ([A,∞)) → 1
2 for all A > 0 but

1

2
= lim sup

t
Ft ({K }) = lim sup

t
Ft ({L}) and

0 = lim inf
t

Ft ({K }) = lim inf
t

Ft ({L}).
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Fig. 3 Triangular array used to obtain the increment sizes in (4.7). The sequence interweaves terms of a
divergent sequence (m′

k = k, k ∈ N) with “small” terms of unit size (m′′
k = 1, k ∈ N), in such a way

that the small terms are negligible to the empirical mass measure, while they dominate the empirical mass
frequency

Therefore, the sequence is regular with μt
w→ δ∞, but (Ft , t ≥ 0) does not converge.

4.3 UnboundedMasses that do not Diverge in the Cesàro sense

When m ∈ R
N+ is not Cesàro divergent, the sequence is not necessarily regular and

more subtle scenarios may occur, as the following examples illustrate.We start with an
example of a regular sequence that allows an asymptotic positive mass of increments
of finite size and positive mass at infinity.

IX (Regular lim inf mk < ∞ + ∃ w-lim Ft ) Let m = (mk, k ∈ N) be given by

mk :=ai(k), j(k) = i(k)1{i(k)=1} + 1{ j(k) �=1} (4.7)

where
(
ai, j , i, j ∈ N, j ≤ i

)
is represented as a triangular array in Fig. 3 with

i(k), j(k) as defined in (4.1).
In this case Ft

w→ δ1 but μt
w→ 1

2δ1 + 1
2δ∞ and so limt E[St ] = 1

2v1 + 1
2v∞.

The sequence above is another example of a regular sequence for which the weak
limit of Ft does not determine the limit of St , even when it exists.

The next example shows a regular sequence with unbounded increments and for
which the empirical frequency does not converge.

X (Regular + � w-lim Ft ) Takem as in Example III but replace the k-th increment of
size 1 by the k-th increment of the sequence defined in Example IX. For this example,
we have that for any ε > 0

lim sup
t

Ft ([0, ε]) − lim inf
t

Ft ([0, ε]) ≥ 1/2.

Sinceμt
w→ 1

2δ1+ 1
2δ∞, themass sequence is regular but (Ft , t ≥ 0) does not converge.

XI (Irregular + ∃ w-lim Ft ) Onlyweak convergence of the empirical measure (Ft , t ≥
0) does not imply convergence of (St , , t ≥ 0). Indeed, let (Ki , Ni , i ∈ N) be auxiliary
sequences that we will determine later. The sequence m alternates one increment of
size Ki with Ni increments of size 1. More precisely, let τ( j):= j +∑ j

i=1 Ni and set

mk :=
{
K j if k ∈ {τ( j) : j ∈ N}.
1 else
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Now choose (Ni , Ki , i ∈ N) such that

N1 + . . . + Ni

Ki
≤ 1

i and
K1 + . . . + Ki

Ni+1
≤ 1

i .

Note that Ft
w→ δ1, but if v∞ < v1

lim inf
t

E[St ] = v∞ < v1 = lim sup
t

E[St ].

XII (Irregular + ∃ w+1-lim Ft ) In this example we construct an unbounded irregu-
lar sequence for which (Ft , t ≥ 0) converges in w+1. In particular, from item (a) of
Proposition 3.2 it follows that this limit must be δ0. Let (Ai , i ∈ N) be an auxiliary
sequence to be defined later. Informally, this is constructed as a combination of Exam-
ple V and Example XI, where we intercalate an irregular unbounded sequence with a
large number of increments of small mass. Formally, let m′ be the sequence defined
in Example XI set τ(1):=1 and for j > 1 set τ( j):=τ( j − 1) + A j . Now let

mk :=
{
m′

j if j ∈ {τ( j) : j ∈ N}.
2−k else

(4.8)

Finally choose Ai such that

1 + ∑i+1
k=1 m

′
k

Ai
<

1

i
.

Since
∑∞

k=1 2
−k = 1 it follows that

∫
mdFt (m) ≤ 1 + ∑�t

k=1 m
′
k

�t
→ 0, as t → ∞,

and therefore Ft
L1→ δ0. Furthermore, themassmeasureμt associatedwith the sequence

(mk, k ∈ N) defined in (4.8) and the mass measure μ′
t associated with the sequence

(m′
k, k ∈ N) defined in Example XI satisfy for any bounded continuous function

f : R̄+ → R

∫
f (m)dμt (m) = σ(t)

t

∫
f (m)dμ′

σ(t)(m) +
�t−1∑

k=1

1k /∈{τ( j) : j∈N} f (2−k)
2−k

t

(4.9)
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where σ(t) := ∑�t−1
k=1 mk1k∈{τ( j) : j∈N} counts the mass of increments of the original

sequence. Since
∑∞

k=1 2
−k it follows that |σ(t) − t | ≤ 1 and by (4.9) it follows that

lim inf
∫

vmdμt (m) = lim inf
∫

vmdμ
′
t (m) and

lim sup
∫

vmdμt (m) = lim sup
∫

vmdμ
′
t (m).

As in Example XI, if v∞ < v1

lim inf
t

E[St ] = v∞ < v1 = lim sup
t

E[St ].

For completeness, we include the following example which contains an irregular
unboundedmass sequence for which the empirical measure does not converge weakly.

XIII (Irregular + � w-lim Ft ) To construct a sequence m that is irregular and such
that Ft does not convergeweakly, take the sequence defined in Example III, and replace
the k-th increment of size 1 by the k-th increment of the sequence defined in XI, which
itself is irregular. More precisely, let (m′

k, k ∈ N) be the sequence from Example III,
let (μ′

t , t ≥ 0) be its empirical mass measure and let (F′
t , t ≥ 0) be its empirical

mass frequency. Let the sequence (m′′
k , k ∈ N) be the sequence from Example XI, let

(μ′′
t , t ≥ 0) be its empirical mass measures and let (F′′

t , t ≥ 0) be its empirical mass
frequencies. We define

mk =
{
m′

k if m′
k �= 1

m′′
N (k) if m′

k = 1
,

where N (k) = #{ j ≤ k : m′
k = 1}. Let (μt , t ≥ 0) be the empirical mass measures

and (Ft , t ≥ 0) be the empirical mass frequencies associated with (mk, k ∈ N). Recall
that the sequence (μ′′

t , t ≥ 0) admits different w- lim along different sub-sequences
and therefore is irregular. Since

∑
k m

′
k1{m′

k �=1} < ∞ it follows that (μt , t ≥ 0) has
the same sub-sequential w-limits as (μ′′

t , t ≥ 0). This implies that m = (mk, k ∈ N)

is also irregular. Finally, since m′′
k ≥ 1 it follows that

lim sup
t

F′
t ([0, 1/2]) = lim sup

t
F′
t ([0, 1/2]) ≥ 3/4 and

lim inf
t

F′
t ([0, 1/2]) = lim inf

t
F′
t ([0, 1/2]) ≤ 1/4.

This allows us to conclude thatm is both irregular and its empirical mass frequencies
do not admit a w-lim.
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4.4 RandomMasses

In this section consider random mass sequencesm. More specifically, we let (mk, k ∈
N) be an i.i.d. sequence of random variables, independent of X, each distributed
according to a measure ν on R+. There are two cases depending on weather ν has
finite or infinite mean.

XIV (Regular + (un) bounded + ∃ w+1-lim Ft ( Assume that ν({0}) = 0 and assume
that

∫
mdν(m) < ∞. Now, let the increments (mk, k ∈ N) be i.i.d random variables

with law ν. By theGlivenko-Cantelli Theorem [8, Theorem2.4.9] it follows that almost
surely (Ft ([0, x]), t ≥ 0) converges (uniformly in x) to ν([0, x])=:F∗([0, x]). By the
classical LLN for i.i.d. random variables, almost surely,

∫
mdFt (m) → ∫

mdν(m) <

∞. Therefore the conditions of (3.13) are satisfied almost surely and so P(Ft
w+1→

F∗) = 1. By item (a) of Proposition 3.2 it follows that P
(
μt

w−→ ν
) = 1. Therefore,

almost surely, the sequence m is regular and

P

(
lim
t

E[St ] =
∫

vxdν(x)
)

= 1.

XV (Regular + Cesàro + ∃ w-lim Ft ) Now, assume that
∫
mdν(m) = ∞ and again

let the terms of (mk, k ∈ N) be sampled independently from ν. In this case

P

(
m1 + . . . + mk

k
→ ∞

)
= 1. (4.10)

Then note that after k increments, the mass of increments of size smaller than a > 0,
μt ([0, a]), is bounded by ka

m1+...+mk
and therefore, by (4.10), for any a > 0, almost

surely μt ([0, a]) → 0. This implies that P(μt
w→ δ∞) = 1 and therefore

P

(
lim
t
St = v∞

)
= 1.

5 Proofs of theMain Theorems

5.1 Weak Law of Large Numbers: Proof of Theorem 2.1

5.1.1 Proof Description

Our weak LLN is very similar to the weak LLN for sums of weighted independent
random variables that can be found in [11]. The main difference in our proof is that
we do not assume mn/Mn → 0. This condition is replaced by the concentration
assumptions (W1) and (W2)which allows us to include the case lim supn mn/Mn > 0.
We rely on this concentration assumption in the first step of the proof. Afterwards, we
are following the strategy in [11]whichwe give here for completeness and corresponds
to the second and final steps summarized below.
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• First step: uniform bound on the increments We use the concentration assump-
tions (W1) and (W2) to restrict our analysis to the increments of bounded
magnitude.

• Second step: truncation and equivalenceWe truncate the randomvariables Xk (mk)

according to their relative weights at level n, i.e. we consider the truncation

Yk,n := Xk(mk)1{|Xk (mk )|>Mn/mk

}.

Then we show that the weak LLN for truncated random variables is the same as
the weak LLN for the original random variables.

• Final step: convergence of the mean and the varianceWe prove that the mean and
variance of the sum of weighted truncated random variables both go to zero in the
limit and conclude the proof.

Remarks 5.1 The key technical step in this proof, contained in Lemma 5.1, gives the
asymptotic equivalence of the truncated random variables and the original terms in
the second step. Moreover, the second part of the lemma gives control on the limit
variance of the truncated terms.

5.1.2 First Step: Uniform Bound on the Increments

For each K > 0, let SKn represent the contribution to Sn coming from the increments
larger than K , i.e.

SKn :=
n∑

k=1

mk

Mn
Xk(mk)1{mk>K }.

Now note that due to (W1) and (W2) it follows that

lim
K→∞ sup

m>K
sup
k

E [|Xk(m)|] = 0. (5.1)

Indeed, for any ε > 0 and any A > ε

E [|Xk(m)|] ≤ ε + A P(ε < |Xk(m)| ≤ A) + E

[
|Xk(m)|1{|Xk (m)|>A

}
]

.

the right hand side above can be bounded by 3ε using (W1) and (W2) and since ε > 0
is arbitrary, (5.1) follows. Now let S̄Kn := Sn − SKn be the contribution to Sn coming
from the increments smaller than K . By the triangle inequality and the union bound
it follows that

P (|Sn| > ε) ≤ P

(∣∣∣SKn
∣∣∣ +

∣∣∣S̄Kn
∣∣∣ > ε

)
≤ P

(∣∣∣SKn
∣∣∣ >

ε

2

)
+ P

(∣∣∣S̄Kn
∣∣∣ >

ε

2

)
.
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As
∑n

k=1
mk
Mn

1{mk>K } ≤ 1, (5.1) and Markov’s inequality imply

lim sup
K→∞

P

(
SKn > ε

)
= 0,

and therefore,

lim sup
n→∞

P (|Sn| > ε) ≤ inf
K

lim sup
n→∞

P

(∣∣∣S̄Kn
∣∣∣ >

ε

2

)
.

It remains to prove that the right-hand side above goes to zero for arbitrary ε > 0.

5.1.3 Second Step: Truncation and Equivalence

We show that (2.1) is equivalent to a limit statement for truncated random variables.
We consider the following truncation

Yk(mk):=Xk(mk)1{|Xk (mk )|< Mn
mk

}1{mk<K },

and notice that as Mn → ∞,

lim
n

max
1≤k≤n

mk

Mn
1{mk<K } = 0. (5.2)

Set s̄ Kn :=∑n
k=1

mk
Mn

Yn(mk).Wewill first argue that this truncated sum s̄ Kn approximates

well S̄Kn , and then show that its variance vanishes. To perform these two steps we will
need the following lemma, whose proof is postponed to the end of this section and is
an adaptation of the ideas in the proof Theorem 1 in [11].

Lemma 5.1 (Control over truncation) If (C), (W1), and (W2) hold true, then

lim
n→∞ max

1≤k≤n

Mn

mk
P

(
|Xk(mk)|1{mk<K } ≥ Mn

mk

)
= 0, (5.3)

and

lim
n→∞ max

1≤k≤n

mk

Mn
E

[
Y 2
k (mk)

]
= 0. (5.4)

123



Journal of Theoretical Probability

By the union bound, the definition of Yk(mk), using that
∑

k
mk
Mn

≤ 1 we have that

lim sup
n

P

(
S̄Kn �= s̄ Kn

)
≤ lim sup

n

n∑

k=1

P
(
Xk(mk)1{mk<K } �= Yk(mk)

)

= lim sup
n

n∑

k=1

P

(
|Xk(mk)|1{mk<K } ≥ Mn

mk

)

≤ lim sup
n

max
1≤k≤n

Mn

mk
P

(
|Xk(mk)|1{mk<K } ≥ Mn

mk

) n∑

k=1

mk

Mn

≤ lim sup
n

max
1≤k≤n

Mn

mk
P

(
|Xk(mk)|1{mk<K } ≥ Mn

mk

)
,

the latter can bemade arbitrary small via (5.3). Hence it suffices to consider s̄ Kn instead
of S̄Kn . We next control the mean and the variance of s̄ Kn .

5.1.4 Final Step: Convergence to Zero of the Mean and the Variance

The mean As (Xk(mk), k ∈ N) is a uniformly integrable family of centred random
variables, by (5.2) it follows that lim supn supk E [|Yk(mk)|] = 0, and so we obtain
that

lim
n

E

(
s̄ Kn

)
= lim

n

n∑

k=1

mk

Mn
E[Yk(mk)] = 0.

The Variance By independence and (5.4) we obtain

lim sup
n

Var
(
s̄ Kn

)
= lim sup

n

n∑

k=1

m2
k

M2
n
Var(Yk(mk))

≤ lim sup
n

n∑

k=1

mk

Mn
max
1≤k≤n

mk

Mn
Var(Yk(mk))

≤ lim sup
n

max
1≤k≤n

mk

Mn
E

[
Y 2
k (mk)

]
= 0.

(5.5)

Finally, limn E
(
s̄ Kn

) = 0 together with (5.5) and Chebyshev’s inequality yield

lim sup
n

P

(
s̄ Kn ≥ ε

)
≤ lim sup

n

4

ε2
Var

(
s̄ Kn

)
= 0.

��
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5.1.5 Proof of Lemma 5.1

Let T n := inf1≤k≤n
Mn
mk

1{mk<K }. Since limn T n = ∞, equation (5.3) follows
from (W2) as

lim
n

Mn

mk
P

(
|Xk(mk)|1{mk<K } ≥ Mn

mk

)
≤ lim

n
E

[
|Xk(mk)|1{|Xk (mk )|≥T n

}
]

= 0.

To prove (5.4), let Fk,m(a) := P(|Xk(m)| < a) and note first that integration by parts
yields

∫ T

0
x2 dFk,m(x) = T 2

P(|Xk(m)| < T ) − 2
∫ T

0
xP(|Xk(m)| < x) dx

= T 2 [1 − P(|Xk(m)| ≥ T )] − 2
∫ T

0
x [1 − P(|Xk(m)| ≥ x)] dx

= −T 2
P(|Xk(m)| ≥ T ) + 2

∫ T

0
xP(|Xk(m)| ≥ x) dx .

(5.6)

Observe further that by the uniform integrability (W2)

lim
x→∞ sup

k,m
xP(|Xk(m)| ≥ x) = 0. (5.7)

Finally, since limn T n = ∞, by (5.6), and (5.7), we have that

lim sup
n

sup
k,m

1

T n

∫ T

0
x2 dFk,mk (x)

= lim sup
n

sup
k,m

(
− T nP(|Xk(mk)| ≥ T n) + 2

∫ T n

0

x

T n
P(|Xk(mk)| ≥ x) dx

)
= 0.

Since

∫ Mn
mk

0
x2 dFk,mk (x) = E

[
Y 2
k (mk)

]
,

it follows that

lim
n→∞ max

1≤k≤n

mk

Mn
E

[
Y 2
k (mk)

]
≤ lim

n→∞ sup
k,m

1

T n

∫ T n

0
x2 dFk,mk (x) = 0.

��
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5.2 Strong Law for the Incremental Sum: Proof of Theorem 2.2

5.2.1 Proof Description

The proof of Theorem 2.2 is a combination of the ideas in [1] with the convergence
criterion in [15]. As in [1], our proof here relies on an iterative scale decomposition
into “small” and “big” increments. At each scale, the small contribution is defined as
the truncated sum that, thanks to the stochastic domination assumption (S2), can be
dealt with the techniques of [15]. What is left, classified as “big”, is again split (in the
next scale) into a “small” and a “big”. At this level, the small one is controlled in the
same way as before. The iteration proceeds until we reach a scale where the condition
(S1) is sufficient to ensure convergence. Here is a summary of the main steps.

• First step: recursive decomposition We first iteratively decompose the sum Sn
into a finite number of sums of relatively small increments and one sum of large
increments.

• Second step: the large incrementsWe show that the large increment sum converges
to zero almost surely using (S1).

• Final step: the small increments Using results from [15] we prove that each of
the small increments also converge to zero almost surely. For the proof one needs
to consider the uniformly bounded increments and slow growing increments. The
uniformly bounded increments are harder to treat because they don’t fit exactly
into the hypothesis of Theorem 2 in [15]. Hence we need a subtler control as stated
in Lemma A.1 whose proof is postponed to Appendix A.

Remarks 5.2 The convergence criterion of Theorem 2 in [15] is an extension of Theo-
rem 2 in [13]. The extension fits our framework exactly as it allows one to obtain a.s.
convergence of weighted sums of independent random variables that satisfy condition
(S2). Importantly, the sums are weighted by coefficients (an,k, k, n ∈ N) of a Toeplitz
summation matrix, just as in our setup. The idea of the proof in [13] is to perform a
truncation, to show equivalence of the truncated and the original sum, and finally to
prove a.s. convergence for the truncated sum.

5.2.2 First Step: Recursive Decomposition

We take δ from (S1) and γ from (S2) and fix K = K (δ, γ ) ∈ N such that

δK > 1, and 1 + K

K − 1
< 2 + γ. (5.8)

Now, we let N0:=N, and let

N0,s :=
{
j ∈ N0 : m j ≤ 1

}
, (5.9)

andN1:=N0 \N0,s . Assume that for some i ≥ 1 the setNi is given, ifNi is finite, then
we set N j ,N j,s = ∅ for all j > i , if Ni is infinite, let ki : N → Ni be an increasing
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map with ki (N) = Ni , with the notation kij = ki ( j), define the (i)-st small increments
by

Ni,s :={ kij ∈ N : mkij
< j i/K },

let ki,s : N → Ni,s be an increasing map with ki,s(N) = Ni,s and denote ki,sj =
ki,s( j). Now define the next level (large) increments Ni+1:=Ni \ Ni,s . We let the
cardinality of increments in Ni and Ni,s with indices less than n be denoted by

J (i; n) := #{ j ∈ Ni : j ≤ n } and J (i, s; n) := #{ j ∈ Ni,s : j ≤ n }.

We set Xk :=Xk(mk), ain, j :=
m
kij

Mn
, ai,sn, j =

m
ki,sj
Mn

, and κ = K 2 + 1. Since N =
⋃κ−1

i=0 Ni,s ∪ Nκ , we obtain

Sn =
κ∑

i=1

∑

j∈Ni,s

1{ j≤n}an, j Xki,sj
+

∑

j∈Nκ

1{ j≤n}an, j Xkκ
j

=
κ∑

i=1

J (i,s;n)∑

j=1

ai,sn, j Xki,sj

︸ ︷︷ ︸

+
J (κ;n)∑

j=1

aκ
j,n Xkκ

j

︸ ︷︷ ︸

=
κ∑

i=1

Si,sn + Sκ
n .

(5.10)

In what follows we show that

P
(
lim sup

n

∣∣Sκ
n

∣∣ = 0
) = 1, (5.11)

P
(
lim sup

n

∣∣∣Si,sn

∣∣∣ = 0
) = 1, for i ∈ {0, 1, . . . , κ}. (5.12)

5.2.3 Second Step: the Large Increments Sum

To prove (5.11) it is enough to show that for any ε > 0

P
(
lim sup

n

∣∣Sκ
n

∣∣ ≤ ε
) = 1. (5.13)

By (S1), and the fact that mkκ
j
≥ j K , it follows that there is C = C(ε) such that

P

(∣∣∣Xkκ
j

∣∣∣ > ε
)

≤ C

(mkκ
j
)δ

≤ C

jK δ
.
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Since K δ > 1, it follows that
∑∞

j=1 P(Xkκ
j
> ε) < ∞, and so, by the Borel–Cantelli

Lemma,

P

(
lim sup

j

∣∣∣Xkκ
j

∣∣∣ ≤ ε

)
= 1.

As Mn → ∞ and
∑J (κ,n)

j=1 mkκ
j
≤ Mn , we conclude that (5.13) holds.

5.2.4 Final Step: the Small Increment Sums

The proof of (5.12) will be split in two parts, first we prove it for i ≥ 1 and then we
treat the case i = 0. To ease notation, for fixed i ∈ N and any j, J ∈ N set

m̃ j :=mki,sj
, M̃J :=

J∑

j=1

m̃ j , ã j,J := m̃ j

M̃J
1 j≤J , and let S̃J =

J∑

j=1

ã j,J Xki,sj
.

Now note that for any n

Si,sn = M̃J (i,s;n)

Mn
S̃J (i,s;n).

As
M̃J (i,s;n)

Mn
≤ 1, it follows that lim supn |Si,sn | ≤ lim supJ |S̃J |. Therefore, it suffices

to show that

P

(
lim sup

J

∣∣∣S̃J
∣∣∣ = 0

)
= 1. (5.14)

Now note that, with the convention k0j := j , for i ≥ 1, we have that ki,sj = ki−1
j ′ with

j ′ ≥ j . This gives us the following upper and lower bound on mki,sj

j (i−1)/K ≤ j ′(i−1)/K ≤ mki−1
j ′

= mki,sj
≤, j i/K . (5.15)

Therefore, there are C, c > 0 for which

M̃J ≥ cJ 1+(i−1)/K , ã j,J ≤ C

J
K−1
K

. (5.16)

Now, as limJ ã j,J = 0,
∑

j ã j,J = 1, and conditions (5.16) and (S2) hold. By the

choice of K and (5.8), one can apply Theorem 2 in [15] with ν = K−1
K to obtain (5.14)

and therefore (5.12) for i ≥ 1. To conclude the proof of Theorem 2.2 it remains to
verify that S0,sn converges to 0 almost surely. This fact is given in Lemma A.1 in
Appendix A and its proof is an adaptation of Theorem 4 in [11]. ��
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5.3 Strong Law for the Gradual Sum: Proof of Theorem 2.3

5.3.1 Proof Description

As previously, we start with a summary of the main steps of the proof.

• First step: reduction to boundary terms In this step we reduce the problem o
convergence of the sum St from (2.3) to the study of the limit of the boundary
term.

• Second step: oscillation control of small increments In this step we define a notion
of “small increments” (mk+1 < αkMk) and show (5.17) for them. The notion of
“small increments” is defined in such a way that one can control the oscillations
using Borel–Cantelli argument on the estimates obtained from condition (S3). The
terms that do not fit into the notion of “small increments” are considered to be the
“large” ones.

• Final step: oscillation control of large increments In this step we show (5.17) for
the complement set, the “large increments”. The definition of small increments,
given by the choice ofαk in the second step, ensures that the “large increments” still
grow as a stretched exponential. The oscillation control condition (S3) does not
give good bounds for large increments. This requires us to proceed into two stages.
First, in a passage called pinning, we prove that the boundary terms converges to
zero along a subsequence. For this passage, we use the polynomial decay condition
(S1). Finally, in the passage called oscillations, we prove the values between the
subsequence also converge to zero using condition (S3).

5.3.2 First Step: Reduction to Boundary Terms

Recall the decomposition of St from (2.3). We note that St is a convex combination
of S�t and the boundary term X�t (t̄) with t̄ = t − M�t . By the proof of Theorem 2.2,
to prove Theorem 2.3, it remains to show that the boundary term vanishes, i.e.

P

(
lim
t

t̄

t
X�t (t̄) = 0

)
= 1. (5.17)

We divide the proof of (5.17) in two steps.

5.3.3 Second Step: The Small Increments

Let Vn = sup
{ s

(Mn+s)

∣∣Xn+1(s)
∣∣ : s ∈ [0,mn+1)

}
and note that

lim sup
t

t̄

t
X�t (t̄) = lim sup

n
Vn . (5.18)

Thanks to condition (S3), we can control the oscillations Vn for small increments that
satisfy a growth condition defined as follows. Fix a β > 1 and for which the condition
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in (S3) holds, fix a ∈ (β−1, 1), and for j ∈ N, let

α j = 1

ja
.

The first small increment is defined by

k′
1 := inf{k ∈ N : Mk+1 < (1 + α1)Mk},

and define recursively the j-th small increment by

k′
j+1:= inf{ k ∈ N : k > k′

j , Mk+1 < (1 + α j+1)Mk }.

If for some j, k′
j = ∞ this implies there are only finitely many small increments and

we do not need to worry about them in (5.18). If for all j, k′
j < ∞, we claim that

almost surely

lim sup
j

Vk′
j
= 0.

Indeed, as mk′
j+1 < α j Mk′

j
, by (S3), with r = 0, it follows that for any ε > 0 there is

Cε > 0 for which

P(Vk′
j
> ε) ≤ P

⎛

⎝ sup
s≤α j Mk′j

s|Xk′
j
(s)| > εMk′

j

⎞

⎠ ≤ Cεα
β
j .

Since α j = j−a with a > β−1, by the Borel–Cantelli lemma we obtain

P

(
lim sup

j
Vk′

j
≤ ε

)
= 1, (5.19)

and since ε > 0 is arbitrary, we conclude that

P

(
lim
j
Vk′

j
= 0

)
= 1. (5.20)

��

5.3.4 Final Step: The Large Increments

By (5.20) we can restrict our attention to { k∗
1 , k

∗
2 , . . . } = N\{ k′

1, k
′
2, . . . }. Note that

since α j = j−a ∈ (0, 1), with a ∈ (0, 1) there is some C > 0 for which

(1 + α j ) ≥ C exp(α j/2). (5.21)
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Therefore, for some ca > 0 the following growth condition holds

Mk∗
i

≥
i∏

j=1

(1 + α j )M1 ≥ C exp

⎛

⎝
i∑

j=1

α j

2

⎞

⎠M1 ≥ exp(cai
1−a)M1, for all i ∈ N.

(5.22)

The proof now proceeds in two steps, we first show that the boundary term t̄
t X�t (t̄)

converges to zero along a subsequence
{
ti, j , i, j ∈ N ∪ {0}}, what we call pinning,

and then based on this result we show that the full sequence converges to zero as we
bound its oscillations on the intervals [ti, j , ti, j+1].
PinningWe consider a subsequence that growth with rate

(
(1+αk), k ∈ N

)
. Consider

the set { k∗
1 , k

∗
2 , . . . }, let k∗

0 :=i(k∗
0) = 0 and define recursively for n ∈ N

i(k∗
n):= inf

⎧
⎨

⎩i > i(k∗
n−1) :

i∏

j=i(k∗
n−1)

(1 + α j )Mk∗
n

> Mk∗
n+1

⎫
⎬

⎭ .

We note that (5.21) and
∑

j α j = ∞ imply that i(k∗
n) < ∞ for all n. We define the

pinning sequence as follows: first let ti,0 := k∗
i and for j ∈ {1, . . . , i(k∗

i ) − i(k∗
i−1)}

set

ti, j :=
{

(1 + αi(k∗
i−1)+ j )ti, j−1 if j < i(k∗

i ) − i(k∗
i−1),

Mk∗
i +1 if j = i(k∗

i ) − i(k∗
i−1).

(5.23)

Now, by definition t̄ = t − M�t−1, with �t as in (2.2). By (5.21), it follows that for all
i, j ∈ N

t̄i, j = ti, j − Mk∗
i

= Mk∗
i

[ j∏

n=1

(1 + αi(k∗
i−1)+n) − 1

]

≥ Mk∗
i

⎡

⎣C exp

⎛

⎝
j∑

n=1

αi(k∗
i−1)+n/2

⎞

⎠ − 1

⎤

⎦ . (5.24)

By the polynomial decay in (S1) it follows that for any ε > 0 there is a C = C(ε) > 0
such that for any i, j ∈ N we have

P

(∣∣∣∣
t̄i, j
ti, j

Xk∗
i
(t̄i, j )

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣Xk∗
i
(t̄i, j )

∣∣∣ ≥ ε
)

≤ Cε
(
t̄i, j

)δ .
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By (5.24) and (5.22), the sum over i, j ∈ N of the above probability is finite and
therefore for any ε > 0

P

(
t̄i, j
ti, j

∣∣∣Xk∗
i
(t̄i, j )

∣∣∣ ≥ ε for infinitely many (i, j)

)
= 0. (5.25)

Since ε > 0 is arbitrary, it follows that

P

(
lim sup

i, j

t̄i, j
ti, j

∣∣∣Xk∗
i
(t̄i, j )

∣∣∣ = 0

)
= 1.

It remains to control the oscillations of the boundary term in the intervals [ti, j , ti, j+1].
Oscillations Now we use (S3) to compute the oscillations between the pinned values
of the boundary. Fix ε > 0 and consider the event �i0 defined by

�i0 :=
{
sup
j

∣∣∣∣
t̄i, j
ti, j

Xk∗
i

(
t̄k∗

i , j

)∣∣∣∣ ≤ ε, for i > i0

}
.

Note that by (5.25) it follows that

lim sup
i0

P(�i0) = 1. (5.26)

On �i0 , for t ∈ [ti, j , ti, j+1], and j ≥ 1

∣∣∣∣
t̄

t
Xk∗

i

(
t̄
) − t̄i, j

ti, j
Xk∗

i

(
t̄i, j

)∣∣∣∣

=
∣∣∣∣
1

t

[
t̄ Xk∗

i

(
t̄
) − t̄i, j Xk∗

i

(
t̄i, j

)] +
(
ti, j
t

− 1

)
t̄i, j
ti, j

Xk∗
i

(
t̄i, j

)∣∣∣∣

≤ 1

t

∣∣∣t̄ Xk∗
i

(
t̄
) − t̄i, j Xk∗

i

(
t̄i, j

)∣∣∣ + ε.

(5.27)

Note that if s := t − ti, j and t ≤ ti, j+1, then t̄ ≤ t̄i, j + s. Note also that from (5.23)

we have that
ti, j+1−ti, j

ti, j
≤ αi(k∗

i−1), j+1. By (5.27) and (S3), it follows that

P

[
sup

s≤ti, j+1−ti, j

∣∣∣∣
t̄i, j + s

ti, j + s
Xk∗

i
(t̄i, j + s) − t̄i, j

ti, j
Xk∗

i
(t̄i, j )

∣∣∣∣ > 2ε,�i0

]

≤ P

[
sup

s≤ti, j+1−ti, j

1

ti, j + s

∣∣∣(t̄i, j + s)Xk∗
i
(t̄i, j + s) − t̄i, j Xk∗

i
(t̄i, j )

∣∣∣ > ε

]

≤ Cε(ti, j+1 − ti, j )β

tβi, j
≤ αi(k∗

i−1)+ j+1Cε = 1
(
i(k∗

i−1) + j + 1
)aβ

Cε.
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Sincea ∈ (1/β, 1), the sumof the above terms over i ∈ N, j ∈ {1, . . . , i(k∗
i )−i(k∗

i−1)}
is finite, and therefore by (5.26)

P

(
lim sup

k
Vk ≤ ε

)
≥ lim sup

i0
P

(
lim sup

k
Vk ≤ ε,�i0

)
= lim sup

i0
P(�i0) = 1.

(5.28)

Since ε > 0 is arbitrary, from (5.18), (5.19) and (5.28) we conclude that (5.17) holds.
��
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A Control of Bounded Increments in Theorem 2.2

To prove the strong law for uniformly bounded increments in Theorem 2.2, we need
a different approach from the one used in Sect. 5.2.4. There we obtain from (5.15)
decay conditions on the coefficients in the sum of small terms, see (5.16). This allows
us to use Theorem 2 in [15]. The case for uniformly bounded increments is different
because we do not have a lower bound on the size of the increments and we do not
obtain the decay rate in (5.16). To assess this issue we will show the following lemma.

Lemma A.1 If X satisfies conditions (C), (S1), and (S2)and S0,sn = ∑n
j=1 1{m j≤1}an, j X j

equivalently, with the notation of (5.9) and (5.10), S0,sn = ∑J (0,s,n)
j=1 a0,sn, j Xk0,sj

then

P(lim sup
n

∣∣∣S0,sn

∣∣∣ = 0) = 1. (A.1)
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The proof of this lemma, given below, follows the ideas in Theorem 4 in [11] and
proceeds along the following steps.

• First step: relabelling and proof reduction In this step we simplify the notation
and argue that we may ignore the weight of all increments that are larger then 1.
We next consider a truncation of the terms in the sum and show that the proof will
require showing the equivalence of the truncated sum with the relabelled sum and
prove that the truncated sum converges to zero.

• Second step: equivalence of the truncated sum Here we truncate the k-th term by
the inverse of the relative weight up to k, Mk/mk and prove that the truncation
is only active for finitely many terms, which implies that the limit of the original
terms is the same as the limit of the truncated terms.

• Final step: convergenceof the truncated sum Weshow that the limit of theweighted
sum of truncated terms converge to zero almost surely.

A.1 First step: Relabelling and Proof Reduction

To deal with i = 0, the case of small increments defined in (5.9). If limn
∑n

i=1 m
0,s
n <

∞ it follows that S0,sn converges to 0. For this reason assume without loss of generality
that

lim
n

n∑

i=1

m0,0
n → ∞.

For a short notation, denotemk = m0,s
k , let Mn := ∑n

k=1 m
0,s
k and let Sn = ∑

an,k Xk

where, as before, an,k = mk
Mn

. We next consider the truncated versions of Xk

Yk := Xk1{|Xk |≤ Mk
mk

}.

We next define S̄n := ∑n
k=1 an,kYk to be the truncated sum. Finally, we reduce the

proof of Lemma A.1 to the following two statements:

P (Yk �= Xk i.o.) = 0, (A.2)

and

P

(
lim
n

S̄n = 0
)

= 1. (A.3)

The first statement, in (A.2), implies the equivalence of the limits of the original sum
and the truncated sum, i.e. it implies that

P
(
lim

∣∣Sn − S̄n
∣∣ = 0

) = 1.

The final statement, in (A.3) establishes the convergence of S̄n and gives the desired
result in (A.1).
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A.2 Second Step: Equivalence of the Truncated Sum

In this Section we prove (A.2). Let F∗(a) := P(|X∗| < a), define

N (x) :=
{
k : Mk

mk
≤ x

}
, (A.4)

and note that by the domination in (S2), we have that

∑

k

P (Yk �= Xk) ≤
∑

k

P

(
|Xk | ≥ Mk

mk

)
≤

∑

k

P

(∣∣X∗∣∣ ≥ Mk

mk

)

≤
∑

k

∫

x≥ Mk
mk

dF∗(x) =
∫

N (x) dF∗(x) = E
[
N (

∣∣X∗∣∣)
]
.

To obtain (A.2) it remains to prove that E
[
N (|X∗|)] < ∞. This step follows from

Lemma 2 of [11] which states that

lim sup
N (x)

x log x
≤ 2. (A.5)

By (A.5), it follows that N (x) ≤ Cx1+γ and by the first part of (S2), E
[
N (|X∗|)] <

∞. ��

A.3 Final Step: Convergence of Truncated Sum

In this Section we prove (A.3). Since limn E
[
S̄n

] = 0, to prove (A.3) it suffices to
show that

∑

k

m2
k

M2
k

Var(Yk) < ∞. (A.6)

As Mk
mk

→ ∞ there is C > 0 for which E
[
X2∗

] ≤ C
∫
|x |≤ Mk

mk

x2 dF∗(x) and so

E

[
Y 2
k

]
≤ E

[
X2∗

]
≤ C

∫

|x |≤ Mk
mk

x2 dF∗(x).

Therefore, the sum in (A.6) can be bounded by

C
∑

k

m2
k

M2
k

∫

|x |< Mk
mk

x2 dF∗(x) = C
∫

x2
∑

k : Mk
mk

≥|x |

m2
k

M2
k

dF∗(x).
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To complete the proof it remains to show that the right-hand side above is finite. This
follows from the following claims whose proofs are given right after:

∑

k : Mk
mk

≥|x |

m2
k

M2
k

≤ 2
∫

y≥|x |
N (y)

y3
dy, (A.7)

and
∫

x2
∫

y≥|x |
N (y)

y3
dy dF∗(x) < ∞. (A.8)

��
Proof of (A.8) By (A.5) there are C > 0 and γ ∈ (0, 1) such that N (x) ≤ Cx1+γ .
Therefore

∫
x2

∫

y≥|x |
N (y)

y3
dy dF∗(x) ≤

∫
x2

∫

y≥|x |
Cy1+γ

y3
dy dF∗(x)

=
∫

x2
∫

y≥|x |
C

y2−γ
dy dF∗(x) =

∫
x2

C

(1 − γ )x1−γ
dF∗(x)

= C

1 − γ
E

[∣∣X∗∣∣1+γ
]

< ∞.

��
Proof of (A.7) Observe that by the definition of N , see (A.4), and integration by parts

∑

k : |x |< Mk
mk

≤z

m2
k

M2
k

=
∫

|x |<y<z

dN (y)

y2

= N (z)

z2
− N (|x |)

x2
+ 2

∫

|x |<y<z

N (y)

y3
dy.

Furthermore, since N (z) ≤ N (y) for z ≤ y and 1
z2

= 2
∫ ∞
z

1
y3

dy it follows from
(A.8) that

N (z)

z2
≤ 2

∫ ∞

z

N (y)

y3
dy → 0, as z → ∞.

Therefore

∑

k : |x |< Mk
mk

m2
k

M2
k

= lim
z→∞

∑

k : |x |< Mk
mk

<z

m2
k

M2
k

≤ 2
∫

|x |<y

N (y)

y3
dy.

��
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