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Abstract

Zero-Shot Learning (ZSL) aims to generalise a pretrained classification model to unseen classes with the help of auxiliary semantic
information. Recent generative methods are based on the paradigm of synthesizing unseen visual data from class attributes. A
mapping is learnt from semantic attributes to visual features extracted by a pre-trained backbone such as ResNet101 by training a
generative adversarial network. Considering the domain-shift problem between pre-trained backbone and task ZSL dataset as well
as the information asymmetry problem between images and attributes, this manuscript suggests that the visual-semantic balance
should be learnt separately from the ZSL models. In particular, we propose a plug-and-play Attribute Representation Transforma-
tion (ART) framework to pre-process visual features with a contrastive regression module and an attribute place-holder module.
Our contrastive regression loss is a tailored design for visual-attribute transformation, which gains favorable properties from both
classification and regression losses. As for the attribute place-holder module, an end-to-end mapping loss function is introduced to
build the relationship between transformed features and semantic attributes. Experiments conducted on five popular benchmarks
manifest that the proposed ART framework can significantly benefit existing generative models in both ZSL and generalized ZSL
settings.
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1. Introduction

Traditional visual recognition task has made remarkable
progress with pretrained deep models on large-scale datasets.
However, most existing deep models struggle to generalise to
new classes while maintain the performance on training classes.
Zero-Shot Learning (ZSL) aims to match visual features with
auxiliary semantic information so as to achieve the generalisa-
tion via inference. Since the distributions of semantic attributes
are more consistent compared to those of visual features, most
of recent ZSL models adopt the generative paradigm, such
as conditional Generative Adversarial Networks (GANs) [1],
that first synthesizes unseen class visual features from man-
ually defined attributes [2, 3, 4] or discriminative latent at-
tributes [5, 6, 7] and then trains a unified supervised classifier
for both seen and unseen classes. Such a paradigm has shown
promising progress to overcome the problems caused by the
imbalance between seen and unseen classes.

Most of existing generative methods synthesize unseen class
features by learning a mapping from semantic attributes to vi-
sual features originally extracted by a pre-trained backbone.
Generally, the pre-trained backbone is ResNet101 [8] trained
on ImageNet1K. Nevertheless, the distribution of ImageNet1K
can be obviously different from the distribution of ZSL datasets.
For this reason, the information of extracted visual features is
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not exactly consistent with the information of data from specific
zero-shot learning datasets. Since the attributes are heavily de-
pendent on the specific dataset, it is difficult to build a good cor-
respondence between visual features and attributes if we utilize
the pre-trained visual features directly.

In addition, the visual features and attribute vectors always
face the information asymmetry problem. More specifically,
the attributes are difficult to describe all details of visual fea-
tures especially for those attributes embedded by sentence de-
scription. This causes that generative models are nothing more
than over-fitting representations of seen classes. In other words,
these models are difficult to generalize to unseen classes.

In order to verify the existence of the information asymmetry
problem, we design a simple experiment in Fig. 1. In particu-
lar, similar to [9] that utilizes the idea of attention, we train a
basic two-layer fully connected network which builds a map-
ping between input features and attributes. The first layer is
the attention layer activated by the ‘sigmoid’ function, and the
output will do dot multiplication with input features. The sec-
ond layer is an encoder that maps from features with attention
to attributes. We visualize the output of the attention layer in
Fig. 1, where one can find most dimensions of original features
are weakly related to attributes. This implies that the informa-
tion of original visual features is much richer than attributes.
This kind of information gap is a manifestation of information
asymmetry problem.

To tackle the information asymmetry and domain-shift prob-
lems, we believe it is beneficial to transform original visual fea-
tures to a new space where we can make a better alignment
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Figure 1: The illustration of Information Asymmetry problem. We suppose that only a few dimensions in visual features are related to semantic attributes. To verify
the assumption, we build a mapping from input visual features to attributes, where we utilize an attention layer activated by the ‘sigmoid’ function to capture the
dimensions that are strongly related to attributes. We visualize the average output of attention layer for each seen classes in the figure, where the black to white
represents the output values varied from 0 to 1. Obviously, transformed features are more closely related to attributes than original features.

between transformed visual features and provided semantic at-
tributes. In particular, we propose a new Attribute Represen-
tation Transformation (ART) paradigm that can effectively re-
duce the attribute irrelevant information while remain the re-
quired classification information as much as possible for both
seen and unseen visual features. The proposed ART framework
contains a contrastive regression module and an attribute place-
holder module. A variant form of supervised contrastive loss
which can strengthen the classification ability of transformed
features is adopted for the former, and an end-to-end mapping
loss is adopted for the latter to build the relationship between
transformed features and attributes. The similar experiment
as that in the Fig.1 left is conducted for transformed features.
From the right of Fig. 1, we find that most dimensions of trans-
formed features are closely related to attributes.

In summary, we make the following contributions:

• We suggest a two-stage process for future ZSL paradigm.
The visual-semantic balance is implemented in the first
pre-processing framework ART and prevent the impacts
caused by the two problems described above. ART is a
universal framework which can be adapted easily to most
of existing zero-shot learning methods.

• We propose a variant loss function of supervised con-
trastive loss which falls between classification and regres-
sion tasks to strengthen the classification ability of trans-
formed features for the first module of ART framework.

• We introduce an end-to-end mapping loss function which
considers both attribute prediction and classification tasks
to build the relationship between transformed features and
semantic attributes for the second module of ART frame-
work.

Extensive experiments on five static benchmarks (CUB,
AwA1, AwA2, SUN and FLO) as well as two acitivity recog-
nition datasets (UCF and HMDB) show that the proposed ap-
proach greatly improves the performance of our baseline gen-
erative model f-VAEGAN [10] under both the traditional ZSL
and generalized ZSL (GZSL) tasks.

2. Related Work

Zero-shot learning (ZSL) image classification is a challeng-
ing task that image samples from seen classes take part in
model training and ones from unseen classes are responsible
for model evaluation, where the seen and unseen classes are
disjoint. The main strategy for ZSL is to build up the relation-
ship between seen and unseen classes through intermediate se-
mantic attributes, which can be defined in different forms, such
as binary vector [2], text descriptions [3] and word2vectors [4].
In this section, we provide an overview of related works on the
ZSL problem.

2.1. Visual-Semantic Embedding Methods

A large number of methods address the ZSL problem by
learning an embedding/mapping between visual features and
semantic attributes so that features from unseen classes can
find their class prototypes by the mapping. The embedding
space can be roughly grouped into semantic embedding, visual
embedding and latent space embedding. Semantic embedding
methods learn the mapping from visual features to semantic at-
tributes [11, 12, 13, 14]. For instance, Socher et al. [15] utilize a
simple linear model to project images into the 50-dimensional
word space. To provide a better embedding on the semantic
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side, Bucher et al. [16] jointly optimize the attribute embed-
ding and the classification metric in a multi-objective frame-
work. In contrast to semantic embedding, visual embedding
learns a reverse projection to map semantic attributes back into
visual space so as to make the semantic representations close to
their corresponding visual features [17, 18, 19]. For example,
based on selecting a fixed number of samples from each class
across all training classes, SCILM [19] embeds the class se-
mantics into the visual space under the supervision of the class
visual prototype, and yields a general semantic-visual interac-
tion model. The aforementioned models force the projection
functions in the space of semantic modality or in the space of
visual modality. However, it is a challenging issue to learn an
explicit projection function between two spaces due to the dis-
tinctive properties of different modalities [20]. To tackle the
problem, a number of approaches [21, 22, 23, 24] discuss the
idea of embedding features and attributes into another interme-
diate space.

Despite promising in ZSL, some embedding based methods
[25, 2, 26, 18] give unsatisfactory performance in the general-
ized ZSL [27] setting due to over-fitting. In this manuscript,
we propose to transform original visual features in a new space
so that feature representations in the new space are closely re-
lated to attributes. To accomplish the goal, we build a mapping
from visual features to attributes and adopt an end-to-end cross
entropy loss.

2.2. Generative Methods

To mitigate the data imbalance problem between seen and
unseen classes, Generative Adversarial Networks (GANs) [21,
28, 29] have been employed to synthesize features of un-
seen classes. As such, the ZSL problem can be transformed
to a traditional classification task. The first attempt is f-
CLSWGAN [30] that uses a conditional Wasserstein-GAN [29,
1] to synthesize features of unseen classes based on seman-
tic attributes. Since then, generative methods become more
and more pervasive in zero-shot learning. For example, Lis-
GAN [31] captures several soul samples from different views
of an object and guides synthesized samples close to at least
one soul sample. Felix et al. [32] map synthesized samples
back to semantic attributes. CE-GZSL [33] tries to combine
the generative methods and semantic embedding methods to-
gether. Noting that the instability of the training of GAN, some
approaches such as [34, 35] propose to use Variational Autoen-
coders (VAE) [36] for the ZSL problem. Apart from GANs
and VAEs, a large number of studies employ various genera-
tive models such as compositional learning [37, 38] and autoen-
coders [39, 40] to improve GZSL performance. For instance, Ji
et al. [40] recently propose a simple yet effective meta-learning-
based unseen prototype learning framework, which learns vi-
sual prototypes from the corresponding class-level semantic
prototypes with an autoencoder framework. More types of
methods can be found in a recent ZSL review [20].

Although these methods perform better than embedding
based methods in GZSL, most of them synthesize original
visual features directly, ignoring the problem of information

asymmetry, i.e., visual features contain more details than at-
tributes. As a result, there is a gap between features synthe-
sized by utilizing attributes and the real features. We propose a
feature transformation model to mitigate the gap.

Recently, there are some generative methods that have paid
attention to optimize visual features such as [41] and [33].
However, it should be noted that these methods still synthe-
size original features and deal with features after synthesizing.
The proposed pre-processing method can reduce the difficulty
of building relationship between visual features and semantic
attributes. As a result, we synthesize transformed features di-
rectly. Besides the performance improvement, this kind of two-
stage framework has two important advantages. On the one
hand, the proposed method does not change the cost of gener-
ative methods and the cost of pre-processing method is much
less than generative methods. On the other hand, the proposed
ART method is an universal framework that can be combined
with most of existing generative zero-shot learning methods.

2.3. Zero-shot Event Recognition Methods

Although zero-shot image classification has been extensively
studied, zero-shot learning for temporal events such as activity
and gesture recognition in videos has gained much less atten-
tion [42]. As in ZSL, zero-shot event recognition methods can
also be roughly grouped into two categories: embedding-based
and generative-based methods. Nevertheless, being different
from that embedding and generative methods are running neck
and neck in ZSL, embedding methods absolutely dominate the
field of zero-shot event recognition. The common practice for
the embedding methods is to map the visual embedding to a
semantic embedding space [42, 43, 44], or project visual and
semantic embeddings into a common space [45, 46]. Recently,
a few methods attempt to utilize GANs to synthesize unseen
class video features. For example, Zhang and Peng [47] syn-
thesize video features of unseen categories with a GAN model
to build seen-to-unseen correlation for action recognition. Man-
dal et al. [48] adopt the conditional Wasserstein GAN with ad-
ditional loss terms to synthesize unseen features for training an
out-of-distribution detector.

While the focus of this manuscript is to increase zero-shot
image classification performance, we further evaluate the pro-
posed model on two activity datasets, namely, UCF101 [49] and
HMDB51 [50], to demonstrate the versatility of our model.

3. Methodology

In this section, we first explain the whole idea of two-stage
framework. And then, we describe two modules of proposed
pre-processing method ART respectively. Finally, for easy un-
derstanding, we give the overall algorithm process.

3.1. Two-Stage Balancing Framework

The basic assumption of ZSL is that the inference can go
across seen and unseen classes according to their semantic re-
lationship. Thus, it is significant to build up the relationship
between visual features X = {xi, i = 1, 2, · · · ,N} and semantic
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Figure 2: The illustration of ART. The whole transformation framework in-
cludes two modules: contrastive regression module E which is shown as “Em-
bedding” and attribute place-holder module M which is shown as “Mapping”.
Where the former embeds original visual features to new ones, and the latter
maps the transformed features to semantic attributes. We split the whole zero-
shot learning task into two stages. At the first stage, we train the transformation
model and get the transformed visual features t . At the second stage, we syn-
thesize the transformed features instead of original visual features.

attributesA = {ai, i = 1, 2, · · · ,N}. Here xi ∈ RD, ai ∈ RK , and
N denotes the number of samples. Note that samples from the
same class share the same attribute vector.

The generative ZSL approaches assume that unseen visual
features can be synthesized by the semantic attributes of an un-
seen class. However, due to the information asymmetry and
domain-shift problems described in the introduction section,
there is some gap between synthesized visual features by gen-
erative methods or mapped features by the methods based on
mapping which map from attributes to visual features and real
features. We propose a two-stage zero-shot learning framework
to alleviate the problems. The illustration of this kind of two-
stage framework is shown in the Fig. 2. At the first stage, we
propose a pre-processing method ART that transforms original
features to new ones. Corresponding to the domain-shift and in-
formation asymmetry problems, the method includes two mod-
ules, i.e., the contrastive regression module E and the attribute
place-holder module M. At the second stage, we directly utilize
the transformed features as input features for existing zero-shot
learning methods. In the experiment section, we consider f-
VAEGAN[10] as our baseline generative method and we do not
do any changes except input visual features.

3.2. Contrastive Regression E

The first problem that the data distribution between the
datasets for feature pre-training and specific zero-shot learning

datasets is different, is similar to model fine-tuning problem in
the domain of transfer learning. In the domain of transfer learn-
ing, it is common to utilize the pre-trained backbone to train a
specific task on the new dataset. Despite many limitations, ZSL
is still a classification task. As a result, similar to the general
practice of fine-tuning the models, we can alleviate the prob-
lems caused by the difference of data distribution by enhancing
the classification ability of transformed new features.

The contrastive regression module E is designed for above
purpose. In practice, we design E as a simple single fully con-
nected layer to avoid over-fitting. Mathematically, t = E(x),
where x denotes the original features extracted by the pre-
trained backbone. Making transformed features more discrim-
inative is a classification task while constraints on features are
generally regression tasks. Motivated by that, we use the L2
constraint to modify the contrastive loss function, and obtain a
new variant as follows:

Le(t, y) = − log
exp(−∥t − t+y ∥2)

exp(−∥t − t+y ∥2) +
∑c

i,y exp(−∥t − t−i ∥2)
, (1)

where y is the corresponding label of the current sample, and c
is the number of classes. For every sample t, we get one sam-
ple from every seen class and we represent the sample from
the same class as t+ and others as t−. We can both effectively
reduce intra-class distances as well as increase inter-class dis-
tances by optimizing the loss function Le. This loss function
falls between regression loss and classification loss. As such,
the classification ability of transformed features can be favor-
ably enhanced.

3.3. Attributes Place-holder M

Neural networks can extract related information layer by
layer. If we build a mapping between visual features and se-
mantic attributes through a fully connected neural network with
several layers, the output of each layer will become more and
more abstract and the information will become closer and closer
to semantic attributes.

Motivated by this principle, we design the attribute place-
holder module M that maps the transformed features to at-
tributes to address the information asymmetry problem. The
loss function of M is given as,

Lm(t, y) = − log
exp(s(M(t), ay))∑c
i exp(s(M(t), ai))

. (2)

Similarly, y is the corresponding label of current sample t, ay is
the attribute vector of label y, and s means the similarity func-
tion which measures the similarity of M(t) and a. In this paper,
we define s as standard cosine similarity:

s(p, q) =
pT q

∥p∥2∥q∥2
. (3)

The loss function is the variant form of cross entropy and we
replace the inner product by the function s. The final loss func-
tion falls between attribute prediction and classification tasks.

During the training stage, the module E and the module M
are jointly trained as a whole. As a result, Lm is an end-to-end
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Algorithm 1 ART and Generative Zero-Shot Learning
Input: Seen features Xs, attributes As and labels Ys; Unseen

attributes Au; Training epoch N1 for ART and N2 for gen-
erative ZSL methods; The number of synthesized samples
n.

Output: Visual-to-category classifier C.
1: Initialize contrastive regression module E and normalizing

attribute place-holder module M;
2: for epoch = 1 to N1 do
3: Sample a batch { x, a, y, x+, x− };
4: Compute t = E(x) and a′ = M(t);
5: ComputeLe andLm and update the parameters of M and

E;
6: end for
7: Compute transformed features Ts = E(Xs);
8: Initialize ZSL generative models including the generator G

and the discriminator D;
9: for epoch = 1 to N2 do

10: Sample a batch {t, a} from {Ts, As}, a batch z from Gaus-
sian distribution N(0, 1);

11: Compute t′ = G(a, z), D(t, a) and D(t′, a);
12: Compute loss function of generative methods and update

the parameters of G and D;
13: end for
14: Synthesized unseen features T ′u by the generator G and un-

seen attributes Au.
15: Train the final classifier C with both T ′u and Ts.

classification loss function. After training process, we output
the intermediate results t = E(x) as transformed features which
are more abstract and closer to semantic attributes than original
features. In addition, although data from unseen classes can not
take part in the training process, we compare the output M(t)
with attributes from all classes. This kind of place-holder idea
constrains predicted attributes to be far from the attributes from
unseen classes. We hope to avoid introducing more over-fitting
through the place-holder idea.

3.4. The Whole Classification Process
By combining both E and M, we obtain the total loss of ART

as follows.
Lart = Lm + ηLe, (4)

where η is a hyper-parameter. For easy understanding, the com-
pleted process is listed in Algorithm 1. We train ART at the first
stage and extract transformed features. And then, we train the
generative method f-VAEGAN to synthesize transformed fea-
tures directly at the second stage. Finally, the GZSL classifier
is trained with synthesized features of unseen classes and real
features of seen classes.

4. Experiments

4.1. Datasets and Experimental Settings
Datasets. We validate our method on five widely-used
datasets for zero-shot learning, namely, Animal with At-
tributes1 (AwA1) [2], Animal with Attributes2 (AwA2) [27],

Table 1: Details for benchmark datasets.
Dataset AwA1 AwA2 CUB SUN FLO

# Images 30,475 37,322 11,788 14,340 8,189
# Attribute Dims. 85 85 312/1024 102 1024
# Seen classes 40 40 150 645 82
# Unseen classes 10 10 50 72 20

Caltech-UCSD-Birds-200-2011 (CUB) [51], Oxford Flowers
(FLO) [52] and SUN attributes (SUN) [53].

AwA1 contains 30,475 images and AwA2 contains 37,322
images. Both of them share the same 50 categories and each
category is annotated with 85 attributes. We use the provided
attributes as the class-level semantic descriptors.

CUB is an extended version of the CUB-200 dataset, which
includes 11,788 images of 200 bird species. There are two
kinds of semantic descriptors for CUB. Specifically, the dataset
itself contains 312 dimensional binary attributes. The another
are 1,024 dimensional class embeddings generated from textual
descriptions [54].

FLO consists of 8,189 images which are derived from 102
flowers categories. We adopt the same 1,024 dimensional se-
mantic descriptions which are similar to the 1,024 dimensional
semantic descriptions in CUB.

SUN is a large-scale scene attribute dataset, which includes
717 categories and 14,340 images in total. Each category has
102 dimensional semantic attributes.

We divide AwA1, AwA2, CUB, SUN into seen classes and
unseen classes according to the benchmark setting of [27], and
divide FLO according to [54]. Besides, we use the default at-
tributes included in the datasets as our semantic attributes. To
be clear, details about these five datasets are reported in Tab. 1.
Experimental Settings. For a fair comparison, we adopt the
general settings in zero-shot learning introduced by [27]. The
input visual features are extracted by the pre-trained network
ResNet-101. We evaluate the proposed method under two sce-
narios. As for the conventional ZSL, we only evaluate the per-
class Top-1 accuracy on unseen classes. With regard to the
GZSL, we evaluate the Top-1 accuracy on both seen and un-
seen classes, which are denoted as S and U, respectively. The
performance of GZSL is measured by their harmonic mean:

H =
2 ∗ S ∗ U

S + U
. (5)

Implementation Details. We implement ART with PyTorch.
There are mainly two hyper-parameters in ART, namely, the di-
mensions of transformed features and η in Equation 4. In the
experiments, we transform original visual features with 2,048
dimensions to new features with 1,024 dimensions for all five
datasets and we activate the output of the module E by the
“tanh” function. We set η = 0.1 for CUB and FLO and η = 0.01
for AwA1, AwA2 and SUN.

We adopt the same settings as [10] to implement f-VAEGAN.
It is worth noting that, due to the change of synthesized visual
features, the number of synthesized samples is different from
original settings. Briefly, we synthesize 5,000 samples for each
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Table 2: The effectiveness of the proposed two-stage framework. We com-
bine the ART architecture with different zero-shot learning methods. ”MBM-
S” and ”MBM-V” are simple mapping based methods. ”MBM-S” optimizes
L = max(0,∆−aT E(x)+ (a′)T E(x)) and ”MBM-V” optimizes L = max(0,∆+
∥E(a) − x∥2 − ∥E(a′) − x∥2) where a′ means the attribute vector from another
random class which are different from current sample belonging to. The exper-
iments are conducted on CUB.

Settings Unseen Seen H
MBM-S 6.1 46.0 10.7
MBM-S + ART 5.8 28.7 9.7
MBM-V 12.6 42.0 19.3
MBM-V + ART 18.3 56.1 27.6
f-CLSWGAN[30] 43.3 59.9 50.3
f-CLSWGAN + ART 53.7 61.1 57.2
f-VAEGAN[10] 46.9 59.1 52.3
f-VAEGAN + ART 55.4 62.3 58.6

Table 3: The influence of different parts of ART to final GZSL evaluation re-
sults. The experiments are based on CUB.

Le Lm Unseen Seen H
□ □ 46.9 59.1 52.3
§ □ 54.8 61.0 57.8
□ § 50.7 57.7 54.0
§ § 55.4 62.3 58.6

class for AwA1 and AwA2, 300 samples for CUB, 100 samples
for SUN and 2,000 samples for FLO.

For training details, the settings are same on all five datasets.
we use “Adam” as our optimizer with learning rate 0.0001 and
beta1 0.5. The batch size is set as 64. These settings are suitable
for both ART and f-VAEGAN in our experiments.

4.2. Ablation Study

The Impacts of Our Two-Stage Framework. In Tab. 2, we
combine proposed ART with different zero-shot learning meth-
ods including two mapping based methods MBM-S and MBM-
V, as well as two generative methods f-CLSWGAN and f-
VAEGAN. According to the table, one can find that after com-
bining with ART framework, the performance of MBM-S re-
duces a little and the performance of the other three methods
improve obviously. These results show that proposed ART
framework is effective to those methods which map from at-
tributes to visual features. However, ART method may lead to
a little more serious over-fitting problem for those methods that
perform comparisons in attribute space. In addition, this table
confirms that the proposed ART method is an universal frame-
work and can be adapted to different methods.
The Impacts of Two Modules. Our ART consists of two mod-
ules E and M with their loss functionLe andLm. We setLe = 0
and Lm = 0 in sequence to observe the influence of different
parts. The results are shown in the Tab. 3.
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In Tab. 3, we reproduce the experiment of f-VAEGAN firstly.
And then, we introduce Lm and Le to the baseline respectively.
From Tab. 3, we find that Le plays a more important role in
learning better transformed features and the performance can be
improved from 52.3% to 57.8%. Besides, although Lm can not
improve the performance as much asLe, it is complementary to
Le and improves the harmonic mean from 57.8% to 58.3%. The
result ofLe may illustrate that requiring transformed features to
be adapted to the distribution of specific datasets is more impor-
tant to improve the performance of zero-shot learning task. Fur-
thermore, the result of Lm verifies the existence of information
asymmetry problem to a certain extent because enhancing the
relationship between transformed features and attributes indeed
works to further improve the performance.
The Influence of Different Forms of Le and Lm. Both Le

and Lm are variants of cross entropy loss. We utilize L2 norm
to replace inner product for Le because the contrastive regres-
sion module falls between classification and regression tasks.
Similarly, we utilize cosine similarity to replace inner product
for Lm. So in the Fig.3, we verify the performance of different
similarity metrics for these two loss function. It is worth noting
that, for ”Latent inner product” and ”Latent cosine similarity”,
we add two extra fully connected layer to embed transformed
visual features or predicted attributes to latent vectors and cal-
culate the similarity with latent vectors. Additionally, we also
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Figure 6: The experimental results by varying the number of synthesized examples for each class. We denote the mean accuracy of unseen classes, the mean
accuracy of seen classes, and the harmonic mean in blue, red, and orange, respectively. As shown, the harmonic mean accuracy is relatively stable on all evaluated
datasets.

test two classical implement forms ”Triplet Loss” and ”MSE”
for these two modules.

According to the Fig.3, we find that the performance of L2
norm in the equation (1) is much better than other similarity
metrics which verifies that contrastive regression module in-
deed falls between classification and regression tasks as well
as the effectiveness of Le. Besides, the experimental results
for Lm verify that cosine similarity is better choice for attribute
comparison in the zero-shot learning problem.

4.3. The Choices of Hyper-Parameters

We study the impacts of hyper-parameters to ART in this sec-
tion. These include the trade-off scalar η in Eq. (4), the number
of dimensions of transformed features, the number of training
epochs and the number of synthesized samples for each class.
The impact of η. It is not our key point to find the best hyper-
parameters for the ART framework. As a result, we simply
try four orders of magnitude for η. To be specific, we set η ∈
{0.01, 0.1, 1.0, 10} in the experiment. According to Fig. 4 left,
ART is stable enough to η. In this paper, we finally choose
η = 0.1 for five datasets.
The number of dimensions of Transformed Features. We
embed the original visual features to transformed features with
a number of different dimensions including 512, 1,024, 1,536
and 2,048. The experimental results are illustrated in Fig. 4
right. From the figure, we can find that the number of dimen-
sions does not effect the performance too much. Since 1,024
dimensions gives slightly better performance compared to the
other three dimensions, we therefore set transformed features
be 1,024 dimensions for all datasets.
The Number of Training Epochs. The ART framework may
likely lead to over-fitting to zero-shot learning since we can
only utilize the samples from seen classes during its training
process. Therefore, it is necessary to explore the stability of
ART training. We study the performance curves with increased

the number of training epochs and the experimental results are
shown in Fig. 5. From the figure, we can find that although there
are some fluctuations in the mean accuracy of seen classes and
unseen classes, the harmonic average H remains relatively sta-
ble along with the increase of training epochs. This illustrates
that the ART framework does not necessarily introduce over-
fitting to the feature generation model in practice.
The Number of Synthesized Features for Each Class. In or-
der to increase the diversity of synthesized unseen features, we
may need to synthesize more samples than our baseline. So we
further explore the impact of the number of synthesized features
for each class to recognition performance. The experimental
results are shown in the Fig. 6. As shown, the harmonic mean
accuracy is relatively stable in a wide range of the number of
synthesized features. We finally synthesize 5,000 samples for
each class of AwA1 and AwA2, 300 samples for each class of
CUB, 100 samples for each class of SUN and 2,000 samples for
each class of FLO.

4.4. Effectiveness of Our Approach

The Recognition Accuracy under Different Data Imbal-
ances. We examine the effect of the imbalance of the number
of seen classes and unseen classes in Fig. 7 from two perspec-
tives under the GZSL setting on the CUB dataset. In particular,
we first fix the training seen classes, and explore the recogni-
tion performance under the varied number of unseen classes.
During this process, we compute the average cosine similar-
ities among unseen classes, and remove one class from test-
ing if it gets the smallest average cosine similarity with other
unseen classes. The corresponding experimental results of the
baseline method f-VAEGAN and our two stage method ART+f-
VAEGAN are shown in the rows of Fig. 7. As shown, both
f-VAEGAN and ART+f-VAEGAN have steadily performance
improvement along with the reduced number of unseen classes.
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(a) f-VAEGAN (b) ART+f-VAEGAN

Figure 7: The effect of the imbalance of the number of seen classes and unseen classes on the CUB dataset.

Figure 8: The experimental results of ART+f-VAEGAN and f-VAEGAN in a
sequential task on the CUB dataset. Note that the zero value at x-axis means
we use 1 observation of 1 class for training.

Besides, since ART can better utilize attributes to synthesize vi-
sual features, it is always effective to increase the performance
of f-VAEGAN.

Second, we keep the unseen classes unchanged, and vary the
number of seen classes in the same way. The corresponding
results are listed in the columns of Fig. 7. As shown, given
the same unseen classes, the performance gap among different
number of seen classes is usually not large. This illustrates that
generative models are robust to the imbalance of the number of
seen classes and unseen classes. In this case, ART also con-
sistently improves the baseline f-VAEGAN. This again demon-
strates the effectiveness of our method.
Experimental Results in the Form of Sequential Learning.
By gradually adding the number of samples, we evaluate the
performance of recognition systems in a sequential task on the
CUB dataset. Specifically, we assume that 1 observation of 1
class was given only at the beginning, and use that for training.
Then, we sequentially add another one, and so on and so for (In
the implementation, considering that the number of samples for
different classes is not necessarily the same, we add a fixed por-
tion of samples at each time to perform sequential learning). As
such, we obtain the performance curves along with percentage

Figure 9: Within-Category Experiments on the CUB dataset. We combine a
number of unseen samples varied from 5 to 35 per class with the original train-
ing samples to train the classification model.

of samples. During the sequential learning process, we keep the
testing set unchanged.

Fig. 8 gives the recognition accuracy in terms of harmonic
mean under the GZSL setting. As illustrated, the evaluated sys-
tems can make effective recognition when about 8% training
samples involved in the sequential training. Besides, the per-
formance curves become relatively stable when the percentage
of training samples is greater than 50%. In this sequential task,
ART+f-VAEGAN exhibits superior performance the baseline f-
VAEGAN, and the improvement gain is large than 3% in most
cases. This shows ART favourably reduces the negative effects
of domain-shift and information asymmetry.
Within-Category Experiments. We also examine the effec-
tiveness of ART through conducting within-category experi-
ments. In particular, we evaluate our method to recognize cat-
egories via attributes. In other words, we assume that samples
present in training and test partitions belong to both seen and
unseen classes. To the end, we put a small proportion of sam-
ples from unseen classes into the training set, and convert the
ZSL problem into an imbalanced classification problem. We
compare the mean accuracy of all classes of ART+f-VAEGAN
and f-VAEGAN. Besides, we implement a simple two-layer
MLP called ATTR-CLS, which maps visual features to seman-
tic attributes and considers the most similar attributes as the
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(a) f-VAEGAN (b) ART+f-VAEGAN

Figure 10: The experimental results in terms of ROC curves on the AWA1 dataset. Note that FPR is short for false positive rate, and TPR denotes true positive rate.
In this figure, each color corresponds to a test class.

(a) f-VAEGAN (b) ART+f-VAEGAN

Figure 11: The experimental results in terms of F1-score on the AWA1 dataset. Note that each color corresponds to a test class.

Figure 12: The experimental results in terms of AUC on the AWA1 dataset.

corresponding class label.
We carry out the experiment on the CUB dataset. We ran-

domly select 60 training samples for each seen class, and com-
bine them with a small number of samples from unseen classes
to jointly train the classification model. In the test stage, we
evaluate the performance with samples not involved in the train-

ing process. The experimental results are shown in Fig. 9. As
shown, the proposed ART strategy is also beneficial to recogni-
tion accuracy. Since the number of seen samples is larger than
that of unseen samples, both the generative methods ART+f-
VAEGAN and f-VAEGAN significantly outperform the embed-
ding method ATTR-CLS. This explains that generative methods
can effectively reduce the class imbalance problem by synthe-
sizing unseen examples.

Experimental Results under More Evaluation Metrics. In
order to extensively show the effectiveness of ART, we assess
performance with more metrics, namely, F1-score, ROC curves
and area under ROC (AUC). In this experiment, given a class,
we set samples in this class be true, and samples not in this
class be false. Based on this protocol, we train the binary clas-
sification models for each class in the dataset, where we utilize
original visual features for seen classes and synthesized fea-
tures for unseen classes. We conduct the experiment on the
AWA1 dataset as the number of classes for this dataset is much
smaller than that for CUB, SUN and FLO. In addition, for a fair

9



Table 4: Score comparison on GZSL. U means the average top-1 accuracy of unseen classes, S means the average top-1 accuracy of seen classes, and H is the
harmonic mean of U and S. We consider ART is an effective method to improve visual feature quality, and combine it with the previous generative method f-
VAEGAN. The prefix ”∗” means that the attributes embedded by textual descriptions are adopted on CUB. The prefix ”†” means the fine-tuned backbone is utilized
to improve performance. We mark the best results with the bold fonts.

Method
CUB FLO SUN AwA2 AwA1

U S H U S H U S H U S H U S H
f-CLSWGAN [30] 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4 - - - 57.9 61.4 59.6
Cycle-WGAN [32] 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 - - - 59.6 63.4 59.8

LisGAN [31] 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2 - - - 52.6 76.3 62.3
LsrGAN [55] 48.1 59.1 53.0 - - - 44.8 37.7 40.9 - - - 54.6 74.6 63.0

f-VAEGAN [10] 48.4 60.1 53.6 56.8 74.9 64.6 45.1 38.0 41.3 57.6 70.6 63.5 - - -
RFF(softmax) [56] 52.6 56.6 54.6 65.2 78.2 71.1 45.7 38.6 41.9 - - - 59.8 75.1 66.5
TF-VAEGAN [41] 52.8 64.7 58.1 62.5 84.1 71.7 45.6 40.7 43.0 59.8 75.1 66.6 - - -
∗ CE-GZSL [33] 63.9 66.8 65.3 69.0 78.7 73.5 48.8 38.6 43.1 63.1 78.6 70.0 65.3 73.4 69.1

Our ART+f-VAEGAN 55.4 62.3 58.6 63.9 87.0 73.7 48.6 41.1 44.6 61.8 79.1 69.4 65.2 76.2 70.2
∗ Our ART+f-VAEGAN 68.4 64.8 66.5 - - - - - - - - - - - -
† f-VAEGAN [10] 63.2 75.6 68.9 63.3 92.4 75.1 50.1 37.8 43.1 57.1 76.1 65.2 - - -
† TF-VAEGAN [41] 63.8 79.3 70.7 69.5 92.5 79.4 41.8 51.9 46.3 55.5 83.6 66.7 - - -

† Our ART+f-VAEGAN 66.6 73.7 70.0 70.1 92.6 80.1 52.4 42.9 47.2 63.0 77.9 69.7 - - -

comparison, we save the trained generative model, and only op-
timize the classification models.

Fig. 10 shows the receiver operating characteristic (ROC)
curves of the 50 classes for the baseline f-VAEGAN and our
model ART+f-VAEGAN. As shown, incorporating ART into f-
VAEGAN achieves superior ROC when compared to the origi-
nal baseline model. To be clear, we plot area-under of the ROC
curve (AUC) for all 50 categories in Fig. 12. The F1 score
curves with different classification thresholds are depicted in
Fig. 11. As demonstrated, ART gives F1-score boost on this
classification task for most classes.

4.5. Comparison with State-of-the-arts

In this section, we report our final results and compare with
other works under the settings of ZSL and GZSL respectively.
To make an extensive evaluation, except for the most common
settings, we also add experimental results with attributes em-
bedded by textual descriptions on CUB and the experiments
with the fine-tuned backbone proposed in [41] on four datasets.
The GZSL Results. We compare f-VAEGAN combined with
our ART framework with recent generative methods in Tab. 4.
From the table, one can find that our ART framework improves
the performance of f-VAEGAN significantly and achieves the
state-of-the-art results on CUB, FLO, SUN and AwA1 four
datasets, and slightly falls behind the best competitor CE-
GZSL [33] on AWA2. It can be seen that the attributes embed-
ded by textual descriptions perform much better than attributes
formulated by experts. With textural descriptions, we outper-
forms CE-GSZL by about 1.2% in harmonic mean on CUB.

Both f-VAEGAN [10] and TF-VAEGAN [41] achieve per-
formance improvements through adopting the fine-tuned back-
bone. The phenomenon verifies the existence of the first prob-
lem that we proposed in introduction section. As fine-tuning
can also adapt the backbone to specific zero-shot learning

Table 5: Score comparisons on ZSL. We calculate the average top-1 accuracy
of unseen classes. The prefix ”∗” means that the attributes embedded by textual
descriptions are adopted on CUB. The prefix ”†” means the fine-tuned back-
bone is utilized to improve performance. We mark the best results with the
bold fonts.

Method CUB FLO SUN AwA2 AwA1
f-CLSWGAN [30] 57.3 67.2 60.8 - 68.2
Cycle-WGAN [32] 58.6 70.3 59.9 - 66.8

LisGAN [31] 58.8 69.7 61.7 - 70.6
LsrGAN [55] 60.3 - 62.5 - 66.4

f-VAEGAN [10] 61.0 67.7 64.7 71.1 -
TF-VAEGAN [41] 64.9 70.8 66.0 72.2 -
∗ CE-GZSL [33] 77.5 70.6 63.3 70.4 71.0

Our ART+f-VAEGAN 65.1 71.1 64.8 70.1 72.4
∗ Our ART+f-VAEGAN 77.7 - - - -
† f-VAEGAN [10] 72.9 70.4 65.6 70.3 -
† TF-VAEGAN [41] 74.3 74.7 66.7 73.4 -

† Our ART+f-VAEGAN 73.1 75.1 66.3 74.5 -

datasets which has the similar function as our ART framework,
so in this case, we change the lossLe to the classical triplet loss
for the purpose of avoiding introducing more over-fitting prob-
lem. By utilizing the fine-tuned backbone directly, we achieve
the best performance on several ZSL datasets. The improve-
ment of performance compared to f-VAEGAN can further im-
plies the existence of information asymmetry problem.
The ZSL Results. Although the introduced ART framework
is primarily designed to improve the results of GZSL, it does
also work under the ZSL setting. According to Tab. 5, our ART
framework achieves the state-of-the-art results on CUB, FLO
and AwA1 datasets. Similar to the results of GZSL, attributes
embedded by textual descriptions are also better than the ones
formulated by experts on CUB. Besides, after fine-tuning the
backbone, our method is still better than the baseline method
f-VAEGAN and overall is similar to TF-VAEGAN.
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Table 6: Score comparison on ZSL and GZSL for action recognition. We mark
the best results with the bold fonts.

Method HMDB51 UCF101
ZSL GZSL ZSL GZSL

GGM [57] 20.7 20.1 20.3 17.5
f-CLSWGAN [30] 29.1 32.7 37.5 44.4

CEWGAN [48] 30.2 36.1 38.3 49.4
f-VAEGAN [10] 31.1 35.6 38.2 47.2

ZSVD [44] - 23.2 - 49.7
TF-VAEGAN [41] 33.0 37.6 41.0 50.9

JSSE [42] - 25.7 - 51.7
ART+ f-VAEGAN 32.2 38.4 40.7 51.8

5. Zero-Shot Action Recognition

We finally evaluate our ART model for zero-shot action
recognition under ZSL and GZSL settings. As suggested by
CEWGAN [48], we validate our method with I3D (inflated 3D)
features. The appearance and flow I3D features are respectively
extracted from the pre-trained RGB and Flow I3D networks.
We concatenate appearance and flow features to obtain 8,192-d
video features. As done in previous works [48, 41], we utilize
an out-of-distribution classifier at the classification stage. With
respect to semantic descriptions, we use semantic embeddings
of size 300 generated by a skip-gram model using action class
names as input for HMDB51, and use the class-embedding
in form of manually-annotated class attributes of size 115 for
UCF101. In regard to the choices of hyper-parameters, differ-
ent from configs of static datasets, we use ReLU as the activate
function instead of tanh and adjust the learning rate of ART to
1e-5. Besides, in consideration that 8,192-d features are much
larger than 2,048-d features of static images, we therefore set
transformed features be 2,048 dimensions for both datasets.

We give top-1 comparison results of our method against pre-
vious approaches in Tab. 6. On HMDB51, by leveraging the
ART ingredient, the baseline f-VAEGAN improves the classifi-
cation score from 31.1% to 32.2% for ZSL, and from 35.6% to
38.4% for GZSL. On UCF101, ART provides 2.5% improve-
ment for ZSL and 4.6% for GZSL. Importantly, we can see our
approach outperforms all the existing methods for generalized
zero-shot action recognition.

6. Conclusions

In this manuscript, we have underlined that it is necessary
to fine-tune visual features before synthesizing unseen visual
data for the zero-shot learning problem. This is motivated by
the two reasons. The first one is the distribution of the feature
backbone training dataset is different from the distribution of
ZSL datasets. Hence, the pre-trained visual features should be
adapted to zero-shot learning datasets. The second reason is
that there is some gap between real and synthesized features
due to the information asymmetry problem, which further in-
spires us to reduce information in visual features irrelevant to

attributes. We have successfully designed a simple ART frame-
work that consists of a contrastive regression module and a nor-
malizing attribute place-holder module to fine-tune original vi-
sual features. Experimental results on five benchmarks have
shown that, combined with our ART framework, the baseline
generative model f-VAEGAN sets a new state-of-the-art record
under both ZSL and GZSL settings.
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