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Abstract. For a multidimensional driftless diffusion in an unbounded, smooth, sub-linear generalized parabolic domain, with oblique
reflection from the boundary, we give natural conditions under which either explosion occurs, if the domain narrows sufficiently fast at
infinity, or else there is superdiffusive transience, which we quantify with a strong law of large numbers. For example, in the case of a
planar domain, explosion occurs if and only if the area of the domain is finite. We develop and apply novel semimartingale criteria for
studying explosions and establishing strong laws, which are of independent interest.

Résumé. Pour une diffusion multidimensionnelle sans dérive dans un domaine parabolique généralisé non borné, lisse, sous-linéaire,
avec réflexion oblique a partir de la frontiere, on donne des conditions naturelles dans lesquelles soit I’explosion se produit, si le
domaine se rétrécit suffisamment vite envers ’infini, soit il y a la transience superdiffusive, que nous quantifions avec une loi forte des
grands nombres. Par exemple, dans le cas d’un domaine planaire, 1’explosion se produit si et seulement si la surface du domaine est
finie. Nous développons et appliquons de nouveaux criteres de semimartingale pour étudier les explosions et établir des lois fortes, qui
présentent un intérét indépendant.
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1. Introduction

We study the asymptotic behaviour of a multidimensional diffusion in an unbounded, generalized parabolic domain,
with oblique reflection from the boundary. The oblique reflection is such that the diffusion is transient, and the main
phenomena we explore here are (i) explosion (meaning that the process ‘reaches infinity’ in finite time) if the domain
narrows sufficiently fast at infinity, versus (ii) superdiffusivity, if explosion is absent but the domain grows sub-linearly.
We identify the sharp phase transition between (i) and (ii) in terms of the growth rate of the boundary, and quantify (ii) via
a strong law of large numbers. Our model can be viewed as a stochastic process with constraints exhibiting anomalous
diffusion. We emphasize that the phenomena we exhibit here are present even for the case of reflecting Brownian motion,
although we do treat more general diffusions with no interior drift.

Reflecting diffusions are fundamental stochastic processes, motivated from kinetic theory of gases, queueing, commu-
nication or inventory theory, and, more recently, financial models: see the end of Section 2 below for a brief discussion.
A large literature studies reflecting diffusions in bounded domains (see e.g. [17,20,21,34]). In unbounded domains, if the
interior drift is constant, then the most subtle case is when the drift is zero. Domains that are orthants or cones are classical
(see e.g. [9,24,36,38]), and typically behaviour is diffusive, even in the transient case. Generalized parabolic domains’
were considered by Pinsky [29] in the case of normal reflection and canonical covariances in the interior; in that case there
can be no explosion, and the planar case is always recurrent. It is expected that in the case of normal reflection, transience,
present in higher dimensions, is diffusive. In a discrete setting [25], we studied planar generalized parabolic domains with

1Pinsky [29, p. 677] uses the term horn-shaped, which has several distinct uses in the literature.
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Fig. 1. Two planar generalized parabolic domains. Case (i) has b(x) = ax!/8 for large x, while (ii), a generalized reciprocal parabolic domain, has
b(x) =ax"! for large x. We give conditions under which the reflecting diffusion in (i) satisfies a law of large numbers with growth rate #8/9 while (ii)
yields exponential growth. If domain (ii) narrows a little faster, so that fooo b(x)dx < oo, there is explosion: the diffusion is driven to infinity in finite
time.

normal reflection (more generally, opposed reflection where reflection angles from the upper and lower boundaries are
equal and opposite), and general covariance matrices in the interior, but again any transient behaviour is expected to be
diffusive. Thus to seek anomalous diffusion we are led to considering oblique reflections in domains of sub-linear growth,
so that the reflection is both frequent and strong enough to drive the superdiffusive escape. The present paper is, to the
best of our knowledge, the first work on sharp quantification of transience for reflecting diffusions in unbounded domains,
and the first to exhibit explosion of Brownian motion in this context.

We describe informally a special case of the model that this paper studies, to provide a sketch of the main phenomena
and to motivate the formal (and more general) definitions that we defer till Section 2 below. Let D be a domain in R2
defined by D = {(x, y) : x € Ry, |y] < b(x)}, where b : R, — R, is a smooth function with b(x) > 0 for x > 0. The
full range of phenomena are seen already in the case where b(x) = ax? for x > xo > 0, say, where a > 0 and § € R.
Informally, the evolution of Z; € D is described by the stochastic differential equation (SDE)

(1.1) dZ, = ¢(Z,)dL, + =Y(Z,)dW,, for0<rt < t¢,

where t¢ € (0, 00] is a potential explosion time, W is a planar Brownian motion, £!/2 is a square root of a bounded
covariance matrix X, and ¢ is a smooth, bounded vector field on 3D, which governs the oblique reflection through L, the
local time of Z on 9D. We permit ¥ = X(z) to vary smoothly with z € D, but we assume that eJE(z)ey — o2 € (0, 00)
for z = (x, y) with x — oo, where e, is the unit vector in the vertical direction (our more general assumptions below
give a more general meaning to o'2). As an example of ¢, we may take reflection at angle > 0 relative to the inwards
pointing normal vector, where positive & means that the angle is in the direction of increasing horizontal coordinate: see
Figure 1.

The fact that « > 0 and limy_, o, ' (x) = 0 means that the process accumulates an effective positive drift in the hori-
zontal direction whenever it visits the boundary. The narrower the domain, the more often the process visits the boundary.
For example, in the case § = 0 one has a strip-like domain, and it is natural to expect that the process is transient to the
right with a positive speed (ballisticity): a formal statement is a special case of our results below (see Example 2.4). If
B < 0 then drift accumulates faster, so transience is super-linear. In fact, in very narrow domains acceleration is so rapid
that explosion can occur: indeed, explosion occurs if and only if § < —1. On the other hand, for 8 = 1 we are in the
classical situation of reflecting diffusion in a wedge, and here both recurrence and transience are possible [36,38]. When
|B] < 1 we quantify the rate of escape via a superdiffusive law of large numbers.

To give some intuition behind our main result (Theorem 2.2 below) and to illustrate a little more concretely how the
main phenomena that we investigate arise, we describe an heuristic comparison with reflecting Brownian motion in an
interval. For simplicity of the following heuristic discussion, we remain in the planar case displayed in Figure 1, take X
to be the identity (so the process is Brownian motion in the interior of D), and we write ¢y = cos« and sg = sin«; more
general definitions of ¢, so come later.
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We try to estimate how much effective horizontal drift the process accumulates via reflections. Suppose the process is
at horizontal position x. Over short time-scales, imagine we may approximate the behaviour of the vertical coordinate by
a diffusion on the interval [—b(x), b(x)]. This diffusion has zero drift and infinitesimal variance about o2. The (vertical)
reflection is effectively of magnitude cy. After a transformation, this is equivalent to unit-magnitude reflection for Brow-
nian motion on [—b(x)/co, b(x)/co] with variance o2/ cg. By an heuristic renewal argument similar to [29, pp. 679-680],

this process should accrue boundary local time on average at rate about m This manifests in the two-dimensional

process as an effective drift in the horizontal direction of roughly 223—2(1)' Consequently, one can imagine that the large-
scale behaviour of the horizontal coordinate X, of the reflected Brownian motion Z; in D is by (1.1) well-approximated
by the SDE

S00 2

=—"  _dr+dW,, for0O<¢ ,
2e0b (X)) + fi or<t<rtg

(1.2) dX,

where W is one-dimensional Brownian motion. We take B < 1, so, roughly speaking, the drift dominates the Brownian
martingale; the discrete-time analogue is the supercritical Lamperti problem [23, §3.12]. Thus, ignoring the diffusion
term in (1.2) and integrating the resulting ODE, one arrives at B(X;) & %t for t < tg, where B(x) := fg b(y)dy.
The role of B(oo) := limy_, o, B(x) now becomes apparent. Indeed, considering t = o, := inf{r € Ry : X; > r} we get
oy X sifrOZ B(r). Explosion, i.e., finiteness of t¢ := lim,_, o 0y, is thus linked to finiteness of B(c0). A natural conjecture

on the basis of this heuristic is that

(1) explosion occurs if and only if B(0o) < o0o; and

(ii) if B(oco) = oo, we have the strong law lim,_, ot ' B(X,) = % a.s.

Thus B = —1 is the critical boundary exponent. Somewhat more formally, one could arrive at the same conjecture (i) by
applying the Feller explosion test to the SDE (1.2) [3, Cor. 4.4, p. 82]. However, all of this reasoning is based on a one-
dimensional approximation, and is a long way from a rigorous proof; our proofs are based instead on some martingale
ideas that we anticipate will have wider applicability. These martingale ideas are the focus of Section 3 below.

The main contribution of the paper is to formulate and establish precise versions of (i) and (ii) for domains in R x R?,
generalizing the type described above, and oblique reflections with positive components in the axial (R, ) direction. Note
that in the planar case, the criterion B(0o) < 0o is equivalent to finite area of the domain, while in higher dimensions,
finiteness of the volume is a strictly stronger condition guaranteeing explosion. We give the detailed formulation of the
model and the main result (Theorem 2.2) in Section 2.

2. Model and main results

Write || - ||4 for the Euclidean norm on R?, d € N := {1, 2, ...}. Denote the unit sphere in R4 by Sl={ueR?: ully =
1}. Define R, := [0, 00) and let b : R, — R, Fix d € N and consider the closed domain D € R**! given by

2.1 Di={z=(x, ) eRi xR :|lyla <b()}.

Write 9D := {z = (x,y) € Ry x R : ||y|l4 = b(x)} for the boundary of D in RY*!. Let M be the set of real positive
definite (d x d)-matrices. We view vectors as column vectors and write (u, v) = u" v for the Euclidean inner product of
u,veRITL

We will consider a process Z = (Z;);¢[0,:¢), With Z;, € D for t < tg, where t¢ € (0, 00] is a random explosion time
(see the Appendix below for the definition of the space of trajectories of Z). The process Z will be driven by a standard
Brownian motion W = (W;);egr, on R+ and the dynamics will be specified by an instantaneous covariance function
¥:D— M;H with the symmetric square-root %!/2, and a vector field ¢ : D — R+, Accompanying Z will be
L = (L)te[0,z¢), Where L; € Ry is the local time of Z at D up to time ¢. The triple (Z, L, t¢) will be our object of
interest, where

t t
Zzzz—i—/ 2‘/2<zs>dws+/ $(Zo)dLy,
2.2) 0 l 0
and L,:/ 1{Z; € 0D}dL,, forte]0,tg).
0
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In the Appendix below we give a formal definition of the solutions to (2.2) and establish existence and pathwise unique-
ness under natural assumptions, see Theorem A.1. Some extra work is required compared to the standard literature [20,
34] since Z may explode because of its local time if it spends too much time close to the boundary 0D.

Our initial assumptions on the domain D are as follows.

(D1) Let b be continuous on R, with 5(0) =0 and b(x) > 0 for x > 0. Suppose that b is twice continuously differen-
tiable on (0, 00), such that (i) liminf,_,o(b(x)b'(x)) > 0, and (ii) lim,_o (5" (x) /b’ (x)?) exists in (—o0, 0].

Remark 2.1. It follows from (D) that D is a C2 domain: see Lemma 4.3 below. In particular, the conditions (i) and (ii)
in assumption (D7) ensure that D is sufficiently smooth at the origin. This excludes the possibility of the diffusion being
trapped at a boundary point (cf. [36,38]). Conditions (i) and (ii) are satisfied if b(x) = apx*(1 4+ e9(x)) as x — 0 for ap €
(0, 00), a € (0, 1/2], and &g twice continuously differentiable with go(x) = o(1), aé(x) =o(1/x), and 86’(}6) =o(1/x?%)
as x — 0, for instance. We emphasize, however, that the precise asymptotics of b at 0 are not important: the asymptotics
of b at oo are crucial for our quantitative result in Theorem 2.2 below. Finally, note that since lim,_, ¢ b(x) = 0, (i) implies
that lim,_, ¢ b’ (x) = co.

The next assumption applies to the covariance function X.

C) Let ¥ : D — /\/l;lr 1 be bounded, (globally) Lipschitz, and uniformly elliptic, i.e., there exists § > O such that, for
every u € S? and all z € D, we have u” X (z)u > 5.

When we say X is bounded and Lipschitz, the implicit norm is the matrix (operator) norm || X |lop = sup, csd | Zutlla+1-
Since | 212 (z) ||gp = sup,cse (U B(z)u), the largest eigenvalue of X (z), boundedness of ¥ implies boundedness of = !/2.

We write a generic point z € D in coordinates as z = (x, y), where x e Ry and y € R? with ||y|lq < b(x). Let ey :=
(1,0) € S? denote the unit vector in the x-direction, and for u € S~ let ¢, := (0, u) € S?. Any z = (x, y) € D can be
written as z = xex + ||yllse;, where 3 :=y/lylla for ||y|lg > 0. In particular, if z € 3D then z = (x, yb(x)) = xey +
b(x)e;.

Neiﬁt we impose conditions on the boundary vector field ¢. We write ¢, (u) := ¢ (x, ub(x)) for the element of the vector
field indexed by (e, e,) coordinates. Let n, (u) denote the inwards-pointing unit normal vector to 3D at (x, ub(x)) € aD;
by (Dy), ny(u) is uniquely defined. We assume that ¢ is smooth, and that at each point on dD it has a uniformly positive
component in the normal direction. More precisely we require the following.

(V) Suppose that ¢ : 9D — R*! is a C? vector field, with sup,¢yp ¢ (@) lla+1 < 00, and

(2.3) inf inf (¢ (u), ny(u)) > 0.
S 1

x>0y eSd—

The initial assumptions on the domain (D), instantaneous variance (C) and vector field (V) guarantee the existence and

uniqueness of the solutions of SDE (2.2); see the Appendix. Note that (2.3) is a minimal extension to unbounded domains

of the condition for existence in bounded domains [20]. Our main result, Theorem 2.2 below, gives a precise description

of the asymptotic behaviour of the process Z. It requires the following additional assumptions on the function b, the
instantaneous covariance function X, and the vector field ¢. Define

. xb'(x)
(2.4) B :=limsup )

Assumption (D;) concerns the behaviour of b near infinity, while (A) introduces quantitative assumptions on X and ¢.
Write ‘tr’ for the trace operator.

(D2) Suppose that limy_, oo b’ (x) = limy 00 b”(x) = limy_ o0 b(x)b”(x) = 0, and that B as defined at (2.4) satisfies

B<1.
(A) Suppose that there exists ole (0, co) for which

(2.5) lim  sup [rZ(x,y) —e T(x, y)ex — 02‘ =0.

x_)ooy:(x,y)eD

Finally, suppose that there exist sg, cg € (0, 0o) such that

(2.6) lim sup |(@x(u),ex)—s0| =0,

X—00
ueSd-1

(2.7) lim sup |(¢x(u), —eu)— co| =0.
x%ooueSd,I
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We make some comments on these assumptions in Remarks 2.3 below, after stating our main theorem. The last piece of
notation that we need is

(2.8) B(x) = /x b(u)du, forxeRy.
0

Since b is bounded on compact intervals, and b(x) > 0 for x > 0, B(x) < oo for all x € Ry, and x — B(x) is continuous
and strictly increasing. Set B(c0) := limy_, o, B(x) € (0, oo].

If t < g, then in components write Z; = (X;, Y;) € D, with X; € Ry, [|Y;]la < b(X;). Let P, denote the law of Z
started from Zy = z € D, and let E; be the corresponding expectation; Theorem A.1 shows that these are well defined.
Define the passage times

2.9) o, :=inf{t e R} : X; > r}.

Then (see the Appendix) tg¢ := lim,_, » 0. The next result states our main dichotomy: B(00) < oo implies explosion,
while if B(0co) = oo, there is non-explosive transience quantified via a superdiffusive strong law of large numbers.

Theorem 2.2. Suppose that (D1), (D3), (C), (V), and (A) hold.
(i) If B as defined at (2.8) satisfies B(00) < 00, then sup,.p E; ¢ < 00, and

lim X; =lim L; = o0, P;-a.s.foreveryzeD.
ttte tte

(ii) If B(o0) = o0, then, for every z € D, P,(t¢ = 00) = 1, and

B(X B(||Z 2
(2.10) lim X _ lim UZlla+1) _ so0

t—00 t t—00 t 2c

, P;-as.,

and
. E,or 2c¢o
lim = .
r—oco B(r) soo?

Moreover, for every z € D,

L
2.11) lim 22—, P,-as.

t—00 Xt

Remarks 2.3.
(a) If B defined at (2.4) is finite, then b(x) < x#+°( as for any ¢ > 0,

X b/ X 1
/ b(”) duS(ﬁ-i—e)/ Zdu, forallx > xi,
X1 (M) X1 u

for some x1 € (0, co) sufficiently large, and hence

logb
(2.12) limsup 2£2) _ g

x—00 logx

(b) For 8 < 1 we have from the preceding remark that, for some ¢ > 0, b(x) = O(x'7%), so that B(x) = O(x27%).
Thus (2.10) shows that liminf,_)oo(th_s /t) > 0, a.s., which means that X, is (strictly) superdiffusive. In contrast,
B can grow arbitrarily slowly, meaning that X, can grow arbitrarily fast; see Example 2.4 for some representative
examples.

(¢) A sufficient condition for the lim sup in (2.4) to be a limit is that b is regularly varying at infinity with index 8, and b’
is eventually monotone: see [1, p. 59].

(d) Roughly speaking, assumption (2.5) says that the contribution to the total infinitesimal variance coming from direc-
tions orthogonal to the horizontal stabilizes to a limit, o-2; this variance can be distributed in any proportion among
the d components, that can vary across the domain, provided the ellipticity condition is satisfied.
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(e) Since b(x) = o(x), we have sup,cge-1 [Iny(u) + eylla+1 — 0 as x — oo. Assumption (2.7) thus shows that
infy >y, inf, cga—1(@x (1), ny (1)) > co/2 for x; sufficiently large, so one may replace (2.3) with the apparently weaker
assumption that

(2.13) (¢x (@), nc)) >0, forallx e Ry andallueS".

(f) We are not aware of previous work on explosion to infinity driven by reflection; the closest relatives we have seen
in the literature are the phenomenon of corner trapping for reflecting processes in domains with non-smooth bound-
aries [36], or explosion for diffusions on manifolds [12]. The general existence results for diffusions with oblique
reflections given in [20] and [34] do not admit explosion. Indeed, [20] deals with bounded domains. In [34] the
domains are defined via D = {z € R?*! : /(z) > 0} for some bounded ¥ : R¢*t! — R with two bounded continu-
ous derivatives. If the function b : Ry — R tends to zero as x — oo, the second derivative of the corresponding
Y(z) =1 — (|lylla/b(x)) is not bounded as x — oo as the gradient of iy must change increasingly rapidly around
the cross-sectional boundary at horizontal location x. This phenomenon will occur with any ¥ (when b tends to
zero), satisfying other assumptions in [34]. Hence [34] also excludes the narrow domains that exhibit explosion as
considered here.

Here is an example that illustrates Theorem 2.2.

Example 2.4. Take d € N, and suppose that b satisfies
b(x)= aox“(l + so(x)) asx —>0, and b(x)= aooxﬁ(l + 800()6)) as x — 00,

where ag, dso € (0,00), @ €[1/2,1), B € (—0o0, 1), and gp(x) = o(1), 86()6) =o(1/x), ag(x) = o(l/xz) as x — 0 while
g0 (X) = 0(1), el (x) = o(1/x), el (x) = o0(1/x?) as x — oo. Then (D) holds (see Remark 2.1) and so does (D»), with
coinciding with (2.4). Let £(z) = v2I 4 (constant), where ;| € M;ﬁr | is the identity; then (C) holds for o2 =dv’
Take ¢o(u) =no(u) = ey and ¢y (u) = ny(u) + sopex — coey, for x > 0, where sg, co > 0. If @ = arctan(sg/cp), then ¢o(u)
is the vector obtained by rotating n,(x) in the plane containing 0 and n,(u#) by angle «. Then B(x) ~ %x1+ﬂ for
B > —1,and B(x) ~ a logx for B = —1, and B(co) < oo for B < —1. Theorem 2.2 then yields the following for all
zeD.

e If 8 < —1, then E, 7¢ < 00, i.e., explosion occurs.
o If f=—1,then P,(t¢ =00) =1, and

. log X, . logllZilla+1
Iim — = lim ———— =

t—oo t—00 t I—>oo  t 2a00

. logL; dv?tana
lim =

, P;-as.

e If Be(—1,1), then P,(tg = 00) =1, and, P,-a.s.

(1 +/3)dv2tana>lJlrﬂ

_ 1 . _ 1 . _ 1
lim ¢ " X; = lim ¢t ™| Zillg41 =50 lim ¢t ™FL; =
=00 t—00 205

t—>0o0

Note that if 8 € (0, 1), then X is sub-ballistic (i.e., has speed zero: lim,_, », X;/t =0, a.s.), it has positive speed when
B =0, and for 8 € (—1,0), lim;_ o, X;/t =00, a.s.

We now comment briefly on some motivating applications for reflecting diffusions and refer to the literature.

Ideal gas dynamics. Consider an ideal gas in a container. A gas particle moves at constant velocity until it either hits
the domain boundary, where it reflects, or collides with another particle. If the density of the gas is sufficiently low (the
Knudsen regime [19]), collisions between particles can be neglected, and changes in velocity occur only on reflection
at the boundary. Resulting billiards models may be deterministic (see e.g. [35]) or stochastic (e.g. [5-7,26]), depending
on the reflection rule. By contrast, in the high-density regime, intermolecular collisions are important. Tracking the
dynamics of a single particle, one now observes Brownian motion in the domain interior. Thus our reflecting diffusions
can be motivated by single-particle dynamics in high-density ideal gases.

Queueing and communication networks. The domain Rf{_ has received particular attention over many years due to
its connection with stochastic models of queueing systems, loss networks, and communication systems. For example, if
there are d queues (or d customer classes) the process of queue lengths can often be described by a Markov process on
Ri with boundary reflection; different service or transmission protocols lead to different models. While these Markovian
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models often have discrete state-space (e.g. Zi), diffusion approximation and certain limiting regimes (in particular,
heavy traffic) lead naturally to reflecting diffusions: see e.g. [2,8,14,22,31], among many other papers.

Other motivation. In mathematical finance, reflecting diffusions appear both directly as pricing models (see e.g. [13])
and via their intimate relation to diffusions with rank-dependent interactions (e.g. [15,28]). In one dimension, systems of
interacting Brownian motions that mutually reflect have been studied in the context of the KPZ universality class [37] and
as scaling limits of certain discrete interacting particle systems [11]. A recent statistical application of reflecting processes
is set estimation [4].

The outline of the rest of this paper is as follows. Section 3 presents some results on semimartingales, with potential
explosion, that will form the basis for our analysis; these involve martingale-type criteria for estimating escape prob-
abilities and expected hitting times, and for analysing explosion times. Section 4 turns to the reflecting diffusion given
by (2.2), and establishes (Theorem 4.1) that the expected time to exit any bounded set is finite, an important and non-trivial
ingredient in our proofs, as our assumptions that guarantee transience hold only for large x. Section 5 then presents the
proof of Theorem 2.2, which uses a suitable Lyapunov function to bring the results of Section 3 to bear on the reflecting
diffusion. Finally, the Appendix discusses existence and uniqueness for the SDE (2.2).

3. Explosions and growth bounds for semimartingales
3.1. Overview and notation

This section develops some semimartingale tools for studying the quantitative asymptotic behaviour of possibly explosive
semimartingales via suitable Lyapunov functions.

Fix a probability space (€2, 7, P) and a complete right-continuous filtration (F)ser, . Let Foo 1= a(Ute]R+ F1). Con-
sider an (F;)-progressively measurable process k = (k1)/cr, , taking values in [0, co], where reaching the state oo in
finite time represents explosion. Let 7~ denote the set of all [0, oo]-valued stopping times with respect to (F;);eR, -

For any £ € R, r € [0, o0], and stopping time T € T, define post-T first entry times

AT =T +inf{s e R : T <00, k745 <},
(3.1)
pr7 =T +inf{se R : T <00, k745 > 1},

where we adopt the convention inf & := +4o00. If T = 0, we denote Ay := Ay o and p, := p, 0. The almost sure limits
Poo = 1lim,_, 0 pr and poo, 7 := lim,_, oo pr,7 €Xist by monotonicity. Note that, provided « is right-continuous with left
limits (rcll), by [32, Ch. III, Prop. 3.3] we have A¢ 7, pr.17 € T forall r, £ € R} and hence po € T (see [32, p. 46]). On
the event {ps, < 00}, we say that explosion of k occurs. By definition, we have that

(3.2) orr =pr, on{T <p,}, andhence poo,7=pPc, ON{T < poo}.
3.2. Escape probability

The next result gives a supermartingale condition for an escape probability estimate applied in the proof of Theorem 2.2.
The ideas behind Theorem 3.1 in the discrete-time (thus non-explosive) case go a long way back, see [23, Lem. 3.5.7]
and references therein.

Theorem 3.1. Suppose that k = (k;):eRr, is a [0, oo]-valued (F;)-adapted rcll process. Suppose that there exist x1 € Ry
and a bounded continuous f : R4 — (0, 00) such that

(@) infyepox) f(¥) > 0 forall x e Ry, and limy_,  f(y) =0;
(b) forall T € T and r € (x1, 00), the process (f (k+T)As)UT < Poo}ieR, » Where S := Ay, 7 A prr, is an (Fiy1)-
supermartingale, i.e., for 0 <s <t < 00,
E[ f(k@+1)n8) | Fs41] < flk(s+y7s),  0on the event {T < poo}.
Then for any £ € R and any € > 0, there exists x € (£, 00) such that, for every T €T,

(3.3) P(Ae.r < poo | FT) <€, ontheevent{kr >x,T < poo}.

Moreover, if (3.3) holds and P(p, < po) =1 for all r € Ry, then limy4 p, Ky = 00, a.s.
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We remark that x in (3.3) is chosen independently of the stopping time T € 7.

Proof of Theorem 3.1. It suffices to prove (3.3) for £ > x;. Pickany 7 € T and r € (¢, 00) andnote S > Ao 7 Apr7 > T.
Moreover, on the event {T < p}, we have S < po. Define the process ¢ = (§;);er, by

G = fka+mymnernonr ) UT < poc},  forzeRy.

By the fact that S > Ay 1 A o, 7, and hypothesis (b), the process ¢ is an (F;4r1)-supermartingale stopped at (A¢,7 A oy, 7) —
T. Thus, by [32, Ch. II, Thm. 3.3], ¢ is a non-negative supermartingale. Hence, for all r € R,

fler) =260 =El | Fr1 = E[GL{he,r < o7} | Fr],  on{T < poo}.

Since ¢; > 0 for t € R, for a sequence #; 1 0o, the (conditional) Fatou lemma yields
E[liminf;,kﬂ{)\gj <prr)] fT] <liminfE[g, 1o < prr} | Fr] <20, on{T < pao).
k—o00 k—o00

On {Ae1 < pr1, T < poo}, we have liminfy, o0 &y = f (i, ;) > infe0,¢) f(2), since f is continuous and the paths of
are right-continuous. Thus,

sup f(z) >0 =>Per <prr | }—T)zei[%fu f@), onf{kr =2x,T < po},

z€[x,00)
for any x € (¢, r). Put differently,

Sup,> f (2)

Prer < prr | Fr) < ———————F7,
" inf¢p0,¢1 f(2)

on{kr >x,T < poo}.
On {T < poo}, by (3.2) we have poo = lim,—, o0 por, T, implying

Utrer <onr, T < poot ={he, < poo, T < poc}.
reN

By the (conditional) monotone convergence theorem, on the event {T < pso}, we have lim, oo P(Ap,7 < o7 | FT) =
P(Ae.7 < poo | Fr). Hence

Supsz f(z)

P(Ae,r < poo | FT) < ——=——F—,
> infz¢(0,¢1 f(2)

on{ky = x,T < poo},

for any x € (¢, 0o0). Hypothesis (a) now yields (3.3).
Finally, suppose that P(p, < poo) =1 for all » € Ry and that (3.3) holds. Pick arbitrary ¢ > 0 and £ > x;. Then
apply (3.3) with T = p,, to get

P(re,p, = Poo) = E[P(Aé,pr > oo | Fp, ) 1{kp, > V}] >1—eg,

for some r > £ sufficiently large. On the event {A¢ ,, > poo} We have k; > £ for all t € [p,, poo), and thus, since P(k,, >
r) =1, we have P(liminf,4 ., 6 > £) > P(A¢ p, > poo) = 1 —¢. Since & > O was arbitrary, this means that liminf;4 o, k7 >
£, a.s. Since £ € [x1, 00) was arbitrary, we conclude that liminf;4 . k; = 00, a.s.

3.3. Explosion and passage times

In this section we estimate expected passage times and establish a strong form of explosion given by E ps, < 00: see
Theorem 3.2 below. Conditions for non-explosion, defined as P(px = 00) = 1, will be given in Theorem 3.4 below.
Almost-sure behaviour in the non-explosive case is described in Theorem 3.5 below.

The conditions in Theorem 3.2 are given in terms of a transformed, stopped, and compensated process, which is defined
as follows. Let

3.4 f : Ry — R, be non-decreasing and continuous, with f(c0) := lim f(x) € [0, oo].
X—>0Q
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Pick a stopping time T € T, levels £ € R, and r € [0, oo], satisfying £ < r, and a positive parameter 6 € (0, 00). For any
t € Ry define

(3.5) ve=(t+T)Adrer Aprr — T)UT < poc);

(3.6) &= (F (kT4 = 00 UT < poc).

For ease of exposition, we suppress T, £, r in v = (v);er, and ;0 = ({,(f’e))teRJr.

Theorem 3.2. Suppose that k = (k;)ier, is a [0, oo]-valued (F;)-adapted rcll process with jumps of finite magnitude:

|kt — Kki—| < oo forallt e Ry a.s., where i;_ :=limgy, kg for t > 0 and ko— = kg. Suppose the following.

(a) Forall £ € Ry and all € > 0, there exists x > £ such that (3.3) holds forall T € T .

(b) Forallr e Ry, P(p, <00)=1.

(c) There exists x| € Ry such that, for every x € (x1, 00), there exists a constant B, € Ry for which, for all T € T, it
holds that

(3.7) Elpx,r =T | Fr]1 < Bx, on{kr <x1,T < poo}-

Let f,vand C(f’g) be as in (3.4), (3.5), and (3.6), respectively. Suppose also that there exists 6 € (0, 0o) such that for all
L e[x),00),r€(,00)and T €T, the process §(f'9) is either a supermartingale, i.e., for all s,t e Ry, t > s, we have

,0 .0
(3.8) E[g/ 7| Four] <67, on(T < poo),
or a submartingale, i.e., for all s,t e Ry, t > s, we have
0 y
(3.9) E[e | Foar] 267, on (T < poo).
Then the following statements hold.
(1) If f(co) = 0o and (3.8) holds, then for any sequence r, — 00,

Elp: 1
(3.10) lim inf[p”—u:()] > a.s.,
n—oo E[f(kp, )| Fol ~ 6

and thus & pso = 00.
(ii) Assume (3.9). If f(00) = o0 and for every r € Ry there exists a constant C, € Ry such that E[ f («,,) | Fol < Cr,
a.s., then for any sequence r,, — 00,

Elo,
3.11) Jim sup —2ra | 0]

1
— "~ - < as.
n—00 ]E[f(’(prn) | Fol ~— 6

If f(00) < o0, then there exists a constant C € Ry such that E[ps | Fol < C, a.s.

The conditional expectation E[p, | Fo] in (3.10) and (3.11) stresses that these bounds hold for any (possibly random)
starting value «g. In particular, this uniformity in the starting point yields the strong version of explosion of the reflected
diffusion in Theorem 2.2. The proof of Theorem 3.2 will make use of the following lemma. Lemma 3.3(i) will also be
used in Section 5 (see the proof of Lemma 5.9).

Lemma 3.3. Suppose that k = (k;):er, is a [0, oo]-valued (Fy)-adapted rcll process with jumps of finite magnitude, and
that hypotheses (a), (b), and (c) of Theorem 3.2 hold. Then for any f in (3.4) and r € Ry such that E[ f (x,,) | Fol < C,

for some constant C, € Ry, the following statements are true.

(1) If (3.8) holds, there is a constant C € Ry such that, for all t € R,
E[f(kinp) | Fo] <C + fko) +0Elt Ap, | Fol,  a.s.
(ii) If (3.9) holds, there is a constant C € R such that, forall t e R,

OE[t A pr | Fol <C+E[f(kinp,) | Fo].  as.
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Proof. Let x; € R, be the constant appearing in hypothesis (c) of Theorem 3.2. By (3.3), there exists x € (x|, 00) so that
forall T €T,

(3.12) P(x;,7 < poo | Fr) <1/2, oni{kr > x,T < pso}.
Set #p := 0. Using (3.1), for k € N, we can define recursively the stopping times
Sk=pPxn_y and  fg =y g

By hypothesis (3.7), sy < 0o on the event {fx_] < pso}. By (3.2) we have the following equality of events: {s;y =
Pocs th—1 < Poc} = Sk = Poo,i,_1» tk—1 < Poo}. However, on this event, x can neither be continuous nor have a jump at s,
as in both cases this would imply k;, < oo (recall that k5, < x and the jumps of « have finite magnitude by assumption)
and thus sx < poo,s_, - Hence, for all k € N, we must have {fx_1 < poo} = {Sk < poo} UP to events of probability 0. Thus
we may apply (3.12) at times 7 = s € T to obtain

P(tx < poo | F0) =E[P(1x < poo | Fy)Mtk—1 < poo} | Fo] < (1/2)P(tr—1 < poo | Fo),  ass.
for all k € N. Iterating this inequality shows that, for any k € Z.,
(3.13) Pt < poo | Fo) < 27k as., implying P(N <oo| Fg) =1, as.,

where N :=max{k € Z : ty < pso}. In particular, the stopping times 7p <51 <] < -+ <ty < pPo satisfy «;, <x1 <
X <kyg <ooforallk <N and txy =oofork > N.

Pick any r € (x, 00), define & := f(kinp,) — 0t A py) for all t € Ry and note that, by (3.13), the following sum is
finite:

& —%= Z Gt — Senn) Mtk < or}

k€Z+
(314) = Z (é‘t/\sk+1 - {t/\t]()]l{tk < /01‘} + Z (glAtk+1 - é‘l‘/\karl)l{Sk‘I»l < Pr}
k€Z+ kEZ+
=D s — Gn) Mtk <} + D QCenn — Gns)Lsk < pr}-
keZy keN

We now establish (ii). By definitions (3.5) and (3.6) with T := s, £ := x1 and r chosen above, for all k € Z, and
t € Ry the following holds

Grnne = Cens) sk < or} = Grnge — S ) Lsk < pr A 2}

(g

(3.15)
SO e PNk < pr ),

since on the event {s;y < p,} definition (3.1) implies p,, = p,. Recall that for any two stopping times 7,5 € T,
the non-negative variable (S — T)1{T < S} is a stopping time in the filtration (Fr4/);cr,. Thus, as the stopping

time (f — sx)1{sx <t} is bounded by ¢ and SUP,cR, Igff’e)| < f(kp,) + 6p, has finite first moment by (3.7), the sub-
(f.0) _

t—Sk

martingale property in (3.9) of ¢(/*®) and the optional sampling theorem applied at (r — s;)1{sy <} yield E[(¢
t")1sk < pr At} | Fol = 0 and hence

(3.16) EI:Z(QN;( — Cins) sk < pr} | ]:O] >0, as.
keN

Recall that on {#; < p,} one has ¢, = f(x;, ) — 6t and «;, < x; for k € N. Also, f is non-negative and non-decreasing,
and hence §yag, — Sing = — f(x1) — O(sk+1 — t) on {tx < p,}, for every k € N. In case k = 0, we note that 7o = 0, and
Sins) — Centg = Cens; — Co Which is 0 unless ko < x, hence &g, — {eary = — f (x) — Osy. It follows that

D Cunsenr — G Ut < pr} = = D [F0) +0(ses1 — 1)1t < pr}-

k€Z+ kEZ+
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Taking conditional expectations and applying (3.7) with T = t, we obtain

E[(f(x) +0(skt1 — 1)) L{te < pr} | Fo] =E[(f ) 4+ 0 Elskr1 — 1 | Fo 1) L{te < pr} | Fo

(3.17)
< (f@x)+6B) Pt < po | Fo).  as.,

for all k € Z. Combining (3.14), (3.16) and (3.17), we obtain

E[¢ | Fol = Elg — &0 | Fol = —(f(x) +0By) > P(tx < poo | F0) = —C.  as.,
k€Z+

where, by (3.13), C € R, is a constant that depends only on 6, x, and f(x). Thus, by the definition of ¢, the inequality
in (ii) follows.

The proof of (i) is similar. By (3.15) and the assumed supermartingale property in (3.8), the inequality in (3.16) is
reversed. Then from (3.14), we obtain

E[¢ — g0 | Fol < E[ Y Cinsier — Gon) Mt < pr} | -7:0} < F@) Y Pl < poo | Fo)-
keZ4 keZ4

It follows that E[ f (kip,) | Fol < C + f (ko) + 0 Elt A pr | Fol, which yields (i). O

Proof of Theorem 3.2. Since p, < p,» a.s. for any 0 <r <r’ < 00, in part (i) we may assume E p, < oo forall r e R.
Under the conditions of part (i) of the theorem, we have from Lemma 3.3(i), continuity of f, and (the conditional)
Fatou’s lemma

E[f(kp) | Fo] < h}l}iof.}fE[f(KMp,) | Fo]
< C+ f (ko) + 0 liminfE[z A pr | Fol
< C+ f(xo) + 0 Elp: | Fol,

by monotone convergence. Here, E[ f (k) | Fol = f(r) 1 f(00). This proves (i).

For part (ii), If f(c0) < 0o, then by Lemma 3.3(ii) we have 6 E[f A p, | Fo] < C + f(00) < co. Monotone convergence
gives E[poo | Fol =lim, o0 E[pr | Fol < (C + f(00))/8 < 00. If f(00) = 00, as 1 — 0o, we have E[t A p, | Fo] —
E[p, | Fol (by conditional monotone convergence) and E[ f (ksnp,) | Fol — E[f(k,,) | Fol (by conditional dominated
convergence since f(kinp,) < f(kp,) forall t € Ry, f is non-decreasing by (3.4) and E[ f (k,,) | Fol is bounded by a
constant C, by assumption). By taking the limit as # — oo in the display of Lemma 3.3(ii), we obtain

Elpr | Fol 1 C 1 C
<-4+ <-4+ )
Elf(kp) | Fol — 0  OE[f(kp) | Fol — 0  0f(r)
since p, < 00, r < Ky, , a.8., and monotonicity of f. Taking r =r, — oo yields (3.11). |

3.4. Non-explosion and transience

Our non-explosion result is Theorem 3.4 below. For any right-continuous semimartingale X, we denote by [X] :=
([X11)rer, the corresponding quadratic variation process. Let f be as in (3.4) and assume that, for any 0 < £ <r < oo,
the process ¢ (/?), defined by (3.6), is a supermartingale. Note that for any r’ > r > £ these supermartingales coincide on
the stochastic interval [0, p, 7 — T') and the quadratic variation [§(f ’6)](;\” AprT)—T is non-decreasing almost surely as
r — 00. Thus the limit limr—>oo[§(f’g)]s/\((x”/\p,‘r)—T) exists in [0, co] for any (Fr4,)-stopping time S in [0, oo].

Theorem 3.4. Suppose that k = (k;)ier, is a [0, ool-valued (F;)-adapted rcll process with jumps of finite magnitude.
Assume f satisfies (3.4) and, for every r € Ry, we have P(p, < 00) = 1. Suppose also that the following hold.

(a) Forall £ € Ry and all € > 0, there exists x > £ such that (3.3) holds forall T € T .

(b) There exist constants £ € Ry and 0 € (0, 00) such that for all £ < x <r < 0o and T := py, the process ¢'1'?) | defined
at (3.6) is a supermartingale, i.e., for all s,t € Ry, t > s, (3.8) holds.

(©) On {pso < o<}, it holds that limrﬁoo[g(f’e)](;%px Apr)—py < 00, where L is as in (b) (recall pr = py,p, a.s., by (3.2)
since x <r).
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(d) Assume E[(f (kp,+T,) — f(K(pX+T_V),))2]l{TS < Poo — Px}] < 00, where we define

forany s > 0.

— 1 (f.0)
(3.18) Ty=inf{r e Ry s lim [c00) o s,

Then pso = 00 almost surely.

Proof. Fix ¢ as in (b) and ¢ > 0. Then by hypothesis (a) and (3.3) applied at T = p,, we may take x > £ for which
]P)()\Z,px < Poo | ]'—px) <e.
Take r € (x, 00). Since P(p, < 00) =1 and « has jumps of finite magnitude, P(p, < po) = 1. Hypothesis (b) shows

that, with 7 = py, (;t(f ’9))1611@ . is arcll supermartingale adapted to (F, +1)reR, - Since it is also a semimartingale, it has

(f.9) (f.0)
tf = 5()

(a.s. unique) canonical decomposition ¢ + M + A}, which agrees with its Doob-Meyer decomposition [30,

p. 116-117]; here {éf’g) = f(kp,), (M])ser, is alocal martingale, M; = Aj =0, and (Af);cr, is non-increasing. Note
that, by (3.2), o = p/,p, = px Whenever r > x. By uniqueness of the decomposition, for u > r we have Mtu/\(p,—px) =M/
and A/, , = Aj forall 7 € Ry. Thus if we define M; := limsup, ,,, M/, A; := limsup, ,, A7, we have that
M;=M] and A; = A] on {t < p, — py},and M; =1lim, ..o M[, A; =1im,_, A} on {t < poo — px}. Define & = (&1)rer,
by & := f(«p,) + M; + A;. Then, since A, <0 forall t € Ry, we have

(3.19) Cpr—pe < flkp )+ My ., foranyr > x.

Forn € N, let T,, be as in (3.18) with s = n. Then, for all u > x, we have
2
(3.20) [E1tncou—pnT, <R+ (f(pr+T,,) - f(K(Px+Tn)_)) :

Note that by [30, Cor. 11.6.3] we have E([ ]:a(py—p)AT,) = ]E[(M;‘AT” )2]. Thus, by (3.20) and the assumption in (d), for
any fixed n € N, we have

sup sup E[ (M}’ )2] < 00.

tAT,
u>lteRy

Let N, :=NN (x, 00). Since M(p,,—p,)a1, =M{, _ 7 and

sup E[M{, _, 7. ]= sup ]E[(M&m—pmn)z] <00,

meNy meNy

for any fixed n € N, the discrete-time process (M(,,,—p, )T, JmeN, is an L2-bounded martingale. Hence, for each n € N,
the limit limy,, — 0o M, —p)AT, =: On, €Xists and is finite, a.s.

Hypothesis (c) can be expressed in terms of ¢, defined above, as follows: [¢],,—p, < 00 oOn {ps < 0O}
Thus, on {ps < 00}, there exists a random ng € N such that 7,, = oo. Hence, on {pr < 00}, we have Q,, =
lim,;, - o M(pm*px)/\TnO = limy, s 00 M(p,,— p,) and Oy, < 00 a.s. We conclude that

lim sup f(KMmApm) <limsup ¢y, —p, + 6000 <00, 0N {ps < 00},
m—0oQ m— o0

where the second inequality follows from (3.19). Thus we find

(3.21) sup (f(/cpm)]l{pm < )\g,px}) <00, on{py < 00}.

m>{
Since f(«kp,,) = f(m), we have: f(kp,)1{om < Ae,p,} — o0 if and only if {poo < Ag, . }. Hence (3.21) implies {p <
00} C {poo > A¢,p, ), yielding P(poo < 00 | Fp,) < P(Ag o, < poo | Fp,) < €, by the choice of x > £ (see assumption
in (a)). Thus P(ps < 00) < ¢ and, since ¢ > 0 was arbitrary, the result follows. ([l

Theorem 3.5 furnishes upper and lower bounds on the almost-sure growth rate of a non-explosive process on R. The
conditions (i) and (ii) bound the rate at which the process accumulates drift outside a bounded set, which plays a role
familiar from Foster—Lyapunov conditions in discrete time.

Theorem 3.5. Suppose that i = (kt)teRr, is an Ry -valued (i.e. P(poo = 00) = 1) (F;)-adapted rcll process. Suppose the
following.

(a) Foreveryr e Ry, P(p, < 00) = 1. Forall £ € Ry and all ¢ > 0, there exists x > £ such that (3.3) holds forall T €T .
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(b) Let f(x) be a semimartingale for some f satisfying (3.4). Assume that for some n € (0,2), lim;, ot 7"E([f(x)];) =
0.

Then the following statements hold.

(i) If there exist constants £ € Ry and 0 € (0, 00) such that for all x € (£, 00) and T := py, the process £ 19, defined
at (3.6) (withr := 00) is a supermartingale (i.e., forall s,t e Ry, t > s, (3.8) holds), then limsup,_, ., (f(k;)/t) <6,
a.s.

(ii) If there exist constants £ € Ry and 0 € (0, 00) such that for all x € (£, 00) and T := py, the process ¢ 59| defined
at (3.6) (with r := 00) is a submartingale (i.e., for all s,t € Ry, t > s, (3.9) holds), then liminf,_, o (f (k;)/t) > 6,
a.s.

Remarks 3.6.

(a) One cannot deduce (ii) directly from (i) in Theorem 3.5, as the conditions in the theorem are not symmetric under a
sign change. The symmetric part of the proof is extracted as Lemma 3.7 below.

(b) Theorem 3.5 is inspired by the discrete-time Theorem 3.12.2 of [23] (see also [27]). That result was stated for a
single process satisfying a two-sided drift condition. The separation of the upper and lower bounds in Theorem 3.5 is
an improvement essential to our present application: we obtain the upper and lower bounds in Theorem 2.2(ii) via two
(slightly) different Lyapunov functions, each satisfying only a one-sided drift condition, but sharing a similar quadratic
variation estimate required for Theorem 3.5(b).

The next lemma is a key ingredient in the proof of Theorem 3.5. As well as Theorem 3.12.2 of [23], neighbouring
results in discrete time include [33, Cor. 4].

Lemma 3.7. Suppose that ¢ = (¢1)ier, is an R-valued rcll semimartingale. If there exist o € R and a stop-
ping time t € [0, 00], such that (¢;nr — a(t A T))ier, is a submartingale and the quadratic variation [¢] satisfies
limy— 00 t T TE([@liaz) = 0 for some n € (0, 2), then liminf;_, oo (¢;/t) > «, on the event {t = oco}.

Proof. By [30, Thm. II1.2.16], there exist a local martingale M = (M;);cr, and a non-decreasing process A = (A;)cR,
with Ag = Mo = 0, satisfying ¢;nr — @ (t AT) =¢@o + M; + A, for all t € R,.. Since A has paths of finite variation, we
have [@];nr = [M]; forall t € Ry a.s. Thus 0 < E[M,z] =E([plirr) =0(t") as t — o0, by assumption.

By Doob’s maximal quadratic inequality [30, Thm. 1.2.20], applied to the martingale M, for all § € (0, 2_7'7) we have:

IP[ sup M?*> 12*‘3] < t‘S*ZE[ sup Mf] <4’ 2E[MP]=0(t7°), ast— oo.
5€10,1] 5€10,1]

Applied to the sequence of times 7 = f; = 2%, the Borel-Cantelli lemma shows that, a.s., for all but finitely many &,
SUPe(0,1] M? < tlg_‘s. Every ¢t > 1 has t;y <t < t;41 for some k = k(t) € Z, with lim;_, 5, k() = 00, so that, a.s., for all
t sufficiently large,

sup MZ < sup M} <t} <4*°,
s€l0,7] s€[0,t511]

since fx41 = 2t; < 2t. Thus we conclude that

(3.22) lim t~'M, =0, as.

1—>0o0

Since A; > 0 for all t € R4, the limit in (3.22) implies

M; +a(tAT
iminf Z = liminf Z2° > fiminf 2T CUAD L on it = oo,
t—oo t t—00 t t—>00 t
which completes the proof of the lemma. (]

Now we can complete the proof of Theorem 3.5.

Proof of Theorem 3.5. First we prove part (ii). Let ¢ > 0. Take £ as specified in the hypotheses of part (ii) of the theorem.
Then condition (a) says that we may choose x > ¢ such that (3.3) holds; fix this x. Note that p, < 00, a.s., by (a). Write
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¢r = fkp,4¢) fort e Ry. Set T = Ay, — px. By the hypothesis of part (ii), the submartingale g“(f’@), defined in (3.6)
(with r = 00), satisfies

(90 =g —0(t AT), forallt eRy.

Thus we may apply Lemma 3.7 with & = 6 to conclude that liminf;_, o (¢;/t) > 0 on {t = oo}. In other words, since
fl) =0,

liminf
t—>00

1{px <00, Ag,p, =00}

f('{’)ﬂw,pv — 0} = liminf £ *2c+0)
t ’ t—00 Px +t

= litminf(wt/t)]l{r =00} > 01{Asp, =00}, as.,
— 00

since P(p, < c0) = 1. Hence, by (3.3) applied at T = p,, we obtain

P(liggff(t"’) > 9) =E[]P’<lilll1)£ff(:t) >0 | fpx)]l{,ox < oo}]

= IP)[]P)(}\'Z,/OX =00 | ]:,ox)]]-{px < OO}]
>(1—¢e)P(px <o0)=1—c¢.

Since ¢ > 0 was arbitrary, we obtain part (ii). The argument for part (i) is similar: define §(f 0) by (3.6) and set ¢; :=
—f(kp,++) and o := —6. Apply Lemma 3.7 to the R-valued submartingale —2 9 to conclude the proof. (|

4. Exit from a bounded set by the reflecting diffusion

In this section we provide some estimates for a process Z = (X, Y) satisfying (2.2) up to explosion time tg (see the
Appendix for a rigorous definition of such processes). Denote by (F;);cr, the filtration of the driving Brownian mo-
tion in (2.2) and recall that (F;)-stopping times o, = inf{t € R} : X; > r} and 1¢ satisfy tg = lim,_, » 0. Recall
that the domain D is defined by (2.1). The main aim of this section is prove Theorem 4.1. In particular, we show
that sup,.p E; 0, < 0o, which is an important ingredient in the proof of (fixed-z large-r) asymptotics given in Theo-
rem 2.2 above.

Theorem 4.1. Suppose that (D1), (D), (C), and (V) hold. Then for every r € Ry, sup,.pE; 0, < 0co. Moreover,
P, (limsup;;,, X; =+400) =1 forallz € D.

Remarks 4.2.

(a) Theorem A.1 gives existence and uniqueness of the process Z under the conditions of Theorem 4.1, and, more-
over, implies that lim;4, X; = 00 on the event {g < co}. However, on the event {tg = oo} it may be the case that
liminf,4., X; < o0, if the process is recurrent. The assumptions of Theorem 4.1 permit recurrence but guarantee that
the process Z is almost surely not confined, since P (limsup,;,, X; =+00) = 1.

(b) In the proof of Theorem 4.1, it suffices to work with the process on a compact set. Thus, for existence and uniqueness
of solutions of (2.2) up to time o, the bounded-domain results of [20] are in fact sufficient: see Section 5.6 for
existence and uniqueness theory for SDE (2.2) on non-compact domains.

The proof of Theorem 4.1 has three main ingredients. First, we show that starting very close to the boundary the process
moves a positive distance into the interior in a short time (Lemma 4.5 below), and once away from the boundary, it has
positive probability of reaching horizontal distance r before getting too close to the boundary again (Lemma 4.6). More-
over, the process cannot spend a long time in a bounded subset of the interior (Lemma 4.7). We start with a preliminary
smoothness result.

Lemma 4.3. If Assumption (D) holds, then D is a C 2 domain.

The lemma follows from assumption (D), since limy_.ob(x) = 0, limy_b'(x) = 0o and »'(x) > 0 for all x > 0
sufficiently small (see Remark 2.1) imply that the inverse ™! is twice continuously differentiable in a neighbourhood of
the origin and satisfies

1 d?

—1 _
Po ) ael WF

b (b~ (s))

d —1 _ _ : —1 _
b o= T and  lim b~ () =0.
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Hence lim_, o(d/ds)b~!(s) = 0 and lim,_,¢(d*>/ds?)b~! (s) exists in R, making b~ ! twice continuously differentiable
at 0, thus implying Lemma 4.3 (3D \ {0} is clearly C?).
The shortest squared distance of z € D from 0D, defined as

. 2
4.1) D)= _jnf flz =2,

is a C? function on D under the assumption of Lemma 4.3. Denote its Hessian (i.e., the non-negative definite matrix of
the second partial derivatives of D) by Hp(z).

Lemma 4.4. Suppose that (D1), (D2), (C), and (V) hold, with § > 0 the constant in (C). Then for any r € (0, 00), there
exists hy € (0, 00) (depending on sup,.p | X(2)|lop and & as well as r) such that

4.2) tr[E(z)HD(z)] >4, forallz=(x,y)eDwith D(z) < h% and x € [0, r].
Moreover, the gradient of D vanishes on the boundary: VD(z) =0 for all z € 9D.

It is intuitively clear that the gradient of the distance function D : D — Ry near the boundary 9D points in the
normal direction to the boundary. In fact, it is not hard to see that the magnitude of the gradient equals 2D(z), implying
V D(z) =0 for all z € 3D. Elementary, but somewhat tedious calculations show that

VD()(VD(2) '

— 0, as z approaches 0D,
IVD@)I3,,

”Hp(z) -2
op

which, together with the uniform ellipticity in assumption (C), implies (4.2). The routine calculations are omitted.
Recall definition (2.9) of o,.. Define D; := D(Z;), for 0 <t < t¢, and, for 1 € (0, c0),

Ty :=inf{t e Ry : D, <h?}, and v, :=inf{r e Ry : D, = h?}.
Lemma 4.5. Suppose that (Dy), (D»), (C), and (V) hold, with § > 0 the constant in (C). Then for any r € (0, 00), there
exists h, € (0, 00) such that for all h € (0, h;),
2 2

supE,[up Aor] < —.
zeD )

Proof. Recall that D, = D(Z,). It suffices to assume Dy < h%. For 0 <t < Tg, by 1t6’s formula and (2.2),
TS 1/2 1
dD, =VD(Z,) " =V*(z,)dw, + Etr[E(Zt)HD(Zt)] dr,

where Hp(z) is the Hessian of D, since (VD(z), ¢(z)) =0 for all z € 3D by Lemma 4.4. Also by Lemma 4.4, we have
that tr[Z(z) Hp(z)] > 8 whenever z = (x, y) € D has x <r and D(z) < h? < h,. Thus if T = v}, A o,, we have that for
0<s<t,

Dipe — Dspr = Mipe — Mspr +(8/2)E AT — 5 AT),

where M is a martingale with [M];»; < Ct, for a constant C < 0o, using the fact that 1=172(z) llop is bounded, by (C),
and that ||[VD(z)|| is bounded on bounded subsets of D, by the continuity of the gradient. It follows that Dy, — %(t AT)
is a submartingale. By optional stopping applied at the bounded stopping time ¢ A 7, and since 0 < Dy, < h? for all
t >0, we get

é
5 Eelt Avn A 0r] < EelDypuyno, — Dol < h2.
Then, by monotone convergence, E,[u, A 0,] = lim,_ o0 E.[f A Uy A 0,] < 2h2/8. O

The next result shows that, starting at distance at least 4 from 9D, the probability of crossing level r before getting
within distance &’ € (0, i) of 3D is uniformly positive.
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Lemma 4.6. Suppose that (D), (C), and (V) hold. Fix r € Ry and 0 < h’ < h < 0o. Then there exists ¢ > 0 such that
P.(or <tp) =&, forall z€Dwith D(z) > n.

Proof. Fix r e Ry and 0 < A’ < h < co. For any y > 0, define D, , :={z=(x,y) € D: D(z) > y2,x <r}. For a
C? function u : D — R, we define the %- -Laplacian of u by the formula Axu(z) :=tr[H,(z) X (z)], where H, (z) is the
Hessian of u. Denote S, := {z = (x, y) € Rt : x =7} and let ’Dh/ be a closed domain with C? boundary satisfying

Dy.r C Dy.y C Dy Dy » NS, =Dy, NS,, forsomeh” e (W', h).

A domain ﬁh’,r can be obtained from D)/, by smoothing corners appropriately. A Dirichlet problem on ZA);,/,, with
boundary condition f : 825;111 — R is given by

1 ~
4.3) EA):M =0, onintDy ,;

(4.4) u=f, ondDy,,

where int Dy, denotes the interior of Dy, in R4,
Choose a continuous f : 0Dy, — R, suchthat f =1on Dy NS, and f =00n 9Dy, \ (@h’,r N S;). Then, by [18,
pp- 364-366], the function

u(z):=E; f(Z;), wheret:=inf{treRy:Z; € 815;,/’,},

solves the Dirichlet problem in (4.3)—(4.4). Moreover f(Z;) < 1{o, < 1y} a.s., implying that u(z) <P,(o, < tj) for all
z € Dy,,. Since f is continuous, the domain Dh/ has C? boundary and thus satisfies the inside sphere property (see [10,
p- 55] for definition), and the coefficients in (4.3)—(4.4) are continuous and uniformly elliptic by Assumption (C), the
maximum principle [10, Thm. 21, p. 55] yields inf,cp, , u(z) > 0, implying the lemma. ]

Next is a diffusive upper bound on the exit from a compact subset of the interior of D.

Lemma 4.7. Suppose that (D1), (C), and (V) hold, and let § > 0 be the constant in (C). Then, for any h € (0, 00), r € R4
and z € D, we have

max{r2 xo}

E;lor ATp] < s

where x is such that P,(Xo = x9) = 1.
Proof. Let r € Ry and write T = 7, A 0. From (2.2), we have
dX, =] SV2(Z,)dW, + el ¢(Z,)dL,, forO<1 <tg.
The process X* = (X;a¢)reRr, is by assumption (C) a (true) martingale and
d[XT], =e]Z(Ziar)e dr.

The process M = (X7)? — [X"] is a martingale under P, since it has no infinitesimal drift and is bounded by
max{r xo} Under assumption (C) we have that eTZ(z)ex >6 >0 forall zeD,soif Q; = X2 8t, we see that
| Qs ae| < max{r? ,xo} + 8t <00, and (Qrar)reRr, is a submartingale. Hence, for all t € Ry and all z € D,

0 <xj =E.[X}] <Ez[Qinc] < max{r?, xj} — SE [t AT].

It follows by monotone convergence and the fact that T <o, < tg, a.s., that E; t = lim;, o E;[t A T] < max{rz, xg}/a,
forall z € D.

Now we can combine the preceding lemmas to complete the proof of Theorem 4.1.
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Proof of Theorem 4.1. Fix r > 1 and note that it suffices to consider z € D with the first coordinate xo < r. Pick
0 <h' <h < h,, where h, is as in Lemma 4.5, and then fix ¢ > 0 so that (by Lemma 4.6) P, (o, < 1)) > 2¢ whenever
D(z) > h?. Markov’s inequality and Lemma 4.7 show for C := 1/(&§) € (0, co) we have

P.(0r Aty = Cr?) <E [0, Ayl/(Cr?) < 1/(C8) =,
whenever D(z) > hZ. (Note that C will depend on r, since & does.) Hence
IE”Z(G, < Tp,0p < Crz) >P, (0 <Th/) — IE”Z(G, ATy > Crz) >2e—e¢g,
whenever D(z) > h?. It follows that
4.5) P.(0, <Cr?)>e, forallzeD with D(z) > h*.
Define Tp := 0 and, for k € N, the stopping times
Sei=inf{r > Th_y: D, < (W)}, and Ty :=inf{r > Sy +1+Cr?: D, = h?}.
The strong Markov property (applied at Sy + 1 4 Cr?) and Lemma 4.5 imply that
4.6) E[Tk Aoy — Sk | Fs, 1 < Bi, on{S <o},

where By :=1+ Cr? + (2h2/8) < o0. It follows from (4.6) that T A o, < 0o whenever Sy A 0, < 00, a.s. On the other
hand, the strong Markov property and Lemma 4.7 show

4.7 E[Sk41 Aoy — T | Fr) <max{r®, X7,}/8 <r*/8, on{Ty <a,}.

In particular, T; A 0, < oo implies o, A Si4+1 < 00, a.s. Since Tp A o = 0 a.s., it follows that o, A T < 00, a.s., for every
k € Z. Since Ty > k, a.s., we therefore have that o, = limg_, o (0, A Tf), a.s.
Note that D7, > h2 on {T} < oo} a.s. The strong Markov property (at 7) and (4.5) show that

4.8) IP’(U, <Ti+Cr? | ka) >¢, on{T; < oo}
Let K :=inf{k € Z : 0, < T + Cr?}. Since
{(K>k+1}={K >k, 0 > Tjy1 + Cr*} C{K >k} C {Tx <0, — Cr?} S (T} < o0},
and Tjy1 > T for the stopping time T} := T} 4+ C r2, we have that, for any k € Z .,
P(K >k + 1| Fr)) =P(o > Ti1 + cr?| Fr) UK > k)
=E[P(0, > Tip1 + Cr? | Frp, ) UTis1 < 00} | FrJUK > k)
< —-oUK >k},

using {K >k} € ]:Tk’ and (4.8). It follows that P,(K > k+ 1) < (1 — &) P,(K > k) for all z € D. Iterating this argument
shows that P,(K > k) < (1 — &)* fork € Z, and so

4.9) E,K <l1/e <oo, forallzeD.
Now, on {T} < o,},
Tip1 Aoy — Tx Aoy = (Tgyp1t Aoy — Sgqt + Skt Aoy — T oy > Spqt}
+ (Sk+1 Aoy — Ti) 1oy < Sk}
< (Tk1 A oy = Sk DU Sk+1 < 0} + (Skt1 A o — Ti).
It follows that, on {7} < o,},
ElTis1 Aoy — Te Aoy | Fr ]l SE[(Teg1 Aoy — Ske)L{Skr1 < 00} | Fr | + ElSiq1 Aoy — Tx | Fr]

(4.10) .
<B4+ r°,
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using (4.6) (with Fg,_, D Fr,) and (4.7). Since, on the event {T} > o}, we have Ti11 A o — T Ao =0, it holds that
Tixy1 Aoy — Tx Aoy = (Tr41 Aop — Ty A o) L{Ty < o,}. In particular, for any k € Z,

k—1
E:(Ti Aoyl =) B (Tt Aoy = Te Ao LTy < o7)]
=0
k—1
<(B1+87r)E Y 1Ty <op) < (Bi+5 ') E K,
=0

since Tx4+1 > Tg +C r2 > o,, a.s. We conclude by monotone convergence that

E.or = lim E.[Tx Aoyl < (B1 + 87'r?) /e < oo,

by (4.9), which shows that sup,.p E; 0, < c0.

We now prove P;(limsup, ;. X; = +00) =1 for all z € D. By Theorem A.1 we know that lim;y,, X; = 00 on the
event {tg < oo}. Thus it suffices to prove that limsup,,,, X; > r holds P,-a.s. on the event {tg = oo} for all z € D and
all r € R;. To see this, fix r € Ry, set o := 0,41 and, for k € N,

sp:=inf{t > t,_1: X, <r}, and f:=inf{t >1+4+s;: X, >r +1}.

If 53 = oo for some k, then liminf;_, o, X; > r, as required. For every k € N, on the event {s; < co} we have f; < oo,
because K[ty — si | Fs,] < 00 as a consequence of the strong Markov property and the fact that sup, .p E; 0,11 < 00.
Thus, almost surely, either there exists k € N such that sy = oo, or for all k € N we have #; < oo and # 1 0o as k — oo.
In either case, limsup,_, ., X; > r, as required. |

5. Explosions and strong laws for reflecting diffusions
5.1. Lyapunov functions

In this section, we turn to the proof of our main result, Theorem 2.2. A key element in our proofs is a Lyapunov function g,
mapping D to R, that will enable us to apply the martingale results from Section 3 to the multidimensional reflecting
diffusion. Recall that b is the function that defines the domain D via (2.1), and suppose that b is twice differentiable, as
in (D;). Pick a C? function b: R4+ — (0, 00) that coincides with b on (1, 00) (i.e., 15(x) = b(x) for all x > 1) and has
bounded derivatives on compact sets in R . Define g(z) := g(x, y) for z = (x, y) e R4 x R4 by

Iyl3
5.1 ,y) = = .
(5.1 gx,y)i=x+vy )

The parameter y € R will be tuned below in the proof of our strong law, see Lemma 5.9. (We use b in (5.1) rather than b
to avoid a blow-up of the derivatives of g at the origin; for what we need in this section only the large-x behaviour of g
is important.) The intuition behind the choice of g at (5.1) is that g(x, y) & x but, while X; has zero drift in the interior,
the curved level sets of g produce (positive but small) drift for g(Z;), while y can be tuned to control the sign of the
local-time drift arising from the reflection: see Figure 2 for a picture.

Note that SUP {1y [la<b(x) lg(x,y) — x| < |y|b(x). Define the X-Laplacian of g by Axg(z) := tr[H,(z)X(z)], where
Hy(z) is the Hessian of g. Lemma 5.1 below gives some basic asymptotic properties of g and its derivatives.

In coordinates, write z € R4*! as 7 = (x,y)=(x,y1,...,Y4), Where y € R4 and x, Y1, ..., Ya € R.Let 9y, 9y, denote
partial differentiation with respect to x, y;, respectively, and write Vy, = (3y,, ..., dy,) for the partial gradient with respect
to y, and V = (9, Vy) for the (total) gradient. The proofs of Lemmas 5.1 and 5.2 are based on deterministic calculations
and are deferred till Section 5.6 below.

Lemma 5.1. Suppose that b : (0, c0) — (0, 00) is twice differentiable. Then

b'(x)

)/W forx > 1.

(5.2) deg(x,y)=1— Iyll3, and Vyg(x,y) =2y

A
b(x)’

Moreover, if limy_, » b’ (x) =0, then
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y="b(x)

|
|
|
r=c
|
|

Fig. 2. Anillustration of a level curve of function g(z). Note that the parameter y in the definition of g in (5.1) modulates the curvature of the level set
{z € D : g(z) = c}. The vector field ¢ driving the reflection is asymptotically tangent to the level set of g at the boundary 3D for appropriate choice of
y, see (5.3) and Lemma 5.2 below.

(i) limy 00 SUDP || y]lg <b(x) Ix_lg(x, y) —11=0; and
(ii) sup,ep V(@ la+1 < oo.

If, in addition, lim, _, oo b(x)b" (x) = 0, sup_cp | 2 (2)llop < 00, and (2.5) holds, then
>ii1) limy_ oo SUD -1y [la <b(x) |%b(x)A2g(x, y) — y62| =0.

Consider v : 9D — R defined by
(5.3) (@) = ($(2), Vg(2)),

which appears in the local-time contribution to the drift of the process g(Z). The next result will allow us to control the
sign of v, which will enable us to dispense with local-time terms appearing in our It6 formula calculations for g(Z;) and
related processes.

Lemma 5.2. Suppose thatb : (0, 00) — (0, 00) is twice differentiable, that limy_, o, b’ (x) = 0, that Sup,¢yp 1P (@D la+1 <
00, and that (2.6) and (2.7) hold. Then,

(@) if so —2yco <0, then sup,,..=b(x) V(X ¥) <0 for all x sufficiently large;
(ii) if so — 2y co > 0, then infy.)|y),=px) V(X, y) = 0 for all x sufficiently large.

5.2. Escape probability

The next result gives an escape probability estimate and establishes ‘transience’. Recall that (F;),;cr, denotes the filtration
of the driving Brownian motion in (2.2). Let y > 0. For 0 <t < 7¢ set k; := g(Z;), where g satisfies (5.1), and define
Ky := 00 for t > t¢. Note that k¥ = (k);eRr, is a continuous process taking values in [0, oo]. We use the notation A and p
for the passage times for « as defined in (3.1).

Proposition 5.3. Suppose that (D1), (D2), (C), (V), and (A) hold. Then for all £ € Ry and all ¢ > 0, there exists x > {
such that, for every (F;)-stopping time T,

P(he,7 < poo | Fr) <€, on{kr >x,T < pso).
Moreover, lim;4p, k4 = 00 a.s.

Since, by (5.1), we have x < g(x,y) <x + yb(x) for all x > 1 and, by assumption (D), the upper bound x
X 4+ yb(x) is monotonically increasing for large x, it follows that

5.4 Por <0r < Pryyb(r), for all sufficiently large r € R..

Thus, ¢ = poo. Moreover, lim; 4., X; = 00 if and only if lim;4,, k; = o0.
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Proof of Proposition 5.3. By It6’s formula and (2.2),

t

! 1
5.5) Kz=g(Z0)+/ v(zx)dLs+5/ Apg(Z)ds + M, for0<1 < e,
0 0

where v is as defined at (5.3), and M’ is a local martingale given by

t
(5.6) M{:/ (Ve(Zy), 2Y2(Z,)dw), for0O<t <rtg.
0
Note that
t
(5.7) [M’]tsfo Ve, |=" 20|23 ds < Cr, for0<r <,

for a constant C < oo, by (C) and Lemma 5.1(ii). Define f : [0,00] — [0, 1] by f(x):=1/(1 +x) if x € R, and
f(00) :=0. By Itd’s formula and (5.5), for 0 <t < 1¢,

t
(5.8) f) = f(g(z0)) —/0 (1 +k)"*(G(Z) dr +v(Z) dL, + dM;),

where, for all z = (x, y) € D with x > 1, G satisfies

1 _
G(2)=Gx.y) = 78586 — (1 +8@) " [Z2@ Ve,

Note limy_, 00 (b(x)(1 + g(z))~!) = limy_, oo x~'b(x) = 0. Moreover, Sup,cp ||221/2(z)Vg(z)|IflJrl < 0o by Lemma
5.1(ii) and the boundedness of £ !/2. Hence Lemma 5.1(iii) yields

(5.9) lim  sup |b(x)G(x,y) —yo?| =0.

Y0y lylla<b(x)

Suppose that y € (0, 25700). By (5.9), Lemmas 5.1(i) and 5.2, and the fact that b is bounded on compact sets, there exists
£o > 1 so that, for every x > £ we have

(5.10) b(x)G(x,y) > )/02/2 if(x,y)eD, and v(x,y)>0 if(x,y)e€dD.

For any stopping time 7 and any £ > £ and r € ({, 00), define the stopping time S := Ay, 7 A o, 7, Where Ag 7 and p, 17
are given in (3.1). Note that for any time ¢ € [T, S] in the stochastic interval we have «; > €. Thus, by (5.8) and (5.10),
on the event {T < pxo}, for any 0 <s <t we have

(5.11) E[ f (k+1)78) — fks+1)n8) | Fosr] < —EINi—s | Fqr],

where the local martingale N, := f(iff]‘f;;?“(l +iy) 2 dM], has quadratic variation bounded as [N], < [M']y4s+T)rs —

[M'1(s+1yAs < Cv for all v € Ry (the constant C is as in (5.7)). Thus N is a true martingale and (5.11) implies
(5.12) E[f (+1y78) | Fsa1] < f(k(s+1)ns), on the event {T < poo).

This implies the hypothesis (b) in Theorem 3.1. Since hypothesis (a) clearly holds for the function f(x) = (1 + x)~!,
Theorem 3.1 implies the proposition. (|

5.3. Linearization transformation

To quantify the rate of escape of our process, we transform g(Z) to obtain a process that grows approximately linearly,
in a sense we describe shortly. Recall the definition of B from (2.8) and that the Lyapunov function g satisfies (5.1).
Consider the [0, oo]-valued process B(k) = (B(k1))eRr, » satisfying B(k;) = B(g(Z;)) for 0 <t < t¢ and B(x;) = B(00)
for t > t¢ (recall also tg¢ = po a.8.).
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Lemma 5.4. Suppose that (D1), (D), (C), (V), and (A) hold. There exist a function u : D — R and a process M =
(M1)1€[0,po0) SUCh that

t

t
(5.13) B(Kz)=B(g(z))+/ u(zs)ds+/ b(8(Z))V(Zs)dLs + M;,  for0<t < p,
0 0

where the function v is given in (5.3). Moreover, u and M have the following properties.

(1) It is the case that

(5.14) im  sup  |nGey)—yod|=0.

Y0 yylla<b(x)

(ii) There exists a constant C < oo such that, a.s., for all 0 <t < peo,

t

(5.15) [M],fo b(g(Zy))" ds.
0

(iii) The process N = (N¢)ieRr,, given by Ny := (M(t+1)rrprnpnr — MT)UT < poc}, defined for any 0 < £ <r (where
Ae.T and p, 1 are given in (3.1) for k = g(Z)) and (F;)-stopping time T, is a continuous, uniformly integrable
R-valued (F;4+1)-martingale.

Proof. By It6’s formula, for 0 <t < peo,

1 /
dB(k;) = b(g(Zt)) die; + Eb (g(Zz)) dlx]s,

where « satisfies (5.5). Thus we obtain (5.13) with

1
(@) = 5[b(e(@)Asg(@) +/(22) |1=2@) V@], ]:

and dM, = b(g(Z,)) dM| where M’ is given by (5.6). Note that d[M], = b(g(Z,))>d[M'], where [M'], < Ct, by (5.7).
Thus, by integrating, we obtain (5.15) establishing (ii).

Set C, = Csup(y yyep x<r b(g(x,y))? < 0o. On the event {T < poo}, an analogous argument to the one that estab-
lished (5.15) implies the following inequality for all r € R, :

(1+T>Apr,T 2
(M1GgsTy)Ang rrpnr — [M]T < C/ b(g(Zy)) ds <C (¢ +T) Aprr —T).
T

Since, by (5.4), we have p, < o, a.s. for all r sufficiently large (o, is defined in (2.9)), the continuous local martingale N
is a uniformly integrable martingale since it is bounded in L? by Theorem 4.1:

sugEZo[Ntz] <G Ezg[(pr,T -TYT < pOO}]
>

(5.16)
=C, E[Elprr — T | FrIl{T < poo}] < Cr supE 0, < 00,
zeD

for any starting point zo € D of Z. This implies (iii).

Finally, by the mean value theorem, b(g(x, y)) — b(x) = (g(x, y) — x)b'(x + 6(g(x, y) — x)), where 6 =0 (x, y) €
[0, 1], and since |g(x, y) — x| = O(b(x)) (by (5.1)) and b’ (x) = o(1) (by D2) as x — oo, we have |b(g(x, y)) — b(x)| =
o(b(x)) as x — 00. Then (5.14) follows from Lemma 5.1, and we obtain (i). O

Let ¢ > 0. Note that, for 6+ = yo? & ¢, Lemmas 5.2 and 5.4 suggest that, before exiting a bounded set, the process
§(B’9+) (resp. Q‘(B'Q*)), defined in (3.5)—(3.6), is a supermartingale (resp. submartingale) if 2y co > sg (resp. 2y co < o).
In order to understand whether the process X is explosive or superdiffusive using the theory of Section 3, Lemma 5.5
establishes such a property, starting after an arbitrary (F;)-stopping time. The localisation by p,, 7 is removed in the proof
of Theorem 2.2, thus yielding our law of large numbers via Theorem 3.5.

Lemma 5.5. Suppose that (Dy), (D3), (C), (V), and (A) hold. Recall the function B, given in (2.8), and that k = g(Z).
For arbitrary ¢ > 0 and y, define 0+ := yo? + ¢ (see (2.5) for the definition of o?).
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(i) Picky > 5. Then there exists x| € Ry such that, for all 00 > r > £ > xy, the process C(B 0+) , defined in (3.5)—(3.6),
and any (]:,) -stopping time T satisfy

]E[{,(B’9+) | Fsar ] C(B 9+), on {T < poo}, forallt >s>0.

(i) Picky € (0, 3700). Then there exists x| € Ry such that, for all 00 > r > £ > x1, the process ¢ B9 defined in (3.5)—
(3.6), and any (F;)-stopping time T satisfy

E[¢ | Foor] = &%), on T < pw), forallt = s > 0.

Proof. Suppose that y > ;700 and ¢ > 0. By (5.14) and Lemma 5.2, there exists x; € (0, oo) such that v(x, y) <0 and
w(x,y) <yo?+e= 0+ for all x > x7 and all y. Pick oo > r > £ > x1 and a stopping time 7. On {T < pso, kT < ¢},
by (3.5), one has Ay 7 = T, implying v; = vy = 0 and hence §(B 0+ §(3,9+) forall 1 > s >0.0n {T < poo, kT > £},
one has k, > £ for all u € [T + vg, T + v] since, by definition (3.5), v; + T < Ay 7. Thus, by (5.13) and the inequalities
in the beginning of the paragraph, we get

T+,

B0 B.6
(B0 B0 6 (v, — vy + / dB(y) < My, — Mrsn,  on (T < poc).
T+vy

Lemma 5.4(iii) implies that (M7, — M7):cRr, is a uniformly integrable (F r)-martingale and thus E[M7 1, | Fyy7] =

M7y, a.s. It follows that ]E[;“(B 64) §(B’0+) | Fs+1] <0, which gives (i). The argument for (ii) is similar. O

5.4. Explosion and passage times

Theorem 4.1 shows that E, 0, < oo. The next result gives quantitative estimates for E, o, in terms of B(r) under the
stronger assumptions in force in Theorem 2.2.

Proposition 5.6. Suppose that (Dy), (D2), (C), (V), and (A) hold. If B(00) < 00, then sup,.p E; t¢ < 00. On the other
hand, if B(0o) = oo, then, for all z € D,
E; o 2¢cp

r—>o00 B(r)  soo?’

The following lemma, proved in Section 5.6 below, gives certain properties of the functions b and B, useful in what
follows.

Lemma 5.7. Assume B, defined in (2.4), satisfies B < 1. Then the following hold.

(i) If B(oo) < 0o, then b(x) = O(1/x) as x — oo, while if B(00) = 00, then there exist § € (1,2) and C < oo such that
b(x)> < C(1+ B(x)*7%), forall x e R,.
(i) For any w € R, it is the case that lim,_ o B(x + wb(x))/B(x) = 1.

Proof of Proposition 5.6. We will apply Theorem 3.2 to the process x = g(Z). Let y > 0. A consequence of (5.4) is
that P(t¢ = po) = 1. Note that hypothesis (a) of Theorem 3.2 follows from Proposition 5.3. Assumptions (b) and (c) of
Theorem 3.2 are satisfied by (5.4), Theorem 4.1 and the strong Markov property for Z (cf. the inequality in (5.16)). Take
the function f in Theorem 3.2 to be f = B as defined at (2.8).

Suppose first that B(oo) = oo. Pick arbltrary e>0and y > S—O . Lemma 5.5(i) shows that the hypotheses of Theo-

rem 3.2(i) are satisfied for 0 := 6, = yo? + €. Since p, < o, by (5 4) and the continuity of x implies B(r) = B(k,,), by
Theorem 3.2(i) we get

E.o 1 2
liminf =22 > — » 20

> _ /
r—oo B(r) — 6y spo2

)

for any &' > 0, where the second inequality follows by choosing ¢ and y arbitrarily close to 0 and 5 -, respectively.
Since &’ > 0 was arbitrary, we get the ‘liminf” half of the desired conclusion in the B(c0) = oo case. The corresponding
‘lim sup result follows similarly; now using Lemma 5.5(ii) and Theorem 3.2(ii) (with § :=0_ = yo? — ¢ and y €
o, 2 20 %)), and the upper bound 0, < p, 1 p(r) in (5.4), shows that

E; oy 2¢o
lim sup < .
r—oco B(r+yb(r)) = soo?
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The proof of the B(0co) = oo case is then completed by Lemma 5.7(ii).
If B(c0) < 0o, Lemma 5.5(ii) shows that we may apply Theorem 3.2(ii). In particular, sup,.p E; ¢ < oo follows
from the final claim in Theorem 3.2(ii). O

5.5. Non-explosion and the strong law
The next result establishes non-explosion, via an application of Theorem 3.4.
Lemma 5.8. Suppose that (D1), (D>), (C), (V), and (A) hold. If B(co) = 00, then P,(tg = 00) = 1 for every z € D.

Proof. Take y > ;TOO’ and consider B(x)* for @ € (0, 1/2). By Itd’s formula and (5.13),

t

t
B(k:)* = B(ko)* + / aBicy)*  u(Zy) ds + f aBky)* 'b(g(Z,))v(Z,) AL
0 0

t t

—1

+/ ozB(/cs)“_ldMs—f—/ %B(n)“”d[M]x, for 0 <1 < poo.
0 0

By choice of y, with Lemmas 5.2 and 5.4, for g(z) > £ large enough, we have v(z) <0 and u(z) < C < oco. Fix £ as
above and pick co > r > x > £. Thus, there exists C € Ry such that

EAR, p APr
(5.17) Blkinse, npp)* — Blko)® < Ci + / aBy) dM,.
0

Moreover, by (5.15) and Lemma 5.7(i), for ¢ € [0, A¢ p, A pr,p, ] We Obtain

t t
[Bo)], < f o2 By 2 d[M], < / CB(2(Z)) ™ b(2(2,)) ds
0 0
(5.18) ,
5/0 C’B(g(ZS))ZDHa ds < C't, for some constant C’ > 0,

since 2« < 1 and the § from Lemma 5.7(i) satisfies § > 1.

Pick 6 > C from (5.17). The process ¢/?), defined in (3.6) with f(x) := B(x)%, is a supermartingale by (5.17).
Thus hypothesis (b) of Theorem 3.4 holds for ;9 with 6 > C. Hypothesis (c) of Theorem 3.4 also holds by (5.18).
Hypothesis (a) holds by Proposition 5.3 and Hypothesis (d) is trivial for continuous processes. Since tg = poo by (5.4),
applying Theorem 3.4 completes the proof of the lemma. (]

In order to apply the non-explosive law of large numbers results from Section 3 (namely Theorem 3.5) we also need
bounds on the quadratic variation of B(k), where k = g(Z) and the function g satisfies (5.1).

Lemma 5.9. Suppose that (D1), (D2), (C), (V), and (A) hold. Pick y > 0 and assume B(00) = oco. For any z € D, there
exists § € (1,2) such that,

EZ([B(K)]I) = 0([3_5), ast — oQ.

Proof. For any z € D, the inequalities in (5.4), assumption B(co) = oo and Lemma 5.8 imply P, (pso = 00) = 1. Pick
y > 0 and define the stopping time p, by (3.1) (with T = 0) for some large r, where the process k = g(Z) with g
satisfying (5.1) with our chosen y. By (5.13) we have that [B(k)]rrp, = [M]inp, forall z,r € Ry, where (M;pp, )icr, is
a martingale whose quadratic variation satisfies the bound in (5.15) of Lemma 5.4.

By Lemma 5.7(i), we have b(x)2 <C+ CB(x)z’a for some § € (1,2), C > 0 andall x > 0. Now, forall r,t € R} and
stopping time S, we have

E.[b(kins)?] < C + CE[Blkins)* ] < C + C(E[Blkins)])* ", on (S < poo),

by Jensen’s inequality, which is applicable since 2 — § € (0, 1). Define yp :=y Vv f_—g, so that yp > ﬁ Let gy, satisfy (5.1)

N
C

with yp instead of y. Thus g(z) < g, (z) for all z € D (recall that g satisfies (5.1) with y, fixed in the beginning of the
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proof, and y < yp), and B is non-decreasing. Let the stopping time p, be defined by (3.1) for «" = g,,(Z) and T = 0.
By (5.15) and the previous display with S = p/. there exists a constant C' > 0 such that

t

(5.19) E(IMly) < C't +C' fo (E=[B (230 (Zsnp)])> ds.

Lemma 5.5(i), applied to the process g,,(Z) with 6 := )/002 + ¢ (for arbitrary ¢ > 0), yields EZ[B(gVO(ZMp;))] <
C"+ C"E,[t A p/]1 < C"(1+t) for some constant C” > 1 (cf. definitions (3.5) and (3.6)). Thus from (5.19) we conclude
that

t
B:([B00]) = lim E([B@),,,,) < Cr+C(C) [ 497 ds=0(7),
ast — oo. ]
Finally, we can complete the proof of our main theorem.

Proof of Theorem 2.2. Suppose first that B is bounded. Then Proposition 5.6 shows that sup,.p E; t¢ < 00. The fact
that lim; 4., X; =lim;y¢, L, = 00, a.s., is contained in Theorem A.1. This completes the proof of part (i) of Theorem 2.2.

Suppose now that B(co) = co. Here Lemma 5.8 shows that P, (tg = 00) = 1 for every z € D. The limiting behaviour of
the expectations [E; o, as r — 00, is given in Proposition 5.6. It remains to prove the strong law of large numbers in (2.10)
and the almost sure limit in (2.11); we first apply Theorem 3.5 to obtain ‘liminf” and ‘lim sup’ results for X;. Take y > 0,
to be tuned later, and let g be given by (5.1). Take x = g(Z), which is R -valued for all t+ € R . Hypotheses (a) and (b)
of Theorem 3.5 hold, by Proposition 5.3 and Lemma 5.9, respectively.

First take y > 23?0 Fix ¢ > 0. Let = ({)rer, be asin (3.6) with f = B, 0 := yc72 + &, £ > x1 (where x; is as in
Lemma 5.5), T = p, for x > £, and r := 0o. For any 0 < s < ¢, define u; := (t + px) A Ag,p,s Us := (S + px) A dg p,-
By (5.13) in Lemma 5.4 we have

Uur
Zt_§s=_6+(ut_us)+/ dB(Ku)fMu, _Muy
Us

The process (M, );er, , defined in the proof of Lemma 5.4, is by Lemma 5.9 a local martingale with integrable quadratic
variation (i.e. E,([M];) < oo for all + € Ry and z € D). Thus, by [32, p. 130], it follows E[M,, — M, | Fsyp, ] =
0 a.s., implying that ¢ is a supermartingale (note that the martingale property here cannot be obtained directly from
Lemma 5.4(iii) as the process is not stopped at p, ). Thus, by Theorem 3.5(i), we get limsup,_, ., B(g(Z;))/t < yo?+e.
Since y > 23790 and ¢ > 0 were arbitrary and, by the monotonicity of B, we have B(g(Z;)) > B(X,), it follows that

B(X 2
lim sup (X:) < 07

t—00 t ~ 2c '

Next, take y € (0, %) and € > 0. Then a similar argument based on an application of Theorem 3.5(ii) with 6_ :=

yo?2 — & shows that liminf,_, o B(g(Z;))/t > 5002 4 . Now B(g(Z;)) < B(X; + yb(X;)), and so Lemma 5.7(ii) shows

2¢cp
that

B(X B(X, +vb(X 2
liminf ( t)zliminf X: +yb(Xy) _ s00

> , as.
1—00 t 1—00 t 2co

Combining these results gives the limit for B(X;) in (2.10). The limit for B(||Z;|z+1) in (2.10) follows from
Lemma 5.7(ii) and the fact that ||| Z;||g+1 — X¢| < yb(Xy).
Finally, we observe that

(5.20) X, =(ex,z2)+my+4£;, t<tg, where

t t
(5.21) m, :=/ el 2V2(Z,) dws, l, :=/ (ex, #(Zy))dLy, forO0<rt <rte.
0 0

We have from (2.10) that r—1/2=¢ X, — coas.ast — co = 7g for some ¢ > 0 (see Remark 2.3(b)), while the martingale
m satisfies [m]; < Ct for all + € Ry. Since m can be viewed as a Brownian motion time-changed by the quadratic
variation [m], we have r—1/2=¢p, — 0 a.s. as + — oo. Hence lim;_, oo (m;/ X;) =0, a.s., and so from (5.20) we obtain
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lim;—, 5o (¢;/ X;) = 1, a.s. In particular £; — o0 a.s. as t — 00. Moreover, from (2.6) and the fact that X; — oo, a.s., we
have that lim;_, o (€, ¢ (Z;)) = 50, a.s. From (5.21), for any ¢ > 0, there exists an a.s.-finite random variable &, such that
|€; —soL:| <eL;+ & as.forall t € Ry. Thus, L; — oo and ¢;/L; — s9, a.s., as t — oo and we obtain (2.11). O

5.6. Deterministic calculations and estimates
In this subsection we prove deterministic Lemmas 5.1, 5.2 and 5.7.
Proof of Lemma 5.1. Statement (5.2) is direct from differentiation of (5.1), and statements (i) and (ii) then follow, since

SUP -y <b(x) 18 (X5 ¥) —x| < |y[b(x), and lim, _, o ' (x) = 0 implies that SUP, > |b'(x)| < oo and limy— so x ~1b(x) =
also, while ||Vg||4+1 is bounded on bounded subsets of D, by assumption. For x > 1, differentiating (5.2), we obtain

20 (x)? B b”(x))H 2
b(x)?  b(x)? &

Ox0xg(x,y) = V(

2y
ayiang(an) m {l_]}

b (x)
b( )2 PR RAE

Denoting ¥ (z) = (%;(2))o<i,j<d for z = (x,y) € D, where index i corresponds to coordinate x if i =0 and to y; if
1 <i <d, it follows that, for x > 1,

0x 0y, 8(x,y) =

)% 2 b b
Azg(z)zyzoo(z)< b(i);i —b(gz)nyn,% e )Z i (2) - b((;Zylzol(z)

Since, from (2.5), sup,. ., <p(x) | >4 Sii(x,y) — 0% — 0as x — oo, we obtain

1
sup  |=b(x)Asg(x,y) —yo?| < C|2() ||0p[b’(x) + b/ (x)? 4+ b(x)b" (x)] + (1),
yillylla=<b(x)
for some constant C < co. By assumption, this tends to 0 as x — oo, giving (iii). (]

Proof of Lemma 5.2. Suppose that x > 1, and consider z = (x, y) € 8D. Then ||y|lq = b(x) > 0and § = y/b(x) € S~ 1.
Write ¢(2) = (¢#(2), ex)ex + (¢(2), e5)es. By the expression for Vg(z) from (5.2), we have d,g(x,y) =1 — yb'(x),
Vyg(x,y) =2yy, and

V(2) =(0(2), €x)0:8 () + (#(2). 5)3 " Vy8(2) = (#(2). ex) +2y(¢ (2), e5) + o(1),

as x — oo, provided b’ (x) — 0, using the fact that ||¢(z)||s+1 is bounded. The conclusion of the lemma now follows,
since assumptions (2.6) and (2.7) show that

lim sup |v(x, y) — 8o+ 2yco| =0.

Ty la=b(x)

This completes the proof. (]

Proof of Lemma 5.7. First we prove (i). By definition of g at (2.4), for any ¢ > 0, there exists x; € R4 such that
(B +e)b(x) > xb'(x) for all x > x;. Hence, for x > x1,

B(x) = /Ox b(s)ds > ,B——Ii-e /}: sb'(s)ds

1 X 1
= e [sb(x)]x1 ’3 . / b(s)ds.

It follows that, as x — o0,

(5.2) [1+L}B( )= Do,
) B+ T B+e
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Thus, for some C < oo,
(5.23) x2b(x)>2 < CB(x)>+C, forallx eR,.

If B(oco) < o0, then (5.23) gives b(x) = O(1/x) as x — oo. Suppose that B(co) = oco. Then, since b(x) = O (xP+#) for
any ¢ > 0, we must have 8 > —1 (or else B would be bounded). Let § € (1,2 A ﬁ). Then B(x)? = O(xz) as x — 0o.
Hence, by (5.23), there is a constant C < oo such that, for all x > 1, say,

C <C'B(x)*?,

b(x)*<C .
X

B(x)? _B(x)’B(x)*°
-

for some C’ < 0o. Since b is bounded on compact intervals, part (i) follows.
For part (ii), we have that, for fixed w € R, for all x sufficiently large

x+wb(x)
|B(x + wb(x)) — B(x)| = f b(s)ds| <|w|-b(x)- sup b(s).
by x/2<s<2x
Thus from (5.23) we see that |B(x + wb(x)) — B(x)| < Clo|(1 + B(x)?)/x? for all large enough x, which together with
the fact that B(x) = o(x?) as x — oo yields (ii). O

Appendix: Solutions, existence, and uniqueness

This section defines formally the terminology in Theorem A.1 below and then gives its proof. The first step is to describe
the function space on which our (possibly explosive) solutions to (2.2) will live, then we proceed to define the concept of
a solution up to a predictable stopping time, and discuss existence and uniqueness; we draw in part on the approach of [3,
§1.5] for solution theory of potentially explosive SDEs.

Recall from (2.1) the definition of D € R?*!, which inherits the usual topology from R?*!. Let D := D U {3} denote
the one-point (Alexandroff) compactification of D whose open sets are the open sets in D together with all U = (D \
B) U {0} over compact B € D. The adjoined state d will accommodate explosion. Since D is open in D, {9} is closed.
For z = (x,y) € D, let P;(x,y) := x € Ry denote projection onto the first coordinate, and extend to Pj : D — [0, 00]
by setting P;(d) = oo. Then z, € D has z, — 9 if and only if Pi(z,) — oo, since z; — 9 if and only if for every
compact B it is the case that z, € (D \ B) U {3} for all n sufficiently large. Thus P; : D — [0, o] is continuous, where
[0, oo] := R4 U {00} also has the topology of the one-point compactification.

Let C := C(R,, D) denote the set of continuous functions f : R, — D. By choice of topology on D, any f € C has
the properties:

(1) If r e Ry is such that f(¢) € D, then lims_,; f(s) = f ().
(i1) If r € R4 is such that f(t) = 9, then limg—,; Py (f(s)) = oo.

With the usual convention that inf @ := oo, define £ : C — [0, co] by
(A.1) E(f):=inf{t eRy: f(1) =0}.

By continuity of f, f(E(f)) =09 if £(f) < oo, so property (ii) above shows that lim;1¢(r) P1(f(¢)) = co. For f € C
define Sy : C — [0, o] by

(A.2) Se(f):=inf{r e Ry : Pi(f (1)) € [x, 0]}
We claim that

(A3) E(f)leirrgon(f), for every f € C.

Indeed, S,» > Sy for all x’ > x, so S(f) :=limy_ o0 Sy (f) exists in [0, 0o]. Clearly Sy (f) < E(f), so S(f) <&E(f). If
S(f) < E(f) then, S(f) +2¢ < E(f) for some € > 0, and M := SUPg<<s( )+ P1(f(5)) <00, by uniform continuity
of s = P1(f(s)) on compact intervals before £(f). Then for x > M we would have S,(f) > S(f) + ¢ and hence
S(f) = S(f) + ¢, which is a contradiction; this establishes (A.3).

Endow C with the compact-open topology, that is, the topology generated by T(K,U) ={f € C: f(K) C U} over
compact K € R, and open U C D. Suppose that f, — f.If U C D is open, then f[0, ] C U implies that r < £(f), and
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so the requirement that f;,[0,¢] C U for all n sufficiently large means that liminf,_, ., £(f,;) >t and f,, converges to f
uniformly over [0, ¢]. It follows that f,, — f implies that

(A4) sup | fuls) = £ g =0, forallz < E(F);
<s<t

(A.5) Jim S (fu) = Sx(f);

(A.6) liminfE(fy) = £(f).

Here (A.5) follows from (A.4). Indeed, suppose that (A.4) holds, and S, (f) = S € [0, oo]. For any ¢ < §, for all n suffi-
ciently large, supg<,<; P1(fn(s)) <x,s0 Sx(fn) > t, and liminf,,_, o Sx(fn) = Sx(f). If Sy (f) = oo then this is a limit;
otherwise, a similar a_rgument in the other direction shows that limsup,,_, o, Sx (f») < Sx(f). In any case, we obtain (A.5).
Since £(f;,) > Sy (fn), this implies (A.6).

Let C := C(Ry, D) denote the set of f € C satisfying f(¢) = 9 for all # > £(f), endowed with the compact-open
topology inherited from C. We will show that solutions to (2.2) can be interpreted as trajectories f € C with potential
explosion time E(f).

We will talk about solutions of (2.2) in the sense of solutions up to a predictable stopping time: cf. the discussion in [3,
§1.5]. To describe this, we need some more notation and definitions. Define for n € Z the stopping time 7, given by

(A7) To(f):=nASy(f), for feC.

Then T, is a predicting sequence for £, meaning that it has the following properties:

O T, (f) <Tus1(f);
(i) T.(f) <E(f),and T, (f) < E(f) if E(f) > 0;
(iii) limy,— 00 Tn (f) = E(S).

We say that £( f) is a predictable stopping time with predicting sequence T},. Property (i) follows since S,4+1(f) > S, (f),
and (iii) since lim,— o0 S, (f) = E(f). Suppose that 0 < E(f) < oo, then, since P;(f(t)) — oo as t 1 E(f), for any
x € Ry we can find t < £(f) such that P;(f(¢)) € [x, 00); hence Sx(f) < E(f) < oo for all x € Ry. On the other hand,
if £(f) = oo then n < E(f) for all n. This establishes (ii).

Say that (2.2) has a strong solution up to time £~ if for every probability space (2, F,P) with a complete, right-
continuous filtration (F;);cr, and an adapted (d + 1)-dimensional Brownian motion W = (W;);cR, , and every z € D,
there exists a pair (Z, L) with P(Z € C) = 1 and, for every r e Ry, (Z; Aoy )teR, 18 an adapted semimartingale on D and
(Ltno,)teRr, is a bounded variation process on R for which

tAG, tAG,
Zino, =z+/ =12(z,) dw, +f ¢(Z)dLy,
0 0
(A.8) iho
and L, :/ 1{Z; € 9D}dLyg,
0

where o, :=inf{t € Ry : Pi(Z;) > r}, i.e., 0, = S;(Z), a.s., in the notation at (A.2). We define tg := lim,_, », 07, SO
that 7¢ = £(Z), a.s., with the notation at (A.1). Thus if we have a strong solution up to time £, we have the triple
(Z, L, tg) as described.

Moreover, we say pathwise uniqueness holds if for every probability space (€2, F, P) equipped with a complete, right-
continuous filtration (F;);cr, and an adapted (d + 1)-dimensional Brownian motion W = (W;);cR, , if there exist two
strong solutions up to time £~ on (2, F, IP) with respect to W, denoted by (Z, L, t¢) and (Z', L, t¢’), say, then P(Zy =
Zy) =limpliesthat P((Z=2'.L=L",tg =1¢') = 1.

Theorem A.1. Suppose that (D), (C), and (V) hold. Then there exists a strong solution (Z, L, t¢) satisfying (2.2), and
there is pathwise uniqueness. In particular, (2.2) defines a continuous strong Markov process Z over time interval [0, tg)
and

lim | Z;|| = lim L, =00, on {tg < o0}.
tPte tPte

Remark A.2. The idea of the proof of Theorem A.l is to apply existence and uniqueness results from [20] for diffu-
sions with oblique reflections on bounded domains to an increasing sequence of bounded domains. The main technical
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contribution of the proof of Theorem A.1 is establishing lim;y, || Z;|| = oo, which is required for P(Z € C) =1 in the
definition of a solution.

Proof of Theorem A.1. Let (2, F, P) be a probability space accommodating a (d 4 1)-dimensional Brownian motion W
adapted to a complete, right-continuous filtration (F);ecr, . We show how to construct a pair (Z, L) which satisfy (A.8)
for every r. To do so, we approximate D by an increasing sequence of bounded domains, on which we can use the results
of [20, §4], and then take a limit.

The assumption (D;) implies that D is a C> domain, by Lemma 4.3. Let (D™, u > 0) be a sequence of bounded C?
domains in R4t! and define D}“) ={(x,y) € DWW . x < rYand D, = {(x,y) € D:x <r}. Suppose that for all u > r > 0,
D = D, and D, NID® =D, N D. Suppose also that ¢ : D@ — RI+1 jg such that ¢ (z) = ¢ (z) for all z € Dy,
that ™ is C2, and that the analogue of (2.3) holds.

Fix z=(x,y) € D, and take r € (x, 00). Since X is Lipschitz and uniformly elliptic, the symmetric square root X
is also Lipschitz [34, p. 131]. Then, since D) is C? and bounded, £1/2 is Lipschitz, and ¢(’ ) satisfies the conditions
described above, all the conditions of Theorem 4.3 of [20] are satisfied for domain D) and vector field ¢>(’). That result
then implies that there is an (F;)-adapted continuous semimartingale Z" with Z,(r) e D) for all t > 0, and a bounded
variation process L) such that, forall ¢ € Ry,

1/2

t t
Zt(r)=Z+/0 EI/Z(ZAE’))dWs+/O ¢(V)(Z§r))dL§r),
(A.9) t
and Lt(r):/ ]1{Z§r)€3'D(r)}dL§r).
0

Moreover, the results of [20] show that the pair (Z(”, L") is essentially unique, in that any other pair for which (A.9)
holds must be a.s. identical.
Define a&,” :=inf{r > 0: Z")(r) > w}. Then stopping the process at time Ur(r), from (A.9) and using the facts that
¢(’)(Z(r) ") = ¢(Z(r) ) and z" o € Dy, we have
t Aoy t Aoy t Aoy

") e (AP
r
Zo =1+ /0 2V2(z0)dw, + /0 ¢(z{")dLy",

tra”
and LV :/0 1{z" e 8D} dL?.

(A.10)

Note that uniqueness of (Z®), L)) in (A.9) implies uniqueness of (Z®, L"), o,(r)) in (A.10). On the same probability

space, we can for u > r define Z® such that,

z" =1+ /
tAoy 0
(u)

tAGy,
and L' —/ 1{z e aD}dL{".

/\Ur(u) - 0

(u)

tAGy, ()

tAOy
mR(z)aws+ [ p()aLy.
0

s

In particular, since a,(”) < Uu(”)

O'(M) t/\O'r(u)

tAG,
() 1/2(7(u
z =Z+/O 212(ZW) dwy +/O ¢(zM)dL™,

@ e W 0
u
and L7, = /0 1{z{" e oD} dL{".

Hence (Z®, L@ 5™ solves (A.10) and so, by uniqueness, we have o =) for all u > r, and so if we write

0, 1= lim,_ 00 0", we have

forallu >r, o, = ar(’) = Ur(”), and (Z,(/“\)Jr, ng’;\)ar) = (Zt(f\)ar, L;rA)gr).
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Since o, is the hitting time of a closed set, it is a stopping time for (F;);cr, . On the same probability space we then
define t¢ = lim,, o 07, also a stopping time for (F;):er, [18, p. 7].
On the same probability space, we may now define

| im zZ0ifr <,
=
d ift > ¢,

and set L; =1im, _, L;rA)(,r for t < tg. Note that for every t < t¢, t < o, for all r > r(t) sufficiently large, so Z; = Zl(”)

and L; = Lt(“) for all u > r(¢), i.e., the limits are eventually constant. Moreover, Z; s, = Zt(rA)a, and Lipng, = L;rA)(,r SO,
by (A.10), for any r € R,

tAG: tAG;
P —— / $12(Z0) dW, + f 6(Z,)dLs,
0 0

tNOy
and Ll/\O'r :/ ]I{ZS (S 8D} dLS.
0

Thus we have shown that (Z, L) satisfy (A.8).

We have defined L such that L, is non-decreasing for ¢ < t¢, so we complete the definition by setting, if ¢ < oo,
L., =limj_ ¢, L; and L, = L, for all t > 7¢. Recall the definition of m and £ from (5.21), and from (5.20) that
X; = (ex, z) + m; + £;. The local martingale (71, );>0 has E([m]irs,) < Ct for all #,r € R4, so is a martingale. Set
[m]ee :=1lim, oo[m]s, €[0,00]and T;, :=inf{t € Ry : [m];r:, > n}, forn € N. Then sup,>g E[mgr/\rn] < 00, and hence
optional stopping shows that (4,7, )ken 1S a martingale uniformly bounded in L?. Hence On.00 = liMgs 00 M AT,
exists and is finite, for each n. On {tg < oo}, we have T,, = oo for some a.s. finite ng, and hence limy_, oo My, =
Ong.00 =: Mo, say, is a.s. finite.

Recall that D, = {(x, y) € D : x <r}. We next claim that for every r € (0, 00), there exists a constant ¢, > 0 for which

1
(A.11) inf P:(02 > ¢;) = 3.

z€D,

We now prove (A.11). For 0 <t < tg, define X; = (e, z2) +my + K;’, where

t
E;r ::f (ex, (;ﬁ(Zs))+ dL;, for0<t < tg.
0

Then 0 < X; < X; for all 0 <t < 7g and, for any r > 0, (X;N,r)le]RJr is a non-negative submartingale. Hence, for any
te R+,

P(ozrft)zﬁ”( sup XS22r>§IP’< sup X;22r>

0<s<tAoy, 0<s<tAnoy,

1
(A.12) < 2—EX’

r A0,

< ! CEL
= 5((6)67 Z) + lA(Tzr)7

by the maximal inequality for non-negative submartingales (e.g. Thm. 3.8(i) of [18, p. 13]), and the fact that E,JFA% <

CLno,,» Where C :=sup,cyp ¢(2)lla+1 < 0o by (V). To bound E Ly, , consider N : R9T! — R with the property
that VN (z) = ¢, (u) for every z = (x, ub(x)) € 9D, for which N is C 2 and so all its partial derivatives of up to second
order are bounded on compact sets. For U, := N(Z;), 0 <t < tg, It0’s formula implies

Uingy, — Uo = 1y + Ling,, — Cit,

where (11;);er, is a martingale and the constant C;, < oo exists since X and the second derivatives of N are bounded on
Dy,. Hence E Lipg,, < Crt +E|Uing, — Uol. Moreover, SUP; R, U oy, 1s bounded by a constant, and so by bounded
convergence lim;_,oE L; x4, = 0 for every fixed r € (0, co). Thus, by (A.12), we can choose ¢t = #p > 0 small enough
(depending on r) such that inf,cp, P, (02, > 19) > 1/3, since z = (x, y) satisfies x < r. This completes the proof of (A.11).
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From (A.11) it follows that lim,4;, X; = oo on the event {tg < 00}. To see this, define stopping times so := 0, and,
for k e N, ty :=1inf{t > sx_1 : X; <2r} and s; ;= inf{t > #; : X; > 4r}. On the event {r¢ < oo, liminf,4,, X; <r}, we
have so <] <s1 <--- < g < 00. However, by (A.11) and the strong Markov property, P(sx — #x > c2, | F,) > 1/3 on
{ti < oo}. From Lévy’s extension of the Borel-Cantelli lemma (Cor. 9.21 in [16, p. 197]), it follows that sx — tx > ca,
occurs infinitely often, a.s., on the event {r¢ < oo, liminf;4;, X; < r}. But then liminfy_, o s¢ = Z?’;l(s( —Sp—1) >
Z?’;l(sz — tg) = 00, contradicting the fact that limsup,_, ., sx < t¢ < 0o. Thus lim;4, X; = 00 on the event {rg < 00}.

Since X; = (e, z) +m; +¥{;, and m; has lim,y., m; < 00 on {tg < 00}, as argued above, it follows that lim, 4., £; = 00
on {tg < 0o} as well. Also, £; < CL;, where C :=sup,4p [[¢(2)|l¢+1 < 00 by (V). Hence we conclude that

(A.13) lim X; =1lim ¢, = lim L; =00, on {1g < oo}.
thtg ttte ttte
In particular, this verifies the claim that P(Z € C) = 1.

Finally, we turn to uniqueness. As already described, Z,('/”\)Ur = Z,(f\)ar, and hence Z;\,, = lim,— Z,(ﬁ'\)gr = Z,(f\)ar. If
(Z’, L") is another strong solution of the SDE (2.2) up to £, then, as already argued, (Z’, L") solves the SDE (A.10)

over time interval [0, o, ]. But uniqueness for (A.10) means that Z; Aoy = Zt(rA)g, = Zino, - This is true for all r > x, so Z’
coincides with Z, establishing uniqueness. (]
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