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Abstract
Graphs are fundamental tools for modelling relations among objects in various scientific fields.
However, traditional static graphs have limitations when it comes to capturing the dynamic nature
of real-world systems. To overcome this limitation, temporal graphs have been introduced as a
framework to model graphs that change over time. In temporal graphs the edges among vertices
appear and disappear at specific time steps, reflecting the temporal dynamics of the observed system,
which allows us to analyse time dependent patterns and processes. In this paper we focus on the
research related to sliding time windows in temporal graphs. Sliding time windows offer a way to
analyse specific time intervals within the lifespan of a temporal graph. By sliding the window along
the timeline, we can examine the graph’s characteristics and properties within different time periods.

This paper provides an overview of the research on sliding time windows in temporal graphs.
Although progress has been made in this field, there are still many interesting questions and
challenges to be explored. We discuss some of the open problems and highlight their potential for
future research.
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1 Introduction

Graphs are used to model (binary) relations among different objects. They consist of a set
of vertices, where two of them are connected together with an edge. They have become a
fundamental tool for modelling diverse systems and real-world problems, steaming through
the wide range of scientific fields. Let us mention just a few of them. In Social sciences
they can be used to model different interactions among people (for example friendships,
communications, etc.), in Chemistry they can model chemical compounds where the vertices
represent different atoms of the compound and edges correspond to the chemical bonds among
them, in molecular Biology they can model physical interactions between proteins, gene
co-expression or biochemical reactions, in Physics they model interactions among particles,
where nodes represent interactions where particles are created or destroyed and edges are
particles traveling between the interactions. Having such a varied application and use, it is
not surprising that the graph theory has been the subject of extensive research over the past
centuries.
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When studying real-life problems, it becomes evident that this ’simple’ graph model
is often insufficient. Many problems exhibit dynamic behavior, where the connections or
interactions among their vertices change over time. For instance, in transportation networks,
specific roads may be closed during certain intervals. In social networks, individuals may only
interact at particular times of the day or month. Similarly, in information and communication
networks, information or messages are transmitted from a source to a recipient through
a set of connections at specific times. These graph models share a common attribute:
their underlying graph topology or network structure undergoes discrete changes over time.
This observation naturally gives rise to the concept of temporal graphs, which provide a
straightforward and intuitive model for representing graphs that change over time, called
temporal graphs.

▶ Definition 1 (temporal graph [24]). A temporal graph G is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time labeling function which assigns to
every edge of G a set of discrete time labels.

Due to their relevance and applicability in many areas, temporal graphs have been studied
from various perspectives and under different names such as dynamic [9,19], evolving [7,12,16],
time-varying [1, 17,36], and graphs over time [27].

In most applications of temporal graphs, information can naturally only move along edges
in a way that respects the ordering of their timestamps (i.e. time labels), that is, information
can only flow along sequences of edges whose time labels are increasing (or non-decreasing).
Motivated by this fact, most studies on temporal graphs have focused on “path-related”
problems, such as e.g. temporal analogues of distance, diameter, reachability, exploration,
and centrality [2, 3, 10,14,15,22,25,26,30,34,40]. In these problems, the most fundamental
notion is that of a temporal path from a vertex u to a vertex v, which is a path from u

to v such that the time labels of the time labels of the edges are increasing (or at least
non-decreasing) in the direction from u to v. To complement this direction, several attempts
have been recently made to define meaningful “non-path” temporal graph problems which
appropriately model specific applications. Some examples include temporal cliques, cluster
editing, temporal vertex cover, temporal graph coloring, temporally transitive orientations of
temporal graphs [4, 6, 11,18,21,23,32,33,37,39].

One of the main goals in temporal graphs’ research is to lift (algorithmic) graph theory
models and results to a temporal/dynamic domain, in order to model natural, real world
situations which are subject to discrete changes over time. The main challenge in this front
is to find appropriate natural extensions and definitions of such problems. For instance, in
static graphs, a shortest path between two vertices is a path connecting these two vertices
with the smallest number of edges. On the other hand, in temporal graphs, there are at
least three, equally natural, different analogues of a shortest path. First, a shortest temporal
path from u to v is one that contains the smallest number of edges. Second, a foremost
temporal path from u to v is one that arrives at v with the smallest time-stamp. Third, a
fastest temporal path from u to v is one that has the smallest duration. These three types of
temporal paths are illustrated in Figure 1.

What is common to most of the path-related problems is that their extension from static
to temporal graphs often follows easily and quite naturally from their static counterparts. For
example, requiring a graph to be (temporally) connected results in requiring the existence of
a (temporal) path among each pair of vertices. In the case of non-path related problems,
the exact definition and its application is not so straightforward. Let us consider the case of
cliques. Defining cliques in a temporal graph as the set of vertices that interact at least once
in the lifetime of the graph would be a bit counter intuitive, as two vertices may just interact
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Figure 1 In this temporal graph, the shortest path from s to t is (s, c, t) as it contains two edges;
the foremost temporal path is (s, a, b, t) as it arrives at time 5; the fastest temporal path is (s, d, e, t)
a it has duration 9 − 7 + 1 = 3.

at the first time step and never again. To help with this problem, Viard et al. [37] introduced
the idea of the sliding time window of some size ∆, where they define a temporal clique as a
set of vertices where in all ∆ consecutive time steps each pair of vertices interacts at least
once. There is a natural motivation for this problem, namely to be able to find the contact
patterns among high-school students. Following the idea of Viard et al. [37], many other
problems on temporal graph were defined wiusing sliding time windows. In this paper we
present an overview of works on sliding windows in temporal graphs and at the end provide
some open problems and further ideas with potential research topics.

2 Preliminaries and Notations

In the literature there are many (slightly) different notations and terminologies used for
certain structures in temporal graph. For the purpose of this paper, we fix the following
notation and definitions.

Given a (static) graph G = (V, E) with vertices in V and edges in E, an edge between
two vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G.
For every i, j ∈ N, where i ≤ j, we let [i, j] = {i, i + 1, . . . , j} and [j] = [1, j]. Throughout
the paper we consider temporal graphs whose underlying graphs are finite and whose time
labeling functions only map to finite sets. This implies that there is some t ∈ N such that, for
every t′ > t, no edge of G is active at t′ in (G, λ). We denote the smallest such t by T , i. e.,
T = max{t ∈ λ(e) | e ∈ E}, and call T the lifetime of (G, λ). Unless otherwise specified, n

denotes the number of vertices in the underlying graph G, and T denotes the lifetime of the
temporal graph G. We refer to each integer t ∈ [T ] as a time step of (G, λ). The instance (or
snapshot) of (G, λ) at time t is the static graph Gt = (V, Et), where Et = {e ∈ E : t ∈ λ(e)}.
Note that the size of a temporal graph G is |G| := |V | +

∑T
t=1 |Et|.

For every t = 1, . . . , T − ∆ + 1, let Wt = [t, t + ∆ − 1] be the ∆-time window that starts
at time t. For every v ∈ V and every time step t, we denote the appearance of vertex v at
time t by the pair (v, t) and the edge appearance (or time-edge) of e at time t by (e, t). For
t ∈ λ(e) we also say that e is active at time t in (G, λ). That is, for every edge e ∈ E, λ(e)
denotes the set of time steps at which e is active.

A temporal vertex subset of (G, λ) is a set of vertex appearances in (G, λ), i.e. a set of
the form S ⊆ {(v, t) | v ∈ V, t ∈ [T ]}. For a temporal vertex subset S and some ∆-time
window Wi within the lifetime T of (G, λ), we denote by S[Wi] = {(v, t) ∈ S | t ∈ Wi} the
subset of all vertex appearances in S in the ∆-time window Wi. For a ∆-time window Wi

within the lifetime of a temporal graph (G, λ), we denote by E[Wi] = {e ∈ E | λ(e)∩Wi ̸= ∅}
the set of all edges which appear at some time step within Wi.
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3 Known Results on Sliding Windows

In this section we present some of the known results on temporal graphs using sliding windows.
As we discussed, the aim is to find a suitable definition for well motivated graph problems,
that take in consideration also the changes that appear over time.

3.1 Temporal Cliques

In a (static) graph G = (V, E), a clique C ⊆ V is a collection of vertices, where every two of
them are connected. We say that a clique C is maximal, if there exists no other vertex in
V \ C that is connected to all of the vertices in C. There are many applications of (maximal)
cliques for modeling real-world problems. For example, in their work Creamer et al. [13]
calculate hierarchical structures in complex (communication) networks using cliques, and
in [35] Samudrala and Moult use cliques in the context of protein structure modeling.

Viard et al. [37] extended the notion of cliques to temporal graphs. Their work was
motivated by the contact patterns among French high-school students. They studied the
dataset with real-world contacts between individuals, captured with sensors. Where an edge
e at time t was formed between two subjects if they were close enough to each other at time t

for the detection to happen. The aim is to determine groups of students that were interacting
more often. The obstacle in this case is how to naturally define such groups. If two students
interacted only once and then never again, their interaction should not be considered as
“valuable” as in the case when students interact more often, over certain period of time. With
this in mind, the authors present the following natural definition of a ∆-clique.

▶ Definition 2. A ∆-clique C in a temporal graph G = (G, λ) with a life-time T , is a pair
(X, I), where X is a subset of vertices of G and I ⊆ [T ], such that for every two vertices
u, v ∈ X there is a time-edge (uv, t) in G in every ∆-time window Wi ∈ I.

Intuitively, among each pair of vertices in X there is a time-edge every ∆ time steps in
the time interval I. The significance of the parameter ∆ is that it measures the level of
interaction in ∆-cliques. A small value of ∆ means that the interaction among vertices has
to occur more often compared to the case of large ∆ values. The selection of ∆ depends on
the data set and the purpose of the analysis.

The authors provide an algorithm that in O(2nn2m3 + 2nn3m2) time computes all
maximal ∆-cliques of a temporal graph (G, λ), where n = V (G) and m =

∑
e∈E(G) λ(e).

This result was further improved by Himmel et. al. [23] by providing an adaptation of the
Bron-Kerbosch algorithm for enumerating maximal cliques, where they improve the running
time to O(2nTm), where m = |E(G)|.

Cliques may not be always practical for modelling real-world situations as they can be too
restrictive, for example some edges may not exist due to measurement errors or other reasons
specific to the application. To overcome this issue, various relaxations of the clique concept
have been developed. One popular approach is the use of k-plexes, a degree-based relaxation
of cliques that requires every vertex to be connected to all but at most k − 1 vertices in the
k-plex, excluding itself. Extending this idea to temporal graphs, Bentert et al. [6] introduce
the study of ∆ − k-plexes, where they relax the condition of ∆-clique by allowing each vertex
to have up to k − 1 missing connections to other vertices in each ∆ consecutive time steps.
They adapt the algorithm for ∆-cliques to enumerate them, and provide some heuristic
speed-up techniques that are useful when dealing with practical scenarios.
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3.2 Temporal Vertex Cover
The vertex cover problem on a static graph G asks for a set of vertices S in V (G), of a
minimum size, such that each edge e ∈ E(G) has at least one endpoint in S (i. e., is covered
by at least one vertex in the vertex cover). To extend the idea to temporal graphs one needs
to first find a relevant and well motivated definition. For example, requiring that each edge
is covered whenever it appears (i. e., there is a vertex cover in every snapshot of the temporal
graph), may be a bit too restrictive. A well known motivation behind the vertex cover on
static graphs is a problem of placing security guards throughout the airport, where corridors
represent edges and two corridors meet in a vertex. Then a vertex cover is a collection of
corridor intersections, where we place security guards such that the airport is fully observed
by the security. Suppose now that during the day, for some reason, certain corridors are
not in use (some gates may be open only during specific times). And suppose now also that
a criminal needs a specific amount of time, without any supervision, to execute an illegal
activity. Now, to prevent all such acts, we do not need to fully monitor each sector of the
airport all the time, but we just have to make sure we check each part often enough. With
this in mind, Akrida et al. [4] introduced the notion of sliding window temporal vertex cover.

▶ Definition 3. A ∆-sliding window temporal vertex cover S ⊆ V (G) × [T ] (or ∆-TVC for
short) in a temporal graph (G, λ), with a lifetime T , is a collection of vertex appearances,
such that each edge e ∈ E(G) is covered in every ∆-time window Wi ⊆ [T ], if it appears.

When determining ∆-TVC of a given temporal graph, one wants to always find the one of
minimum size. In their work Akrida et al. [4] first prove that a relaxed version of the problem
(where ∆ = T , i. e., each edge has to be covered at least once in the whole lifetime T of the
graph) is NP-hard already for the temporal graphs where the underlying graph is a star. For
this sub-problem they prove also that the optimal solution cannot be obtained in O(2ϵT )
time (for some small ϵ), assuming the Strong Exponential Time Hypothesis (SETH), as well
as that it does not admit a Polynomial-Time Approximation Scheme (PTAS). For the general
problem they provide an exact dynamic algorithm running in O(T ∆(n + m) · 2n∆(∆+1)) time
on arbitrary temporal graphs, which cannot admit much more improvements (as it is almost
at the lower complexity bound). They complement this result by providing an algorithm
that, for graphs where each snapshot has a vertex cover number bounded by k, runs in an
FPT time, when parameterized by ∆. They investigate also the problem’s approximability
and prove that ∆-TVC does not admit a PTAS, even when ∆ = 2, maximum degree of the
underlying graph is 3 and every connected component of each snapshot is of size at most
7. In addition, they augment this result by providing approximation algorithms with ratios
(i) ln n + ln ∆ + 1

2 , (ii) 2k, where k is the maximum number of appearances of an edge in a
sliding window, (iii) d, where d is the maximum vertex degree in every snapshot.

The study of ∆-TVC problem was then further extended by Hamm et. al. [21]. The
researchers studied the ∆-sliding window vertex cover problem on sparse temporal graphs.
They proved that the problem is NP-hard when ∆ ≥ 2 and the underlying graph G of
the temporal graph (G, λ) is a path or a cycle. On the other hand, they developed a
polynomial-time algorithm for solving T -TVC on paths and cycles, where T is the lifetime of
the temporal graph. This raises the interesting question of whether there exists a boundary
value for ∆ that distinguishes between the tractable and intractable categories on paths,
thus determining the complete dichotomy of the problem. Moreover, for any ∆ ≥ 2 they
augmented these results with a PTAS for ∆-TVC on paths and cycles, which complements
the hardness result. In addition, the authors presented three algorithms to counter the
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hardness of the ∆-TVC problem for arbitrary (non-restricted) temporal graphs. The first
algorithm is an exact algorithm for ∆-TVC with an exponential running time dependency
on the number of edges in the underlying graph. Using this algorithm, they developed a
polynomial-time (d − 1)-approximation algorithm for any d ≥ 3, where d is the maximum
vertex degree in any time step (which improved on d-approximation algorithm from Akrida
et al.). Finally, the authors presented a simple fixed-parameter tractable algorithm with
respect to the size of an optimum solution.

3.3 Temporal Coloring

In a static graph G a coloring problem asks for a minimum number of colors associated to
vertices, such that two endpoints of each edge are not assigned the same color. A classical
motivation behind this problem is allocating radio frequencies to radio towers at specific
locations. Here the idea is to allocate different frequencies to towers that are located close
enough to cause an overlap in transmission. In this case each tower is represented as a node
of the graph, where two of them are connected if the towers are positioned so close that they
interfere with each other, and each frequency represents a different color. Now, coloring the
graph properly results in an assignment of frequencies, that causes no interference.

Let us consider a bit more evolved scenario, where instead of static radio towers, we
observe mobile agents. Here every agent broadcasts information over a specific communication
channel while it listens on all others. Therefore, when two agents are in close proximity, they
exchange information only if they broadcast on different channels. We assume that agents
can switch channels at any time. To ensure maximum information exchange, it is essential
to find a schedule of assigning broadcasting channels to the agents over time that minimizes
the number of required channels. This should allow each pair of agents to communicate at
least once within every small time window when they are close to each other.

Following this motivation Mertzios et al. [33] introduce the study of temporal coloring
using sliding windows. Where one wants to determine the coloring of vertex appearances,
using the smallest possible number of colors, such that each edge is properly colored (incident
vertices are of different color) at least once in every ∆ consecutive time steps, if the edge
appears. For a formal definition see the following.

▶ Definition 4. A ∆-sliding window temporal coloring (or ∆-TC for short) in a temporal
graph (G, λ), with a lifetime T , is a function ϕ : V (G) × [T ] → N, that assigns one color
ϕ(v, t) to each vertex appearance, such that for every ∆-time window Wi ⊆ [T ], and every
edge e ∈ E[Wt] there is at least one time step t ∈ Wi, where e appears and its two endpoints
u, v are colored using different colors, i. e., (e, t) is a time-edge in (G, λ) and ϕ(u, t) ̸= ϕ(v, t).

Mertzios et al. [32] start by studying a subcase of the problem, when ∆ = T . In this case
the objective is to ensure that each edge is properly colored (its endpoints are of different
color) at least once in the whole life time T of the temporal graph. Surprisingly, even the
restricted subcase turns out to be NP-hard, already when one is asking if 2 colors are enough
to color it properly. This presents a stark contrast to the static case, where identifying if a
graph is 2-colorable (bipartite) can be accomplished in linear time. On the positive side they
show that the this subcase admits a polynomial kernel, when parameterized by the number
of vertices in the input temporal graph. For the general case they prove that the problem
is NP-hard, and provide two algorithms for it. One is an exponential-time algorithm, that
asymptotically matches the running time lower bound (assuming ETH), and the second one
is a linear time FPT algorithm, with respect to the number n of vertices.
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In addition to the above mentioned work, some other variations of coloring temporal
graphs have been explored (e.g. example [18,29,39]), however these studies do not use the
approach with sliding windows.

3.4 Temporal Matching
Given a static graph G the problem of (maximum) matching asks for a (maximum) set
of pairwise independent edges, that is, edges that share no endpoints. This problem has
numerous applications in fields such as scheduling and planning, chemistry modeling, job
allocation, and more. Once the time-dimension is added to the graph model, there can be
different ways to carry over the definition to temporal graphs.

Following the idea of a sliding time window, Mertzios et al. [31] introduced the problem
of ∆-Maximum Temporal Matching (∆-TM), where one wants to determine a maximum
set of time-edges that are pairwise ∆-independent. Two time-edges (e, t), (f, t′) are ∆-
independent if (i) e ∩ f = ∅, or (ii) e ∩ f ≠ ∅ and |t − t′| ≥ ∆. In other words, for any
feasible solution of ∆-TM, it is not possible to match a vertex more than once within any
time interval of duration ∆. This condition can represent scenarios where a short “recovery”
period is needed for every vertex that participates in the matching, such as a brief period of
rest after engaging in an energy-demanding activity.

In contrast to the Edmonds’ polynomial-time algorithm for finding a maximum matching
in static graphs, Mertzios et al. [31] prove that ∆-TM does not even admit an approximation
algorithm, meaning it is APX hard, already in the case when ∆ = 2 and the lifetime T of
the temporal graph is 3. In addition, they show that the problem remains NP-hard even if
the underlying graph, of the input temporal graph, is just a path. On the positive side, they
provide an approximation algorithm for any constant ∆, which achieves an approximation
ration of 1

2 + ϵ, where ϵ = 1
2(2∆−1) . Besides that, they show that a problem admits two FPT

algorithms, one when it is parameterized by the solution size, and the second one, when it is
parameterized by the combined parameter ∆ and the size of a maximum matching of the
underlying graph.

It is worth mentioning that another related variant of Maximum Temporal Matching
has been studied (see Baste et al. [5]). In this model the authors do not use the ∆-time
windows, but instead require an edge to appear at least ∆ consecutive time steps, in order
to be eligible for a matching. A temporal matching then consists of independent edge
time-blocks of length at least ∆.

4 Further Work

In the previous section we presented some already completed works on temporal graphs, that
use the idea of sliding time windows. In this section we focus on problems that, to the best
of our knowledge, have not yet been investigated using the sliding windows, and give rise to
some interesting research questions.

4.1 Dominating Set
In a static graph G, a dominating set is a subset of vertices D ⊆ V (G), such that each
vertex V (G) is either in D or has a neighbor in D. The Dominating set problem asks for
a dominating set of G of minimum size. One of the applications of the dominating set is
in routing protocols for ad hoc wireless networks. The fundamental concept behind this
approach involves identifying a dominating set within a network of devices and using these
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dominating nodes for message routing. More specifically, when a user u wants to transmit a
message to a user v, the routing process consists of determining the shortest path between
the dominating neighbors of user u and user v. By ensuring that all devices admit at least
one dominating neighbor, this method guarantees the delivery of messages.

In the word where these agents become mobile (i. e., they travel around the space), one
can model this problem using temporal graph, where the aim is to find a temporal dominating
set. Similarly as in other cases, we do not necessarily want to find a dominating set in every
time step (as this would be to costly), therefore an approach with sliding time windows
would be of use. We propose the following definition.

▶ Definition 5. A ∆-sliding window temporal dominating set (∆-SWDS) is a subset of vertex
appearances D ⊆ V (G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that for
any vertex appearance (v, t) the following holds:
1. (v, t′) ∈ D, where |t − t′| ≤ ∆ or
2. (u, t′) ∈ D, where u is a neighbor of v in G and |t − t′| ≤ ∆.
Intuitively, any vertex of the underlying temporal graph is at any time step t either at most
∆ time-units away from being in D, or it has a neighbor that is at most ∆ time-units away
from being in D. Since the Dominating set problem is already NP-hard on static graphs, it
remains hard also for temporal graphs. So the interesting research question for the ∆-SWDS
would be if there exist any exact algorithms for it, i. e., some FPT algorithms, or maybe
some approximation algorithms.

It is important to mention that there already exist some variations of the dominating set
problems on temporal graphs. Casteigts and Flocchini [8] propose three different definitions
of dominating sets on temporal graphs, namely temporal dominating set, evolving dominating
set and permanent dominating set. In the temporal and evolving dominating set, one wants
to determine the smallest set of vertices D, such that, in the temporal case, each vertex is
dominated in at least one time step, and in the evolving case, each vertex is dominated in
every time step. While the evolving dominating set D consists of vertex appearances, such
that all vertex appearances are dominated in each time step. More specifically, in the first
two cases, once a vertex is selected to be in D it is in D for all lifetime of the graph, while in
the last case one vertex can be in D only at specific times. Some research has been done
for aforementioned problems. For interested readers, we recommend exploring the following
works [20,28,38], among others.

4.2 Edge Cover
The minimum edge covering problem on a static graph G asks for a minimum set EC ⊆ E(G)
of edges such that every vertex in V (G) is incident to at least one edge in EC . Calculating a
minimum edge cover can be done in polynomial time, by finding a maximum matching and
then extending it greedily until all vertices are covered.

For the version of the edge covering problem on temporal graphs we propose the following
definition.

▶ Definition 6. A ∆-sliding window temporal edge covering (∆-SWEC) is a subset of edge
appearances EC ⊆ E(G) × [T ], of a temporal graph (G, λ), with the lifetime T , such that
every vertex appearance (v, t) is incident to at least one time-edge from the selected set
EC ⊆ E × T , in every time window t ∈ W ′

t .

Since many problems become significantly more challenging when dealing with temporal
graphs, it would be really interesting to explore whether the same holds true for the ∆-SWEC
problem. Applying the exact approach used for static graphs may not yield direct results, as
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it requires to first find a (suitable definition of a) temporal maximum matching. It is worth
noting that in Section 3.4 we presented a ∆-Maximum Temporal Matching, which turns
out to be NP-hard.

4.3 Periodic connectivity
We say that a temporal graph (G, λ) is temporally connected if there exists a temporal
path among each pair of vertices. Some results regarding the connectivity of temporal
graphs have already been established, for example [3, 26, 30]. However, what if we introduce
additional constraints and require that each vertex can reach any other vertex within every
∆ time-window? In such cases, we refer to the temporal graph (G, λ) as being ∆-temporally
connected. It would be interesting to study, for example, what is the minimum number of
labels needed to label a given graph G in such a way that ensures ∆-temporal connectivity
of (G, λ)? We can further restrict this problem by allowing only limited number k of labels
to be added per each edge.

4.4 (Temporal) Graph Classes
Based on the properties of the studied graphs, we can assign them into different graph classes.
For instance there are graphs that are k-colorable (can be properly colored using k colors),
k-regular (each vertex is of degree k), or planar (can be drawn on a plane without any edges
crossing), among others.

To extend the concept of graph classes to the temporal setting with sliding windows, we
propose introducing temporal graph classes. One such class could be the ∆ sliding window
k-colorable temporal graphs, which refers to temporal graphs that can be temporally colored
using k colors. Another class would be the ∆ sliding window k-regular temporal graphs,
where each vertex admits exactly k different neighbors in every ∆ time-window, or perhaps
each vertex v admits exactly k different neighbors in a time step t′ ∈ Wt for every time
window Wt. Similarly, we can define ∆ sliding window planar temporal graphs as temporal
graphs that are planar in some t′ ∈ Wt for every time-window Wt. Further refinement of
these classes is possible by imposing additional restrictions. For example, we can consider
temporal graphs that are 3-colorable in every 5-time window. In such graphs, every vertex
appearance (v, t′) is assigned one of three colors, ensuring that within each sliding window
Wt of size 5, there is at least one time step where the edge e, that appears in Wt is properly
colored.

Overall, these extensions allow for the classification of temporal graphs based on their
temporal characteristics, enabling the exploration of various graph classes in the context of
sliding windows.

5 Conclusion

The study of temporal graphs has emerged as an important area of research with significant
implications for understanding and analyzing dynamic systems. In this paper, we have
presented a short overview of the works on sliding windows in temporal graphs. The concept
of a sliding time window allows us to focus on specific temporal intervals within the lifetime
of a temporal graph, providing valuable insights into the changing behavior and patterns
of interactions. Give that this research field is fairly young, there are still many intriguing
questions and challenges to be addressed. We presented some of them here and hope that
this work inspires further exploration and investigation into these intriguing problems.
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