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Abstract: We construct analytical self-dual Yang-Mills fractional instanton solutions on
a four-torus T4 with ’t Hooft twisted boundary conditions. These instantons possess topo-
logical charge Q = r

N , where 1 ≤ r < N . To implement the twist, we employ SU(N)
transition functions that satisfy periodicity conditions up to center elements and are em-
bedded into SU(k) × SU(ℓ) × U(1) ⊂ SU(N), where ℓ + k = N . The self-duality re-
quirement imposes a condition, kL1L2 = rℓL3L4, on the lengths of the periods of T4 and
yields solutions with abelian field strengths. However, by introducing a detuning param-
eter ∆ ≡ (rℓL3L4 − kL1L2)/

√
L1L2L3L4, we generate self-dual nonabelian solutions on a

general T4 as an expansion in powers of ∆. We explore the moduli spaces associated with
these solutions and find that they exhibit intricate structures. Solutions with topological
charges greater than 1

N and k ̸= r possess non-compact moduli spaces, along which the
O(∆) gauge-invariant densities exhibit runaway behavior. On the other hand, solutions
with Q = r

N and k = r have compact moduli spaces, whose coordinates correspond to
the allowed holonomies in the SU(r) color space. These solutions can be represented as a
sum over r lumps centered around the r distinct holonomies, thus resembling a liquid of
instantons. In addition, we show that each lump supports 2 adjoint fermion zero modes.
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1 Introduction, summary, and outlook

Instantons are prominent in studying many nonperturbative phenomena in Yang-Mills
theory, including the vacuum structure, condensates, and confinement. One of the least-
explored instantons are ’t Hooft fluxes of SU(N) gauge theory on the 4-torus T4 with twisted
boundary conditions [1]. Such solutions, found by ’t Hooft, carry fractional topological
charges and have constant abelian field strength. While the field strength is abelian,
for a general number of colors N , the boundary conditions on T4 are implemented via
non-abelian transition functions (i.e. there exists no gauge where all transition functions
commute).

Although ’t Hooft’s solutions have been known since the 1980s, relatively little atten-
tion has been devoted to their study since [2]. The notable exception is the work of the
Madrid group over many years, reviewed in [3]. The recent development of generalized
global symmetries [4] resurrected the interest in this subject. It was shown in [5] that in-
troducing background fields for the 1-form Z(1)

N center symmetry of Yang-Mills theory can
lead to new ’t Hooft anomalies, restricting the symmetry realizations and thus the infrared
dynamics.

The gauge field of the 1-form symmetry is a 2-form field whose nonvanishing holonomies
implement the ’t Hooft twist of the boundary conditions on T4. The fractional 2-form flux
is merely an external field that imposes kinematical constraints. On the other hand, find-
ing the field configurations which minimize the action (or energy) in the presence of twists
requires dynamical considerations. Recently, the authors questioned the role instantons in
the presence of twists could play in determining the dynamics of the theory [6]. In particu-
lar, we examined the gaugino condensate in SU(2) super Yang-Mills theory with twists on
T4. The fractional topological charge Q = 1

2 of the SU(2) solution supports two gaugino
zero modes and yields a non-vanishing condensate, which was found to be independent
of the torus size. The computations were carried within the limit of the small-torus size,
taken to be much smaller than the inverse strong scale, so we remained in the semi-classical
domain. Thus, we could perform reliable computations and, thanks to supersymmetry, ex-
tract the numerical coefficient of the condensate. However, our computations gave twice
the condensate’s numerical value on R4. Thus, our results warrant further examination of
the situation for SU(2) and for a general number of colors.

The current work is a continuation of the efforts in this direction. One of the crucial
conditions for studying the dynamics is the self-duality of the fractional instantons. A
non-self dual solution is not a minimum of the action; it has negative fluctuation modes
and hence, is unstable. Insisting on the abelian solutions found by ’t Hooft [1], the ratio
between the periods of T4 needs to satisfy a specific condition to respect the self-duality
of the solutions. We call such T4 a self-dual torus. However, in [6], it was found that
instantons on the self-dual torus support extra fermion zero modes, more than needed to
support the bilinear gaugino condensate.

A way to lift the extra zero modes is to deform the self-dual T4. The price to pay,
insisting on the self-duality of the instantons, is to depart from the simple abelian solutions
found by ’t Hooft. One is then faced with the fact that a non-abelian analytical solution on a
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generic T4 with general ’t Hooft twists is not currently known. Furthermore, even a descrip-
tion of the moduli space and of its metric1 of such self-dual solutions is not available. Fortu-
nately, the authors of [7] developed a systematic approach to obtaining approximate SU(2)
nonabelian self-dual solutions as expansion in a small parameter ∆, measuring the deviation
from the self-dual torus.2 The approach in [7] was generalized in [8] to the case of SU(N).
Nevertheless, it was only used to obtain solutions with minimal topological charge Q = 1

N .
In this paper, we carry out a systematic analysis to obtain self-dual solutions with

generic topological charge Q = r
N , with integer N > r > 1, on a non-self dual torus. The

main effort of the present work is directed at exploring the structure of the bosonic moduli
space of the solutions as well as the fermion zero modes in these backgrounds.

Summary. The main findings of this rather technical paper are described below:
We let L1, L2, L3, L4 be the lengths of the periods of T4. Following ’t Hooft [1],

we embed the SU(N) transition functions and gauge fields in SU(k) × SU(ℓ) × U(1) ⊂
SU(N), such that k and ℓ are positive integers and k + ℓ = N . We choose the transition
functions to give rise to ’t Hooft twists on T4 corresponding to topological charge Q = r

N

(section 2). Even though the transition functions are fully non-abelian, the original ’t Hooft
solution with topological charge Q = r

N has only an abelian gauge field Aµ along the U(1)
generator.3 The self-duality of this solution imposes the condition kL1L2 = rℓL3L4. As
already mentioned, a T4 that satisfies this condition is said to be self-dual.

Next, we define a detuning parameter ∆, that measures the deviation from the self-
dual T4, as ∆ ≡ (rℓL3L4−kL1L2)/

√
L1L2L3L4. Then, the self-dual non-abelian solution is

obtained as an expansion in ∆, similar to [7, 8]. The solution now has nontrivial components
along the abelian U(1) generator as well as the nonabelian subgroups SU(k) × SU(ℓ). We
carry out our analysis to the leading order in ∆, from which we observe the following:

1. To the leading order in ∆, the solution of the self-dual Yang-Mills equations is in one-
to-one correspondence with the solution to the Dirac equation of the gaugino zero
modes on the self-dual T4 (section 3). Thus, one can borrow the latter’s solutions
and show that they satisfy the self-dual Yang-Mills equations to the leading order
(section 4).

2. Among all solutions with Q = r
N , the ones with k = r stand out. For this case, we

find 4r arbitrary physical parameters that label the self-dual Yang-Mills solutions, in
accordance with the index theorem. We interpret these parameters as the coordinates
on the compact moduli space: these are the r (= k) holonomies in the SU(k) color
space in each of the 4 spacetime directions (section 5).

3. In addition, we find that gauge-invariant densities for the k = r solutions can be cast
into the form of a sum over r identical lumps centered about the values taken by the
r (= k) different holonomies. This indicates that a solution with topological charge

1These data alone suffice to perform certain instanton computations in supersymmetric theories.
2This is the solution used in [6], which, at ∆ > 0, supports exactly two zero modes needed to give rise

to the bilinear condensate.
3See section 3.1: the Q = r

N
transition functions are in (3.1) and the abelian solution is in (3.2).
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Q = r
N can be thought of as composed of r “elementary,” yet strongly overlapping

ones—thus, resembling a liquid, rather than a dilute gas [3] (section 6.2.1). See
figure 1 for an illustration.
Further support for this interpretation follows from solving the Dirac equation in the
background of the full non-abelian solution, showing that 2 fermion zero modes are
centered about each of the r holonomies, giving a total of 2r fermion zero modes as
required by the index theorem (section 6.2.2).

4. We also study the ∆-expansion around the other Q = r
N solutions, the ones with

k ̸= r (section 5). Here, we find that the moduli space becomes non-compact. To
further understand the significance of this finding, we show that gauge-invariant local
densities grow without limit in the noncompact moduli directions, clashing with the
spirit of the ∆ expansion for k ̸= r (section 5 and appendix D). This blow-up leads us
to conjecture that the only self-dual Q = r

N solutions, obtained via the ∆-expansion,
are the ones with k = r.

Outlook. There are several directions where this work can be applied to or extended:
The study of the present paper sets the stage for a forthcoming paper to shed light

on a few dynamical and kinematical aspects of supersymmetric and non-supersymmetric
SU(N) gauge theories. This includes the higher-order condensates, cluster decomposition
principle, and exactness/holomorphy of supersymmetric results.

We have yet to achieve a deeper understanding of the apparent failure of the ∆ expan-
sion for k ̸= r that we observed in the leading order. This may be require better control
of the higher orders in the ∆-expansion. Numerical studies of instantons on the twisted
torus can also be used to study the convergence of the expansion as well as the approach
to various large volume limits.

2 Review of ’t Hooft’s constant-flux solutions on T4

This section quickly reviews SU(N) ’t Hooft twisted solution on the four-torus T4. We take
the torus to have periods of length Lµ, µ = 1, 2, 3, 4, where µ, ν runs over the spacetime
dimensions. The gauge fields Aµ are Hermitian traceless N × N matrices, and taken to
obey the boundary conditions

Aν(x + Lµêµ) = Ωµ(x)Aν(x)Ω−1
µ (x) − iΩµ(x)∂νΩ−1

µ (x) , (2.1)

upon traversing T4 in each direction. The transition functions Ωµ are N × N unitary
matrices, and êν are unit vectors in the xν direction. The subscript µ in Ωµ means that
the function Ωµ does not depend on the coordinate xµ. The boundary condition (2.1)
means that the gauge fields Aµ are periodic up to a gauge transformation. Let us for the
moment use the short-hand-notation [Ωµ]Aν to denote ΩµAνΩ−1

µ − iΩµ∂νΩ−1
µ . Then, the

compatibility of (2.1) at the corners of the xµ − xν plane of T4 gives:

Aλ(x + Lµêµ + Lν êν) = [Ωµ(x + Lν êν)][Ων(x + Lµêµ)]Aλ(x)
= [Ων(x + Lµêµ)][Ωµ(x + Lν êν)]Aλ(x) , (2.2)
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Figure 1. A 3D plot of the profile given by eq. (6.11), with r = 3, as a function of (x1, x2), for
fixed (x3, x4). For better visualization, we show double the periods in x1 and x2. We see three
solutions, in red, yellow, and blue, lumped around three distinct centers. These lumps, however, are
not well-separated, comprising a liquid rather than a dilute gas. Earlier [9], similar configurations
were constructed numerically and used to study confinement, see [3].

from which we obtain the periodicity conditions on the transition functions Ωµ (now giving
up the short-hand notation and going back to the original Ωµ that appears in (2.1))

Ωµ(x + êνLν) Ων(x) = ei
2πnµν

N Ων(x + êµLµ) Ωµ(x) . (2.3)

Equation (2.3) is the cocycle conditions on the transition functions Ωµ. The exponent
ei

2πnµν
N , with integers nµν = −nνµ, is the ZN center of SU(N). The freedom to introduce

the center stems from the fact that both the transition function and its inverse appear
in (2.1).

’t Hooft found a solution to the consistency conditions (2.3) carrying a fractional
topological charge by embedding the SU(N) transition functions Ωµ(x) in SU(k)×SU(ℓ)×
U(1) ⊂ SU(N), such that N = k + ℓ and writing them in the form

Ωµ(x) = P
sµ

k Q
tµ

k ⊗ P
uµ

ℓ Q
vµ

ℓ e
iω

αµλxλ
Lλ . (2.4)
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Here, sµ, tµ, uµ, vµ are integers, a sum over λ is implied in the exponent, and αµλ is a real
matrix with vanishing diagonal components without any (anti-)symmetry properties. The
matrices Pk and Qk (similarly the matrices Pℓ and Qℓ) are the k × k (similarly ℓ × ℓ) shift
and clock matrices:

Pk = γk


0 1 0 . . .

0 0 1 . . .

. . .

. . . 0 1
1 0 . . . 0

 , Qk = γk diag
[
1, e

i2π
k , e2 i2π

k , . . .
]

, (2.5)

which satisfy the relation PkQk = ei 2π
k QkPk. The factor γk ≡ e

iπ(1−k)
k ensures that det Qk =

1 and det Pk = 1.
In the rest of this paper, we take primed upper-case Latin letters to denote elements

of k × k matrices: C ′, D′ = 1, 2, . . . , k, and the unprimed upper-case Latin letters to
denote ℓ × ℓ matrices: C, D = 1, 2, . . . , ℓ. The matrices Pk and Qk can then be written
as (Pk)B′C′ = δB′,C′−1 (modk) and (Qk)C′B′ = γk ei2π C′−1

k δC′B′ . The matrix ω is the U(1)
generator. It is given by

ω = 2πdiag

ℓ, ℓ, . . . , ℓ︸ ︷︷ ︸
k times

,−k,−k, . . . ,−k︸ ︷︷ ︸
ℓ times

 , (2.6)

and clearly commutes with Pk, Pℓ, Qk, Qℓ.
Writing the twist matrix nµν appearing in the cocycle condition (2.3) as nµν = n

(1)
µν +

n
(2)
µν , the antisymmetric part of the coefficients αµν are taken to be

αµν − ανµ = n
(2)
µν

Nℓ
− n

(1)
µν

Nk
. (2.7)

Recall that αµν have vanishing diagonal elements; it is convenient, see section 3.1, to choose
a particular form for their symmetric part, which amounts to a gauge choice.

A solution of the transition functions (2.4) obeying the cocycle conditions (2.3) with
αµν and nµν related as in (2.7) can be obtained provided that sµ, tµ, uµ, vµ ∈ Z can be
found such that

n(1)
µν = sµtν − sνtµ + kAµν , n(2)

µν = uµvν − vνuµ + ℓBµν , (2.8)

where Aµν and Bµν are integers, and

n(1)
µν ñ(1)

µν = 0 (mod k) , n(2)
µν ñ(2)

µν = 0 (mod ℓ) , (2.9)

and ñµν = 1
2ϵµναβnαβ .

While the details of the derivation are not shown here (see [1]), the data we have given
above suffice to check that upon plugging (2.9), (2.8), (2.7) into (2.4) one finds, using (2.6)
and (2.5), that the cocycle conditions (2.3) are obeyed, with twist matrices nµν = n

(1)
µν +n

(2)
µν .

– 6 –
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An abelian gauge field configuration along the U(1) generator ω, which obeys the
boundary conditions specified by the Ωµ thus constructed, is given by the expression

Aλ = −ω

(
αµλxµ

LµLλ
+ zλ

Lλ

)
. (2.10)

The corresponding field strength Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] is constant everywhere
on T4:

Fµν = −ω
αµν − ανµ

LµLλ
. (2.11)

The constants zµ label the holonomies along the U(1) generator, which are translational
moduli. This solution carries a fractional topological charge:

Q = − 1
4N

nµν ñµν = −n12n34 + n13n42 + n14n23
N

. (2.12)

Without loss of generality, we can always assume n13 = n42 = n14 = n23 = 0. Thus,
we only consider fluxes in the 1-2 and 3-4 planes. Then, a self-dual solution satisfies the
relation F12 = F34, from which one can find the ratio L1L2

L3L4
that defines the self-dual torus.

The action of the self-dual solution is

S0 = 1
2g2

∫
T4

tr [FµνFµν ] = 8π2|Q|
g2 . (2.13)

3 Fermion zero modes in the Q = r
N

constant-flux background

In this section, we study the zero modes of the adjoint fermions in the constant-flux abelian
background with topological charge r

N , described in section 3.1 (see eq. (3.2)). These re-
sults are useful when constructing the nonabelian self-dual solution with Q = r

N on the
deformed T4.

We find that there are 2gcd(k, r) dotted (section 3.3) and 2gcd(k, r) undotted (sec-
tion 3.4.1) constant fermion zero modes. We also find 2r undotted adjoint fermion zero
modes with nontrivial x-dependence (section 3.4.2, see eqs. (3.18)–(3.21) for the explicit
solution and appendix A for the rather technical derivation). The latter are the ones
determining the bosonic nonabelian self-dual background on the deformed torus in the
∆-expansion.

3.1 The solution with topological charge Q = r
N

A solution with topological charge Q = r
N is obtained from section 2 by taking n

(1)
12 =

−r, n
(2)
12 = 0, n

(1)
34 = 0, n

(2)
34 = 1, and, hence n12 = −r, n34 = 1. We also take s1 = −r, t2 =

1, u3 = v4 = 1 and set Aµν = Bµν = 0 and the rest of sµ, tµ, uµ, and vµ to zero. Thus,
without loss of generality, we take α12 = r

Nk , α21 = 0 , α34 = 1
Nℓ , α43 = 0.

– 7 –
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The upshot is that the transition functions (2.4) now read

Ω1 = P−r
k ⊗ Iℓe

iω
rx2

NkL2 =

P−r
k e

i2πℓr
x2

NkL2 0
0 e

−i2πr
x2

NL2 Iℓ

 ,

Ω2 = Qk ⊗ Iℓ =
[

Qk 0
0 Iℓ

]
,

Ω3 = Ik ⊗ Pℓe
iω

x4
NℓL4 =

 e
i2π

x4
NL4 Ik 0
0 e

−i2πk
x4

NℓL4 Pℓ

 ,

Ω4 = Ik ⊗ Qℓ =
[

Ik 0
0 Qℓ

]
. (3.1)

where we recall that ω is given by (2.6), P and Q in (2.5), and Ik (Iℓ) denote k × k (ℓ× ℓ)
unit matrices. Above, we introduced our k × ℓ block-matrix notation, to be used further
in this paper.

The reader can use (3.1), recalling that k + ℓ = N , with k, ℓ being positive integers,
and that P and Q are the clock and shift matrices (2.5), to explicitly check that Ωµ obey
the cocycle conditions (2.3) with only n12 = −r and n34 = 1 being nonzero, and that these
hold for any 1 ≤ r ≤ N . Likewise, it is easy to check that the abelian gauge field and the
field strength of the constant flux background

A1 = −ω
z1
L1

, A2 = −ω

(
rx1

NkL1L2
+ z2

L2

)
, A3 = −ω

z3
L3

, A4 = −ω

(
x3

NℓL3L4
+ z4

L4

)
F12 = −ω

r

NkL1L2
, F34 = −ω

1
NℓL3L4

. (3.2)

obey the boundary conditions (2.1) with transition functions (3.1).4

If we require the self-duality of the solution F12 = F34, we find that a self-dual torus
sides have to obey the relation

L1L2
L3L4

= rℓ

k
. (3.3)

3.2 Boundary conditions for the adjoint fermions

In the rest of section 3, we solve the Weyl equations Dµσ̄µλ = 0 and Dµσµλ̄ = 0 for
massless adjoint fermions in the background (3.2).5 This will enable us to understand the
fermionic zero modes in the background with topological charge Q = r

N on the self-dual
torus. In subsequent sections, the results help the construction of the self-dual bosonic
background on the deformed torus in the small-∆ expansion.

Before we begin, let us discuss the moduli of the solution. We first note that the
constant holonomies zµ in the U(1) direction ω, appearing in (3.2), are the most general

4If one of k or ℓ is unity, the cocycle conditions with n12 = −r, n34 = 1 and the corresponding boundary
conditions (2.1) are obeyed with the corresponding P and Q in Ωµ replaced by unity.

5Here, σµ ≡ (iσ⃗, 1), σ̄µ ≡ (−iσ⃗, 1), σ⃗ are the Pauli matrices which determine the µ = 1, 2, 3 components
of the four-vectors σµ, σ̄µ. The Euclidean action for fermions and the matrices σµ, σ̄µ, σµν , σ̄µν , are as
in [10], except that we use hermitean gauge fields, necessitating the replacement Athat ref. = iAthis paper.
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ones commuting with the transition functions (3.1), provided gcd(k, r) = 1 (that this is so
follows from the discussion below).

However, when gcd(k, r) > 1, there are gcd(k, r) different holonomies permitted for
each µ. To work them out for future use, we first note that the holonomies have to be in
the Cartan subalgebra, because they have to commute with Qk and Ql from (3.1) in order
that (2.1) be obeyed. Thus, the additional (to zµ from (3.2)) holonomies would add, to the
background (3.2), δAµ = Ha′

ϕa′
µ + Haϕa

µ, with constant ϕ’s, where Ha′ (a′ = 1, . . . , k − 1)
and Ha (a = 1, . . . l − 1) are the SU(k) and SU(l) Cartan generators, respectively. The
generators Ha′ , Ha are extended to have zero entries in their respective complement to
SU(N). In addition, Ha′ and Ha have to commute with the transition functions (3.1),
which means that P−r

k Ha′
P r

k = Ha′ and PlH
aP−1

l = Ha. Clearly, there are no nonzero
SU(ℓ) generators Ha allowed, thus we set the corresponding holonomies to zero ϕa

µ = 0.
The condition for Ha′ only allows nonzero ϕa′

µ if gcd(k, r) > 1. If gcd(k, r) = k, any Cartan
generator obeys P−r

k Ha′
P r

k = Ha′ and so there are k − 1 ϕa′
µ ’s allowed (for reasons that

become clear later, we shall study this case in great detail in what follows). For generic
values of gcd(k, r), 1 < gcd(k, r) ≤ k, there are only gcd(k, r) holonomies along the SU(k)
Cartan generators allowed. Let us now describe them in a manner useful for the future.

For general values of gcd(r, k), we combine the allowed holonomies in the SU(k) part
of SU(N) with the zµ holonomies (the ones proportional to ω, see (3.2)). We use primed
indices C ′, B′ = 1 . . . k to denote the k × k part of the components of the SU(N) gauge
field and unprimed C, B = 1, . . . ℓ to denote the SU(ℓ) components. Thus, we describe the
general abelian background (3.2) as

Âµ = (Aµ)|of eq. (3.2) with zµ=0 +
[
||δAµ C′B′ || 0

0 ||δAµ CB||

]
, (3.4)

using the same block-matrix form as in (3.1), with, e.g. ||δAµ C′B′ || denoting a k×k matrix
with components δAµ C′B′ , etc. All holonomies (including zµ) are now included in the
second term and are given by

δAµ CD = δCD 2πk
zµ

Lµ
, (3.5)

δAµ C′D′ = δC′D′

(
−2πℓ

zµ

Lµ
+ ϕC′

µ

)
,

where ϕC′
µ = ϕC′−r(mod k)

µ ≡ ϕ
[C′−r]k
µ and

k∑
C′=1

ϕC′
µ = 0.

The SU(k) holonomies, denoted by ϕC′
µ , must obey the condition from the last line to

ensure commutativity with P r
k . In (3.5) we also introduced the short-hand notation that

we shall often use in this paper:6

[x]q ≡ x(mod q) . (3.6)
6Notice that, to conform to (3.6), in (3.5) and further, since q(modq) = 0, we take the range of the

SU(k) index C′ to be 0 . . . k−1 instead of 1 . . . k. Likewise, we take the range of the unprimed SU(ℓ) indices
0 . . . ℓ − 1.
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We now turn to the adjoint fermions (gauginos), which obey the boundary condi-
tions (2.1) without the inhomogeneous term

λ(x + Lµêµ) = Ωµλ(x)Ω−1
µ , (3.7)

with Ωµ from (3.1). Omitting the spinor index, we write the gaugino field, an N × N

traceless matrix, as a block of k × k, k × ℓ, ℓ × k and ℓ × ℓ matrices (recall N = k + ℓ):

λ =
[
||λC′B′ || ||λC′B||
||λCB′ || ||λCB||

]
, C ′, B′ ∈ {0, . . . k − 1}, C, B ∈ {0, . . . ℓ − 1} , (3.8)

obeying the tracelessness condition
k−1∑

C′=0
λC′C′ +

ℓ−1∑
C=0

λCC = 0 . (3.9)

The explicit form of the boundary conditions follows from (3.7) and (3.8). For λC′B′ ,
they are

λC′B′(x + L1ê1) = λ[C′−r]k [B′−r]k(x) ,

λC′B′(x + L2ê2) = ei2π C′−B′
k λC′B′(x) ,

λC′B′(x + L3ê3) = λC′B′(x) ,

λC′B′(x + L4ê4) = λC′B′(x) , (3.10)

while λCB obeys

λCB(x + L1ê1) = λCB(x) ,

λCB(x + L2ê2) = λCB(x) ,

λCB(x + L3ê3) = λ[C+1]ℓ [B+1]ℓ(x) ,

λCB(x + L4ê4) = ei2π C−B
ℓ λCB(x) , (3.11)

and λC′B:

λC′B(x + L1ê1) = γ−r
k e

i2π
rx2
kL2 λ[C′−r]k B(x) ,

λC′B(x + L2ê2) = γkei2π
(C′−1)

k λC′B(x) ,

λC′B(x + L3ê3) = γ−1
ℓ e

i2π
x4

ℓL4 λC′[B+1]ℓ(x) ,

λC′B(x + L4ê4) = γ−1
ℓ e−i2π

(B−1)
ℓ λC′B(x) . (3.12)

We also note that λCB′ obeys the h.c. conditions to (3.12). In addition, the dotted
fermions λ̄ obey boundary conditions equal to the ones given above, written in terms of a
decomposition of λ̄ in terms of λ̄C′B′ , λ̄C′B, λ̄CB and λ̄CB′ , identical to the one in (3.8).

We can now solve the Weyl equations Dµσ̄µλ = 0 and Dµσµλ̄ = 0 with the above
boundary conditions. The covariant derivative is given by Dµ = ∂µ + i[Aµ, ] with Aµ

already given in (3.4) and (3.5). We solve for the zero modes of the Weyl equation in the
abelian background, beginning with the simplest cases.

– 10 –



J
H
E
P
0
9
(
2
0
2
3
)
0
9
5

3.3 Dotted-fermion zero modes

First, we solve the Weyl equation for the dotted fermions, Dµσµλ̄ = 0. Here, we ignore the
allowed nonzero holonomies from (3.5), since (as we shall see later) they do not affect the
solution in an interesting way. We find, keeping in mind the tracelessness condition (3.9),

∂µσµλ̄CB α̇ = 0 , ∂µσµλ̄C′B′ α̇ = 0, with α̇ = 1̇, 2̇,(
∂3 − i∂4 −

2πx3
ℓL3L4

)
λ̄C′B 1̇ +

(
∂1 − i∂2 −

2πrx1
kL1L2

)
λ̄C′B 2̇ = 0 ,(

∂1 + i∂2 + 2πrx1
kL1L2

)
λ̄C′B 1̇ +

(
−∂3 − i∂4 −

2πx3
ℓL3L4

)
λ̄C′B 2̇ = 0 , (3.13)

and similar equations for λ̄CB′ α̇. One can convince themselves that there exist no normaliz-
able solutions for λ̄C′B α̇ and λ̄CB′ α̇ obeying the boundary conditions. We shall not repeat
the details here but only note that this follows from the analysis of [6] and the realiza-
tion that normalizability of the solutions on the four torus (after expanding in eigenmodes)
ends up requiring normalizability of simple-harmonic oscillator wavefunctions, the solutions
of (3.13), in the infinite x1-x3 plane (the two oscillators being in the x1 and x3 directions).

The only normalizable solution involves the diagonal components λ̄CC α̇ and λ̄C′C′ α̇

and is constant. This is because the boundary conditions (3.11), (3.10) only allow for
constant diagonal solutions and also further restrict the solutions as we now discuss. The
boundary conditions for the ℓ × ℓ-components only permit the solution

λ̄CC α̇ = ϑ̄α̇, ∀C = 0, . . . , ℓ − 1, (3.14)

with equal diagonal entries. Here ϑ̄α̇ are two Grassmann variables. The k × k part of
the dotted fermions, λ̄C′C′ α̇ allows for gcd(k, r) such solutions (due to the first boundary
condition in (3.10)), which can be written as

λ̄C′C′ α̇ = ϑ̄
[C′−r]k
α̇ , (3.15)

for arbitrary Grassmann ϑ̄
[C′−r]k
α̇ . Clearly, for every value of α̇, there are gcd(k, r) such

different ϑ̄
[C′−r]k
α̇ , which one can label ϑ̄0

α̇, ϑ̄1
α̇ to . . . ϑ̄

gcd(k,r)−1
α̇ . The tracelessness condi-

tion (3.9), however, determines the SU(ℓ) Grassmann variables (3.14) in terms of the SU(k)
ones, (3.15).

In conclusion, there are a total of 2gcd(k, r) dotted-fermion zero modes in the constant-
flux instanton background.

3.4 Undotted-fermion zero modes

3.4.1 The “diagonal”: U(1), SU(ℓ) and SU(k) undotted zero modes

Now, we continue with the undotted fermions λBC and λB′C′ , i.e. their componets in the
U(1), SU(k) and SU(ℓ) directions. Because the abelian background (3.4), (3.5) commutes
with the U(1), SU(k) and SU(ℓ) generators, these “diagonal” components satisfy a free
Dirac equation:

∂µσ̄µλC′B′ = 0,

∂µσ̄µλCB = 0, with
k−1∑

C′=0
λC′C′ +

ℓ−1∑
C=0

λCC = 0 , (3.16)

along with the SU(N) tracelessness condition (3.9).
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One needs to solve these equations with the boundary conditions (3.10) and (3.11).
We now state the results, since the analysis is similar to that in [6, 11]. The first remark
is that, following the steps outlined for the dotted zero modes, one finds that there are
no normalizable solutions for the components of λC′B′ and λCB with C ′ ̸= B′ and C ̸= B

obeying the boundary conditions.
Next, we note that the only solution for λCC is the one where λCC α = ηα, with a

constant spinor ηα, for all C (this is needed to satisfy (3.11)). The tracelessness condition
in (3.16), however, relates this to the λB′B′ solutions on which we now focus. The boundary
conditions (3.10) are satisfied by the constant solutions

λB′C′ α = δB′C′

gcd(k,r)−1∑
j=0

ϑ(j)
α

k
gcd(k,r)−1∑

n=0
δB′,[j+nr]k , (3.17)

with gcd(k, r) arbitrary constant Grassmann spinors ϑ
(j)
α . We conclude that there are

2gcd(k, r) independent zero modes of λB′C′ and, from the above remarks, of the all “diag-
onal” components of the undotted fermions considered in this section.

Note that the number of diagonal undotted zero modes is precisely the same as the
number of the dotted fermion zero modes of section 3.3. In particular, the contribution of
the zero modes of sections 3.3 and 3.4.1 to the index cancels out.

3.4.2 The “off-diagonal” k × ℓ and ℓ × k undotted zero modes.

The zero modes most worthy of our attention, the ones which determine the nonabelian
instanton solution to leading order in ∆, are the ones considered in this section. Finding
the off-diagonal undotted zero modes, the ones for λC′B (k × ℓ) and λCB′ (ℓ × k), is the
most important and least trivial part of our study. We find that there are r zero modes
for λC′B and r zero modes for λCB′ , in agreement with the index theorem which requires
that the number of undotted minus the number of dotted zero modes be 2r.

The derivation of the results quoted in this section is technically involved and the
details are relegated to appendix A. Here, we simply give the explicit formulae for the zero
modes for λC′B, the k × ℓ ones.7 We find that in the background (3.4), (3.5), only one
spinor component has r normalizable zero modes

λC′B 1 =

r
gcd(k,r)−1∑

p=0
η[C′+pk]r Φ(p)

C′B(x, ϕ̂),

λC′B 2 = 0 . (3.18)

Here, ηj , j = 0, . . . , r − 1, are r Grassmann parameters associated with the zero modes
(clearly, [C ′ + pk]r takes r values). Notice that a given zero mode, proportional to ηj with
some j ∈ {0, . . . , r − 1}, nontrivially intertwines the gauge indices in (3.18).

Before giving the form of the functions Φ(p) governing the x-dependence of the
zero modes (3.18), we introduce the notation ϕ̂C′

µ to denote the way various gauge field
7Noting that the ℓ× k zero modes (which come with their own Grassmann parameters) are obtained by

hermitean conjugation of Φ(p) in (3.18), as per the remark after (3.12).
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holonomies appear in the equations governing the off diagonal zero modes. These combine
the U(1)-holonomy zµ with the extra ones allowed when gcd(k, r) > 1, as per the discussion
around (3.5):8

ϕ̂C′
µ ≡ ϕC′

µ − 2πN
zµ

Lµ
, with ϕ̂C′

µ = ϕ̂[C′−r]k
µ . (3.19)

The explicit solution for ϕ̂C′ obeying the relations above (and from (3.5)) can be written
out in a somewhat unwieldy form (which, however, serves to show that there are gcd(k, r)
independent holonomies for each µ)9

ϕ̂C′
µ =

gcd(k,r)−1∑
j=0

φj
µ

k
gcd(k,r)−1∑

n=0
δC′,[j+nr]k . (3.20)

Here, we use the notation (3.6), taking the range of C ′ to be 0 . . . k − 1. The sum over
n for each j simply incorporates the fact that the index C ′ takes values an “orbit” of
size k

gcd(k,r) . Each of the gcd(k, r) “orbits,” labelled by j, has the same holonomy ϕj
µ and

contains values of C ′ jumping by r units, as required by commutativity of the holonomy
with Pk. Although (3.20) explicitly shows that, for each µ, there are gcd(k, r) independent
holonomies φj

µ, we prefer to further denote them as ϕ̂C′
µ , remembering the relations they

obey. However, we make explicit use of (3.20) later on, see section 5.
The zero modes λC′B 1 of (3.18) depend on (x, ϕ̂C′

, ηj). Their x- and ϕ̂-dependence is
through the r

gcd(k,r) functions Φ(p), given by (for derivation, see appendix A):

Φ(p)
C′B(x, ϕ̂) =

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2B−1−ℓ
2ℓ

)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
B− 1+ℓ(2n′+1)

2

)
× e

− πr
kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

× e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2B−1−ℓ

2 )
]2

. (3.21)

The explicit form of the functions Φ(p) will be useful later, in our study of the properties of
the self-dual fractional instantons on the deformed torus. Eqs. (3.18), (3.19), (3.21) give the
general normalizable solution of the massless undotted Weyl equation Dµσ̄µλ = 0 for λC′B α

in the abelian constant-field strength background (3.4), (3.5) of topological charge Q = r
N .

In summary of section 3, we found that there is a number of dotted and undotted zero
modes in the abelian background of topological charge r

N . The total number is consistent
with the index theorem. The solutions for the non-constant fermion zero modes will be
used to construct the nonabelian self-dual solution of charge r

N on the deformed torus.

8The reason that 2πN (and not 2πℓ) appears here is that ϕ̂C′
encodes the action of the commutator on

the off diagonal components λC′B .
9We note that this is similar to eq. (3.17) for the undotted diagonal zero modes of the next section.
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4 Deforming the self-dual torus: small-∆ expansion for the bosonic back-
ground with Q = r

N

To remedy the zero modes problem we saw in the previous section, i.e., to lift the dotted
zero modes, we now depart from the self-dual torus and search for a self-dual instanton
solution with topological charge Q = r

N on a deformed T4, following the strategy of [7, 8].
We write the general gauge field on the non-self-dual torus in the form

Aµ(x) = Âµ + Sω
µ (x) ω + δµ(x) . (4.1)

Here, ω is the U(1) generator (2.6), Âµ is the abelian gauge field with constant field strength
defined previously in (3.4) and Sω

µ (x) is the nonconstant field component along the U(1)
generator. The non-abelian part δµ(x) is given by the N × N matrix, which, as earlier
in (3.1), (3.4), (3.8), is decomposed in a block form:10

δµ =
[

Sk
µ Wk×ℓ

µ

W†ℓ×k
µ Sℓ

µ

] (
≡
[

||Sk
µ B′C′ || ||Wµ B′C ||

||(W†
µ)CB′ || ||Sℓ

µ BC ||

])
. (4.2)

The boundary conditions (2.1) with transition functions (3.1) imply that Sω
µ satisfy

periodic boundary conditions in all directions (because Âµ absorbs the inhomogenous part
of (2.1)):

Sω
µ (x + êνLν) = Sω

µ (x) . (4.3)

On the other hand, Sk
µ, Sℓ

µ, Wk×ℓ
µ , and W†ℓ×k

µ satisfy exactly the same gaugino-field bound-
ary conditions we discussed in the previous section, and we refrain from repeating (thus,
the boundary conditions are given by equations (3.10), (3.11), (3.12), respectively, for Sk

µ,
Sℓ

µ, Wk×ℓ
µ , recalling (4.2) and Footnote 10).

The field strength of (4.1), Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], is given by

Fµν = F̂µν + F s
µνω + D̂µδν − D̂νδµ + i

[
Sω

µ ω, δν

]
+ i [δµ,Sω

ν ω] + i[δµ, δν ] ,

≡ F̂µν + F s
µνω +

[
F k

µν Fk×ℓ
µν

F†ℓ×k
µν F ℓ

µν

]
, (4.4)

where D̂µ = ∂µ + i[Âµ, ] is the covariant derivative w.r.t. the gauge field Âµ. Us-
ing (4.1), (4.2), we obtain:

F s
µν = ∂µSω

ν − ∂νSω
µ ,

F k
µν = ∂µSk

ν − ∂νSk
µ + i[Sk

µ,Sk
ν ] + iWk×ℓ

µ W†ℓ×k
ν − iWk×ℓ

ν W†ℓ×k
µ ,

F ℓ
µν = ∂µSℓ

ν − ∂νSℓ
µ + i[Sℓ

µ,Sℓ
ν ] + iW†ℓ×k

µ Wk×ℓ
ν − iW†ℓ×k

ν Wk×ℓ
µ ,

Fk×ℓ
µν = D̂µWk×ℓ

ν − D̂νWk×ℓ
µ + iSk

µWk×ℓ
ν − iSk

νWk×ℓ
µ + iWk×ℓ

µ Sℓ
ν − iWk×ℓ

ν Sℓ
µ

+i2πN
(
Sω

µWk×ℓ
ν − Sω

ν Wk×ℓ
µ

)
, (4.5)

10Here Sk
µ and Sl

µ are traceless su(k)- and su(l)-algebra elements, respectively, while Wk×ℓ
µ is a complex

k×ℓ matrix with W†ℓ×k
µ its hermitean conjugate. In the second (bracketed) term in (4.2) we have indicated

the index notation used earlier in describing the zero modes of the adjoint fermions, recall (3.18). Here, we
find it convenient to use the block matrix notation Sk, Sℓ, W k×ℓ, W † ℓ×k and will revert to using indices
B′C′, B′C, etc., when needed.
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where D̂µWk×ℓ
ν is understood as

D̂µWk×ℓ
ν =

[
∂µ + i2πNÂω

µ

]
Wk×ℓ

ν , (4.6)

and we have written Âµ = Âω
µω, for Âµ from (3.4).11 Similarly,

D̂µW†ℓ×k
ν =

[
∂µ − i2πNÂω

µ

]
W†ℓ×k

ν . (4.7)

Next, we impose self duality on the background (4.1) on the deformed T4. Imposing
self-duality is equivalent (see e.g. [10]) to imposing the constraint on the field strength

σ̄µνFµν = 0 . (4.8)

where12 σ̄µν = 1
2(σ̄µσν − σ̄νσµ). Now, we recall F̂µν = F̂ ω

µνω, and use (3.2) to find F̂ ω
12 =

− r
NkL1L2

and F̂ ω
34 = − 1

NℓL3L4
. Recalling the properties of the self-dual T4, eq. (3.3), we

also define the parameter ∆, which parametrizes the deviation from the self-dual torus:

∆ ≡ rℓL3L4 − kL1L2√
V

. (4.9)

We assume, without loss of generality, ∆ ≥ 0. Thus, we find that

F̂ ω
µν σ̄µν = − 2i∆

Nkℓ
√

V
σ3 . (4.10)

To continue, for every four-vector Vµ, we define the quaternions V ≡ σµVµ and V̄ ≡
σ̄µVµ. Then, using (4.5) and (4.10), we find that self-duality (4.8) implies that

1
2 σ̄µνFµν =

(
− i∆

Nkℓ
√

V
σ3 + ∂̄Sω − ∂µSω

µ

)
ω +

[
Ak Ak×ℓ

A†ℓ×k Aℓ

]
= 0 , (4.11)

where13

Ak = ∂̄Sk − ∂µSk
µ − iS̄kSk + iSk

µSk
µ + iW̄k×ℓW†ℓ×k − iWk×ℓ

µ W†ℓ×k
µ ,

Ak×ℓ = ¯̂
DWk×ℓ − D̂µWk×ℓ

µ + iS̄kWk×ℓ − iSk
µWk×ℓ

µ + iW̄k×ℓSℓ − iWk×ℓ
µ Sℓ

µ

+i2πN
(
S̄ωWk×ℓ − Sω

µWk×ℓ
µ

)
,

Aℓ = ∂̄Sℓ − ∂µSℓ
µ − iS̄ℓSℓ + iSℓ

µSℓ
µ + iW̄†ℓ×kWk×ℓ − iW†ℓ×k

µ Wk×ℓ
µ . (4.12)

In order to remove gauge redundancies, we impose the background gauge condition with
respect to the field Âµ:

D̂µAµ = 0 (4.13)
11For brevity, the nontrivial holonomies’ (allowed when gcd(k, r) > 1) are not explicitly shown here. They

should, however, be included in the covariant derivatives in (4.6), (4.7) and our final solution (4.21) does
take these into account.

12Recall that the matrices σµ, σ̄µ were defined in Footnote 5.
13Here and below, the terms that have sums over µ should be multiplied by unit quaternion σ4, which

we have omitted for brevity. Thus, temporarily not denoting explicitly that these are k × ℓ matrices, we
warn the reader to keep in mind the difference between the quaternions, W ≡ Wµσµ, W̄ = σ̄µWµ, and the
four-vector Wµ and, furthermore, note that W† = σµW †

µ and W̄† = σ̄µW †
µ.
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which in components reads:

∂µSω
µ = 0 , ∂µSk

µ = 0 , ∂µSℓ
µ = 0 , D̂µWk×ℓ

µ = 0 , D̂µW†ℓ×k
µ = 0 . (4.14)

Using (4.14) in (4.11), we find the set of equations imposing the self-duality condition on
the background (4.1):(

− i2π∆
Nk

√
V

σ3 +2πℓ∂̄Sω
)

Ik + ∂̄Sk − iS̄kSk + iSk
µSk

µ + iW̄k×ℓW†ℓ×k − iWk×ℓ
µ W†ℓ×k

µ = 0 ,(
i2π∆

Nℓ
√

V
σ3−2πk∂̄Sω

)
Iℓ + ∂̄Sℓ− iS̄ℓSℓ + iSℓ

µSℓ
µ + iW̄†ℓ×kWk×ℓ− iW†ℓ×k

µ Wk×ℓ
µ = 0 ,

¯̂
DWk×ℓ + iS̄kWk×ℓ− iSk

µWk×ℓ
µ + iW̄k×ℓSℓ− iWk×ℓ

µ Sℓ
µ + i2πN

(
S̄ωWk×ℓ−Sω

µWk×ℓ
µ

)
= 0 .

(4.15)

We note that here ¯̂
D ≡ σ̄µD̂µ, precisely the Weyl operator for the undotted fermions,

whose zero modes were studied in section 3.4.
The idea of the method introduced in [7] is that a solution of the self-duality condi-

tions (4.15) can be obtained via series expansions in the deformation parameter ∆ of (4.9).
The approximate solution of the self-duality equations thus obtained is then also an approx-
imation to the minimal action solution of the equations of motion, i.e. a fractional instanton
with Q = r

N . Comparing the ∆ scaling of the various terms in (4.15), the ∆-expansion is
found to have the following form

Wk×ℓ =
√

∆
∞∑

a=0
∆aW(a)k×ℓ ,

S = ∆
∞∑

a=0
∆aS(a) , (4.16)

where S accounts for Sω, Sk, and Sℓ.
We proceed to leading order14 in ∆ by considering solutions of Wk×ℓ to order

√
∆

and S to order ∆, thus keeping only the terms S(0) and W(0) in (4.16). Then, to this
order, (4.15) gives(

− i2π

Nk
√

V
σ3 +2πℓ∂̄S(0)ω

)
Ik + ∂̄S(0)k + iW̄(0)k×ℓW†(0)ℓ×k − iW(0)k×ℓ

µ W†(0)ℓ×k
µ = 0 ,(

i2π

Nℓ
√

V
σ3−2πk∂̄S(0)ω

)
Iℓ + ∂̄S(0)ℓ + iW̄†(0)ℓ×kW(0)k×ℓ− iW†(0)ℓ×k

µ W(0)k×ℓ
µ = 0 , (4.17)

and
¯̂
DW(0)k×ℓ = 0 . (4.18)

The strategy of solving the leading-order equations (4.17), (4.18) is as follows:
14The ∆ expansion was tested to high orders, and found to converge (even to the infinite volume limit)

in the two dimensional abelian Higgs model in [12]. Convergence is not well understood for the general case
of SU(N) in four dimensions. For SU(2), the comparisons with the exact numerical solution (obtained by
minimizing the lattice Yang-Mills action) of [7] give evidence for the convergence of the expansion for small
∆. It should be possible to analytically study the properties of higher orders in the expansion (4.16) of the
solutions of (4.15); however, this rather formidable task is left for the future.
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1. Solve (4.18) for the quaternions W(0)k×ℓ. This equation has the form of two copies
of the undotted fermion zero-mode equation, whose general normalizable solutions
were already found in section 3.4.2, recall (3.18).

2. Next, plug the general solution of (4.18) into (4.17). The result is a set of first-order
differential equations for the quaternions S(0), with periodic boundary conditions
for S(0)ω and with S(0)k,S(0)ℓ, obeying (3.10), (3.11), respectively. The resulting
equations for S(0) have nonvanishing source terms, comprised of a constant piece (the
one proportional to σ3 in (4.17)) and of terms quadratic in the just-found general
solution of (4.18), W(0)k×ℓ. Consistency of these equations requires that the source
term be orthogonal to the zero modes of the differential operator acting on the various
components of S(0).

3. One then needs to determine the zero modes of ∂̄, the operator acting on S(′), obey-
ing the appropriate boundary conditions. This task was already accomplished in
section 3.4.1, since ∂̄ is simply the undotted diagonal Weyl operator. We then re-
quire orthogonality of these zero modes to the source terms in (4.17). On one hand,
this will be shown to provide restrictions on the arbitrary coefficients appearing in
the general solution of (4.18), W(0)k×ℓ. The coefficients left arbitrary determine the
moduli space of the multi-fractional instanton. On the other hand, imposing con-
sistency of (4.17) allows one to determine S(0) by expanding both sides in a chosen
basis of functions and equating the coefficients on both sides.

The procedure outlined above can be, in principle, iterated to higher orders. The way this
procedure works to higher orders was, in principle, studied in [12]. However, implementing
it to determine the higher-order solution becomes technically challenging. Here, we shall
only study the leading-order and determine the constraints of the arbitrary coefficients in
W(0) k×ℓ, which restrict the moduli space of the multi-fractional instantons.

To begin implementing the above steps, we start with (4.18), written explicitly as

σ̄µD̂µ

[
W(0)k×ℓ

4 + iW(0)k×ℓ
3 W(0)k×ℓ

2 + iW(0)k×ℓ
1

−W(0)k×ℓ
2 + iW(0)k×ℓ

1 W(0)k×ℓ
4 − iW(0)k×ℓ

3

]
= 0 , (4.19)

where D̂µ = ∂µ + i [Âµ, ] is the covariant derivative in the background (3.4). As already
stated, (4.19) represent two copies of the undotted gaugino zero mode equations in the
∆ = 0 background Aω, one for each column of the W-quaternion given above. Further,
as for the gauginos, one can show that normalizability on T4 requires normalizability in
the infinite x1, x3 plane of the simple harmonic oscillator wave functions, the solutions
of (4.19). Thus, we borrow the solutions for the gauginos from section 3.4.2, we find that
equations (4.19) have normalizable solutions if and only if

W(0)k×ℓ
4 = iW(0)k×ℓ

3 , W(0)k×ℓ
2 = iW(0)k×ℓ

1 (4.20)
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noting that these are nothing but the conditions of vanishing of λC′B 2, recall (3.18). The
solutions for W(0)k×ℓ

4 ,W(0)k×ℓ
2 are then borrowed from (3.18):15

(
W(0)k×ℓ

2

)
C′C

= V −1/4

r
gcd(k,r)−1∑

p=0
C[C′+pk]r

2 Φ(p)
C′C(x, ϕ̂) =: W2 C′C ,

(
W(0)k×ℓ

4

)
C′C

= V −1/4

r
gcd(k,r)−1∑

p=0
C[C′+pk]r

4 Φ(p)
C′C(x, ϕ̂) =: W4 C′C , (4.21)

where Φ(p)
C′C(x, ϕ̂) are given by (3.21) and the volume factor is included for future con-

venience. Thus, there are 2r arbitrary coefficients C[C′+pk]r
2 and C[C′+pk]r

4 , which are now
complex bosonic variables. In the following, we shall discuss the physical significance of C2,4.

We now continue with the next step: imposing orthogonality to the various zero modes
of ∂̄ = σ̄µ∂µ, the solutions of the equation ∂̄S(0) = 0. Notice that ∂̄ is precisely the Weyl
operator for the diagonal undotted fermions discussed in section 3.4.1 and that we shall
borrow our results from that section shortly. To continue, however, it is convenient to
rewrite (4.17) using the index notation, recalling eq. (4.2) and Footnote 10. This neces-
sitates using (4.20) and the definition of the quaternions, in order to express everything
through the general solutions of (4.18), denoted by W4 (or2) C′C of (4.21). This produces,
from the first equation of (4.17), an equation determining SC′B′ (which includes the com-
ponent Sωω from (4.1)):

∂̄SC′B′ (4.22)

= i

 2π
Nk

√
V

δC′B′ − 2 (W2W ∗
2 − W4W ∗

4 )C′B′ 4 (W2W ∗
4 )C′B′

4 (W2W ∗
4 )C′B′ − 2π

Nk
√

V
δC′B′ + 2 (W2W ∗

2 − W4W ∗
4 )C′B′

 ,

where we introduced the shorthand notation, (W2W ∗
4 )C′B′ ≡ W2 C′DW ∗

4 B′D, with a sum
over D implied, and similar for the other contractions. Likewise, the equation for SCB

obtained from the second of eqs. (4.17) reads:

∂̄SCB (4.23)

= i

− 2π
Nℓ

√
V

δCB + 2(W ∗
2 W2 − W ∗

4 W4)CB −4(W ∗
4 W2)CB

−4(W ∗
2 W4)CB

2π
Nℓ

√
V

δCB − 2(W ∗
2 W2 − W ∗

4 W4)CB

 ,

using a similar shorthand (e.g. (W ∗
2 W2)CB ≡ W ∗

2 D′CW2 D′B with a sum over D′).
Next, we recall that the operator ∂̄ is the Weyl operator for the diagonal undotted

fermions, whose zero modes were determined in section 3.4.1. We also recall that S is a
quaternion, hence (similar to (4.18)), we can think of S as of two sets of Weyl fermions,
one for each column of the quaternion matrix. We can thus borrow the results for the
zero modes, recalling (3.16) and (3.17), and then impose their orthogonality of the r.h.s.
of (4.22), (4.23). As shown there, undotted fermions have 2gcd(k, r) constant zero modes.

15For further use, in (4.21), we also introduced the short-hand notation W2 C′C and W4 C′C for the general
solutions of (4.18).
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This implies that there are 4gcd(k, r) zero modes of S, which we label by an arbitrary
quaternionic coefficient ϵ(j), j = 0, . . . , gcd(k, r) − 1. The corresponding wave functions,
which we denote sB′C′ and sBC , have only diagonal entries

sB′C′ = δB′C′

gcd(k,r)−1∑
j=0

ϵ(j)

k
gcd(k,r)−1∑

n=0
δB′,[j+nr]k ,

sBC = −δBC

ℓ

k−1∑
B′=0

sB′B′ , ∀B = 0, . . . , ℓ − 1 . (4.24)

The simplest condition is the orthogonality of sBC (which is simply a constant quater-
nionic mode) to the source term in the equation for SCB. Multiplying the source term by
the sBC zero mode, taking the trace, and integrating over T4, we find that orthogonality
implies that the integral of the trace of the r.h.s. over T4 should vanish for every entry in
the quaternion source on the r.h.s. of (4.23). Explicitly, this gives the conditions∫

T4
(W ∗

2 B′CW2 B′C − W ∗
4 B′CW4 B′C) = π

N

√
V ,∫

T4
W ∗

4 B′CW2 B′C = 0 , (4.25)

with a sum over the full range of repeated indices implied.
However, the conditions imposed by orthogonality to the 4gcd(k, r) zero modes sB′B′

labelled by ϵ(j) are more detailed than (4.25). Proceeding similar to the above, we find the
gcd(k, r) conditions:

ℓ−1∑
B=0

k−1∑
C′=0

k
gcd(k,r)−1∑

n=0
δC′,[j+nr]k

∫
T4

(W2 C′BW ∗
2 C′B − W4 C′BW ∗

4 C′B) = π

Ngcd(k, r)
√

V

ℓ−1∑
B=0

k−1∑
C′=0

k
gcd(k,r)−1∑

n=0
δC′,[j+nr]k

∫
T4

W ∗
4 C′BW2 C′B = 0, j = 0, . . . , gcd(k, r) − 1 . (4.26)

That the above gcd(k, r) conditions are more general than (4.25) follows by observing
that summing up the gcd(k, r) conditions in each line of (4.26) (i.e., summing over j) we
obtain (4.25).

The importance of the conditions (4.26) is that they restrict the 2r complex coefficients
C2 and C4, and thus determine the moduli space of the multifractional instanton. Studying
this is the subject of the next section.

5 The moduli of the Q = r
N

bosonic solution: compact vs. noncompact

To study the constraints (4.25), (4.26) with W2 and W4 from (4.21), we now define, for
each j = 0, . . . , gcd(k, r) − 1 and a, b ∈ {2, 4}:

Iab
j =

k−1∑
C′=0

k
gcd(k,r)−1∑

n=0
δC′,[j+nr]k

r
gcd(k,r)−1∑

p,p′=0

C[C′+pk]r
a C∗ [C′+p′k]r

b√
V

∫
T4

ℓ−1∑
B=0

Φ(p)
C′BΦ(p′) ∗

C′B . (5.1)
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In terms of Iab
j , the constraints (4.25), (4.26) take the form:

I22
j − I44

j = π
√

V

gcd(k, r)N , (5.2)

I42
j = 0, where j = 0, . . . , gcd(k, r) − 1 .

The expressions (5.1) are evaluated in appendix B. Substituting Iab
j from (B.6) in,

we find the constraints (4.25), (4.26) expressed in terms of the undetermined complex
coefficients CA

2 and CA
4 from the solution of the equations for Wµ (4.21):16

∑
Aj∈Sj

CAj

2 C∗ Aj

2 − CAj

4 C∗ Aj

4 = 2π

gcd(k, r)N

√
rL1L3
ℓkL2L4

e−
L1L2k

2πr
(φj

1)2
e−

L3L4ℓ

2π
(φj

3)2
,

∑
Aj∈Sj

CAj

2 C∗ Aj

4 = 0 . (5.3)

Here, Sj are gcd(k, r) sets of integers (∈ {0, . . . , r− 1}), defined in (B.4) and repeated here
for convenience:

Sj =
{

[[j + nr]k + pk]r, for n = 0, . . .
k

gcd(k, r) − 1, and p = 0, . . . ,
r

gcd(k, r) − 1
}

.

Repeated entries in Sj are identified so that each set has r
gcd(k,r) elements. The union of

all sets Sj is the set {0, . . . , r − 1}.
As we shall shortly see, the structure of the “moduli space” of CA

2,4 defined by (5.3)
is quite rich. Let us, however, first count the number of moduli for general k and r > 1,
taking into account the constraints (5.3). First, there are 4 gcd(k, r) Wilson lines φj

µ, as
per (3.20). Then, there are 2r real components of CA

2 and 2r real components of CA
4 . Thus

the total number of real moduli is 4r + 4gcd(k, r). These are subject to the constraints
of eq. (5.3): the gcd(k, r) real constraints on the first line and 2gcd(k, r) real constraints
on the second line. Thus, it would appear that the number of moduli minus the number
of constraints is 4r + gcd(k, r). We notice, however, that the gauge conditions (4.14)
are invariant under constant gauge transformations in the gcd(k, r) Cartan directions,
the ones along the allowed holonomies (3.20) (i.e. ones that commute with the transition
functions).17 Thus, the total number of bosonic moduli for k ̸= r > 1 is 4r, as required by
the index theorem for a selfdual solution.

We now consider the various cases in detail:

1. The case k = r. This case is singled out by the fact that there are k complex
coefficients CA

2 (and k CA
4 ). In addition, the r sets Sj are such that each contains a

16We also note that the origin of the (φj
1,3)2-terms on the r.h.s. is in the imaginary ϕ̂1, ϕ̂3-terms appearing

in the last two lines in Φ(p) from (3.21). One can show that they can be absorbed in the definition of the
coefficients Cj (or ηj).

17In the next section, we shall explicitly see that no gauge invariant characterizing the instanton depends
on these phases.
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single element, one of the r allowed values of A. Thus the r(= k) constraints become,
with c a real number, determined by the r.h.s. of (5.3):

CA
2 C∗ A

2 − CA
4 C∗ A

4 = c2 (no sum over A) , (5.4)
CA

2 C∗ A
4 = 0 =⇒ CA

4 = 0, CA
2 = eiαAc, ∀ A ∈ {0, . . . , r − 1}.

Thus, all “moduli” CA
2,4 are fixed up to r undetermined phases αA. These phases are

unphysical and correspond to the already mentioned ability to perform r (=gcd(k, r))
constant gauge transformations preserving the gauge conditions (4.14). Thus, the
only moduli left are the r phases φj

µ, j = 0, . . . , r, recall (3.20).

Thus the multifractional instanton obtained for k = r, with Q = r
N , has 4r compact

moduli, as expected from the index theorem. Further studies of the instantons for
k = r and the interpretation of these moduli will be discussed in the next section.

2. The case k ̸= r, r > 1.18 This case is quite different. Here the r sets Sj contain
more than a single number each. Thus, the second equation in (5.4) does not set any
modulus to zero (recall that it required that all CA

4 vanish for k = r). Instead, as
we argue below, the constraints permit the moduli C2,4 to grow without bound, thus
making the “moduli” space noncompact.

To illustrate the noncompactness for k ̸= r > 1, we abandon generality and focus on
a simple example r = 2, k = 3, a case with gcd(k, r) = 1 (we shall further use this
example in the following). Here, there is only a single set Sj , S0 = {0, 1} and after
the following relabeling, with all x’s and y’s real,19

C0
2 → x1 + iy1 , C0

4 → x2 + iy2 , C1
2 → x3 + iy3 , C1

4 → x4 + iy4 , (5.5)

we obtain for eqs. (5.3):

x2
1 + y2

1 + x2
3 + y2

3 − x2
2 − y2

2 − x2
4 − y2

4 = 1 ,

x1x2 + y1y2 + x3x4 + y3y4 = 0 ,

x2y1 − x1y2 + y3x4 − x3y4 = 0 . (5.6)

Conditions (5.6) eliminate 3 out of 8 real parameters, leaving 4 physical parameters
that parameterize the moduli space in addition to the single arbitrary unphysical
phase mentioned above (recall that here gcd(k, r)=1).

The moduli space spanned by the hypersurface given by the constraints (5.6) is non-
compact. To see this, we set for simplicity x2 = y1 = y3 = x4 = 0. Then, the
constraints become

x1y2 = −x3y4 , x2
1 − y2

2 + x2
3 − y2

4 = 1 . (5.7)
18We do not consider r = 1 here, as it was studied in detail before [8]. As is also easy to see from our

formulae, for r = 1, the moduli C2,4 are also fixed.
19A trivial rescaling setting the r.h.s. of the first equation in (5.3) to unity is not explicitly shown.
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For every x3 = y4 ∈ (−∞,∞) we find

x2
1 = x4

3
x2

1
+ 1 , (5.8)

which has at least two real solutions of x1. We also find that x1 → ∞ as x3 = y4 → ∞.
We conclude that the moduli space is non-compact. For a later convenience, we
parametrize the asymptotic region (u → ∞) of this noncompact direction of the
moduli space as

C0
2 ∼ ±u , C1

2 ∼ u , C0
4 ∼ ∓iu , C1

4 ∼ iu . (5.9)

It is easy to see, even without following the derivation, that (5.9) obey (5.3) with
vanishing r.h.s., i.e. at u → ∞

The presence of noncompact moduli for the k ̸= r instantons is difficult to interpret in a T4

geometry. In the later sections, we shall see that on this noncompact moduli space, O(∆)
gauge invariants characterizing the multifractional instanton grow without bounds — see
the end of section 6.1 for a brief discussion of the blowup and appendix D for details of its
derivation. This blow up clashes with the spirit of the ∆ expansion. As we mentioned in
the Introduction, it would be nice to achieve a deeper understanding of this finding.

6 Local gauge invariants of the Q = r
N

solution and its “dissociation”

In this section, we give expressions for local gauge invariant densities characterizing the
multifractional instanton to order ∆. These expressions are evaluated in the appendices.
We use the results to, first, show that O(∆) local gauge invariants grow without bound
along the noncompact moduli directions found for k ̸= r, and, second, to argue for the
fractionalization of the k = r multifractional instanton into r identical lumps located at
positions on T4 determined by the r distinct holonomies/moduli.

6.1 Gauge-invariant local densities to order ∆ and their blow up for k ̸= r

The gauge-invariant local density of the lowest scaling dimension is

tr [Fµ1ν1Fµ2ν2 ] , (6.1)

where

Fµν =
(
F ω

µν + F s
µν

)
ω +

[
F k

µν Fµν

F†
µν F ℓ

µν

]
, (6.2)

and we recall that the components of (6.2) were already defined in (4.5).20

In appendix C, we compute the various field strength components appearing in (6.2)
to order ∆ (shown in eq. (C.13)) as well as the action density and action. Then, following

20For brevity, we have omitted the k × ℓ and ℓ × k superscripts in writing (6.2).
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the same steps used in deriving the action density there, we obtain for eq. (6.1) to order ∆

tr [Fµ1ν1Fµ2ν2 ]
= tr[ω2]

{
F̂ ω

µ1ν1F̂ ω
µ2ν2 + ∆F̂ ω

µ1ν1

(
∂µ2S(0)ω

ν2 − ∂ν2S(0)ω
µ2

)
+ ∆F̂ ω

µ2ν2

(
∂µ1S(0)ω

ν1 − ∂ν1S(0)ω
µ1

)}
+2πℓ∆F̂ ω

µ1ν1trk

[
∂µ2S(0)k

ν2 − ∂ν2S(0)k
µ2

]
+ 2πℓ∆F̂ ω

µ2ν2trk

[
∂µ1S(0)k

ν1 − ∂ν1S(0)k
µ1

]
−2πk∆F̂ ω

µ1ν1trℓ

[
∂µ2S(0)ℓ

ν2 − ∂ν2S(0)ℓ
µ2

]
− 2πk∆F̂ ω

µ2ν2trℓ

[
∂µ1S(0)ℓ

ν1 − ∂ν1S(0)ℓ
µ1

]
+i2πN∆F̂ ω

µ1ν1trk

[
Wµ2W†

ν2 −Wν2W†
µ2

]
+ i2πN∆F̂ ω

µ2ν2trk

[
Wµ1W†

ν1 −Wν1W†
µ1

]
+∆trk

(
Fµ1ν1F†

µ2ν2

)
+ ∆trℓ

(
F†

µ1ν1F µ2ν2

)
. (6.3)

Using trℓS
(0ℓ)
µ = trkS

(0k)
µ = 0, we obtain

tr [Fµ1ν1Fµ2ν2 ]
= tr[ω2]

{
F̂ ω

µ1ν1F̂ ω
µ2ν2 + ∆F̂ ω

µ1ν1

(
∂µ2S(0)ω

ν2 − ∂ν2S(0)ω
µ2

)
+ ∆F̂ ω

µ2ν2

(
∂µ1S(0)ω

ν1 − ∂ν1S(0)ω
µ1

)}
+i2πN∆F̂ ω

µ1ν1trk

[
Wµ2W†

ν2 −Wν2W†
µ2

]
+ i2πN∆F̂ ω

µ2ν2trk

[
Wµ1W†

ν1 −Wν1W†
µ1

]
+∆trk

(
Fµ1ν1F†

µ2ν2

)
+ ∆trℓ

(
F†

µ1ν1F µ2ν2

)
. (6.4)

In appendix D, we compute (for definiteness) the gauge invariant density tr [F34F34] for
the k ̸= r solution and show that it grows without bounds along the noncompact moduli
direction of (5.9). This local gauge invariant, from (6.4), is given by

tr [F34F34]
= tr[ω2]

{
F̂ ω

34F̂ ω
34 + 2∆F̂ ω

34

(
∂3S(0)ω

4 − ∂4S(0)ω
3

)}
+ i4πN∆F̂ ω

34trk

[
W3W†

4 −W4W†
3

]
= tr[ω2]

{
F̂ ω

34F̂ ω
34 + 2∆F̂ ω

34

(
∂3S(0)ω

4 − ∂4S(0)ω
3

)}
+ 8πN∆F̂ ω

34trk

[
W4W†

4

]
, (6.5)

and we used W3 = −iW4.
To show the blow up, we use the example r = 2, k = 3 studied in section 5. In

appendix D, we show that in the noncompact direction (5.9) the O(∆) gauge invariant
blows up as u → ∞. This runaway behaviour of local gauge invariant densities along
the noncompact moduli space runs counter the spirit of the ∆-expansion. Thus, in what
follows, we concentrate on the properties of the k = r solutions with compact moduli space.

6.2 Fractionalization of solutions with topological charges r > 1

6.2.1 Bosonic gauge invariant densities

In this section, we use the results for the local gauge invariants to argue that instantons
with topological charges r > 1 dissociate into r identical components. It is clear from the
discussion in the previous section that unless one takes k = r, one faces the undesired
runaway behavior of the gauge-invariant densities. Thus, we limit our discussion to the
case k = r, where we show that the gauge-invariant densities take the form of a sum over
r independent lumps centered around r distinct holonomies.
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To this end, consider (6.4) taking µ1 = µ3 = 1, µ2 = µ4 = 2. Thus, one obtains

tr [F12F12] = tr[ω2]
{

F̂ ω
12F̂ ω

12 + 2∆F̂ ω
12

(
∂1S(0)ω

2 − ∂2S(0)ω
1

)}
+ 8πN∆F̂ ω

12trk

[
W2W†

2

]
,

(6.6)
where, using (D.3), we find(

∂1S(0)ω
2 − ∂2S(0)ω

1

)
= − (πℓk□)−1

(
∂2

1 + ∂2
2

)
trk

[
W(0)

2 W†(0)
2

]
. (6.7)

Here,

W(0)
2 C′,C(x) = V −1/4CC′

2 Φ(0)
C′,C(x, ϕ̂) , C ′ = 1, 2, . . . , k = r , C = 1, 2, . . . , ℓ . (6.8)

It is more convenient to express Φ(0)
C′,C(x, ϕ̂) in the form given in (A.54)

Φ(0)
C′,C(x, ϕ̂) = e

kL1L2
2πr

ϕ̂C′
1

(
iϕ̂C′

2 +ϕ̂C′
1 /2

)
e

ℓL3L4
2π

ϕ̂C′
3

(
iϕ̂C′

4 +ϕ̂C′
3 /2

)
e−iϕ̂C′

1 x1e−iϕ̂C′
3 x3

×
∑

m′∈Z

∑
n′∈Z

e
i

(
2πx2

L2
+L1ϕ̂C′

1

)
(m′+ 2C′−1−k

2k
)
e

i

(
2πx4

L4
+ℓL3ϕ̂C′

3

)
(n′− 2C−1−ℓ

2ℓ
)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×e

− πr
kL1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1

k

(
km′+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn′− 2C−1−ℓ

2 )
]2

. (6.9)

The above eqs. (6.7), (6.6) imply that the computation of the gauge-invariant density
tr [F12F12] requires finding the quantity

trk

[
W(0)

2 W†(0)
2

]
=

r∑
C′=1

(
ℓ∑

C=1
|CC′

2 |2|Φ(0)
C′,C(x, ϕ̂)|2

)
. (6.10)

To further study (6.10), we need to take into account the fact that the r coefficients C2
are determined by the top equation in (5.3), as described in (5.4). It is important that C2
do depend on the holonomies, which were absorbed into the coefficient c in (5.4). Taking
this into account,21 we find, after some rearrangement, that the expression (6.10), which
determines tr [F12F12] to order ∆ has the following form:22

trk

[
W(0)

2 W†(0)
2

]
(6.11)

∼
r∑

C′=1

∣∣∣∣ ∑
m′∈Z

e
i

(
2πx2

L2
+L1ϕ̂C′

1

)
m′− π

L1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1C′

r
−L1(m′− 1+r

2r
)
]2 ∣∣∣∣2

×
∣∣∣∣ ∑

n′∈Z
e

i

(
2πx4
ℓL4

+L3ϕ̂C′
3

)
n′− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn′+ 1+ℓ

2 )
]2 ∣∣∣∣2

=:
r∑

C′=1
F

(
x1 −

L1L2
2π

ϕ̂C′
2 − L1C ′

r
, x2 + L1L2

2π
ϕ̂C′

1 , x3 −
ℓL3L4

2π
ϕ̂C′

4 , x4 + ℓL3L4
2π

ϕ̂C′
3

)
.

21The ϕ̂1,3-dependence of C2 cancels the (ϕ̂1)2 and (ϕ̂3)2 terms in the exponent on the first line of (6.9).
This ensures that gauge invariant quantities have periodic dependence on the holonomies.

22Up to an inessential Lµ, r, ℓ, N -dependent constant which can be easily determined.
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As indicated on the last line above, for every C ′ = 1, 2, . . . , r, the summand is given by
the same function F (x1, x2, x3, x4), implicitly defined above, but centered at a different
point xµ on T4. The position of each lump is determined by the moduli ϕ̂C′

µ , µ = 1, 2, 3, 4,
C ′ = 1, . . . , r. The size of the lumps is, of course, set by the size of T4, the only scale of
the problem. Thus, the “lumps” we find are not well isolated, but strongly overlapping,
rather like a liquid than a dilute gas (see figure 1 for an illustration).

6.2.2 Fermionic zero modes and their localization

The conclusion of the above analysis is that the local gauge invariant density of the multi-
fractional instanton, tr [F12F12], takes the form of a sum of r identical lumps, each centered
at r distinct holonomies. Thus, the solution of topological charge r/N can be thought of
as composed of r distinct lumps. Each lump is expected to contribute 1/N -th of the total
topological charge.

This expectation is strengthened by considering the fermion zero modes in the Q = r
N

self-dual solution. In appendix E, we show that there are 2r zero modes, labeled by a
2-spinor η̄C′

α , with C ′ = 1, . . . r. To order O(
√

∆), the x-dependence of the zero modes
appears in the off-diagonal components:

λ1 C′D ∼ η̄C′
2 (∂3 + iϕ̂C′

3 )Φ(0)
C′,C(x, ϕ̂)) ≡ η̄C′

2 G(0)
3 C′D(x, ϕ̂C′),

λ2 C′D = 0 . (6.12)

with the expression for G(0)
3 C′D(x, ϕ̂C′) given in appendix C, see (C.9). Likewise, the zero

mode wave function in the other off-diagonal component is

λ1 DC′ = 0,

λ2 DC′ ∼ η̄C′
1 G∗ (0)

3 C′D(x, ϕ̂C′). (6.13)

Even without consulting the explicit expression, it is clear that the C ′-th zero mode only
depends on ϕ̂C′

µ , which, therefore, governs its xµ-dependence, similar to (6.11) above.
Explicitly, one can construct O(∆) gauge invariants formed from the zero modes, to

find, as for the bosonic invariants, that they are governed by a “lumpy” structure, with
each of the r lumps supporting 2 zero modes located at a position governed by the moduli
ϕ̂C′

µ . Explicitly, we find that the order-∆ gauge invariants built from the fermion zero
modes contain terms like∑

C′,D

λ1C′Dλ2DC′

∼
∑
C′

η̄C′
1 η̄C′

2

∣∣∣∣∑
m

e
i 2πm

L2
(x2+ L1L2

2π
ϕ̂C′

1 )− π
L1L2

[
x1−

L1L2
2π

ϕ̂C′
2 −L1C′

r
+L1

1+r
2r

−L1m

]2 ∣∣∣∣2 (6.14)

×
∣∣∣∣∑

n

(
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3ℓn−L3

1+ℓ

2

)
e

i 2πn
ℓL4

(x4+ ℓL3L4
2π

ϕ̂C′
3 )− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂C′
4 −L3(ℓn+ 1+ℓ

2 )
]2 ∣∣∣∣2.

This expression shows the same “localization” properties (determined by the holonomies
ϕ̂C′) of the fermion zeromodes that were made evident for the bosonic solution in (6.11).
It is also clear that the C

′th fermion zero mode vanishes at the position determined by the
C

′th holonomy.
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A Derivation of the off-diagonal fermion zero modes

A.1 The zero modes at zero holonomy

Within this appendix, we present the derivation of one of the main results in the main
text, denoted as eq. (3.18). Our objective revolves around solving the off-diagonal fermion
zero modes of the Dirac equation Dµσ̄µλ = 0. This equation pertains to the ’t Hooft
flux background, wherein the covariant derivative takes the form Dµ = ∂µ + i[Aµ, ]. To
streamline our approach, we commence by deactivating the holonomies. Subsequently, we
can reintroduce them once we have obtained a general solution.

Using (3.2) and writing Aµ ≡ Aω
µω, we find the commutator

[Aµ, λ] = 2πAω
µ

[
0 N ||λC′C ||

−N ||λCC′ || 0

]
, (A.1)

In this appendix we take the range of C and C ′ to be C = 1, 2, . . . , ℓ and C ′ = 1, 2, . . . , k.
Substituting the above result into the Dirac equation, Dµσ̄µλ = 0, we obtain for λC′C (and
similarly for λCC′ after replacing +i2πN → −i2πN):

σ̄µ
[
∂µλC′C + i2πNAω

µλC′C

]
= 0 . (A.2)

Writing λC′C in terms of its two spinor components λC′C 1 and λC′C 2, the Dirac equation
reads: (

∂1 − i∂2 −
2πrx1
kL1L2

)
λC′C 2 +

(
∂3 + i∂4 + 2πx3

ℓL3L4

)
λC′C 1 = 0 ,(

∂1 + i∂2 + 2πrx1
kL1L2

)
λC′C 1 +

(
−∂3 + i∂4 + 2πx3

ℓL3L4

)
λβ

C′C 2 = 0 . (A.3)

A normalizable solution to the above equations can be found provided that we set λC′C 2 =
0; an assertion that will be revisited below in the light of the most general normalizable
solution on T4 we shall construct.

We proceed further by defining the functions UC′C via:

λC′C 1 ≡ e
−

πrx2
1

kL1L2 e
−

πx2
3

ℓL3L4 UC′C , (A.4)

which reduces (A.3) to the two simple equations

(∂1 + i∂2) UC′C = 0 , (∂3 + i∂4) UC′C = 0 . (A.5)
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By defnining the complex variables w1 ≡ x1 + ix2 and w2 ≡ x3 + ix4, we can cast (A.5) in
the form

∂UC′C

∂w̄1
= 0 ,

∂UC′C

∂w̄2
= 0 , (A.6)

and, thus, we conclude that UC′C is an analytic function of w1 and w2:

UC′C = UC′C(w1, w2) . (A.7)

We can also write the boundary conditions (3.12) as (the cyclic nature of the matrix
elements, i.e., UC′C ≡ UC′+k;C+ℓ will be imposed below):

UC′C(w1 + L1, w2) = γ−r
k e

πrL1
kL2

+ 2πrw1
kL2 UC′−r C(w1, w2) ,

UC′C(w1 + iL2, w2) = γkei
2π(C′−1)

k UC′C(w1, w2) ,

UC′C(w1, w2 + L3) = γ−1
ℓ e

πL3
ℓL4

+ 2πw2
ℓL4 UC′ C+1(w1, w2) ,

UC′C(w1, w2 + iL4) = γ−1
ℓ e−i

2π(C−1)
ℓ UC′C(w1, w2) . (A.8)

We notice that the transformation properties under imaginary shifts of w1 by iL2 and w2
by iL4 are satisfied by writing UC′C(w1, w2) as the phase factor

e
w1
L2

π
k

(2C′−1−k)−w2
L4

π
ℓ

(2C−ℓ−1) (A.9)

times an analytic function which is periodic w.r.t. these imaginary shifts, i.e., is a linear
combination of functions e

2πn
w1
L2

+2πm
w2
L4 where n, m ∈ Z.23 Thus, the expression for UC′C

has the form

UC′C(w1, w2) = e
πw1(2C′−1−k)

kL2 e
−πw2(2C−1−ℓ)

ℓL4
∑

m,n∈Z
dC′,C,m,ne

2πm
w1
L2

+2πn
w2
L4 . (A.10)

Our next task is determining the coefficients dC′,C, m,n. Using the first and third BCs
in (A.8), we obtain the recurrence relations

dC′,C,m,n = e−i
πr(1−k)

k e
−πL1(2C′−1−k)

kL2
− 2πmL1

L2
+ πrL1

kL2 dC′−r,C,m,n , (A.11)

and
dC′,C+1,m,n = ei

π(1−ℓ)
ℓ e

π(−2C+(2n+1)ℓ)L3
ℓL4 dC′,C,m,n . (A.12)

These recurrence relations must be supplemented with boundary conditions that
need to be satisfied to guarantee the cyclic nature of the solution, i.e., UC′C(w1, w2) =
UC′+k C(w1, w2) = UC′ C+ℓ(w1, w2). First, using UC′1(w1, w2) = UC′ 1+ℓ(w1, w2) along
with the third equation in (A.8), we obtain the following relationship between the elements
C = 1 and C = ℓ in SU(ℓ):

UC′ C=ℓ(w1, w2 + L3) = γ−1
ℓ e

πL3
ℓL4 e

2πw2
ℓL4 UC′ C=1(w1, w2) , (A.13)

23The periodicity in imaginary shifts requires the exponential dependence, while the rest follows by
holomorphy. The functions e

2πn
w2
L4 are normalizable on T2, and the ones with different n’s are orthogonal,

as enforced by the imaginary part of integrals over x2.
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which yields via (A.10):

dC′,ℓ,m,n = e−i
π(ℓ−1)

ℓ e
π(1−2n)L3

L4 dC′,1,m,n−1 . (A.14)

We can generalize (A.12) and (A.14) to

dC′,C,m,n = e−i
π(1−ℓ)

ℓ e
−π(−2C+(2n+1)ℓ)L3

ℓL4 dC′,C+1,m,n , if C + 1 < ℓ (A.15)

dC′,C,m,n = e−i
π(1−ℓ)

ℓ e
−π(−2C+(2n+1)ℓ)L3

ℓL4 dC′,Cnew,m,n−1 , Cnew = C + 1 − ℓ if C + 1 > ℓ .

We must also find the boundary condition for the recurrence relation (A.11). Using
U1C(w1, w2) = U1+k C(w1, w2) along with the first equation in (A.8), we obtain the following
relationship between the elements C ′ = 1 and C ′ = k − (r − 1) in SU(k):

UC′=1 C(w1 + L1, w2) = γ−r
k e

πrL1
kL2 e

2πr
kL2

w1UC′=k−(r−1) C(w1, w2) , (A.16)

which yields via (A.10):

d1,C,m,n = e−i
πr(1−k)

k e
π(r−1+k−2mk)

k

L1
L2 dk−(r−1),C,m−1,n . (A.17)

Notice that we had to shift m by one unit since, according to the first equation in (A.8), a
shift in the L1 direction relates the element C ′ = 1 to the element C ′ = 1−r. However, since
1− r ≤ 0, we needed to replace C ′ = 1− r by a new C ′

new = k − (r − 1). This replacement
forces us to shift m → m − 1 to obey the boundary condition (A.8) in the L1 direction.
This shift in m always happens whenever the matrix elements have C ′ − r ≤ 0. We may
generalize (A.17) for any C ′ whenever the first condition (A.11) yields dC′=C−r,C,m,n with
C ′ < 0. Demanding the cyclicity UC′+k C(x) = UC′ C(x), we replace (A.11) and (A.17)
with

dC′,C,m,n = e−i
πr(1−k)

k e
−πL1(2C′−1−k)

kL2
− 2πmL1

L2
+ πrL1

kL2 dC′−r,C,m,n , if C ′ − r > 0 ,

dC′,C,m,n = e−i
πr(1−k)

k e
−πL1(2C′−1−k)

kL2
− 2πmL1

L2
+ πrL1

kL2 dC′new,C,m−1,n ,

C ′
new = C ′ − r + k , if C ′ − r ≤ 0 . (A.18)

Now we come to the solution of the difference equation (A.15). This is a first-order
difference equation, and thus, it yields a single solution. To this end, we substitute the
following form

dC′,C,m,n = F (C ′, m)e−
πL3
ℓL4

[C+S(n)]2 (A.19)

into the first equation in (A.15), to obtain

S(n) = −1 + (2n + 1)ℓ
2 . (A.20)

Thus,

dC′,C,m,n = F (C ′, m)e
−πL3

ℓL4

(
C−i

L4(1−ℓ)
2L3

− 1+ℓ(2n+1)
2

)2

. (A.21)
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It is straightforward to check that the solution (A.21) obeys (A.15).
On the other hand, the recurrence relation (A.18) is a difference equation of order r,

and thus, it should yield r independent solutions. To solve it, we parameterize it as

dC′,C,m,n = e
− πL1

krL2

(
C′+i

L2r(1−k)
2L1

+S′(m)
)2

, (A.22)

and, inserting into the first equation in (A.18), we find

S′(m) = −1 + k(1 − 2m)
2 . (A.23)

We can check that (A.22), (A.23) satisfy (A.18). Combining (A.21) and (A.22), we obtain
the final answer

dC′,C,m,n = e
−πL3

ℓL4

(
C−i

(1−ℓ)L4
2L3

− 1+ℓ(2n+1)
2

)2

e
− πL1

krL2

(
C′+i

r(1−k)L2
2L1

− 1+k(1−2m)
2

)2

. (A.24)

Notice that dC′,C,m,n → e
−πL3

L4
ℓn2

e
−πL1

rL2
km2

as n, m → ∞, and thus, the series (A.10)
rapidly converges. Had we not set λC′C 2 = 0 in (A.3), we would have obtained a divergent
series in m, n, and thus, no normalizable zero modes could be found.

What is not immediately clear from (A.24) is that there are r independent solutions
of UC′C ; this should be expected since (A.18) is a difference equation of order r. The r

independent solutions of UC′C follow from two distinct cases.

1. If gcd(r, k) = r, we can show that there are r independent coefficients

dC′=1,C,m,n, dC′=2,C,m,n, . . . , dC′=r,C,m,n , (A.25)

and the sums over m, n in (A.10) are over all integers. The r independent coefficients
yield r independent solutions.

2. If gcd(r, k) = 1 and r > 1, then the set of integers m in (A.10) bifurcates into r

sets such that the sum over m ∈ Z in (A.10) is divided into mj = njr + n, nj ∈ Z,
n = 0, 1, . . . , r−1. These form r independent orbits that correspond to r independent
solutions.

The general situation, 1 < gcd(r, k) < r, is a combination of both cases.
To ease our discussion, we consider a few examples to understand the essence of each

case. First, consider case 1 above, and take as an example k = 6, r = 2, where gcd(6, 2) = 2.
Using (A.18), we see that the coefficients dC′,C,m,n are related via (here we ignore C and n

since they do not play a role. Also the arrow indicates the relations between the coefficients
as we traverse the L1 direction, without caring about the pre-coefficients):

d1,m → d5,m−1 → d3,m−1 → d1,m−1 → d5,m−2 → . . . ,

d2,m → d6,m−1 → d4,m−1 → d2,m−1 → d6,m−2 → . . . . (A.26)

Each line depicts a set of coefficients, and the coefficients of line 1 and line 2 are independent
in that a coefficient in line 1 cannot be reached via a coefficient in line 2 and vice versa.
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Notice also, for example, as we start from d1,m and traverse the L1 direction 3 times, we
obtain the shifted d1,m−1 by one unit. Thus, we need to sum over all integers m in every
line. This gives the two independent solutions.

Next, consider case 2. For example, take k = 6, r = 5, where gcd(k, r) = 1. Apply-
ing (A.18) we find

d1,m → d2,m−1 → d3,m−2 → d4,m−3 → d5,m−4 → d6,m−5 → d1,m−5 → d2,m−6 . . . . (A.27)

Thus, the fact that d1,m shifts to d1,m−5 and d2,m−1 to d2,m−6, etc. means that the set of
integers m bifurcates into 5 sets: m = 5m′+p, p = 0, 1, 2, 3, 4 and m′ ∈ Z. Thus, we obtain
5 independent orbits corresponding to 5 independent solutions.

Finally, consider the general case 1 < gcd(r, k) < r, and take, for example, k = 6, r = 4,
where gcd(6, 4) = 2. Here, we find

d1,m → d3,m−1 → d5,m−2 → d1,m−2 → . . . . ,

d2,m → d4,m−1 → d6,m−2 → d2,m−2 → . . . . (A.28)

The two lines depict independent solutions. However, we also find that there are indepen-
dent orbits within each line. For example, d1,m shifts to d1,m−2, etc. Thus, the integers are
divided into two sets, odd and even. We conclude that there are two orbits in each line,
and in total, we have 4 independent solutions, as expected. In this general case, we find
that a simple relation gives the r solutions:

r = gcd(k, r)︸ ︷︷ ︸
number of vertical lines, case (1)

× r

gcd(k, r)︸ ︷︷ ︸
independent orbits, case (2)

. (A.29)

It is best to cast the above findings in a more effective compact notation. To this end,
we define the functions:

Φ̃(p)
C′C(x) ≡ e

−
πrx2

1
kL1L2 e

−
πx2

3
ℓL3L4

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

×e
−πL3

ℓL4

(
C−i

(1−ℓ)L4
2L3

− 1+ℓ(2n′+1)
2

)2

e
− πL1

krL2

(
C′+i

r(1−k)L2
2L1

− 1+k(1−2m)
2

)2

×e
2πw1

L2
(m+ 2C′−1−k

2k
)
e

2πw2
L4

(n′− 2C−1−ℓ
2ℓ

)
, (A.30)

for p = 0, 1, . . . , r
gcd(k,r) − 1. Thus, there are r

gcd(k,r) independent solutions correspond to
r

gcd(k,r) independent orbits. We can also rewrite Φ̃(p)
C′,C conveniently as

Φ̃(p)
C′C(x) =

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

{
e

i
2πx2

L2
(m+ 2C′−1−k

2k
)
e

i
2πx4

L4
(n′− 2C−1−ℓ

2ℓ
)

×e
πr(1−k)2L2

4kL1
−i

π(1−k)
k

(
C′− 1+k(1−2m)

2

)
× e

π(1−ℓ)2L3
4ℓL4

+i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×e

− πr
kL1L2

(
x1−

L1(2mk+2C′−1−k)
2r

)2

e
− π

ℓL3L4

(
x3−

L3((2n′+1)ℓ−(2C−1))
2

)2 . (A.31)

– 30 –



J
H
E
P
0
9
(
2
0
2
3
)
0
9
5

Since the terms e
πr(1−k)2L2

4kL1 and e
π(1−ℓ)2L3

4ℓL4 are independent of m, n, C, C ′, we may drop them
and define the function Φ(p)

C′C(x) as:

Φ(p)
C′C(x) ≡

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

{
e

i
2πx2

L2
(m+ 2C′−1−k

2k
)
e

i
2πx4

L4
(n′− 2C−1−ℓ

2ℓ
)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
× e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×e

− πr
kL1L2

(
x1−

L1(2mk+2C′−1−k)
2r

)2

e
− π

ℓL3L4

(
x3−

L3((2n′+1)ℓ−(2C−1))
2

)2 . (A.32)

The functions Φ(p)
C′C(x) solve the equation

σ̄µ
[
∂µΦ(p)

C′C + i2πNAω
µΦ(p)

C′C

]
= 0 , (A.33)

and satisfy the boundary conditions

Φ(p)
C′C(x + ê1L1) = e−i

πr(1−k)
k e

i
2πrx2

kL2 Φ(p)
[C′−r]k C(x) ,

Φ(p)
C′C(x + ê2L2) = ei

2π(2C′−1−k)
2k Φ(p)

C′C(x) ,

Φ(p)
C′C(x + ê3L3) = e−i

π(1−ℓ)
ℓ e

i
2πx4
ℓL4 Φ(p)

C′ [C+1]ℓ(x) ,

Φ(p)
C′C(x + ê4L4) = e−i

2π(2C−1−ℓ)
2ℓ Φ(p)

C′C(x) , (A.34)

which are the exact same boundary conditions (3.12). The entries with C ′ = j, j +
gcd(k, r), j + 2gcd(k, r), . . . , j + k − gcd(k, r), for every j = 1, 2, . . . , gcd(k, r), are shuffled
to each other as we traverse the L1 direction. Thus, the rows with C ′ = 1, 2, . . . , gcd(k, r)
are independent. In total, there are gcd(k, r) × r

gcd(k,r) = r independent solutions. In

addition, Φ(p)
C′C satisfy the cyclic properties:

Φ(p)
C′+k C(x) = Φ(p+1)

C′C (x) ,

Φ(p)
C′C(x) = Φ

(
p+ r

gcd(k,r)

)
C′C (x) . (A.35)

Notice the intertwining between the shift in p by 1 and C ′ by k.
We can use (A.35), noticing the intertwining between the shift in p and C ′, to write

the r independent zero modes of the Dirac equation as

λC′C(x) =

r
gcd(k,r)−1∑

p=0

[
η[C′+pk]r

0

]
Φ(p)

C′C(x) , (A.36)

where [x]r ≡ x mod r, and it is obvious that η[C′+pk]r yields r independent coefficients.
This is the desired equation (3.18) without holonomies.
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A.2 Turning on holonomies

Next, we turn on the SU(k) space holonomies. In particular, the gauge field is now given
by

Aµ = −
[
Âω

µ + ϕµ

]
ω + Ha′

ϕa′
µ , (A.37)

where ϕµ = zµ/Lµ are the abelian holonomies, Ha′ , a′ = 1, 2, . . . , k − 1 are the k − 1
Cartan generators of the su(k) algebra, and ϕa′

µ are k − 1 holonomies in every direction
µ = 1, 2, 3, 4. Next, we need to compute the commutator:

[Ha′
ϕa′

µ , ||λ||C′C ] =
(
Ha′

ϕa′
µ

)
C′C′

λC′C ≡ ϕC′
µ λC′C . (A.38)

Recalling (A.1), we find it convenient to define

ϕ̂C′
µ = ϕC′

µ − 2πNϕµ . (A.39)

Noticing that Aµ has to commute with the transition functions, then out of k holonomies,
there are at most gcd(k, r) holonomies in every spacetime direction. Thus, we find that
ϕ̂C′

µ = ϕ̂C′+r
µ , or we can express this fact as

ϕ̂C′
µ = ϕ̂[C′]r

µ . (A.40)

Using the above information in the Dirac equation σ̄µDµλ = 0, we find (compare
with (A.3)) (

∂3 + iϕ̂C′
3 + i∂4 − ϕ̂

[C′]r
4 + 2πx3

ℓL3L4

)
λ1C′,C = 0 ,(

∂1 + iϕ̂C′
1 + i∂2 − ϕ̂

[C′]r
2 + 2πrx1

kL1L2

)
λ1C′,C = 0 . (A.41)

and we have set λC′C 2 = 0, as in (A.3).
Next, we use the field redefinition

λC′C 1 = e
−

πrx2
1

kL1L2 e
−

πx2
3

L3L4 e−ixµϕ̂
[C′]r
µ UC′C (A.42)

in (A.41) to find that UC′C obeys the equations

(∂1 + i∂2) UC′C = 0 , (∂3 + i∂4) UC′C = 0 . (A.43)

These equations, as before, imply that UC′C is an analytic function of w1 ≡ x1 + ix2 and
w2 ≡ x3 + ix4.

The BCS (3.12) can be rewritten in terms of the functions UC′C :

UC′C(w1 + L1, w2) = γ−r
k e

πrL1
kL2

+ 2πr
kL2

w1+iL1ϕ̂
[C′]r
1 UC′−r C(w1, w2) ,

UC′C(w1 + iL2, w2) = ei π
k

(2C′−1−k)+iL2ϕ̂
[C′]r
2 UC′C(w1, w2) ,

UC′C(w1, w2 + L3) = γ−1
ℓ e

πL3
ℓL4

+ 2π
ℓL4

w2+iL3ϕ̂
[C′]r
3 UC′ C+1(w1, w2) ,

UC′C(w1, w2 + iL4) = e−i π
ℓ

(2C−ℓ−1)+iL4ϕ̂
[C′]r
4 UC′C(w1, w2) . (A.44)
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Similar to (A.10), the transformation properties under imaginary shifts of w1 by iL2 and
w2 by iL4 are satisfied by writing UC′C(w1, w2) as the phase factor

e
w1
L2

π
k

(2C′−1−k)+w1ϕ̂
[C′]r
2 −w2

L4
π
ℓ

(2C−ℓ−1)+w2ϕ̂
[C′]r
4 (A.45)

times an analytic function which is periodic w.r.t. these imaginary shifts. Thus, the ex-
pression for UC′C takes the form

ŪC′,C(w1, w2) = e
w1ϕ̂

[C′]r
2 +w2ϕ̂

[C′]r
4 + πw1

kL2
(2C′−1−k)−πw2

ℓL4
(2C−1−ℓ) ∑

m,n∈Z
dC′,C,m,n e

2πm
w1
L2

+2πn
w2
L4 ,

(A.46)
which differs from (A.10) by the prefactor ew1ϕ̂

[C′]r
2 +w2ϕ̂

[C′]r
4 .

As we proceed in the absence of holonomies, our next step involves determining the
coefficients dC′,C,m,n by utilizing the first and third boundary conditions in (A.44). These
conditions lead to the following recurrence relations:

dC′,C,m,n = e−i
πr(1−k)

k e
−πL1

kL2
(2C′−r−1+(2m−1)k)

eiL1(ϕ̂[C′]r
1 +iϕ̂

[C′]r
2 ) dC′−r,C,m,n , (A.47)

and
dC′,C,m,n = e−i

π(1−ℓ)
ℓ e

πL3
ℓL4

(2C−(2n+1)ℓ)
eiL3(ϕ̂[C′]r

3 +iϕ̂
[C′]r
4 ) dC′,C+1,m,n . (A.48)

We observe that (A.47) and (A.48) become identical to (A.11) and (A.12) respectively,
when we replace:

m −→ m − iL2
2π

(
ϕ̂

[C′]r
1 + iϕ̂

[C′]r
2

)
,

n −→ n − iL4
2π

(
ϕ̂

[C′]r
3 + iϕ̂

[C′]r
4

)
, (A.49)

in (A.11) and (A.12). Consequently, the solution to (A.47) and (A.48) is identical to (A.24)
after making the replacement (A.49):

dC′,C,m,n = e
−πL3

ℓL4

[
C−i

(1−ℓ)L4
2L3

− 1+ℓ(2n+1)
2 +i

ℓL4
2π

(
ϕ̂

[C′]r
3 +iϕ̂

[C′]r
4

)]2

×e
− πL1

krL2

[
C′+i

r(1−k)L2
2L1

− 1+k(1−2m)
2 −i

kL2
2π

(
ϕ̂

[C′]r
1 +iϕ̂

[C′]r
2

)]2

, (A.50)

and we used the fact that ϕ
[C′]r
µ = ϕ

[C′−r]r
µ .

Then, all the analyses in the absence of holonomies repeat precisely, with Φ̃(p)
C′C(x, ϕ̂)

now given by the expression

Φ̃(p)
C′C(x, ϕ̂) ≡ e−ixµϕ̂

[C′]r
µ ew1ϕ̂

[C′
2 ]r ew2ϕ̂

[C′]r
4 e

−
πrx2

1
kL1L2 e

−
πx2

3
ℓL3L4

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

×e
2πw1

L2
(m+ 2C′−1−k

2k
)
e

2πw2
L4

(n′− 2C−1−ℓ
2ℓ

)

×e
−πL3

ℓL4

[
C−i

(1−ℓ)L4
2L3

− 1+ℓ(2n′+1)
2 +i

ℓL4
2π

(
ϕ̂

[C′]r
3 +iϕ̂

[C′]r
4

)]2

×e
− πL1

krL2

[
C′+i

r(1−k)L2
2L1

− 1+k(1−2m)
2 −i

kL2
2π

(
ϕ̂

[C′]r
1 +iϕ̂

[C′]r
2

)]2

, (A.51)
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where the tilde service as a reminder that these are not precisely the functions we define
in the bulk of the paper. The latter will be defined momentarily. Manipulating, we can
rewrite Φ̃(p)

C′C(x, ϕ̂) in the more convenient form (easier form for taking derivatives)

Φ̃(p)
C′C(x, ϕ̂) =

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2C−1−ℓ
2ℓ

)

×e
πr(1−k)2L2

4kL1
−i

π(1−k)
k

(
C′− 1+k(1−2m)

2 −i
kL2
2π

(
ϕ̂

[C′]r
1 +iϕ̂

[C′]r
2

))
×e

π(1−ℓ)2L3
4ℓL4

+i
π(1−ℓ)

ℓ

(
B− 1+ℓ(2n′+1)

2 +i
ℓL4
2π

(
ϕ̂

[C′]r
3 +iϕ̂

[C′]r
4

))
×e

− πr
kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2C−1−ℓ

2 )
]2

. (A.52)

The terms e
πr(1−k)2L2

4kL1 , e
−i

π(1−k)
k

(
−i

kL2
2π

(
ϕ̂

[C′]r
1 +iϕ̂

[C′]r
2

))
, e

π(1−ℓ)2L3
4ℓL4 , and

e
i

π(1−ℓ)
ℓ

(
i

ℓL4
2π

(
ϕ̂

[C′]r
3 +iϕ̂

[C′]r
4

))
do not explicitly depend on C, C ′, m, n′, and thus, it is

convenient to drop them24 and define the function Φ(p)
C′C(x, ϕ̂) as:

Φ(p)
C′C(x, ϕ̂) ≡

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2C−1−ℓ
2ℓ

)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×e

− πr
kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2C−1−ℓ

2 )
]2

. (A.53)

We may also write Φ(p)
C′C(x, ϕ̂) in the form

Φ(p)
C′C(x, ϕ̂) = e

kL1L2
2πr

ϕ̂
[C′]r
1

(
iϕ̂

[C′]r
2 +ϕ̂

[C′]r
1 /2

)
e

ℓL3L4
2π

ϕ̂
[C′]r
3

(
iϕ̂

[C′]r
4 +ϕ̂

[C′]r
3 /2

)
e−iϕ̂

[C′]r
1 x1e−iϕ̂

[C′]r
3 x3

×
∑

m=p+ rm′
gcd(k,r) , m′∈Z

∑
n′∈Z

e
i

(
2πx2

L2
+ L1k

r
ϕ̂

[C′]r
1

)
(m+ 2C′−1−k

2k
)
e

i

(
2πx4

L4
+ℓL3ϕ̂

[C′]r
3

)
(n′− 2C−1−ℓ

2ℓ
)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×e

− πr
kL1L2

[
x1−

kL1L2
2πr

ϕ̂
[C′]r
2 −L1

r

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

ϕ̂
[C′]r
4 −L3(ℓn′− 2C−1−ℓ

2 )
]2

. (A.54)

Finally, the fermion zero modes are given by (compare with (A.36))

λC′C(x) =

r
gcd(k,r)−1∑

p=0

[
η[C′+pk]r

0

]
Φ(p)

C′C(x, ϕ̂) . (A.55)

24One can show that they can be absorbed into the coefficients η[C′+pk]r of the general solution of the
Dirac equation, see (A.36) or (A.55) below.
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B A useful identity

Here, we evaluate the expression Iab
j defined in (5.1), j = 0, . . . , gcd(k, r)−1, repeated here

Iab
j =

k−1∑
C′=0

k
gcd(k,r)−1∑

n=0
δC′,[j+nr]k

r
gcd(k,r)−1∑

p,p′=0

C[C′+pk]r
a C∗ [C′+p′k]r

b√
V

∫
T4

ℓ−1∑
B=0

Φ(p)
C′BΦ(p′) ∗

C′B . (B.1)

For convenience, we also repeat the expression for Φ(p) (3.21):

Φ(p)
C′B(x, ϕ̂) =

∑
m=p+ rm′

gcd(k,r) , m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2B−1−ℓ
2ℓ

)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
B− 1+ℓ(2n′+1)

2

)
× e

− πr
kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

× e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2B−1−ℓ

2 )
]2

. (B.2)

To calculate Iab
j , we now make a few observations, which help evaluate (B.1):

1. The integral over x4 can be taken, yielding a factor of L4 and the condition δn′,ñ′ ,
where n′ is the index of summation from Φ(p) and ñ′ coming from Φ(p′) ∗.

2. The sum over B = 0, . . . , ℓ − 1 allows to extend the range of the x3 integral from
−∞, +∞, implying that the ϕ̂4-dependence disappears.25

3. The integral over x2 can also be taken, yielding an overall factor of L2 and the
constraint δm,m̃, where m is from Φ(p) and m̃ is from Φ(p) ∗. Note, in view of the def-
inition of m (m̃) in (B.2), m = m̃ implies, recalling the range of p, p′, that p = p′ and
m′ = m̃′. Thus, in the end of this step, we are left with an expression that contains
only sums over C ′, n, p, and m′, and only an integral over the x1 direction of T4.

4. We also note that, for each j, only values of C ′ equal to [j + nr]k enter the sum (B.1)
defining Iab

j , with n taking values in the range given. Now is time to recall the
relation (3.20) defining the independent holonomies. It shows that all these have
the same ϕ̂C′

µ and thus Iab
j only depends on the gcd(k, r) independent φj

µ — as we
explicitly indicate in (B.3) below.

25 However, some factor of ϕ̂3 remains which we will have to keep track of when evaluating the Gaussian
integral over x3.
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Explicitly performing the steps outlined in the above list, we obtain an intermediate result
for (B.1),

Iab
j =

√
V

√
ℓL4
2L3

e
L1L2k

2πr
(φj

1)2
e

L3L4ℓ

2π
(φj

3)2

×

k
gcd(k,r)−1∑

n=0

r
gcd(k,r)−1∑

p=0
(CaC∗

b )[[j+nr]k+pk]r

×
∑

m′∈Z

1∫
0

dx e
− 2πrL1

kL2

(
x− kp+[j+nr]k

r
+ 1+k

2r
− k

gcd(k,r) m′− kL2
2πrL1

φj
2

)2

, (B.3)

which only contains a single integral over x1, rescaled by L1 and denoted by x. For brevity,
we also denote (CaC∗

b )A ≡ CA
a C∗ A

b .
The next step is to rearrange the sum (B.3) for Iab

j by grouping together terms where
the “moduli” product (CaC∗

b )A has the same index. Recall that apriori A can take values
in the range A ∈ 0, . . . , r − 1. However, it is important to realize not all allowed values of
A appear in the sum defining Iab

j for a given j. One numerically finds that for any given j,
the index A ≡ [[j + nr]k + pk]r takes only r

gcd(k,r) of its possible r values as n and p scan
their possible values in the sum in (B.3).

To proceed further, we denote by Sj each of the gcd(k, r) sets of r
gcd(k,r) values that A

can take for a given j:

Sj =
{

[[j + nr]k + pk]r, for n = 0, . . .
k

gcd(k, r) − 1, and p = 0, . . . ,
r

gcd(k, r) − 1
}

,

|Sj | = r

gcd(k, r) , (B.4)

where we stress that repeated values of [[j + nr]k + pk]r are identified in Sj and that the
set has r/gcd(k, r) elements. The sets Sj are straightforward to generate numerically in
each case (we have used numerics extensively to obtain our final answer (B.6) below). A
few examples might be useful:

k = 5, r = 4 (gcd(k, r) = 1) : S0 = {0, 1, 2, 3},

k = 6, r = 4 (gcd(k, r) = 2) : S0 = {0, 2}, S1 = {1, 3},

k = 4, r = 4 (gcd(k, r) = 4) : S0 = {0}, S1 = {1}, S2 = {2}, S3 = {3}, (B.5)
k = 15, r = 9 (gcd(k, r) = 3) : S0 = {0, 3, 6}, S1 = {1, 4, 7}, S2 = {2, 5, 8},

while, e.g., for k = 9, r = 9 (gcd(k, r) = 9), all 9 sets Sj have a single element, similar to
the k = r = 4 case above. This illustrates a general feature of the k = r case, which will
be important in our studies of the moduli space.

The next step is the most important to obtain our final answer. For each different value

of A ∈ Sj that appears in Iab
j , one also finds that (CaC∗

b )A is multiplied by an integral
1∫
0

dx.

The integral is, however, summed over k
gcd(k,r) times, each time with a different constant
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term appearing in the exponent in the integrand, due to the (kp + [j + nr]k)/r term.
Remarkably, in each case one finds that, together with the sum over m′, these constant
terms take precisely the values needed to extend the range of the integration over x to the
entire real line.26 Performing the Gaussian integral over x, the final answer for Iab

j is then
remarkably simple

Iab
j =

√
V

2

√
ℓkL2L4
rL1L3

e
L1L2k

2πr
(φj

1)2
e

L3L4ℓ

2π
(φj

3)2 ∑
Aj∈Sj

(CaC∗
b )Aj . (B.6)

The complexity is, of course, hidden away in the definition of the Sj sets from (B.4).

C Field strength and action of the multifractional instanton

Here, we compute the field strength Fµν , which we shall use to compute the action density
and to verify that the action of the self-dual solution satisfies the relation S = 8π2|Q|

g2 . The
non-zero components of F (0)

µν are

F (0)
13 C′,C = −iD̂1W4C′,C + iD̂3W2 C′,C , F (0)

14,C′,C = D̂1W4 C′,C + iD̂4W2 C′,C , (C.1)

where W(0)
2 C′,C and W(0)

4 C′,C are from (4.21). The covariant derivatives D̂µ are given by

D̂µ = ∂µ + i2πNÂµ + iϕ̂[C′]r
µ , (C.2)

or in terms of the components, with ϕ̂
[C′]r
µ from (3.20),

D̂1 = ∂1 + iϕ̂
[C′]r
1 , D̂2 = ∂2 − i

2πrx1
kL1L2

+ iϕ̂
[C′]r
2

D̂3 = ∂3 + iϕ̂
[C′]r
3 , D̂4 = ∂4 − i

2πx3
ℓL3L4

+ iϕ̂
[C′]r
4 . (C.3)

One can check that the following identities hold

iD̂1Φ(p)
C′,C = D̂2Φ(p)

C′,C , iD̂3Φ(p)
C′,C = D̂4Φ(p)

C′,C . (C.4)

Then, one finds

−iF (0)
14C′,C = F (0)

13C′,C = iV −1/4

r
gcd(k,r)−1∑

p=0

{
−C[C′+pk]r

4 G(p)
1,C′,C(x, ϕ̂)+C[C′+pk]r

2 G(p)
3,C′,C(x, ϕ̂)

}
,

F (0)
12C′,C = F (0)

34C′,C = 0 , (C.5)

26Admittedly, we have only numerical checks of this claim rather than an analytic proof. However, the
checks are fairly easy to automate and the result is the same in each of the many cases we have studied.
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where the functions G(p)
1,C′,C(x, ϕ̂) and G(p)

3,C′,C(x, ϕ̂) are defined as

G(p)
1,C′,C(x, ϕ̂) = D̂1Φ(p)

C′,C(x, ϕ̂)

= − 2πr

kL1L2

∑
m=p+ rm′

gcd(k,r) ,m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2C−1−ℓ
2ℓ

) (C.6)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×
(

x1−
kL1L2ϕ̂

[C′]r
2

2πr
− L1

r

(
km+ 2C ′−1−k

2

))

×e
− πr

kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2C−1−ℓ

2 )
]2

, (C.7)

and

G(p)
3,C′,C(x, ϕ̂) = D̂3Φ(p)

C′,C(x, ϕ̂)

= − 2π

ℓL3L4

∑
m=p+ rm′

gcd(k,r) ,m′∈Z

∑
n′∈Z

e
i2πx2

L2
(m+ 2C′−1−k

2k
)
e

i2πx4
L4

(n′− 2C−1−ℓ
2ℓ

) (C.8)

×e−i
π(1−k)

k

(
C′− 1+k(1−2m)

2

)
e

i
π(1−ℓ)

ℓ

(
C− 1+ℓ(2n′+1)

2

)
×
(

x3−
ℓL3L4ϕ̂

[C′]r
4

2π
−L3

(
ℓn′− 2C−1−ℓ

2

))

×e
− πr

kL1L2

[
x1−

kL1L2
2πr

(ϕ̂[C′]r
2 −iϕ̂

[C′]r
1 )−L1

r

(
km+ 2C′−1−k

2

)]2

×e
− π

ℓL3L4

[
x3−

ℓL3L4
2π

(ϕ̂[C′]r
4 −iϕ̂

[C′]r
3 )−L3(ℓn′− 2C−1−ℓ

2 )
]2

. (C.9)

Owing to the self-duality of the solution, we also have:

F (0)
23 C′,C = F (0)

14 C′,C , F (0)
24 C′,C = −F (0)

13 C′,C . (C.10)

In the following, we calculate the action density tr [FµνFµν ] of the twisted solution.
Using (4.5), the square of the field strength is

FµνFµν = ω2
(
F̂ ω

µν + F s
µν

)2
+ 4π

(
F̂ ω

µν + F s
µν

) [ ℓF k
µν Fk×ℓ

µν

F†ℓ×k
µν −kF ℓ

µν

]

+
[

F k
µνF k

µν + Fk×ℓ
µν F†ℓ×k

µν F k
µνFk×ℓ

µν + Fk×ℓ
µν F ℓ

µν

F†ℓ×k
µν F k

µν + F ℓ
µνF†ℓ×k

µν F ℓ
µνF ℓ

µν + F†ℓ×k
µν Fk×ℓ

µν

]
. (C.11)

Then, the action density is given by the trace

tr [FµνFµν ] = tr
[
ω2
] (

F̂ ω
µν + F s

µν

)2

+4πℓ
(
F̂ ω

µν + F s
µν

)
trk

[
F k

µν

]
− 4πk

(
F̂ ω

µν + F s
µν

)
trℓ

[
F ℓ

µν

]
+trk

[
F k

µνF k
µν + Fk×ℓ

µν F†ℓ×k
µν

]
+ trℓ

[
F ℓ

µνF ℓ
µν + F†ℓ×k

µν Fk×ℓ
µν

]
. (C.12)
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To leading order in ∆ we have:

F s
µν = ∆

(
∂µSω(0)

ν − ∂νSω(0)
µ

)
,

F k
µν = ∆

(
∂µSk(0)

ν − ∂νSk(0)
µ + iW(0)k×ℓ

µ W†(0)ℓ×k
ν − iW(0)k×ℓ

ν W†(0)ℓ×k
µ

)
,

F ℓ
µν = ∆

(
∂µSℓ(0)

ν − ∂νSℓ(0)
µ + iW†(0)ℓ×k

µ W(0)k×ℓ
ν − iW†(0)ℓ×k

ν W(0)k×ℓ
µ

)
,

Fk×ℓ
µν =

√
∆F (0)k×ℓ

µν =
√

∆
(
D̂µW(0)k×ℓ

ν − D̂νW(0)k×ℓ
µ

)
. (C.13)

Substituting (C.13) into (C.12), we find to O(∆):

tr [FµνFµν ] = tr
[
ω2
] (

F̂ ω
µνF̂ ω

µν + 2∆(∂µSω(0)
ν − ∂νSω(0)

µ )F̂ ω
µν

)
+4πℓ∆F̂ ω

µνtrk

[
∂µSk(0)

ν − ∂νSk(0)
µ

]
− 4πk∆F̂ ω

µνtrℓ

[
∂µSℓ(0)

ν − ∂νSℓ(0)
µ

]
+i4πℓ∆F̂ ω

µνtrk

[
W(0)k×ℓ

µ W†(0)ℓ×k
ν −W(0)k×ℓ

ν W†(0)ℓ×k
µ

]
−i4πk∆F̂ ω

µνtrℓ

[
W†(0)ℓ×k

µ W(0)k×ℓ
ν −W†(0)ℓ×k

ν W(0)k×ℓ
µ

]
+∆trk

[
F (0)k×ℓ

µν F†(0)ℓ×k
µν

]
+ ∆trℓ

[
F†(0)ℓ×k

µν F (0)k×ℓ
µν

]
. (C.14)

Then, using the trace properties trk[S(0)k
µ ] = trℓ[S

(0)ℓ
µ ] = 0, along with

trk

[
F (0)k×ℓ

µν F†(0)ℓ×k
µν

]
= trℓ

[
F†(0)ℓ×k

µν F (0)k×ℓ
µν

]
, (C.15)

trk

[
W(0)k×ℓ

µ W†(0)ℓ×k
ν −W(0)k×ℓ

ν W†(0)ℓ×k
µ

]
= −trℓ

[
W†(0)ℓ×k

µ W(0)k×ℓ
ν −W†(0)ℓ×k

ν W(0)k×ℓ
µ

]
,

we find to O(∆)

tr [FµνFµν ] = tr
[
ω2
] (

F̂ ω
µνF̂ ω

µν + 2∆(∂µSω(0)
ν − ∂νSω(0)

µ )F̂ ω
µν

)
+i4πN∆F̂ ω

µνtrk

[
W(0)k×ℓ

µ W†(0)ℓ×k
ν −W(0)k×ℓ

ν W†(0)ℓ×k
µ

]
+2∆trk

[
F (0)k×ℓ

µν F†(0)ℓ×k
µν

]
. (C.16)

In the following, we perform the calculation of the action setting C[C′]r
4 = 0. Thus,

recalling (5.4), we are particularly interested in the cases r = 1 and r = k, k > 1. However,
the conclusion should hold in the general case. Keeping only the non-zero entries and using
−iF (0)β

14 = F (0)β
13 along with the self-duality property, we arrive at

trk

[
F (0)k×ℓ

µν F†(0)ℓ×k
µν

]
= 2trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

]
+ 2trk

[
F (0)k×ℓ

14 F†(0)ℓ×k
14

]
+2trk

[
F (0)k×ℓ

23 F†(0)ℓ×k
23

]
+ 2trk

[
F (0)k×ℓ

24 F†(0)ℓ×k
24

]
= 8trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

]
. (C.17)

Likewise:

F̂ ω
µνtrk

[
W(0)k×ℓ

µ W†(0)ℓ×k
ν −W(0)k×ℓ

ν W†(0)ℓ×k
µ

]
= −4iF̂ ω

12trk

[
W(0)k×ℓ

2 W†(0)ℓ×k
2

]
. (C.18)
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Thus, the action density is given by the expression

tr [FµνFµν ] = tr
[
ω2
] (

F̂ ω
µνF̂ ω

µν + 2∆(∂µSω
ν − ∂νSω

µ )F̂ ω
µν

)
+16πN∆F̂ ω

12trk

[
W(0)k×ℓ

2 W†(0)ℓ×k
2

]
+16∆trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

]
. (C.19)

The action is

S = 2
g2

∫
T4

tr [FµνFµν ] , (C.20)

and upon integrating, the term ∂µS(0)ω
ν drops out because S(0)ω

ν satisfies periodic boundary
conditions. Thus, we finally have to O(∆):

S = S0 + ∆
2g2

∫
T4

16πNF̂ ω
12trk

[
W(0)k×ℓ

2 W†(0)ℓ×k
2

]
+ ∆

2g2

∫
T4

16trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

]
,

where

S0 = 1
2g2

∫
T4

tr
[
ω2
] (

F̂ ω
µνF̂ ω

µν

)
= 1

2g2

∫
T4

tr
[
ω2
] {

2
(
F̂ ω

12F̂ ω
12 + F̂ ω

34F̂ ω
34

)}
= (4π2Nkℓ) 1

g2N2

(
r2

k2
L3L4
L1L2

+ 1
ℓ2

L1L2
L3L4

)
. (C.21)

Using the definition of ∆ (4.9) we readily find

S0 = 8π2r

Ng2 + O(∆2) . (C.22)

Then, using F̂ ω
12 = − r

kNL1L2
, we have

S = S0 + ∆
g2

(
− 8πr

kL1L2

∫
T4

trk

[
W(0)k×ℓ

2 W†(0)ℓ×k
2

]
+ 8

∫
T4

trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

])
. (C.23)

Finally, the remaining integrals are given by (we set all holonomies to 0, as the final answer
will not depend on them):

∫
T4

trk

[
W(0)k×ℓ

2 W†(0)ℓ×k
2

]
=
√

L1L2L3L4

ℓ∑
C=1

k∑
C′=1

|C[C′]r
2 |2

×
∑

m=p+ rm′
gcd(k,r) , m′∈Z

∫ 1

0
dx̃1e

− 2πrL1
kL2

(
x̃1− 2mk+2(j+nr)−1−k

2r

)2

×
∑
n′∈Z

∫ 1

0
dx̃3e

− 2πL3
ℓL4

(
x̃3− (2n′+1)ℓ−(2C−1)

2

)2

, (C.24)
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and ∫
T4

trk

[
F (0)k×ℓ

13 F†(0)ℓ×k
13

]
= 4π2

ℓ2

√
L1L2L3

L3
4

ℓ∑
C=1

k∑
C′=1

|C[C′]r
2 |2

×
∑

m=p+ rm′
gcd(k,r) , m′∈Z

∫ 1

0
dx̃1e

− 2πrL1
kL2

(
x̃1− 2mk+2(j+nr)−1−k

2r

)2

(C.25)

×
∑
n′∈Z

∫ 1

0
dx̃3

(
x̃3 −

((2n′ + 1)ℓ − (2C − 1))
2

)2
e
− 2πL3

ℓL4

(
x̃3− (2n′+1)ℓ−(2C−1)

2

)2

.

Now, collecting terms of O(∆) and using rℓL3L4 = kL1L2, thus ignoring corrections O(∆2),
we find:

S = S0+8π

√
r

ℓk

∆
g2

ℓ∑
C=1

k∑
C′=1

|C[C′]r
2 |2

×
∑

m=p+ rm′
gcd(k,r) ,m′∈Z

∫ 1

0
dx̃1e

− 2πrL1
kL2

(
x̃1− 2mk+2(j+nr)−1−k

2r

)2

(C.26)

×
∑
n′

∫ 1

0
dx̃3

{
−1+ 4π

ℓ

L3
L4

(
x̃3−

((2n′+1)ℓ−(2C−1))
2

)2}
e
− 2πL3

ℓL4

(
x̃3− (2n′+1)ℓ−(2C−1)

2

)2

.

One can check (using Mathematica) that:27

ℓ∑
C=1

∑
n

∫ 1

0
dx̃3

{
−1+ 4π

ℓ

L3
L4

(
x̃3−

((2n+1)ℓ−(2C−1))
2

)2}
e
− 2πL3

ℓL4

(
x̃3− (2n+1)ℓ−(2C−1)

2

)2

= 0 ,

(C.27)
and thus, we conclude that, as expected

S = S0 + O(∆2) = r

N

8π2

g2 + O(∆2) , (C.28)

i.e. the action of the multifractional instanton is, to the order in ∆ we are working on,
equal to r

N times the BPST instanton action.

D Blow up of the gauge invariant local densities along the noncompact
moduli of the k ̸= r solution

To determine the gauge invariant density (6.5), we need to solve for S(0)ω
ν . To this end, we

use (4.17) (or the equivalent forms (4.22), (4.23)). Acting on these equations with ∂ = σν∂ν

and using the identity σν σ̄µ + σµσ̄ν = 2δµν , we find the expression

□S(0)ω = − i

πℓk
σν∂νY , (D.1)

27One can show that (C.27) is true by converting the combined infinite sum and the integral over the
unit interval to an infinite integral.
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where (once more, for brevity, we omit the k × ℓ and ℓ × k superscripts)

Y =

 trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
−2trk

[
W(0)

2 W†(0)
4

]
−2trk

[
W(0)

4 W†(0)
2

]
−trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]  . (D.2)

Equating the components of (D.1), we arrive at the following set of equations:

iπℓk□
(
S(0)ω

4 + iS(0)ω
3

)
= (∂4 + i∂3) trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
− 2 (i∂1 + ∂2) trk

[
W(0)

4 W†(0)
2

]
,

iπℓk□
(
S(0)ω

4 − iS(0)ω
3

)
= − (∂4 − i∂3) trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
− 2 (i∂1 − ∂2) trk

[
W(0)

2 W†(0)
4

]
,

iπℓk□
(
iS(0)ω

1 + S(0)ω
2

)
= −2 (∂4 + i∂3) trk

[
W(0)

2 W†(0)
4

]
− (i∂1 + ∂2) trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
,

iπℓk□
(
iS(0)ω

1 − S(0)ω
2

)
= −2 (∂4 − i∂3) trk

[
W(0)

4 W†(0)
2

]
+ (i∂1 − ∂2) trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
. (D.3)

Thus, we find

πℓk□S(0)ω
4

= ∂3trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
−(∂1− i∂2)trk

[
W(0)

4 W†(0)
2

]
−(∂1 + i∂2)trk

[
W(0)

2 W†(0)
4

]
,

−πℓk□S(0)ω
3 (D.4)

= ∂4trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
−(i∂1 +∂2)trk

[
W(0)

4 W†(0)
2

]
+(i∂1−∂2)trk

[
W(0)

2 W†(0)
4

]
.

and

(
∂3S(0)ω

4 − ∂4S(0)ω
3

)
= (πℓk□)−1

{(
∂2

3 + ∂2
4

)
trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]
+ (−∂1∂3 − ∂2∂4 + i∂2∂3 − i∂1∂4) trk

[
W(0)

4 W†(0)
2

]
+ (−∂1∂3 − ∂2∂4 − i∂2∂3 + i∂1∂4) trk

[
W(0)

2 W†(0)
4

]}
. (D.5)

We are interested in the case r > 1 and gcd(k, r) = 1. Let us consider the example r =
2, k = 3. Then, using the parameterization of (5.9), taking the upper sign for definiteness,

C0
2 = u , C1

2 = u , C0
4 = −iu , C1

4 = iu . (D.6)
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we find28

trk

[
W(0)

2 W†(0)
2

]
= u2

ℓ∑
C=1

k∑
C′=1

[
Φ0

C′,C + Φ1
C′,C

] [
Φ∗0

C′,C + Φ∗1
C′,C

]

= u2
ℓ∑

C=1

k∑
C′=1

|Φ0
C′,C |2 + |Φ1

C′,C | + Φ0
C′,CΦ∗1

C′,C + Φ∗0
C′,CΦ1

C′,C , (D.7)

trk

[
W(0)

4 W†(0)
4

]
= u2

ℓ∑
C=1

k∑
C′=1

[
Φ0

C′,C − Φ1
C′,C

] [
Φ∗0

C′,C − Φ∗1
C′,C

]

= u2
ℓ∑

C=1

k∑
C′=1

|Φ0
C′,C |2 + |Φ1

C′,C | − Φ0
C′,CΦ∗1

C′,C − Φ∗0
C′,CΦ1

C′,C , (D.8)

and

trk

[
W(0)

4 W†(0)
2

]
= iu2

ℓ∑
C=1

[(
−Φ0

1,C + Φ1
1,C

) (
Φ∗0

1,C + Φ∗1
1,C

)
+
(
Φ0

2,C − Φ1
2,C

) (
Φ∗0

2,C + Φ∗1
2,C

)
+
(
−Φ0

3,C + Φ1
3,C

) (
Φ∗0

3,C + Φ∗1
C′,C

)]
, (D.9)

trk

[
W(0)

2 W†(0)
4

]
= −iu2

ℓ∑
C=1

[(
Φ0

1,C + Φ1
1,C

) (
−Φ∗0

1,C + Φ∗1
1,C

)
+
(
Φ0

2,C + Φ1
2,C

) (
Φ∗0

2,C − Φ∗1
2,C

)
+
(
Φ0

3,C + Φ1
3,C

) (
−Φ∗0

3,C + Φ∗1
3,C

)]
. (D.10)

It is not hard, using (A.34), to check that the combinations

|Φ0
C′,C(x)|2, |Φ1

C′,C(x)|2,
(
−Φ0

1,C + Φ1
1,C

)
(x)

(
Φ∗0

1,C + Φ∗1
1,C

)
(x), (D.11)(

Φ0
2,C − Φ1

2,C

)
(x)

(
Φ∗0

2,C + Φ∗1
2,C

)
(x),

(
−Φ0

3,C + Φ1
3,C

)
(x)

(
Φ∗0

3,C + Φ∗1
C′,C

)
(x)

satisfy periodic boundary conditions.29 Then, we use the Fourier transform of these com-

28The sums over C′ and C should be really thought of as being over 0, . . . , k − 1 and 0, . . . , ℓ − 1,
respectively, to be consistent with the main body of the paper. We apologize to the reader for this slight
mismatch.

29However, the component that carries the subscript C′, C is sent to one with subscript C′ − r, C + 1.
Nevertheless, the combinations that give the gauge invariant density are periodic. Also, from the linearity
of the Fourier analysis of the Fourier-transformed components below, the superposition of the various terms
makes sense. The difficulty in the analysis below is that numerical convergence is hard to achieve.
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binations, namely,

|Φ0
C′,C(x)|2 =

∑
pµ∈Z

e
i

2πpµx)µ

Lµ X0;C′,C(p) ,

|Φ1
C′,C(x)|2 =

∑
pµ

e
i

2πpµxµ
Lµ X1;C′,C(p) ,

Φ0
C′,C(x)Φ∗1

C′,C(x) =
∑
pµ

e
i

2πpµxµ
Lµ X2;C′,C(p) ,

(
−Φ0

1,C + Φ1
1,C

)
(x)

(
Φ∗0

1,C + Φ∗1
1,C

)
(x) =

∑
pµ

e
i

2πpµxµ
Lµ X3;C(p) ,

(
Φ0

2,C − Φ1
2,C

)
(x)

(
Φ∗0

2,C + Φ∗1
2,C

)
(x) =

∑
pµ

e
i

2πpµxµ
Lµ X4;C(p) ,

(
−Φ0

3,C + Φ1
3,C

)
(x)

(
Φ∗0

3,C + Φ∗1
3,C

)
(x) =

∑
pµ

e
i

2πpµxµ
Lµ X5;C(p) . (D.12)

to find

trk

[
W(0)

4 W†(0)
4

]
= u2∑

pµ

e
i

2πpµxµ
Lµ H(p) (D.13)

≡ u2 ∑
pµ,C,C′

e
i

2πpµxµ
Lµ

(
X0;C′,C(p) + X1;C′,C(p) −X2;C′,C(p) −X ∗

2;C′,C(p)
)

.

The function H(p), the Fourier transform of trk

[
W(0)

4 W†(0)
4

]
modulo u2, will play an im-

portant role below. In addition, we find

(πℓk□)−1
{(

∂2
3 + ∂2

4

)
trk

[
W(0)

2 W†(0)
2 −W(0)

4 W†(0)
4

]}

= 2u2

πℓk

∑
pµ,C,C′

[
p2

3
L2

3
+ p2

4
L2

4

]
e

i
2πpµxµ

Lµ

p2
1

L2
1

+ p2
2

L2
2

+ p2
3

L2
3

+ p2
4

L2
4

(
X2;C′,C(p) + X ∗

2;C′,C(p)
)

, (D.14)

and

(πℓk□)−1
{

(−∂1∂3 − ∂2∂4 + i∂2∂3 − i∂1∂4) trk

[
W(0)

4 W†(0)
2

]
+ (−∂1∂3 − ∂2∂4 − i∂2∂3 + i∂1∂4) trk

[
W(0)

2 W†(0)
4

]}
= u2

πℓk

∑
pµ,C

e
i

2πpµxµ
Lµ

p2
1

L2
1

+ p2
2

L2
2

+ p2
3

L2
3

+ p2
4

L2
4

{(
−i

p1p3
L1L3

− i
p2p4
L2L4

− p2p3
L2L3

+ p1p4
L1L4

)
×(X3;C(p) + X4;C(p) + X5;C(p))

+
(

i
p1p3
L1L3

+ i
p2p4
L2L4

− p2p3
L2L3

+ p1p4
L1L4

)
× (X ∗

3;C(p) + X ∗
4;C(p) + X ∗

5;C(p))
}

. (D.15)
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Finally, one can also define the Fourier components of tr[F34F34](x):

tr[F34F34](x) =
∑

pµ∈Z
e

i
2πpµxµ

Lµ Q(p) . (D.16)

Using (6.5), we find, apart from an additive constant:

Q(p)
u2F̂ ω

34∆
= 8πNH(p) + 4

πℓk

∑
C,C′

[
p2

3
L2

3
+ p2

4
L2

4

]
p2

1
L2

1
+ p2

2
L2

2
+ p2

3
L2

3
+ p2

4
L2

4

(
X2;C′,C(p) + X ∗

2;C′,C(p)
)

+ 2
πℓk

∑
C

1
p2

1
L2

1
+ p2

2
L2

2
+ p2

3
L2

3
+ p2

4
L2

4

{(
−i

p1p3
L1L3

− i
p2p4
L2L4

− p2p3
L2L3

+ p1p4
L1L4

)
×(X3;C(p) + X4;C(p) + X5;C(p))

+
(

i
p1p3
L1L3

+ i
p2p4
L2L4

− p2p3
L2L3

+ p1p4
L1L4

)
× (X ∗

3;C(p) + X ∗
4;C(p) + X ∗

5;C(p))
}

. (D.17)

We need to check whether the expression on the R.H.S. vanishes for all values of pµ. The
easiest check to perform is to choose pµ = (0, p2, 0, 0). With this choice, all terms vanish
except H(p), the Fourier transform of trk

[
W(0)

4 W†(0)
4

]
modulo u2. One can check numeri-

cally that H(p) is non-vanishing, indicating that the gauge-invariant density tr[F34F34](x)
increases indefinitely as u → ∞.

E Fermion zero modes on the deformed-T4, for k = r

In this appendix, we solve for the fermion zero modes in the background (4.1), which we
rewrite in the familiar k/ℓ block matrix form, using the notation of (3.5):

Aµ =

 ||
(
2πℓ (Aω

µ −
zµ

Lµ
)+ϕC′

µ

)
δC′B′ +ϵ2 Sµ C′B′ || ||ϵWµ C′B||

||ϵ (W†
µ)CB′ || ||−2πk (Aω

µ −
zµ

Lµ
)δCB +ϵ2 Sµ CB||

 .

(E.1)
Here we consider exclusively the k = r case, where:

1. Aω
µ is the constant flux background Aω

1 = Aω
3 = 0, Aω

2 = − x1
NL1L2

, Aω
4 = − x3

NℓL3L4
.

2. ϕC′
µ are the r − 1 allowed holonomies in SU(k = r) (thus obeying

∑
C′ ϕC′

µ = 0)
from (3.5) and zµ are the holonomies in the U(1)-direction ω, eq. (2.6).

We also recall that these are, after computing the commutator in the Weyl equation,
combined into the r independent ϕ̂C′

µ of eqs. (3.19), (3.20) with no constraint on the
trace.

3. Wµ is leading order k = r solution. Thus, W3 = W4 = 0 and W1 = −iW2, and with
W2 given by (4.21), with the r coefficients CA

2 fixed by solving eq. (5.4).
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4. The components of Sµ are obtained by solving (4.22), (4.23) (recall that they obey
the tracelessness condition

∑
C′ Sµ C′C′ +

∑
C Sµ CC = 0).

5. Finally, to remind us of the powers of
√

∆ appearing in the leading order solution for
Wµ and Sµ, we introduced a parameter ϵ (≡ 1).

Our goal is to solve the Weyl equation ∂µσ̄µλ+iσ̄µ[Aµ, λ] = 0 in the k = r background (E.1),
using a series expansion in ϵ, to leading order. We take λ also in the block-diagonal
form (3.8), obeying (3.9):

λ =
[
||λC′B′ || ||λC′B||
||λCB′ || ||λCB||

]
, C ′, B′ ∈ {0, . . . k − 1}, C, B ∈ {0, . . . ℓ − 1} . (E.2)

Newt, write the Weyl equation, using the quaternionic notation of section 4: ∂̄ = ∂µσ̄µ

and Ā = σ̄µAµ (and similar for all other vectors in (E.1), with σ̄µ defined in Footnote 5) and
obtain the following equations for the components of λ of (E.2), with a sum over repeated
indices B, B′ implied:

∂̄λC′D′ = −iϵσ̄µ(Wµ C′BλBD′ − λC′B(W†)µ BD′) − iϵ2σ̄µ(Sµ C′B′λB′D′ − λC′B′Sµ B′D′),
∂̄λCD = −iϵσ̄µ((W†)µ CB′λB′D − λCB′Wµ B′D) − iϵ2σ̄µ(Sµ CBλBD − λCBSµ BD),

∂̄λC′D = −i(2πNĀω + ¯̂
ϕC′)λC′D − iϵσ̄µ(Wµ C′BλBD − λC′B′Wµ B′D)

−iϵ2σ̄µ(Sµ C′B′λB′D − λC′BSµ BD),

∂̄λCD′ = i(2πNĀω + ¯̂
ϕC′)λCD′ − iϵσ̄µ((W†)µ CB′λB′D′ − λCB(W†)µ BD′)

−iϵ2σ̄µ(Sµ CBλBD′ − λCB′Sµ B′D′) . (E.3)

We now observe that we can consistently solve (E.3) in a series expansion in ϵ, assigning
the following (leading-order only shown) ϵ-scaling of the various components of λ:

λC′D′ = ϵ0λC′D′ + O(ϵ2) ,

λCD = ϵ0λCD + O(ϵ2) ,

λC′D = ϵ λC′D + O(ϵ3) ,

λCD′ = ϵ λCD′ + O(ϵ3) . (E.4)

Substituting into (E.3) and keeping only the leading terms in ϵ in each equation, we find
the following equations for the leading order (in

√
∆) fermion zero modes in the back-

ground (E.1):

∂̄λC′D′ = 0,

∂̄λCD = 0,

(∂̄ + i(2πNĀω + ¯̂
ϕC′))λC′D = −i(Wµ C′B σ̄µλBD − σ̄µλC′B′Wµ B′D),

(∂̄ − i(2πNĀω + ¯̂
ϕC′))λCD′ = −i(W∗

µ B′C σ̄µλB′D′ − σ̄µλCBW∗
µ D′B). (E.5)
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Now, we recall that the first two equations were already solved in section 3.4.1. From
eq. (3.17), taken with k = r, we have the diagonal zero mode solutions

λα B′C′ = δB′C′ θC′
α ,

λα BC = −δBC
1
ℓ

∑
C′

θC′
α , (E.6)

where we momentarily restored the spinor index α. We first define the spinor

ηC′ ≡ θC′ + 1
ℓ

k−1∑
B′=0

θB′
, (E.7)

and then plug (E.6) into the last two equations in (E.5) to obtain:

(∂̄ + i(2πNĀω + ¯̂
ϕC′))λC′D = iWµ C′D σ̄µ ηC′

,

(∂̄ − i(2πNĀω + ¯̂
ϕC′))λCD′ = −iW∗

µ D′C σ̄µ ηD′
. (E.8)

We now recall that for the k = r solution, W3 = W4 = 0 and W1 = −iW2, hence

Wµ C′D σ̄µ = (−iσ̄1 + σ̄2)W2 C′D = W2 C′D

(
0 −2
0 0

)
,

W∗
µ D′C σ̄µ = (iσ̄1 + σ̄2)W∗

2 D′C = W∗
2 D′C

(
0 0
2 0

)
, (E.9)

and that W2 C′,C = V −1/4CC′
2 Φ(0)

C′,C(x, ϕ̂), where CC′
2 is as determined in section 5.

The equation for λC′D then takes the form, using the derivatives from (C.3) and noting
that the equations for each C ′ = 1, . . . , r decouple:

(D̂4 − iD̂3)λ1 C′D − (iD̂1 + D̂2)λ2 C′D = η̄C′
2 Φ(0)

2 C′D ,

(−iD̂1 + D̂2)λ1 C′D + (D̂4 + iD̂3)λ2 C′D = 0 , (E.10)

where we absorb various inessential constants in the redefined η̄C′
2 coefficient. The solution

of these equations is given by the function G(0)
3 C′D defined in (C.9), explicitly

λ1 C′D = η̄C′
2 G(0)

3 C′D,

λ2 C′D = 0 . (E.11)

Similarly, one finds that the other zero mode is

λ1 CD′ = 0,

λ2 CD′ = η̄D′
1 G∗ (0)

3 D′C . (E.12)

Thus, there are in total 2r zero modes labeled by η̄C′
1,2, with C ′ = 1, . . . , r. The x-dependence

of the zero mode labeled by a given C ′ is governed only by the holonomies ϕ̂C′
µ , similar to

the bosonic case discussed earlier.
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