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A B S T R A C T

Deep Neural Networks have received considerable attention in recent years. As the complexity of network
architecture increases in relation to the task complexity, it becomes harder to manually craft an optimal
neural network architecture and train it to convergence. As such, Neural Architecture Search (NAS) is
becoming far more prevalent within computer vision research, especially when the construction of efficient,
smaller network architectures is becoming an increasingly important area of research, for which NAS is well
suited. However, despite their promise, contemporary and end-to-end NAS pipeline require vast computational
training resources. In this paper, we present a comprehensive overview of contemporary NAS approaches with
respect to image classification, object detection, and image segmentation. We adopt consistent terminology
to overcome contradictions common within existing NAS literature. Furthermore, we identify and compare
current performance limitations in addition to highlighting directions for future NAS research.
1. Introduction

Recent acceleration within the deep learning domain [1] naturally
follows the increased availability of public datasets that stems from the
emergence of big data. Unsurprisingly, the complexity of the proposed
network architectures is also increasing. As such, manually searching
through this architecture space is less and less feasible, and we must
rely on domain expertise to identify suitable networks for a given ap-
plication. Neural Architecture Search (NAS) automatically traverses the
architecture search space for a given task, and generates models that
are competitive alongside hand-crafted state-of-the-art architectures.

Recent NAS capability within the image classification domain is
demonstrably powerful [2], with generated convolutional neural net-
work (CNN) models achieving accuracies of 97.57% (CIFAR-10 [3])
and 76.2% (ImageNet [4]). This is comparable to leading image clas-
sification performance [5]. However, there is relatively little NAS
development outside pure CNN generation (e.g. transformer [6] and
generative adversarial networks [7]), for which hand-crafted network
architectures perform so well. Similarly, within the computer vision
domain, considerations of NAS beyond image classification are under-
developed; NAS for object detection and image segmentation architec-
tures for example, receive less interest than their hand-crafted coun-
terparts. To this end, we present a comprehensive review of recent
NAS advancements, to best facilitate further insight and research in this
area. We build upon existing – although now dated – surveys [8–12],
that fail to consider NAS for computer vision outside of CNN image
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classification. Concurrent work [13,14] presents a less comprehensive
overview to which the reader may find it helpful to refer. In either case,
we hope that this review serves to best illustrate the contributions of
prior NAS literature.

Furthermore, as NAS rapidly evolves within several distinct do-
mains, ambiguities and inconsistencies have arisen in several method-
ological descriptions. Consequently, it is increasingly difficult for re-
searchers approaching the NAS domain to meaningfully engage with
the field and to clearly explain any proposed methodology with rea-
sonable reproducibility. With this shortcoming in mind, we adopt a
common terminology (following that of TuNAS [15]), to improve the
comprehensibility and reproducibility of future NAS research. On this
basis, our contributions are as follows:

– a systematic review providing the most comprehensive NAS sur-
vey of image classification, object detection, and image segmen-
tation domains to date.

– an overview and taxonomy that for the first time uses consistent
terminology across all contemporary NAS literature, resolving the
ambiguities and inconsistencies emanating from the original NAS
works.

– analysis of the NAS literature offering insights into the direction
of promising future research.
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1.1. Review organisation

We first divide this review by computer vision task into image classi-
fication, object detection and image segmentation NAS methodologies.
Subsequently, image classification is subdivided by NAS strategy into
three key sub-areas: weight-sharing, gradient-based, and prediction-
based, each of which correspond to a NAS search speed-up strategy.
In all cases, we prioritise explaining how a given NAS method fits
into the evolution of the NAS domain, while maintaining consistent
terminology, to the best advantage of incoming researchers.

2. Neural architecture search: A quick overview

Rather than conventionally hand-crafting a neural network architec-
ture, wherein layer operations are hand-selected and defined at each
layer, NAS seeks to automatically generate the network architecture
best suited to a given task, given a set of available operations. An
overview of the general NAS process is illustrated in Fig. 1, which can
be split into two key stages. First, the search phase involves traversing
all architectures within the search space. Once the top performing
architecture (or top-𝑘 architectures) is identified (termed final searched
architecture(s)), it is retrained from scratch (the evaluation phase).

With the rise of NAS, a multitude of recent literature has addressed
the scalability challenge which occurs due to the resultant large search
space of all potential neural network architectures and their respective
training costs. The seminal work of Zoph et al. [16] demonstrates
the capability of recurrent neural networks (RNN) with reinforcement
learning to generate network architectures automatically, with their
network architecture outperforming existing hand-crafted state-of-the-
art network architectures both in accuracy and speed for both image
classification and language modelling tasks.

Since this influential paper [16], interest and research in NAS has
accelerated [8]. Reinforcement learning [17–20] methods, as well as
evolutionary [21–25] approaches have since been developed. Notably,
MnasNet [19] adopts a reinforcement learning search strategy for both
image classification and object detection, incentivised towards minimis-
ing inference latency. Unmistakeably however, such NAS search strate-
gies are prohibitively expensive. More recently, and with more success
in this regard, gradient and predictor based approaches have been de-
veloped [26–29], often in conjunction with weight-sharing techniques
to improve convergence rate [30–32], notably by eliminating the need
to train each architecture in the search space separately.

As such, we limit the literature covered by this survey to more
recent NAS solutions for image scene analysis, where the training
cost falls within a reasonable computational time limit. Moreover,
several NAS architecture datasets exist that facilitate validation of the
NAS framework performance, rather than their generated networks.
Notably among these, NAS-Bench-101 [33] contains 5 million trained
and evaluated models. NAS-Bench-201 [34] and NATS-Bench [35] also
evaluate architecture size and topology, with a fixed architecture search
space but more diagnostic information compared to NAS-Bench-101.
An overview of literature covered by this review can be found in
Tables 1 and 2, which provide a fair comparison (where possible) across
common NAS application domains. In all cases, however, it is important
to adhere to best practices when producing a NAS pipeline [36].
Radosavovic et al. [37] demonstrate that the process of constructing
the search space is critical.

3. Image classification

Image classification is the primary challenge domain in which NAS
operates within the computer vision field and for which existing liter-
ature is most comprehensive.

The reader may find it helpful to refer to the following key concepts:
2

Fig. 1. An overview visualisation of the NAS process consistent across reinforcement
learning, gradient-based and prediction-based approaches.

• Optimisation-gap — The performance after retraining a network
architecture from scratch does not necessarily reflect its perfor-
mance after the search phase. This is because ‘shortcuts’ are taken
(e.g. weight sharing) to significantly improve NAS search speed.
See Section 3.2.2.1 for more information within the context of
gradient-based NAS approaches.

• DAG (Directed Acyclic Graph) — Reformulating a network archi-
tecture as a graph (see Fig. 2a), where nodes represent a layer,
and edges represent the operations within a layer (e.g. convolu-
tion).

• Search space — The total set of architectures that will be consid-
ered and possibly evaluated by the NAS approach. The aim is to
find the best possible architecture in the architecture space. In
all cases, this architecture space is prohibitively large and it is
impossible to evaluate the performance of each architecture. The
NAS paradigm aims to optimise how search strategies iterate over
the search space. For instance, the influential NASBench-101 [33]
search space contains 423,000 unique architectures.

• Final searched architecture — The architecture that the NAS search
phase produces. The NAS strategy considers this architecture to
be the best architecture in the entire search space. The evaluation
phase will retrain this architecture from scratch to generate a final
model.

• Topology — As opposed to width and depth, topology refers to the
operations (layers) within an architecture.

We provide an overview of NAS paradigms in the following order:

1. Weight-sharing (Section 3.1) — Introduced by ENAS [30]. By
sharing weights between architectures during the NAS search
phase, candidate architectures do not have to be trained sepa-
rately to completion. Overall network architecture training costs
during the NAS search phase can be substantially reduced.

2. Gradient-based (Section 3.2) — By relaxing the architecture space
such that it is continuous (see the seminal DARTS [26] method),
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Table 1
Overview of NAS approaches, their performance, and the general methodology employed: Evolutionary Algorithms (EA), Reinforcement Learning (RL), Gradient-Based (GB),
Weight-Sharing (WS) and Prediction (Pred). † entails object detection. ‡ entails instance segmentation. Otherwise, reported results are for Image Classification. Results correspond
to the results reported in their respective original paper, even when subsequent papers report higher performance or results generated using more comparable computational
resources.

Reference Technique Top-1 Acc
(CIFAR-10)
(%)

Params
(CIFAR-10)

Top-1 Acc
(ImageNet)
(%)

Params
(ImageNet)

Evolutionary
algorithms

Reinforce-
ment
Learning

Gradient
based

Prediction Weight
sharing

Sample
based

One
shot

Zoph & Le [16] (2017) ✓ ✓ 96.35 37.4M n/a n/a
MnasNet [19] (2019) ✓ ✓ n/a n/a 76.7M 5.2M
ENAS [30] (2018) ✓ ✓ ✓ 97.11 4.6M n/a n/a
SNAS [31] (2018) ✓ ✓ ✓ 97.02 2.9M 72.7 4.3M
CAS [38] (2019) ✓ ✓ ✓ n/a n/a n/a n/a
CNAS [32] (2020) ✓ ✓ ✓ 97.40 3.7M 75.40 5.3M
BigNAS-S [39] (2020) ✓ ✓ n/a n/a 76.5 4.5M
BigNAS-M [39] (2020) ✓ ✓ n/a n/a 78.9 5.5M
BigNAS-L [39] (2020) ✓ ✓ n/a n/a 79.5 6.4M
BigNAS-XL [39] (2020) ✓ ✓ n/a n/a 80.9 9.5M
ProxylessNAS-R [40]
(2018)

✓ ✓ ✓ 97.70 5.8M 74.6 n/a

ProxylessNAS-G [40]
(2018)

✓ ✓ ✓ 97.92 5.7M 74.2 n/a

NASP [41] (2020) ✓ ✓ ✓ 97.56 7.4M 73.7 9.5M
TuNAS [15] (2020) ✓ ✓ ✓ n/a n/a 75.0 n/a
AttentiveNAS (largest)
[42] (2021)

✓ ✓ n/a n/a 80.7 n/a

RNSGA-Net1 [43]
(2022)

✓ 96.11 3.01 n/a n/a

Stage-Wise NAS [44]
(2020)

✓ ✓ 95.68 7.27M n/a n/a

PAD-NAS [45] (2022) ✓ ✓ ✓ n/a n/a 76.1 4.7M
GLiT-Tiny [46] (2021) ✓ ✓ ✓ n/a n/a 76.3 7.2M
GLiT-Small [46] (2021) ✓ ✓ ✓ n/a n/a 80.5 24.6M
GLiT-Base [46] (2021) ✓ ✓ ✓ n/a n/a 82.3 96.1M
NEAS [47] (2021) ✓ ✓ ✓ n/a n/a 80.0 n/a
BONAS [48] (2020) ✓ ✓ 97.57 3.3M 74.6 4.8M

DARTS [26] (2019) ✓ ✓ ✓ 97.24 3.3M 73.3 4.7M
I-DARTS [49] (2019) ✓ ✓ ✓ 97.63 3.8M 75.7 n/a
Wu et al. [50] (2020) ✓ ✓ ✓ 97.50 3.5M 75.33 5.7M
E-DNAS [51] (2020) ✓ ✓ ✓ n/a n/a 76.9 5.9M
ISTA-NAS [52] (2020) ✓ ✓ ✓ 97.64 3.37M 76.0 5.65M
BMTAS [53] (2020) ✓ ✓ ✓ n/a n/a n/a n/a
SMASH [54] (2018) ✓ ✓ ✓ 94.47 4.6M 61.38 16.2M
unsupervised: DARTS
[55] (2020)

✓ ✓ ✓ 97.44 3.6M n/a n/a

FairNAS [56] (2021) ✓ ✓ ✓ 98.2 n/a 77.5 5.9M
Pi-NAS [57] (2021) ✓ ✓ ✓ n/a n/a 81.60 27.1M
EnTranNAS [58] (2021) ✓ ✓ ✓ 97.78 7.68M 75.70 7.2M
EnTranNAS-DST [58]
(2021)

✓ ✓ ✓ 97.52 3.20M 76.20 7.0M

DOTS [59] (2021) ✓ ✓ ✓ 97.51 3.5M 76.0 5.3M
Shapley-NAS [2] (2022) ✓ ✓ 97.57 3.6M 76.1 5.4M
P-DARTS [27] (2019) ✓ ✓ ✓ 97.50 3.5M 75.9 5.4M
PC-DARTS [60] (2019) ✓ ✓ ✓ 97.43 3.6M 75.8 5.3M
FP-DARTS [61] (2023) ✓ ✓ ✓ 97.50 3.4M 76.3 5.3M
R-DARTS(𝑙2) [62]
(2020)

✓ ✓ ✓ 97.49 n/a n/a n/a

SETN [63] (2019) ✓ ✓ ✓ 97.31 4.6M 74.3 5.4M
DNA [64] (2020) ✓ ✓ ✓ 98.30 n/a 78.40 6.4M
Distribution Consistent
[65] (2022)

✓ ✓ ✓ n/a n/a 79.50 n/a

BossNAS [66] (2021) ✓ ✓ ✓ n/a n/a 82.5 n/a
GDAS [67] (2019) ✓ ✓ ✓ 97.07 3.4M 74.0 5.3M
GDAS-NSAS [68]
(2020)

✓ ✓ ✓ 97.27 3.54M n/a n/a

Landmark
Regularization:SPOS
[69] (2021)

✓ ✓ ✓ n/a n/a 67.38 4.77M

Landmark
Regularization:GDAS
[69] (2021)

✓ ✓ ✓ n/a n/a 68.82 5.07M

(continued on next page)
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Table 1 (continued).
Landmark Regu-
larization:NAO
[69] (2021)

✓ ✓ ✓ n/a n/a 68.89 4.49M

TAS [70] (2019) ✓ ✓ ✓ 94.00 n/a 76.20 n/a
NetAdaptV2 [71]
(2021)

✓ ✓ ✓ n/a n/a 77.0 n/a

FBNet-C [72]
(2019)

✓ ✓ ✓ n/a n/a 74.9 5.5M

PNAS [73]
(2019)

✓ 96.59 3.2M 74.2 5.1M

PNAS-Large [73]
(2019)

✓ n/a n/a 82.9 86.1M

NAO [74]
(2018)

✓ ✓ 96.82 10.6M 74.3 11.35M

NAO with
pseudo
morphological
operations [75]
(2022)

✓ ✓ 97.35 n/a n/a n/a

GBDT-NAS [76]
(2020)

✓ n/a n/a 76.6 5.7M

ReNAS [77]
(2021)

✓ n/a n/a n/a n/a

MdeNAS [28]
(2019)

✓ 97.45 3.61M 74.5 6.1M

NASWOT [29]
(2021)

✓ n/a n/a n/a n/a

NASBOT [78]
(2018)

✓ 91.31 n/a n/a n/a

Auto-Keras [79]
(2019)

✓ 96.40 n/a n/a n/a

BayesNAS [80]
(2019)

✓ 97.59 3.4M 73.5 3.9M

BANANAS [81]
(2019)

✓ n/a n/a n/a n/a

COCO

AP Params

MnasNet [19]
(2019) †

✓ 23.0 4.9M

DetNAS [82]
(2019) †

✓ ✓ ✓ 42.0 n/a

SpineNET-49S
[83] (2020) †

✓ ✓ 41.5 12M

SpineNET-190
[83] (2020) †

✓ ✓ 52.1 163.6M

NATS [84]
(2019) †

✓ ✓ ✓ 38.4 n/a

NAS-FPN
(AmoebaNet
Backbone) [85]
(2019) †

✓ ✓ 48.4 166.5M

Auto-FPN [86]
(2019) †

✓ ✓ ✓ 44.3 n/a

NAS-FCOS [87]
(2020) †

✓ ✓ 46.1 89.4M

OPANAS [88]
(2021) †

✓ ✓ ✓ 41.6 29.8M

mIOU (cityscapes)

DPC [89] (2018)
‡

82.7

Auto-DeepLab
[90] (2019) ‡

✓ ✓ ✓ 82.1

DCNAS [91]
(2021) ‡

✓ ✓ ✓ 84.3

EDNAS [51]
(2020) ‡

✓ n/a
conventional gradient-descent methods can be used to optimise
the search space efficiently.1

1 Sometimes referred to as differentiable neural architecture search (DNAS).
4

3. Prediction-based (Section 3.3) — Introduce some auxiliary method
to evaluate network architecture performance without train-
ing, circumventing training iterations and consequent high NAS
search costs entirely.

The three NAS paradigms are further subdivided within each section
by strategies with shared characteristics.
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Fig. 2. DARTS search phase pipeline. (a) The architecture search space can be realised as a Directed Acyclic Graph (DAG): edges between nodes represent possible operations
(e.g. convolution, max-pooling, etc.). (b) A layer is a softmax over all possible operations within the search space. (c) Using SGD, this super-network is trained in relation to which
operations perform best, as well as the weights of the operations themselves. (d) A final searched network is selected from the top performing operations at each layer.
Table 2
Some literature reports the NAS search phase prediction performance in place of or
as well as final searched architecture performance. In these cases we present the
findings on NAS-Bench-201 on CIFAR-10 and ImageNet-16-120. † denotes experiments
conducted on NATS-Bench, the successor to NAS-Bench-201.

NAS search algorithm CIFAR-10 ImageNet-16-120

I-DARTS [49] (2019) 93.76 41.44
SE-NAS [92] (2021) 93.47 ± 0.14 45.66 ± 1.05
unsupervised: DARTS [55] (2020) 94.18 ± 0.24 46.27 ± 0.37
FairNAS [56] (2021) 93.23 ± 0.18 42.19 ± 0.31
Pi-NAS [57] (2021) 93.83 ± 0.00 n/a
Shapley-NAS [2] (2022) 94.37 ± 0.00 46.85 ± 0.12
Landmark Regularization:SPOS [69] (2021) 93.41 ± 0.43 n/a
Landmark Regularization:GDAS [69] (2021) 94.32 ± 0.28 n/a
Landmark Regularization:NAO [69] (2021) 93.53 ± 0.43 n/a
Distribution Constrained [65] (2022) 94.29 ± 0.07 46.41 ± 0.14
BossNAS [66] (2021) † 93.29 n/a
ReNAS [77] (2021) 93.99 ± 0.25 45.97 ± 0.49
RMI [93] (2022) 94.28 ± 0.10 46.34 ± 0.00
NASWOT [29] (2021) 92.96 ± 0.81 44.44 ± 2.10
FreeRea [94] (2023) 94.36 ± 0.00 46.34 ± 0.00

3.1. Weight-sharing

Weight-sharing approaches, first proposed in ENAS [30], reduce
training time through the transfer learning of weights learnt for pre-
viously sampled architectures. In general, only a single network needs
to be trained to convergence via the use of this technique. Across
all weight-sharing NAS approaches, this single network represents the
entire architecture search space, and is referred to as a ‘‘super-network’’.
Subsequent sampled network architectures during the NAS search
phase thereafter inherit initialisation weights from this super-network,
and they require few or zero training epochs before their performance
is sufficiently evaluated and ranked. As such, the total search phase
cost of NAS is drastically minimised. Since only the super-network
is trained to convergence during the NAS search phase, we refer to
this approach as a one-shot method.2 In general, one-shot methods
aim to rank architecture performance using their shared weights [95]
relative to each other rather than their absolute performance. Once the
highest-ranked architecture is determined during the search phase, it is
retrained and then fully optimised for the given task.

2 ‘‘Weight-sharing’’ is a broad term to denote how different architectures
considered by a given NAS methodology do not use independent weights.
‘‘One-shot’’ (or equivalently ‘‘super-network’’ under our terminology) methods
necessarily employ weight-sharing but not vice-versa.
5

In their influential paper [30], ENAS first constructs a single DAG to
represent the entire search space. First they fix the weights of the NAS
controller (which determines which nodes and operations are sampled
from the architecture search space). The entire super-network weights
can be updated from the gradient of a single sampled cell (child archi-
tecture). This process is repeated until one entire pass of the dataset has
been completed. Next, they again sample child network architectures,
but this time their weights are fixed (using transfer learning from
the previously learned weights) and instead train the controller using
reinforcement learning. They proceed to alternate training the child
network architectures and controller for several iterations, at which
point the best-performing model is sampled, initialised with random
weights, and retrained from scratch without the use of transfer learning
weights.

Given an architecture 𝛼, its optimal parameters 𝜔∗(𝛼) can be ob-
tained by 𝜔∗(𝛼) = argmin𝜔(𝛼, 𝜔), where  is the loss function. The
performance of 𝛼 can be measured by some metric (𝛼, 𝜔∗(𝛼)), such as
its accuracy [30] or loss [31] on validation data, or even latency. The
goal of reinforcement learning can thus be described as maximising the
expectation of the reward (𝛼, 𝜔∗(𝛼)) to find an optimal policy, yielding
a bi-level optimisation problem with policy 𝜋 and search space 𝛺:

max
𝜃

E𝛼∼𝜋(𝛼∶𝜃,𝛺)(𝛼, 𝜔∗(𝛼))

𝑠.𝑡 𝜔∗(𝛼) = argmin𝜔(𝛼, 𝜔)
(1)

3.1.1. Improving the final architecture performance of weight-sharing NAS
Following the success of weight-sharing in [30], the most obvious

next step is to find an architecture from the search space that is
closer in performance to the best performing architecture. SNAS [31]
identifies that ENAS assumes a Markov Decision Process that delays
the reinforcement learning reward for architecture changes during
the ENAS search phase. Using a differentiable reward function better
rewards structural architecture decisions, improving search efficiency.
CAS [38] develops a NAS learning paradigm whereby the cell structure
evolves when trained on new datasets and domains, without loss in
performance on the previous dataset. By introducing constraints on the
learned weights, ‘knowledge’ is projected in an orthogonal direction, so
that prior knowledge related to that of the previous dataset/domain is
not lost.

CNAS [32] employs curriculum learning within the NAS search
phase to improve the tractability of the objective function, yielding
better quality architectures. The search space is divided into a series of
smaller architecture spaces, where the number of searched operations is
gradually increased. Curriculum learning overcomes the phenomenon
where it is difficult for conventional one-shot methods [30] to satisfy
the reinforcement learning objective function during early training
epochs.
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BigNAS [39] finds better architectures through addressing the
optimisation-gap issue prevalent within NAS by adding regularisation
and a novel initialisation strategy. If the super-network is sufficiently
trained, BigNAS demonstrates that a simple grid-search strategy is
enough to traverse the architecture search space efficiently. Addition-
ally, network architectures can be sampled under memory or latency
constraints.

3.1.2. Improving weight-sharing NAS speed
Despite the significant search stage acceleration that weight-sharing

offers, the computation costs of architecture search can still be pro-
hibitively expensive. ProxylessNAS [40] demonstrates the effectiveness
of subsampling only a single path through the DAG at each iteration. Bi-
nary gates are introduced to simulate a mask for a given activation path
during a given training iteration. Consequently, training is more stable
and can be performed directly on large datasets such as ImageNet.
Previous methods were only able to achieve meaningful performance
on large datasets by first training on a smaller, proxy dataset. Two
variants, ProxylessNAS-R and ProxylessNas-G are presented, which use
reinforcement learning and gradient-based methods (described below)
to traverse the architecture search space. Similarly, NASP [41] use an
approach derived from the proximal algorithm [96] to ensure that only
one operation in the DAG is updated with each iteration, drastically
improving convergence rate.

Several search methods consider shrinking the NAS architecture
space [15,42,44,45,97] without loss in performance in order to reduce
the time it takes to traverse it. TuNAS [15] simulates smaller filter sizes
via masking, which reduces the need to train architectures that only
differ in filter size. Additionally, the number of available operations
that can be selected is gradually reduced during the first 25% of epochs
in the search phase. The authors additionally propose a novel reward
function, as well as more aggressive weight-sharing.

AttentiveNas [42] improves upon the BigNAS search strategy by
reducing the architecture space size in a Pareto-aware fashion. The
best Pareto architectures achieve better accuracy than every other
architecture in the search space with the same or less computational
consumption. The worst Pareto architectures are dominated in perfor-
mance by all other architectures with the same computational cost.
Sampled candidate network architectures are only trained if they lie
on the best or worst Pareto front. With this strategy, it is additionally
trivial to impose a computational limit on the generated network
architectures. Similarly, RNSGA-Net [43] adopts the R-NSGA-II genetic
algorithm [98] to search for pareto-optimal architectures within a given
region of interest.

Stage-Wise NAS [44] discard architectures according to a simple
heuristic. By dividing architectures into ‘stages,’ the importance of a
given stage can be identified. Fewer layers are attributed to stages
with lower importance and the depth of the network architecture is
progressively increased during the NAS search phase.

ANASOD [97] reduces the architecture search space without loss in
performance via approximate operation distribution encoding. On the
basis that there is little difference in performance between architectures
with only slight differences, the architectures sharing a distribution of
operations map to the same encoding. Using any other NAS strategy to
search over these distribution encodings rather than the entire operation
search space makes NAS optimisation more tractable.

PAD-NAS [45] reduce the architecture space by pruning operations.
The pareto-optimal architectures (and the next best, according to non-
domination rank [99]) are identified according to accuracy and latency.
Operations that are not prevalent within these best architectures are
pruned. As such, a one-shot training strategy in conjunction with
6

evolutionary search based upon NSGA-II [99] is adopted. c
3.1.3. Improving the weight-sharing NAS architecture space
Alongside improving search speed and accuracy of NAS approaches,

the architecture space itself can be improved beyond CNN architec-
ture search. GLiT [46] employs a one-shot NAS approach to optimise
transformer architecture for image classification. Building upon a Multi-
Head Attention (MHA) block as the basis for the search space, a locality
module is further introduced such that each searched MHA cell has a
varying distribution of convolution-based locality modules (capturing
local information within an image) and self-attention modules (cap-
turing global information within an image). Adopting SPOS [100],
GLiT divides the search space into disjointly searching for a) optimal
distribution of local and global sub-modules and b) detailed archi-
tecture of modules given optimal distribution in (a). As a result, a
vast transformer architecture search space can be efficiently searched
without compromising memory requirements.

Conversely, NEAS [47] searches for the best ensemble of classifiers.
here GLiT adopts SPOS to divide the search space, NEAS instead

hrinks the search space by first computing an approximation for archi-
ecture similarity and operator quality. The worst performing ensemble
rchitectures with respect to diversity and quality are then dropped.
uring the search phase, weights are shared between the lowest layers
f the remaining ensemble networks at a given iteration.

It should be noted that weight-sharing techniques do not necessitate
ne-shot methodology. BONAS [48] identifies the sensitivity to network
nitialisation of one-shot approaches, as well as high memory require-
ents. To this end, Bayesian Optimisation is used to identify simi-

ar network architectures. Weights are shared amongst these similar
etwork architectures so that they can be trained simultaneously.

.2. Gradient-based

Until now, we have considered weight-sharing techniques that opti-
ise the architecture topology without updating the weights inherited

rom the super-network. Differentiable approaches [26,27,101] build
pon the weight-sharing technique through the application of stochas-
ic gradient descent and other well-used deep learning techniques by
elaxing the search space such that it is continuous. Consequently,
he convergence rate of the architecture is drastically improved. In
eneral, this approach proffers the fastest architecture search without
ignificantly impacting performance, but at the expense of a high
PU-memory intensity.

DARTS [26] constructs a shallow super-network in which each layer
s a softmax over all possible operations within the architecture search
pace (Fig. 2a). This allows traversal of the search space with gradient
escent (Fig. 2b). Once the super-network is trained (Fig. 2c), they ex-
ract the top-k best-performing operations at each layer, and ‘evaluate’
deep neural network under the resultant restricted architecture search

pace to produce a final optimised model (Fig. 2d).

.2.1. DARTS-like NAS approaches
I-DARTS [49] builds upon DARTS by instead considering a softmax

peration before operations rather than after them. This removes the
estriction upon the final model to consider at most one operation be-
ween each layer, thereby widening the search space, without reducing
onvergence rate. We can perceive such an approach as Mixed-Path
n that it does not require a single operation between each node
Single-Path, [26,40]), or multiple (but with a consistent number of)
perations between each node (Multi-Path, [102,103]), see Fig. 3. Wu
t al. [50] adopt an alternative Mixed-Path approach. Rather than using
oftmax to relax the super-network graph into a continuous DAG, each
ntermediate node output is computed as a scaled linear combination
f the feature maps of the previous nodes. By using Sparse Group Lasso
egularisation [104], nodes and operations may be filtered out such that
here is no rigid constraint on the node or path structure. E-DNAS [51]
urther introduces flexibility within the proposed architecture by ex-
licitly searching for the optimal kernel size as well as the weights of

onvolutional layers.
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Fig. 3. Different NAS architecture configurations as presented by Wu et al. [50].
(a) A NAS super-network where each coloured edge denotes a single operation, and
all possible operations are considered between nodes through continuous relaxation
(softmax layer). (b) Single-Path architecture; exactly one operation is selected in
the final searched architecture. (c) Multi-Path architecture; exactly 𝑛 operations are
considered and aggregated between each and every node (for some pre-defined 𝑛). (d)
Mixed-Path architecture; no limitations on operation number between given nodes in
the final searched architecture.

ISTA-NAS [52] adopts an alternative strategy compared to [50]
towards fulfilling the sparsity constraint. By projecting the contin-
uous relaxation of operations onto the sparse constraint, its LASSO
formulation [105] can be solved with the ISTA [106] algorithm. Con-
sequently, ISTA-NAS enables the same size (width, depth, batch-size)
super-network to be used in both the NAS search and evaluation
phase, due to the sparse and more efficiently encoded super-network.
Additionally, this has the benefit of minimising the optimisation-gap
problem (see below). DNAL [107] introduce a novel Scaled Sigmoid
activation function that can be utilised alongside existing NAS ap-
proaches, wherein the sparsity constraint is imposed on the activation
function rather than the architecture parameters themselves, improving
performance.

SE-NAS [92] improve DARTS search efficiency by shrinking the
operation search space. After initial training stages of the supernetwork,
operations with lower importance are more likely to exist in weaker
architectures and can be more readily discarded. Due to weight sharing
between architectures however, operator importance can be easily mis-
represented. Therefore, if there is little variance between architecture
performance within a layer, confidence in the architecture ranking is
presumed worse, and operations at these layers are retained.

BMTAS [53] employs a NAS pipeline within a differentiable search
space best adapted for multi-task learning. Through masking (to sim-
ulate training one sub-network architecture at a time) and a novel
resource-aware objective function, their pipeline formulates and tra-
verses the search space in a way that promotes general purpose features
(operations) within the final NAS-generated architecture.

SMASH [54] uses an auxiliary HyperNetwork [108] network to
generate the weights of the network architecture itself. A super-network
is generated to encompass the architecture search space. Akin to con-
ventional gradient-based NAS solutions, an architecture is sampled
from the super-network. However, where its weights would normally
be inherited directly, instead they are generated by a HyperNetwork
trained a-priori.

Yan et al. [55] employ a variational graph isomorphism autoen-
coder before traversing the architecture search space. They conclude
that this autoencoder out-performs state-of-the-art autoencoders [109,
110] and best captures the local structure information of neural net-
work architectures such that similar structures cluster better in the
latent space. Traversing the search space such that the next most simi-
lar, unevaluated network architecture is evaluated in the next iteration,
they are able to smooth the NAS search phase, leading to better overall
performance.

Simon et al. [111] adapt DARTS such that convolutional layers
have an additional noise injection module. Weights associated with
7

this module learn how much noise to inject into a given input such
that DARTS successfully trains in the presence of label noise. Indeed,
the results indicate that the modified DARTS method achieves superior
performance in the presence of noise, without sacrificing performance
on clean data.

3.2.2. Addressing DARTS-like strategy drawbacks
Despite the multitude of developments directly upon DARTS, it is

not without its drawbacks [48,112], and has received heavy criticism.
To some extent, such problems can be minimised by careful super-
network training schemes, including additional batch normalisation,
prevention of over-regularisation, and reduced dropout [95]. Fair-
NAS [56] formally identifies weaknesses in training a one-shot model in
general, and proposes strict fairness (all single paths through the super-
network are attributed equal optimisation). Their work is deployable
atop all two-stage NAS strategies, which they choose to demonstrate
within an evolutionary search strategy based on NSGA-II [99].

Yu et al. [112] identify the importance of random seed during
the search phase. Indeed some search strategies, especially DARTS,
perform worse than random with respect to some seeds. The authors’
findings align with [95] in that the ranking of architectures yields a
poor reflection of their performance after the evaluation phase. Further,
weight-sharing is detrimental to the NAS search phase. Finally, good
performance from architectures can be attributed to the heavy search
space restrictions, such that even random search over the space yields
high performing architectures.

3.2.2.1. The optimisation-gap. The predominant issue with DARTS
however, is perhaps the optimisation-gap problem, in which searched
architecture performance does not necessarily correlate with its per-
formance after being re-trained during the NAS evaluation phase. One
obvious reason for this is that one-shot methods are ranking networks
relative to each other rather than their absolute performance [95].
The super-network architecture in the NAS search phase generally
differs considerably from a derived sub-network architecture in the NAS
evaluation phase. In fact, many NAS approaches only search for a cell
structure during the search phase (owing to available computational
resources), which is then stacked before being retrained during the NAS
evaluation phase.

Pi-NAS [57] addresses the optimisation-gap by considering the im-
age inputs to the NAS solution rather than directly addressing NAS op-
eration and topology selection strategies. Introducing negative samples
to a training iteration draws benefits from the well-founded contrastive
learning domain. This ensures correct loss descent to deliver a more
accurate architecture ranking. Furthermore, a given input image is
augmented four times to be passed through separate super-network
paths to yield better architecture ranking. As such, the optimisation-
gap is minimised as final searched architectures better resemble their
standalone performance.

EnTranNAS-DST [58] further addresses the optimisation-gap by
representing non-derived connections in the final searched model as
zero-weighted connections. As such, the propagation of the super-
network in the NAS search phase is the same as the propagation of the
final searched architecture in the NAS evaluation phase, eliminating the
gap between the two.

3.2.2.2. The relationship between operation and topology. DARTS derives
its topology from the best performing operation, but optimal operation
selection does not guarantee optimal topology. Indeed, with rank cor-
relation analysis, DOTS [59] shows that a given searched cell within
DARTS can be sub-optimal for precisely this reason. To this end, by
decoupling operation search and topology search, they yield more
optimal final searched topology.

Shapley-NAS [2] reconsiders how to derive the final searched ar-
chitecture from a super-network trained by DARTS. Given that there
is often a complex relationship between operations, simply selecting
the strongest operation at each edge is flawed. Instead, the Shapley
score [113,114] for each operation can be approximated to quantify its
contribution. Moreover, employing Shapley score in place of gradient
descent better trains the super-network during the search phase.
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3.2.2.3. Skip-connections in DARTS. P-DARTS [27] builds on the
DARTS method, and minimises the optimisation-gap by progressively
growing the NAS network depth during the search phase. However,
they identify that skip-connections within searched architectures are
commonly considered optimal by NAS approaches because they min-
imise the instability and difficulty of training a deep network during
the early stages of NAS search [115]. As a result however, the fi-
nal architecture performance deteriorates. To compensate, P-DARTS
incorporates operation-level dropout after skip connections, as well
as a cap on the number of skip connections that can occur in the
final architecture. The authors achieve over 1% lower error rate while
offering an order of magnitude lower search time than DARTS, and a
two-orders-of-magnitude lower search time than its predecessors.

PC-DARTS [60] corroborates that the weight-free operations (skip-
connections, max-pooling) are prevalent within NAS-generated archi-
tectures since they increase training stability in early NAS iterations.
To alleviate this, the authors suggest an alternative approach, whereby
only a few of the available operations are considered at each epoch.
However, this in turn introduces further instability into the training
process, which is ameliorated by applying edge normalisation (with
negligible computational overhead). FP-DARTS [61] similarly reduce
considered operations by dividing the operation space into two and
searching on each operation set in parallel. The final architecture
is then derived from both searched architectures. Zela et al. [62]
additionally attribute the prevalence of skip connections within DARTS-
generated architectures to exploding eigenvalues during the NAS search
phase. By increasing 𝑙2 regularisation when the dominant eigenvalue
exceeds a threshold, DARTS performance is increased across the board.

SETN [63] refer to this phenomenon as the ‘‘Matthew effect’’.
Quickly converging architectures appear as better sampling candidates:
they consist of fewer convolution layers, and thus perform poorly
overall after retraining from scratch [62,116] (for instance a surplus of
skip-connections at the expense of convolution layers). Consequently,
the best performing network architectures when fully trained might be
ignored. SETN adopts a single-path weight-sharing approach (Fig. 3b),
but acknowledge that randomly sampling the path [54,95] can lead to
an unnecessary consideration of poorly performing network architec-
tures. Instead, a stochastic operation and input selection strategy is pro-
posed that avoids the Matthew effect, while simultaneously adopting an
evaluator to minimise the selection of poorly performing architectures.

3.2.2.4. Detrimental weight inheritance. Weight-sharing may lead to a
poor evaluation of an architecture. A potentially powerful architecture
could be attributed a weak evaluation since it inherits inappropriate
weights [64]. Solutions to this phenomenon tend to simultaneously
address the optimisation-gap issue by ensuring architecture weights
sampled from the super-network more closely resemble their final real
world performance. DNA [64] divides the architecture search space into
blocks with similar architectures, and weights are shared only within
the blocks. Distribution Consistent NAS [65] adopts a comparable
strategy, whereby architectures sharing at least one operator are itera-
tively sampled and their weights updated. The (layer-wise) architecture
space is divided into clusters of architectures sharing operators at a
given layer, via K-means clustering. The super-network can thus be
jointly optimised not only according to its parameters but also to its
topological structure (i.e. between which architectures the weights can
be shared [65]). BossNAS [66] employs block-wise NAS similar to [64]
within a CNN-transformer hybrid network. By constructing a search-
able cell that can simulate both convolution and transformer network
architectures, and a fabric [117] consisting of several such cells that
optionally can halve the spatial resolution, the searched architecture
resembles either conventional CNN, transformer, or a mixture of the
two.

GDAS [67] samples one architecture of the super-network at each
training iteration in an attempt to i) reduce the memory requirement
during training and ii) increase efficiency, and by extension the con-
8

vergence rate of the network. Furthermore, the authors suggest that
searching for the best reduction cell can be ignored during the NAS
process, since they can be effectively hand-crafted and contribute less to
overall network architecture performance. They claim to produce state-
of-the-art results in a fraction of the time, but acknowledge that the
results are not necessarily fair without re-implementing existing meth-
ods and evaluating them on the same experimental setup. NSAS [68]
adopts an alternative approach to CAS (Section 3.1) to prevent ‘forget-
ting’ prior knowledge (the previous network architecture performance
reduces under weights learned by a new architecture), through intro-
ducing a novel loss function that penalises such an occurrence. The
NSAS solution is interleaved within the existing GDAS framework,
denoted GDAS-NSAS.

Landmark Regularization [69] addresses the weight inheritance
problem by improving the quality of the weights of the super-network
themselves. Prior to super-network training, randomly sampled stan-
dalone architectures (landmarks) are trained to convergence. During
the training of the super-network, the performance of the sub-network
architectures is preserved with an additional regularisation term within
the loss function. Super-network performance divergence from known
landmark performance can therefore be minimised such that a sampled
architecture more closely resembles its real-world performance. How-
ever, regularisation is only introduced after a sufficient warm-up period
to minimise detrimental performance during early training iterations.

3.2.3. Optimising NAS for small network architectures
While NAS helps improve performance compared to conventional

hand-crafted neural network training, one significant benefit it offers
is directly optimising for network inference speed and memory cost.
TAS [70] adopts a gradient-based search strategy to search for optimal
size (network width and depth) instead of topology. Superfluous chan-
nel inputs (determining network width) and layers (network depth) are
pruned. By designing a novel loss function, complex architectures are
penalised, and the best performing network in terms of both accuracy
and complexity is identified. Using knowledge transfer with a KD
algorithm [118], the searched pruned network architecture inherits
weights from the trained super-network.

Other approaches allow for explicit searching of network archi-
tecture depth. NetAdaptV2 [71] enable architectures to be efficiently
derived from the trained super-network with respect to their latency
constraints. A new searchable channel-level bypass connection (CBC)
is introduced, whereby all output channels of a given layer can be by-
passed to simulate the removal of the entire layer. FBNet [72] employs
a differentiable NAS strategy wherein cells at different network archi-
tecture depths are searched from different architecture spaces, across
expansion rate, kernel size, and group number (for group convolution).
Further, they demonstrate that optimising network latency is a superior
measurement over optimising FLOPs towards generating small and fast
networks. SVD-NAS [119] propose an algorithm to optimise the search
for low latency network architectures via the substitution of architec-
ture layers with those optimised for FLOPs (low-rank approximation).
The results are presented for gradient-based NAS frameworks, but can
be deployed alongside any two-stage NAS approach.

3.3. Performance prediction

An alternative method to reduce NAS training speed is to forgo
training to completion entirely and instead predict how well a given
network architecture will perform from its behaviour after minimal
training. These methods can entirely circumvent some of the drawbacks
illustrated above, such as weight inheritance within gradient-based
NAS, as weights are not necessarily assigned at all. Performance pre-
diction can either be generated from an auxiliary model, or estimated

after incomplete training directly.
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3.3.1. Performance prediction with auxiliary models
While training an auxiliary model introduces its own computational

overhead, in the extreme case only this one model might need to
be trained in the entire end-to-end NAS search stage. Converse to
previously described NAS strategies, no model from the architecture
needs to be trained at all before its performance can be evaluated.

One of the earliest examples to in part adopt this strategy is
PNAS [73]. All shallow network architectures in the search space
are quickly trained and used as training samples for an auxiliary
predictor network. Progressively more complex network architectures
are constructed and evaluated by the auxiliary network. Of these,
the k-best are selected, trained, and used as training samples for the
auxiliary network. The process is repeated until network architectures
of sufficient complexity are generated and the predictor network guides
the search through the architecture space.

NAO [74] employs an auxiliary predictor network to predict net-
work architecture accuracy from its continuous representation (gener-
ated from a second auxiliary network). Gradient ascent can then be
applied to determine the best network architecture embedding. Finally,
a decoder network is used to extract a generated network architecture
from its continuous representation. Despite employing a gradient-based
search strategy, we include NAO within this section as an architecture
sampled during the search phase is not evaluated in a conventional
manner (i.e. network propagation with images), but by an auxiliary
predictor network. Morphological [75] NAO improve performance by
adding novel morphological operations into the search space.

Wen et al. [120] train their own (graph convolutional-based) predic-
tor regression model, wherein 𝑁 architectures from the NAS-Bench-101
earch space are sampled along with their validation accuracies. In-
eed, their network converges faster and more accurately than the
est identified predictor adopted by NAS-Bench-101 [33] (Regular-
zed Evolution [121]). The regression model is further trained on
he ProxylessNAS [40] search space, yielding competitive models for
mageNet.

Baker et al. [122] formulates architecture performance prediction
ithin a Bayesian framework. They train a predictor network upon
oth features (architecture parameters and hyperparameters), time-
eries validation accuracy data (i.e. validation accuracy of a given
etwork at several different epochs, for many networks), and first and
econd order validation accuracy differences. They train an ensemble
f sequential regression models where each successive model uses an
dditional point from the time-series data. The final predictor network
an determine whether a given partially trained network architecture is
orth terminating or continuing to train, and therefore is sufficient for

ast hyperparameter optimisation algorithms such as Hyperband [123,
24].

GBDT-NAS [76] employs a gradient boosting decision tree (GBDT)
n order to predict the performance of the neural network architecture
uring the search phase. They further corroborate that pruning the
earch space into a smaller but well-performing space allows the NAS
ontroller to sample the best architectures with higher probability [37].
y using GBDT to assess the contribution of an operation, they are able
o prune architectures that employ weaker operations.

ReNAS [77] encodes a given architecture into a feature tensor rep-
esenting an adjacency matrix of the operations between given nodes. A
redictor is trained to map feature tensors to architecture performance,
herein the predictor network prioritises preserving architecture rank-

ng. Absolute performance (MSE loss between a given architecture
nd its performance) is considered less important than ranking, since
he relative performance between two architectures is more important
uring the search phase than their absolute performance.

RMI [93] reformulates the NAS search phase as an operation selec-
ion challenge for a given edge in an architecture. In turn, this edge
an be represented as a one-hot vector, enabling representation of an
rchitecture as a matrix, for input to a random forest. Architectures
9

re derived by the forest, through an iterative selection-update process s
using a novel RMI score based on mutual information and approxi-
mated by Hilbert–Schmidt Independence Criterion (HSIC) [125]. Once
a sufficient number of architectures have been generated, the average
(mode) operation for each edge is chosen for the final architecture
(Fig. 4).

3.3.2. Estimating performance after incomplete training
An alternative prediction-based NAS approach without the use of

an auxiliary network is to quickly evaluate the performance of a
network without training it to completion. Given an efficient evaluation
process, all architectures in the architecture space can be directly eval-
uated quickly. MdeNAS [28] posits that network architectures that per-
form well after minimal iterations perform well after convergence, and
demonstrate their hypothesis within a multinomial distribution frame-
work, achieving state-of-the-art results six times faster than concurrent
(non-prediction-based) NAS methodology.

NASWOT (NAS Without Training) [29] examines the network ar-
chitecture performance after being trained on a single minibatch and
accurately predicts its performance after full training. The local linear
maps of network architectures that perform best will be independent
across data point samples. Equivalently, a well-performing model must
be able to distinguish between the local linear operators associated with
each data point in order to model a complex target function. A poor-
performing network architecture’s operators will ‘activate’ similarly for
different images, and thus the image inputs are difficult to disentan-
gle (their respective activation matrix will appear denser - Fig. 5).
Their pipeline is able to achieve near-state-of-the-art accuracy in mere
seconds.

3.3.3. Performance-prediction strategy drawbacks
Of course, performance prediction strategies are not without their

limitations. Mok et al. [126] suggest that several prediction-based
strategies are inherently flawed. Estimating network performance at
initialisation often employs the neural tangent kernel (NTK), on which
Frobenius Norm (utilised by RMI [93]) and other common techniques
are based. They demonstrate that modern DNN violate assumptions
necessary to adopt NTK, because they evolve non-linearly during train-
ing.

FreeRea [94] also acknowledge the limitations that NTK methods
yield, and build upon the earlier genetic REA [127] algorithm by
independently mutating parent cells and then uniformly sampling the
resultant cell genes to better explore the network architecture space.
FreeRea assigns a more appropriate fitness score to a given network
architecture cell by adopting a modified Synflow [128] approach to
evaluate the summed contribution of network architecture weights,
wherein the weights are scaled down logarithmically (‘LogSynflow’).
Additionally, architectures with skip connections are in fact encouraged
o yield practical deep network architecture training.

.3.4. Bayesian optimisation
In general, Bayesian Optimisation (BO) considers a function 𝑓 (𝑥)

hat is complex or unknown (thus behaving as a ‘‘black box’’). In
he context of NAS, we can denote 𝑓 as the performance of a given
rchitecture 𝑥. To optimise 𝑓 , we require some kernel (𝑘) that considers
he distance between two inputs (𝑥, 𝑥1). Furthermore, we require an
cquisition function 𝑎(𝑓, 𝑘, 𝑥), a measure of an expected loss of evalu-
ting 𝑓 at 𝑥, given a kernel function 𝑘. For clarity, let us consider the
rchitectures 𝑥, 𝑥1, where 𝑘(𝑥, 𝑥1) is very small (i.e. the architectures
re similar). If 𝑓 (𝑥) is high (i.e. architecture 𝑥 performs well), we would
e wise to compute 𝑓 (𝑥1), as architecture 𝑥1 is likely to perform well.
f 𝑓 (𝑥) is low (i.e architecture 𝑥 performs poorly), we should instead
ompute 𝑓 (𝑥2), for some alternative architecture 𝑥2. There is little
enefit in computing 𝑓 (𝑥1) as it will be similar to 𝑓 (𝑥), while computing
(𝑥2) enables better exploration of the entire search space. Provided

hat 𝑎 is more easily computable than 𝑓 , a BO approach to architecture

election via maximising 𝑎 should be efficient.
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Fig. 4. Three step NAS process from RMI [93] paper. (a) RMI score is used to classify good and bad architectures from the search space, additionally warming-up the random
forest. (b) Architectures are selected according to random forest confidence. The architecture performance is estimated via RMI score, both classifying the architecture as good or
bad, and for training the forest. (c) The most common operation at each edge from the best architectures is selected to generate the final architecture.
Fig. 5. Visualisation of the ability of a generated network to distinguish between given
image inputs. Row 𝑖, column 𝑗 corresponds to the hamming distance between the binary
codes representing the activation pattern of the ReLU operations of the given neural
network architecture, induced by image 𝑖 and image 𝑗. The matrix is normalised such
that the distance between the codes induced by identical images (the diagonal) is 1.
High-performing network architectures (a) therefore have fewer off-diagonal elements.

Indeed, NASBOT [78] first adopted BO strategy for NAS, utilising
expected improvement as the acquisition function. The authors define
𝑘 as the OTMANN distance, a measure of the structural similarities be-
tween two architectures, weighted by their computational contribution
to the network as a whole. This distance is computed efficiently via
optimal transport algorithm [129].

Auto-Keras [79] adopts an alternative BO configuration, using an
upper-confidence bound acquisition function, with the edit-distance
as kernel definition. This can be formulated as an approximate dy-
namic programming algorithm that can be efficiently minimised under
an equivalent bipartite graph matching problem. BayesNAS [80] in-
stead adopt an entropy-based acquisition function with an incorporated
hierarchical ARD prior [130].

BANANAS [81] identifies the drawbacks with rudimentary BO strat-
egy, given the resource-intensive distance function computation. In-
stead they propose using a predictor network to remove the need for
a distance function entirely. Consider an architecture encoding as a
binary mask of the entire search space, where there is a 1 if that path
(the series of operations from input to output) exists in the architecture.
Given this path-encoding representation of an architecture, a neural
network can predict its performance. By taking an ensemble of 𝑚
predictors, the mean and standard deviation of the 𝑚 predictions for
an input architecture can be computed. Mean and standard deviation
are inherent to Bayesian Optimisation acquisition functions, and im-
proving their reliability improves overall optimisation performance.
The authors determined upper-confidence bound acquisition function
with a mutation optimisation strategy to be the best BO operation
configuration.

4. Object detection

In general, NAS towards more complex tasks than image classifica-
tion, such as detection and segmentation is less studied. Within these
10
Fig. 6. Scale-decreasing vs Scale-permuted network from SpineNet [83] paper. The
width of the block indicates feature resolution and the height indicates feature
dimension.

domains, there is an understandable focus on architecture space defi-
nition to capture the additional requirements for object detection and
segmentation heads. Most strategies presented below can be combined
with the advancements highlighted in the image classification domain
above.

4.1. Searching for backbone architectures

DetNAS [82] identify the unsuitability of older NAS strategies (no-
tably non-gradient based) when searching for detection backbone archi-
tectures due to the level of granularity required, and thus the necessity
to pretrain architectures on ImageNet. They propose DetNAS instead,
which, much like gradient-based NAS strategies, generates a super-
network that requires only one pretraining cycle on ImageNet [100]. In
contrast to gradient-based strategies however, only one path is sampled
during each iteration, and thus proposed architectures have entirely
independent weights. Furthermore, super-network training and search
space traversal is decoupled, allowing convergence to be achieved by
an evolutionary algorithm rather than gradient-based.

SpineNet [83] employs a reinforcement learning (RL) NAS strategy
to determine backbone architectures for object detectors. However,
they posit that common leading scale-decreased backbones (e.g. ResNet
[131]) may be unsuitable for detection architectures due to the loss of
spatial information within down-sampling. This information may not be
fully recovered by subsequent decoder networks, including FPN [132].
As such, generated architectures contain a (fixed, scale-decreased) stem
followed by a learned scale-permuted network consisting of several
blocks. Each block does not necessarily need to connect to a subsequent
block corresponding to the next lowest resolution (scale-decreasing).
Instead, blocks can connect to blocks of varying resolution, upsampling
or downsampling as required (see Fig. 6).

NATS [84] considers a gradient-based NAS approach for object
detection backbone architectures. In order to achieve the required level
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Fig. 7. Examples from Auto-DeepLab [90] paper of the different network architectures that can be captured by their search space. Spatial resolution only ever doubles, halves, or
remains unchanged in a given layer. Maximum downsample rate is 32. (a) DeepLabv3 [133]. (b) Encoder–decoder architecture, successfully deployed within semantic segmentation
by Conv-Deconv [134]. (c) Stacked hourglass [135] architecture.
of granularity, lest found backbone architectures generate too coarse
features [82], NATS further decomposes the search space beyond path-
level strategies to the channel-level. Each channel at each operation is
assigned its own parameter, allowing the channel search space to be
continuous for gradient search.

4.2. Searching for FPN and detection head network architectures

Conversely to backbone search, [85,86] consider the FPN network
architecture as the search space within their NAS frameworks. NAS-
FPN [85] employs reinforcement learning to iterate over the FPN search
space in their framework. They propose a ‘general’ FPN-block, whereby
two feature layers are sampled and pooled to generate a new feature
layer, that is itself samplable. The authors further propose a simple but
effective strategy to realise the accuracy-speed tradeoff, whereby the
FPN architecture can be stacked since its input and output are feature
layers of identical scales.

Auto-FPN [86] opts for a gradient-based NAS framework to generate
detector architectures. Similar to NAS-FPN [85], FPN network archi-
tecture is generalised within the search space, but the generalisation
is further extendable to PANet [136] and SSD [137] style pyramidal
network architectures. Furthermore, the authors consider a head cell
within the search space, to optimise classification and bounding box
regression. Their Auto-FPN network architecture yields less accurate
results than the concurrent work [85], but with a fraction of the
resources required during training.

Aligning motivations with Auto-FPN, NAS-FCOS [87] benefits from
searching for both a competitive FPN as well as bounding box regressor
head. They are able to achieve state-of-the-art performance by gener-
ating network architectures based upon the FCOS [138] anchor-free
network architecture space. An FPN architecture is discovered while
the regressor head is frozen. A regressor head is then searched for,
using the found (frozen) FPN architecture. The top 10 searched head
architectures are then selected for full training to determine the best
single FCOS-based network architecture.

OPANAS [88] applies the NAS strategy when searching for an
optimal FPN architecture within visual object detection. Representing
a node as a feature map, and edges between nodes as possible infor-
mation paths, an FPN super-network can be constructed as a DAG akin
to commonplace NAS solutions. Here, the information paths represent
different pyramid architectures (top-down, bottom-up, scale-equalising,
fusing-splitting, skip-connect and none). The optimal aggregation of
information paths can be derived from a trained super-network through
an evolutionary algorithm, yielding a final optimal FPN architecture.

5. Image segmentation

The image segmentation domain poses a new style of problem
compared to previous vision-based challenges, namely capturing long-
range dependencies between features for dense (pixel-wise) predic-
tion [89,91]. Common solutions include scale image pyramids [139–
141], encoder–decoder networks [142–144] and atrous convolution
resampling [145–147].

DPC [89] constructs a novel search space for dense prediction,
encapsulating both spatial pyramid pooling and atrous separable con-
volutions to capture the aforementioned multi-scale contexts. With a
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random sampling search strategy, they are among the first to adapt
NAS towards image segmentation, outperforming hand-crafted archi-
tectures for scene parsing, person part segmentation and semantic
image segmentation.

Auto-DeepLab employs a different strategy wherein gradient-based
search is adopted to find cells optimised for dense prediction. In ad-
dition to searching for optimal convolutional fabric [148] cells, the
hierarchical network level search space is also traversed. High level
spatial resolutions are thereby preserved as the inter-connectedness of
a searched cell is not pre-defined, but explicitly searched for (Fig. 7).

DCNAS [91] builds upon the trellis search space [90], constructing
a densely connected search space. By using a fusion module that effi-
ciently aggregates semantic information between layers, the resource-
intensity during search is minimised such that the same dataset can
be used for the NAS search and evaluation phase, minimising the
optimisation-gap (see [40,58]).

EDNAS [51] present a multi-task scene-understanding (image seg-
mentation, depth prediction, and surface-normal estimation) NAS al-
gorithm that focuses on the generation of network architectures that
are optimal with respect to latency for given hardware. By designing a
search space best suited to the placement of Inverted Bottleneck [149]
blocks within an EfficientNet [150] backbone, an evolutionary search
algorithm [127] can find architectures optimised for edge platforms.

6. Discussion

Clearly, there is a definitive bias towards NAS for image classi-
fication over object detection and image segmentation. This can be
attributed to the complexity of image classification architecture, which
until recently, could be more easily trained end-to-end. As such, these
CNN architectures are well suited for architecture search within the
NAS pipeline. While extending CNN architecture search to backbones to
object detection and image segmentation is possible, the result is not as
impressive. Indeed, suitable backbone architecture for these problems
is only half the challenge. However, with the rise of object detec-
tion transformer architecture, which achieves very high performance
on common datasets, and whose modularity is well suited towards
NAS, one can expect this phenomenon to disappear. It is unsurprising
therefore, that NAS for transformers is receiving increased popularity
in recent literature [46,66]. We further note that implementing the
architecture space for NAS in line with the modifications implemented
within ConvNeXt architecture [5], which is capable of state-of-the-art
results in both image classification and object detection, is a strong
candidate for future research within the NAS domain. Many of the
modifications proposed in ConvNeXt alter the architecture to remove
any inductive bias stemming from local pixel relationships in place of
long-distance pixel relationships. The same architecture changes can be
readily applied to the NAS architecture space.

The focus on architecture space traversal is evident. Conversely,
even in the case of image classification, the generation of resource-
efficient architecture for which NAS is so well-suited is limited. Where
such strategies do exist [42,46,70,71,73], only [46] considers archi-
tecture beyond pure CNN or domains other than image classification.
Since NAS can ultimately be reduced to a ranking of architectures, and
thus introducing resource constraints into the ranking is both sufficient
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and efficient, this pattern is unfounded and there is much benefit to be
gained here.

Finally, we note that dataset optimisation is hardly considered
within NAS frameworks, with the exception of Pi-NAS [57]. Hard ex-
ample mining and curriculum learning, which are prevalent within con-
ventional network training, receive no attention within NAS (excluding
CNAS [32] which utilises a curriculum for preparing the architecture
space rather than the dataset). Considering a given dataset is often
iterated over more times within NAS than manual training, there is no
justification for this.
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