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Abstract

Strong lensing in galaxy clusters probes properties of dense cores of dark matter halos in mass, studies the distant
universe at flux levels and spatial resolutions otherwise unavailable, and constrains cosmological models
independently. The next-generation large-scale sky imaging surveys are expected to discover thousands of cluster-
scale strong lenses, which would lead to unprecedented opportunities for applying cluster-scale strong lenses to
solve astrophysical and cosmological problems. However, the large data set challenges astronomers to identify and
extract strong-lensing signals, particularly strongly lensed arcs, because of their complexity and variety. Hence, we
propose a framework to detect cluster-scale strongly lensed arcs, which contains a transformer-based detection
algorithm and an image simulation algorithm. We embed prior information of strongly lensed arcs at cluster scale
into the training data through simulation and then train the detection algorithm with simulated images. We use the
trained transformer to detect strongly lensed arcs from simulated and real data. Results show that our approach
could achieve 99.63% accuracy rate, 90.32% recall rate, 85.37% precision rate, and 0.23% false-positive rate in
detection of strongly lensed arcs from simulated images and could detect almost all strongly lensed arcs in real
observation images. Besides, with an interpretation method, we have shown that our method could identify
important information embedded in simulated data. Next, to test the reliability and usability of our approach, we
will apply it to available observations (e.g., DESI Legacy Imaging Surveys6) and simulated data of upcoming
large-scale sky surveys, such as Euclid7 and the China Space Station Telescope.8

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Strong gravitational lensing (1643);
Convolutional neural networks (1938)

1. Introduction

Gravitational lensing has become a powerful probe in many
areas of astrophysics and cosmology (Mao & Witt 2012;
Medezinski et al. 2013; Fu & Fan 2014; Rahvar 2015;
Bartelmann & Maturi 2017; Mandelbaum 2018). The phenom-
enon has been detected since Walsh et al. (1979) and over a
wide range of scales, from megaparsec in the weak-lensing
regime (Bacon et al. 2000; Hamana et al. 2003; Castro et al.
2005; Schmidt 2008; Jee et al. 2016; Kilbinger et al. 2017;
Troxel et al. 2018) to kiloparsec in strong lensing (Lynds &
Petrosian 1986; Soucail et al. 1987, Fort et al. 1988;
Hewitt 1988; Hudson et al. 1998; Barvainis & Ivison 2002;
Oldham et al. 2017; Talbot et al. 2018; Stacey &McKean 2018)
and down to parsec and subparsec scales probed by microlen-
sing (Shvartzvald et al. 2017; Bruce et al. 2017; Han et al.
2018). Therefore, gravitational lensing can be used to measure
the mass distribution in the universe (Newman et al. 2013; Han
et al. 2015; Diego et al. 2018; Jauzac et al. 2018), improve the
study of lensed high-redshift galaxies (Coe et al. 2013;

Jones et al. 2013; Dye et al. 2015; Stark et al. 2015), and
constrain cosmological parameters (Suyu et al. 2013; Liao et al.
2014; Suyu et al. 2014; Magaña et al. 2015), among other
applications. Cosmological strong lensing is an extreme
representation of gravitational lensing, which leads to multiple
highly magnified and distorted images of background sources.
In particular, highly distorted galaxies by strong lenses are
called gravitational lensed arcs, which have been used in
various cosmological applications (Kneib & Natarajan 2011;
Meneghetti et al. 2013). For instance, the frequency of strongly
lensed arcs on the sky reflects the abundance (Dalal et al. 2004;
Li et al. 2006; Fedeli et al. 2007; Hilbert et al. 2007; Fedeli
et al. 2010), the concentration (Oguri et al. 2012; Sereno &
Covone 2013; Meneghetti et al. 2014), and astrophysical
properties (Rozo et al. 2008) of massive lenses and the redshift
distribution and properties of sources (Wambsganss et al. 2004;
Bayliss et al. 2011; Bayliss 2012). Expectedly, strongly lensed
arcs can bring more reliable restraints on astrophysical and
cosmological problems with the enormous data from next-
generation surveys.
So far, the strongly lensed arcs have been detected almost

exclusively by visual inspection of cluster images, although
automated search algorithms have recently been proposed
(Lenzen et al. 2004; Horesh et al. 2005; Alard 2006; Seidel &
Bartelmann 2007; Horesh et al. 2010). However, scanning
wide-field data by eye covering hundreds (or even thousands)
of square degrees for arcs appears to be a hopeless endeavor.
Regardless of the size of the data sets, detecting arcs with
human inspection may involve potential biases due to seekers’
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capability. Some arcs may be obstructed by bright foreground
galaxies or stars, which could not be detected by human
experts. In contrast, automated tools for finding arcs bring
objective and reproducible definitions of arc samples, espe-
cially in the case of blind searches on the large-scale sky across
multiple survey projects (Meneghetti et al. 2013; Xu et al.
2016; Li et al. 2019), as well as for the comparison between
observational and simulated data (Horesh et al. 2005, 2011; Li
et al. 2019).

More recently, machine-learning algorithms have become
the mainstream for identifying gravitational lenses automati-
cally (Metcalf et al. 2018), given their strong performance in
the field of general image recognition. In particular, detecting
the galaxy-scale strong-lensing systems has been remarkably
successful (Bom et al. 2017; Ostrovski et al. 2017; Jacobs et al.
2017; Hartley et al. 2017; Petrillo et al. 2017; Lanusse et al.
2018; Avestruz et al. 2019), and the number of high-quality
candidates of strong-lensing systems is over a couple of
thousand by combining the data products of DES, DESI, and
KIDS (Li et al. 2019; Simon 2019; Huang et al. 2020; Li et al.
2020; Huang et al. 2021). Notably, most of the above studies
are based on stamps centered at galaxies, which is reasonable
for galaxy-scale lenses but unsuitable for strong lensing in
galaxy clusters (cluster galaxies strong lenses; CGSLs), for the
following three reasons:

1. Since the number of CGSLs is too small, it is not possible
to solely use these known CGSLs as the training set.

2. Since not all CGSLs are around the centers of galaxy
clusters (Meneghetti et al. 2020), we would lose lots of CGSLs
that do not have brightest cluster galaxies (BCGs), if we use
BCGs as the prior condition for detection of CGSLs.

3. Since CGSLs are rare and may extend to very large scale,
if we split full-frame images to patches of images with smaller
size for classification, we would obtain a lot of false-positive
detection results, even when the false-positive rate is low.

Therefore, we propose a framework to detect CGSLs, which
contains two parts: a detection algorithm and a simulation
algorithm. The simulation algorithm would embed prior
information of CGSLs known by scientists into images in the
training data set. After training with simulated images, the
detection algorithm could detect CGSLs from full-frame
observation images across a large field of view without the
centering and cutting-out process. With these two algorithms,
we could detect CGSLs according to prior information
provided by scientists.

For the image simulation part, we assume that arcs are
features of CGSLs and we could use these features to detect
CGSLs. We use the PICS (Li et al. 2016) to generate ideal
images that contain CGSLs according to extragalactic catalog
CosmosDC2 (Korytov et al. 2019) and their corresponding
labels (mask matrix with the same size of simulated images) in
the training set. Besides, we have also generated images that do
not contain CGSLs and zero labels (zero matrix with the same
size of simulated images) in the training set. The proportion of
CGSLs in the real observation images is very small, which will
affect the training efficiency. Therefore, we increased the
CGSls ratio during training and set it to 50%. For simulated
images in the validation set, we also set the ratio of images that
contain CGSLs to 50% to evaluate the performance of our
algorithm. Besides, we would also generate simulated images
with 1% of them containing CGSLs as a test set to test the
performance of our algorithm in real applications.

For the detection algorithm, the convolutional neural
network (CNN) is widely used as the basic structure. However,
the performance of the CNN-based detection algorithm is
limited by the receptive field of the convolutional kernel. For
targets with variable scales and complex structures, the
performance of CNN-based detection algorithms would be
limited. In a previous paper, we found that for classification of
simple point-like or streak-like astronomical targets observed
by wide-field small-aperture telescopes, a trained recurrent
neural network (RNN) could have better performance than the
CNN (Jia et al. 2019). The RNN has a sequence structure. After
training, the RNN may better capture features with larger size.
However, the RNN treats the whole image as a long sequence,
which would require a lot of GPU memory and last a long time
during the training stage. Thanks to Vaswani et al. (2017), an
attention-based neural network transformer has been proposed.
The transformer does not need sequence-aligned recurrent
architecture, which makes it easier to train, even with a large
number of parameters. The transformer is first used for natural
language processing and then for image processing. For target
detection tasks, the DEtection TRansformer (DETR) is widely
studied since it was proposed by Carion et al. (2020). The
DETR uses the transformer to reason about the relations
between objects to be detected and the global image context to
directly predict positions and types of targets. The mechanism
of the DETR is similar to that of human attention, which would
extract semantic information of images for detection and could
achieve better performance in detection of complex and
extended targets.
CGSLs are a type of celestial objects with complex and

extended shapes, which contain some front galaxies in the
center and some arc structures around the center. These features
could be used as semantic information for attention-based
source detection algorithms. In the algorithm developed by
Thuruthipilly et al. (2021), features from attention-based
encoder layers are extracted for classification of SGLs at
galaxy scale from candidate images and have achieved better
performance than those of CNN-based methods. Since CGSLs
have much larger size and more irregular shape than SGLs at
galaxy scale, we propose to integrate the DETR and the
Deformable DETR (Zhu et al. 2020) with an ensemble learning
strategy to build a detection algorithm with better performance.
Because detection results would be checked by human
scientists for further study, the true positive rate should be
high and the recall rate should be moderate. Therefore, we
further propose a two-step strategy for detection of CGSLs to
increase its performance in real applications.
For the validation set with half of the total images containing

CGSLs, our method could achieve more than 88% recall rate
and more than 70% precision rate, when we directly use our
method with an intersection over union (IOU) of 0.1 and a
score of 0.7. Considering that many CGSLs contain BCGs and
they could not be detected even by human inspections, the
recall rate and the precision rate are acceptable. For the test set
with 1% of total images containing CGSLs, our two-step
detection strategy could achieve 99.63% accuracy and 0.23%
false-positive rate, when the recall is 90.32% and the precision
is 85.37%. We further use real observation images from the
Hubble Space Telescope Frontier Fields project, the Hubble
Space Telescope RELICS project, and the early release image
from the James Webb Space Telescope to detect CGSLs. For
real observation images, we find that almost all CGSLs could

2

The Astronomical Journal, 165:26 (20pp), 2023 January Jia et al.



be detected by our algorithm, except several false detection
results brought by diffraction rings in these images, which are
not included in the training data. Finally, we use the
interpretation method to show that our detection algorithm
could focus on important features (arcs) of CGSLs.

In Section 2, we first describe the simulation and data
processing method to obtain training data for our algorithm.
Then, we will analyze the detection requirements of CGSLs
and adopt our evaluation criterion for the detection algorithm.
The basic structure and the performance of the DETR are
shown in Section 3. Section 4 describes a comparative
investigation between DETR and Deformable DETR, including
training and detection performance. In Section 5, we explore
the correlation between the features of images and the detection
performance with a machine-learning-interpretation module. In
Section 6, we will show the performance of our algorithm in
deploying it with simulated and real observation data. Finally,
discussions and conclusions are delivered in Section 7.

2. Data Preparation Procedure and Evaluation Criterion
for Detection of CGSLs

As we have discussed in Section 1, only tens of CGSLs have
been discovered so far. The number is too small to be used as
the training set. Besides, many CGSLs are discovered by the
visual system of human beings, which would introduce
statistical bias into training data. A neural network trained
with these data may only be possible to find “similar” CGSLs.
Besides, considering detection of CGSLs from images of
multiple bands is beyond the capacity of human vision systems;
a lot of CGSLs would be lost by a detection neural network that
is trained by data obtained by human vision systems. There-
fore, we use simulation data to train the neural network, which
could embed prior information about scientists’ understanding
of CGSLs into images in the training set. Meanwhile, we could
also enlarge the volume and the diversity of the training data
with the simulation algorithm. After training, the detection
algorithm would be able to detect CGSLs that satisfy scientists’
prior assumption about properties of CGSLs and are missed by
human vision inspections.

We will briefly introduce the simulation method in
Section 2.1 and introduce the data processing strategy to
generate training data in Section 2.2. Besides, although the
mean average precision (mAP) is widely used as an evaluation
criterion for general target detection algorithms, for CGSL
detection tasks we will show that it would be better to use
precision and recall under a predefined IOU as the evaluation
criterion. In Section 2.3, we will discuss the evaluation criterion
for the CGSL detection algorithm.

2.1. Simulation of CGSLs

To train and evaluate neural network models for detection of
CGSLs, we have created an ideal synthetic data set without
point-spread functions (PSFs) and noise using a simulation
pipeline named PICS (Li et al. 2016). Similar to Madireddy
et al. (2019), the simulation of CGSLs in this paper comprises
six steps: (1) create populations of lenses and sources according
to the given statistical properties of CGSLs, (2) build mass and
light models of foreground lenses, (3) calculate deflection fields
of the lenses, (4) construct light profiles of background source
galaxies, (5) run ray-tracing simulations to create strongly
lensed images based on the deflection fields and light profile of

sources, and (6) stack the lensed images of lensed arcs and
images of galaxies on the line of sight, as well as the
foreground images of lenses.
The populations of lenses and sources are built based on a

state-of-the-art extragalactic catalog called CosmoDC2
(Korytov et al. 2019). CosmoDC2 provides a catalog of galaxy
clusters, including the virial mass of dark matter halos and the
apparent magnitudes, axis ratios, position angles, and redshifts
of member galaxies. The mass model of a lens galaxy cluster is
modeled as a dark matter halo plus a set of member galaxies.
The mass model of a dark matter halo is elliptical NFW, and it
requests virial mass, concentration parameter, and ellipticity.
CosmoDC2 gives the virial mass, concentrations are calculated
according to the c–M relation given by Child et al. (2018), and
ellipticity is obtained by measuring the ellipticity of the spatial
distribution of member galaxies in the cluster. Hence, the
deflection angle map due to the dark matter halo can be
described by Mvir, cvir, qnfw, zl, and zs, where zl and zs are the
redshifts of the lens plane and source plane, respectively.
The mass model of member galaxies is a singular isothermal

ellipsoid (SIE) as adopted in Collett (2015), since SIE is
analytically tractable and consistent with models of individual
lenses and lens statistics on length scales relevant for strong
lensing (Koopmans et al. 2006; Gavazzi et al. 2007; Dye et al.
2008). Accordingly, the deflection maps due to member
galaxies can be defined by positions, velocity dispersions, axis
ratios, position angles, and redshifts of member galaxies, as
well as redshifts of source galaxies, namely, x1, x2, σv, ql, fl, zl,
and zs. The parameters x1, x2, ql, fl, zl, and zs are taken directly
from the CosmoDC2 catalog. σv is derived from the L− σ
scaling relation from the bright sample of Parker et al. (2007)
given by

s = -( ) ( )L L142 km s , 1v
l

star
1 3 1

where = - -( ) ( )L Llog 10 0.4 magr magrstar , with magr the
apparent r-band magnitude of the galaxy given by the
CosmoDC2 catalog. We adopt the assumption in More et al.
(2016) that magrå evolves with redshift as magrå=+ 1.5(z –

0.1) – 20.44 (Faber et al. 2007). To guarantee significant
lensing features, we set zs> zl+ 0.5 and then randomly choose
galaxies satisfying this criterion. The projected positions of
sources in the lensing system are randomly chosen in the area
where lensing magnifications are larger than 20 on the source
plane. The light profiles of galaxies in the light cone are all
modeled as a composite Sérsic profile containing bulges and
disks, and all the parameters are from the CosmoDC2. For
nonlensed galaxies, including member galaxies and line-of-
sight galaxies, the images are rendered with composite Sérsic
profiles on regular grids directly; for lensed arcs, the images are
rendered with composite Sérsic profiles on ray-traced grids.
The final simulated data are generated by stacking images of

background galaxies and images of generated CGSLs. We also
provide corresponding masks of lensed arcs in image stamps to
generate labels for the training data. Each simulated image
includes four channels. The first three channels are images of g,
r, and i bands, and the last channel is the mask of lensed arcs.
The size of simulated images is 1280× 1280 pixels, and
CGSLs are mostly in the center of these simulated images.
Besides, we have also generated images that contain galaxies
without CGSLs. For these images, the first three channels are
images of g, r, and i bands, and the last channel is a zero matrix
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with the same size of images in the first three channels. Some
additional data processing is required to generate training data
from these simulated images, which we will discuss in
Section 2.2.

2.2. Generation of Training Data from Simulated CGSL
Images

The detection method proposed in this paper is a supervised
learning algorithm. For a supervised learning algorithm,
training data should include both its inputs (images of CGSLs)
and its outputs/labels (positions and size of CGSLs). We first
need to generate labels and images from simulated data.
Contemporary detection algorithms use bounding boxes to
indicate positions and sizes of targets, and bounding boxes are
circumscribed rectangles of targets. However, masks of CGSLs
are two-dimensional mask images with the same size as that of
simulated images. Therefore, we would transform grayscale
values of masks of lensed arcs with log transformation. Then,
pixels with grayscale values larger than 10−3 will be set as part
of targets, and other pixels in the mask images will directly be
set as backgrounds, as shown in Figure 1. Then, we would
generate circumscribed rectangles for pixels belonging to
CGSLs as bounding boxes.

For inputs of CGSL detection algorithms, we have noticed
that the difference between grayscale values in simulated
images is large and it is hard to see features of CGSLs directly
from simulated images. Generally grayscale transformation
such as zscale in DS9 (Smithsonian Astrophysical
Observatory 2000) would make structures of CGSLs easier to
detect. Therefore, we would transform gray scales of simulated
images with zscale transformation. Although neural networks
could learn the grayscale transformation algorithm, it would be
easier and faster to train neural networks, if we have made
grayscale transformation before training.

After grayscale transformation, images of the same target in
different bands will be stored as an image with several
channels. Besides, since almost all strong-lensing targets are in
the center of simulated images, it would introduce strong bias
into the detection algorithm during the raining stage. The
detection algorithm would be more likely to predict positions of
CGSLs in the center of these images. Therefore, we generate a

window of 400× 400 pixels and randomly shift the window in
the original images to cut stamp images for detection. With this
method, there are some images without any CGSLs or only
with part of CGSLs. Besides, many CGSLs would be
distributed in different parts of these stamp images. Figure 2
shows several images with and without CGSLs. It should be
noted that we have generated images with a size of 400× 400
pixels as the training set to reduce the requirement of GPU
memory during the training stage. Since the DETR and the
Deformable DETR could accept images of any size as inputs,
we would directly detect CGSLs from full-frame images, as
long as we have enough GPU memory during the deployment
stage. Finally, all images will be saved as PNG files, with three
channels as inputs of the neural network, as shown in Figure 2.
It should be noted that the difference of grayscale values in
some pixels of original images could be quite large, which
would introduce difficulties in development of detection
algorithms. Transforming original simulated images to PNG
files, whose grayscale values are integers within the scale of
0–255, can constrain data distribution and make our algorithm
easier to train at the cost of low detection ability of dim targets
and higher position regression error.

2.3. Performance Evaluation Criterion for Detection of CGSLs

The performance evaluation criterion of the detection
algorithm is important for the algorithm development.
Although the mAP is widely used to evaluate the performance
of a general-purpose detection algorithm, it is better to use an
appropriate evaluation criterion, according to real detection
requirements. Hence, we select the precision rate and the recall
rate under a predefined IOU ratio as the performance evaluation
criterion. The IOU is defined as the ratio between the overlap
area and the union area of the bounding box from the detection
results and the labels:

= ( )IOU
Intersection Area

Union Area
. 2

If the IOU is larger than a predefined criterion, we set the
detection as a true positive detection (TP). Otherwise, we set
the detection result as a false negative (FN) or a false-positive
(FP) detection. Then, we would further define precision and

Figure 1. This figure shows (a) the original simulated image, (b) the image after grayscale transformation, and (c) the mask of lensed arcs. As we can see, the structure
of this image is almost invisible in the original image. After grayscale transformation, we can easily see various galaxy structures and even directly observe the CGSL,
which would be beneficial to development of the algorithm. We can see that the mask of lensed arcs ignores the foreground and shows the boundary of the CGSL,
which is an arc in this image.
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recall rate to evaluate the performance of a detection algorithm
with TP, FP, and FN. The precision rate is the percentage of
true positive detection results to all detection results, and the
recall rate is the percentage of true positive detection results to
all targets. The precision and recall rates are defined as

=

=
+

+
( )

Precision

Recall . 3

TP

TP FP

TP

TP FN

CGSLs are very rare, normally less than one in a full-frame
observation image. Therefore, it would be more important to
discover one CGSL instead of getting the accurate position of
the CGSL in observation images. Therefore, we could first set a
small value of IOU to define the precision and recall rates, such
as 0.1 in this paper. If we set the IOU to be 0.1, the overlap
between the detection result (bounding box) and the true result
(true position and size of the CGSL) would be larger than 10%
of the true result. Therefore, the detection result would roughly
indicate the position of the CGSL. Then, we need to further use
the segmentation algorithm to obtain CGSLs from detection
results. For the image segmentation algorithm, we need to
expand the size of the bounding box by 10 times to make sure
the whole image of the CGSL is in the bounding box.

3. Detection of CGSLs with the DETR

As mentioned in Section 1, CGSLs have extended and
complex structures and would often be obstructed by BCGs, as
shown in Figures 2(g), 7(a), 14(g), and 14(h). In this section,
we describe our strategy to use the DETR to detect CGSLs. We
give a brief introduction to the DETR in Section 3.1. We
further describe the training strategy and show the performance
of the DETR in detecting CGSLs in Section 3.2.

3.1. Introduction of the DETR

The data flowchart of the DETR is shown in Figure 3. When
we input an image into the DETR, its features of different
pixels will first be extracted by the backbone neural network to
form different feature vectors. It should be noted that since

these feature vectors are related to different pixels in the image,
feature vectors of adjacent pixels would have similarities.
However, feature vectors are abstract representations of
contents by the backbone neural network, so it does not
include the corresponding position information. Therefore,
feature vectors and their corresponding position vectors will be
connected together as a one-dimensional vector and sent to the
transformer. In the transformer, these feature vectors with
position information would be processed again by means of the
attention mechanism. Finally, results will be sent to a feed-
forward propagation (FFP) neural network for target position
and type prediction.
The structure of the DETR used in this paper is shown in

Figure 4. We propose to use the Resnet-50 as the backbone
neural network for feature extraction because it has a residual
structure, which makes it easier to train (He et al. 2016).
Besides, the Resnet-50 could gain high accuracy even with
very deep structure. The feature vectors extracted from the
backbone neural network would be sent to the transformer
along with the position information of these feature vectors.
The position vectors that represent position information of
these feature vectors are encoded by

=
=+

( ) (( ) )
( ) (( ) ) ( )

PE x y x y

PE x y x y

, sin , 1000

, cos , 1000 , 4
i

i d

i
i d

2
2

2 1
2

model

model

where Î( ) [ ]x y, 0,1 2 is the normalized position of the current
feature vector in the image and dmodel is the dimension of
position vectors, which has the same size as that of the feature
vector or the dimension of the hidden state of the DETR.
Parameter i represents the location index of each small piece at
different positions in the current feature vector. We encode
these pieces in even position and odd position with sin and cos
functions, respectively, and finally obtain the position vector
PE(x, y) of the feature vector at (x, y) with dmodel dimensions.
Finally, we would directly add the position information into the
corresponding feature vector.
The transformer has an encoder–decoder structure as shown in

Figure 5. The encoder part is designed based on the attention

Figure 2. This figure shows several images without and with CGSLs. Panel (a)–(e) show images without CGSLs, and panels (f)–(j) show images with CGSLs. We
find that in the images with CGSLs there are arcs, but in the images without CGSLs there are no similar structures.
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mechanism, and it is called the self-attention layer. If a feature
vector is put into the self-attention layer, it would be transformed
to three vectors: Value, Query, and Key. Similar to hidden states
in RNN, Value, Query, and Key are used to project feature
vectors to different directions and positions and obtain relations

between features. For each feature vector, its Query will multiply
Keys of all feature vectors to calculate the correlation between
the current vector and all other feature vectors. Therefore, for all
feature vectors, we could get a weighted map, which is called the
attention map, and values in each pixel of the weighted map

Figure 3. The data flowchart of the DETR. It includes an encoder and decoder part that could learn features of extended targets for detection.

Figure 4. The structure of the DETR. The input image is first extracted by the backbone neural network to obtain features. After adding the encoded position
information of feature vectors, feature vectors are sent to an encoder–decoder structure. The output decoded vectors will get the category and the position information
of the target in the input image through two FFN branches. The last bipartite-matching structure of the network is to match the prediction output with the label of the
input to help the network to achieve the correct prediction result. The variables p̂ and b̂ represent the category and position box predicted by the algorithm,
respectively, l and b represent the real category and position box of the target, respectively, and lines represent the process of cross-matching between the predicted
results and real labels of this bipartite-matching part. Each oval is an object, which could be either the background or a target. The circles inside the ovals represent the
value of the position or category.

Figure 5. The encoder–decoder structure of the transformer. Features of images are first extracted by the CNN backbone, and then the multihead self-attention layer
would generate attention of these features in the encoder. In the decoder, several object queries will sample features automatically, and the mask multihead self-
attention layer will process these features with the self-attention mechanism. Finally, in the multihead cross-attention layer, features will further be processed to
generate cross-attention to detect targets.
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stand for correlations between features. Higher correlation values
between features mean that they have attracted more attention
and vice versa. The attention map will propagate to a softmax
layer, and outputs of the softmax layer will be multiplied by
values of all feature vectors to get final outputs. The self-
attention layer would naturally obtain connections between
features, regardless of their distance, which could exceed the
receptive field of convolutional kernels in CNN. Several
attention layers will be connected together to generate a head.
We would use several heads to design our detection neural
network, based on the multihead mechanism. With the multihead
design, we could extract more information to focus on different
positions in an image.

The decoder is also designed with the concept of attention.
Inputs of the decoder are random initialized vectors, which are
called object queries. Object queries are similar to “anchors” in
the Faster-RCNN (Ren et al. 2015). Each object query
represents a target predicted by the transformer-based detection
algorithm. In other words, the number of object queries is the
number of objects predicted by the model, including the
prediction results of the background (no object). The number of
queries is fixed and would be much larger than the actual
number of targets in the input image. Prediction results would
be sent to the feed-forward network (FFN). In the FFN, the
predictions of the model will be bipartite-matched with input
labels, where a majority of queries will be classified to the
background or “no object” and only a few closest to the actual
target will be regarded as predictions of real targets. During the
training stage, object queries will automatically sample features
of objects from the training set and propagate these features to
the mask multihead self-attention layer. In the mask multihead
self-attention layer, features will be processed again by the self-
attention mechanism. Then outputs of the mask multihead self-
attention layer and outputs from the encoder will be sent to the
multihead cross-attention layer. The multihead cross-attention
layer is designed according to the cross-attention mechanism.
There are also three vectors in the cross-attention mechanism,
Value, Query, and Key, and we would carry out the same
operation process as the self-attention mechanism. The
difference is that the Query comes from the decoder, while
the Key and the Value come from the encoder. The output from
the encoder and that from the decoder are crossed, so this is
called the cross-attention mechanism. In the multihead cross-
attention layer, features will further be processed to generate
cross-attention to better focus on interested targets.

Finally, output feature vectors will be sent to two FFNs for
object classification and position regression. Different from
other CNN-based detection algorithms, we would use outputs
from FFN and labels to calculate the loss of the DETR.
Because the total number of predictions is fixed in the DETR
and more predictions would require larger memory, the DETR
is better at detection of sparsely distributed large astronomical
targets, such as CGSLs. With N predictions, the Hungarian
algorithm is used in the last bipartite-matching structure to
match N outputs from the FFN layer and M labels, resulting in
the Hungarian loss between the predictions ŷ and the label y.
The Hungarian loss is a combinatorial algorithm that is used to
calculate optimal matching between prediction results and
ground truth (Kuhn 1955), which is defined by
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where i is the index of the target, s ( )ˆi is the corresponding
prediction index, ci is the value of the target’s category, and

s ( )ˆp i is the value of the prediction’s category. λiou and lL1 are
hyperparameters corresponding to weights of Liou and L1 norm,
respectively. Parameter bi is the position of the target, and s ( )ˆb i

is the predicted position. L1 loss is the absolute error between
the predicted position box and the position of the real target
box. In real applications, we find that targets of different size
have different sensitivity to the L1 loss. A larger target has a
larger boundary box, so a small deviation will cause a large L1
loss, while a smaller coordinate box may not cause a large L1
loss, even if the deviation is large. To balance this, we
introduce the box Liou loss, which is independent of the size of
the bounding box. The Liou loss is defined in Equation (7), and
the IOU is defined in Equation (2).

3.2. Training and Performance Evaluation of the DETR

Because the number of CGSLs is small and the DETR has
relatively complex structure, it would be hard to train the
DETR. Therefore, we propose the following strategies to train
the model:
1. We propose to add the dropout strategy with a dropout

rate of 0.1 to prevent overfitting.
2. We use instance normalization to process each channel of

an image (subtract the average value of each channel and then
divide the standard deviation of these images).
3. We propose to use pretrained weights to initialize the

DETR to reduce training time. The pretrained weights used in
this paper are obtained from Carion et al. (2020).
The DETR is implemented with the Pytorch (Paszke et al.

2019) in a computer with one Nvidia RTX 3090 GPU card.
With the strategies proposed above, we train the DETR with
the Adams algorithm as the optimizer (Kingma & Ba 2014).
There are 2000 images in the training set and 600 images in the
validation set. We set half of the images to contain CGSLs and
half of them to not contain CGSLs to help us to better evaluate
the performance of our algorithm. The DETR is trained with
250 epochs and takes around 25 hr. After training, we use the
evaluation criterion defined in Section 2.3 to evaluate the
performance of the DETR in detection of CGSLs. It would take
about 0.06 s to process an image with a size of 400× 400
pixels. The performance of our algorithm in detection of
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CGSLs is shown in the left panel of Figure 6. It can be seen that
the area surrounded by the P–R curve increases rapidly as the
IOU threshold decreases, which indicates that the performance
of our detection algorithm improves rapidly if we reduce
position accuracy requirements, which is consistent with our
discussions in Section 2.3.

If we set a higher IOU, the position accuracy of the detection
algorithm would be higher at the cost of low recall rate.
Considering that the number of CGSLs is small in real
applications, we set the IOU threshold to be 0.1, which will
enlarge the size of detection results by 10 times for further
analyses. The area of the P–R curve can reach 0.85, when the
IOU threshold is 0.1. Besides, it is worth noting that when our
IOU threshold is set as 0 the detection algorithm becomes a
classification algorithm, which means that our algorithm can
directly identify whether there is a strong gravitational lensing
system in the image regardless of its position. For the
classification task, we can see that the area of the P–R curve
could reach around 0.95.

Due to the existence of foreground central galaxies, many
features of CGSLs, such as arcs and rings, are obstructed.
Meanwhile, foreground central galaxies will also bring
interference to the position prediction accuracy of our
algorithm. Therefore, we further use simulated images of the
same strong gravitational lensing arcs with and without
foreground central galaxies to evaluate the performance of
our algorithm. A pair of simulated images with and without
foreground galaxies are shown in Figure 7. The performances
of our algorithm in detection of CGSLs with and without
foreground central galaxies are shown in Figures 8 and 9. In
Figure 8, we find that our algorithm could detect the CGSL,
regardless of the foreground galaxies. In Figure 9, we show the
statistical results of our algorithm in detection of CGSLs with
or without foreground galaxies. We find that the difference
between detection results is small. Besides, we find that the
performance of our algorithm does not drop significantly when
there are BCGs in detection of CGSLs.

4. Detection of CGSLs with the Deformable DETR

For different sky survey projects, the DETR should be
trained with simulated data with different observation condi-
tions, such as observation bands, pixel scales, PSFs, and noise
levels. However, it would take a long time to train the DETR.
Therefore, we propose to use the Deformable DETR for CGSL

Figure 6. The performance of the DETR and the Deformable DETR in detection of CGSLs. The vertical axis represents the precision rate, and the horizontal axis
represents the recall rate. The farther to the right of the curves, the higher the recall, and the higher the curves, the better the precision. We can use the area of the P–R
curve to evaluate the performance. The larger the area surrounded by the curves, the better the overall performance of the algorithm. IOU represents the degree of
overlap between the predicted targets and the real targets. The larger IOU is, the greater the overlap is, indicating that the location of the targets predicted by the
algorithm is more accurate. We take different IOUs as the threshold, and only when the overlap degree between the targets predicted by the algorithm and the real
targets is larger than the threshold do we consider the prediction to be accurate.

Figure 7. This figure shows a simulated image of the same strong gravitational
lensing system with and without foreground central galaxies. Panels (a) and (b)
show the same CSGL, but there are obvious foreground central galaxies in
panel (a) and no foreground central galaxies in panel (b). We can easily see the
morphological characteristics of the CSGL. The arrow in panel (a) points to the
foreground central galaxies. We can see the arc of the strong gravitational
lensing system after we remove foreground central galaxies, which is pointed
to by the arrow in panel (b). Therefore, CSGLs with foreground central
galaxies interference like in panel a pose high requirements and challenges to
our detection algorithm.

Figure 8. The results of our algorithm in detection of CSGLs with and without
foreground central galaxies. We can see that our algorithm can detect CSGLs
regardless of foreground galaxies.
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detection as a light-weighted algorithm. Besides, we further
propose to use multiscale features in the Deformable DETR to
increase its accuracy.

4.1. Introduction of the Deformable DETR

The DETR algorithm uses feature vectors at all positions to
interact with each other for detection, which would require a
long time and a lot of GPU memory. Because CGSLs are
sparsely distributed (normally less than one CGSL in an
observation image), it is possible to use sparse interactive
operations with feature vectors of a few positions for detection.
Based on this concept, we propose to use the Deformable
DETR for detection. The Deformable DETR (Zhu et al. 2020)
takes advantage of the sparse concept from the deformable
convolution operation (Dai et al. 2017) and the spatial relation
modeling concept from the transformer. The structure of the
Deformable DETR is shown in Figure 10.

The structure of the Deformable DETR is similar to that of
the DETR. But there are two main modifications in the
Deformable DETR. First, to keep the performance of the
Deformable DETR stable, we extract several instead of all
feature vectors from last few layers in Resnet-50 as the
multiscale feature, which is similar to the feature pyramid

network (FPN) used in celestial object detection for wide-field
small-aperture telescopes (Jia et al. 2020). In this way, the
model can obtain more features of input images at different
scales and levels, which could help the model to obtain richer
feature information. Second, we introduce the attention
mechanism operation with adjacent feature vectors in the
Deformable DETR. A feature vector will interact only with
adjacent feature vectors, which could reduce complexity. This
feature vector is called the reference vector, while the adjacent
feature vectors sampled by the Deformable DETR are called
sampling vectors. Meanwhile, since the CGSLs is large and
sparsely distributed, sparsely distributed sampling vectors
would not seriously affect the performance. Sampling features
would be sent to attention layers of the decoder. After data
propagation through these layers to attention layers of the
decoder, multiscale attention operation would be carried out to
give final results.

4.2. Performance Comparison between the DETR and the
Deformable DETR

We train the Deformable DETR with the same data set as we
used in Section 3.2. The optimizer and the loss function are the
same as in the DETR. The model training process is shown in

Figure 9. The performances of our algorithm in detection of CSGLs with and without foreground central galaxies. Panels (a), (b), and (c) show the detection ability of
our method on data sets with no foreground central galaxies, all of them with foreground central galaxies, and half of them without foreground central galaxies at
different IOU thresholds, respectively. It can be seen that the model performs best when there are no foreground central galaxies and worst when there are foreground
central galaxies, indicating that foreground central galaxies have a certain influence on the performance of our algorithm. In panel (d) the vertical axis represents the
area of the P–R curve (mAP) for different data sets of the model, and the horizontal axis represents different IOU thresholds. It can be seen that when the IOU
threshold is small or large, the difference of the mAP is small, indicating that the foreground central galaxies have little interference to the model at this time. When the
IOU threshold is around 0.3, the performance difference of the mAP is the largest. When the algorithm is only used for the classification task of the strong gravitational
lens, the mAP is close to 100%, which indicates its strong classification ability.
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Figure 11. With about 100 epochs, the Deformable DETR
would converge. However, the DETR needs about 200 epochs
to converge. Therefore, the convergence speed of the
Deformable DETR is greatly improved, but there is a slight
decrease in detection performance. Figures 6 and 12 show the
detection performance of these two algorithms under different
IOU thresholds. It can be seen that the overall performance of
the Deformable DETR is lower than that of the DETR, because
the introduction of the deformable attention mechanism
effectively reduces the amount of computation but also loses
the information of nonreference vectors and nonsampling
vectors. Still, we can see that the performance degradation is
small, reaching a maximum of no more than 10% at the IOU

threshold of 0.5. We select several CGSLs that are detected by
the DETR and missed by the Deformable DETR and also some
CGSLs that are detected by the Deformable DETR and missed
by the DETR in Figure 13. From these figures, we find that the
DETR could detect arc structures and might be affected by
foreground galaxies. The Deformable DETR would occasion-
ally detect CGSLs with foreground galaxies when reference
points are selected in some priority positions, which would
better extract features of CGSLs for detection.

4.3. Increasing the Performance in Detection of CGSLs with
Ensemble Learning for Real Applications

Since we find that the DETR and the Deformable DETR
have different designs, their performance should be different
for the same data set. Two machine-learning algorithms with
different performance could be merged together with ensemble
learning to further improve their performance. With this
concept, we use Equation (8) to calculate final results with
detection results of the DETR and thos of the Deformable

Figure 10. The schematic diagram of the Deformable DETR. This structural paradigm is the same as that of the DETR with the following differences. First of all, the
backbone neural network in the Deformable DETR outputs feature vector maps c3, c4, and c5 from its last three layers. We transform the depth (number of channels)
of these three feature vector maps to the same size, thus forming three feature vector maps of p3, p4, and p5 accordingly. Among them, we would convolve feature
vector maps of c5 with convolutional layers to further extract feature information and obtain p6 for further processing. We would stack these feature vector maps
together to form a multiscale feature, similar to the feature pyramid network (FPN). Second, in the encoder–decoder part, the attention mechanism is improved by
introducing reference vectors and sampling vectors. Only the attention map between reference vectors and sampling vectors is calculated, thus greatly reducing the
computation complexity and improving the training speed of the model. In this figure, “Flattened Feature Token” represents feature vectors that we input into the
transformer. Object queries in different colors represent targets predicted by our model, which is far greater than the actual number of targets in the image. Therefore,
in the bipartite matching, most original target instances will be led to “no object,” and only a few will be led to corresponding true targets.

Figure 11. The learning curve of the DETR and that of the Deformable DETR.
As we see in this figure, the Deformable DETR will converge after around 100
epochs and the DETR will require 200 epochs to converge. However, the
DETR has a higher mAP after training.

Figure 12. The mAP of the DETR and that of the Deformable DETR with
different IOU criteria. As shown in this figure, we find that performance of the
DETR is better than that of the Deformable DETR.
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Figure 13. This figure shows detection results of the two different methods in four panels each. Panels (a)–(d) show the detection results of the DETR, and panels (e)–
(h) show the detection results of the Deformable DETR. We find that the DETR gives correct results for panels (a) and (b), while the Deformable DETR could give
correct results for panels (g) and (h). Meanwhile, for panels (g) and (h), we find that the arc is obscured by the foreground galaxy, so it is difficult for eyes to see it, but
our algorithm can effectively identify and locate it.

Table 1
The Recall Rate and the Precision Rate (R/P) of the DETR with Different IOUs and Scores

IOU Score=0.9 Score=0.85 Score=0.8 Score=0.75 Score=0.7 Score=0.65 Score=0.6 Score=0.55

0.9 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
0.8 4.9/5.9 5.8/5.0 7.5/4.7 8.2/4.5 9.4/4.2 10.5/4.0 12.1/3.8 13.6/3.7
0.7 13.7/18.3 16.3/15.8 20.9/15.4 30.0/15.0 26.1/14.4 28.7/13.7 32.0/13.1 35.0/12.6
0.6 23.5/35.5 27.4/30.7 33.9/30.0 37.1/29.6 41.7/29.1 45.5/28.4 49.4/27.1 52.8/26.2
0.5 32.6/55.9 39.8/53.8 46.8/51.4 49.8/49.8 54.9/49.5 58.4/47.8 62.5/46.2 65.8/44.9
0.4 37.5/69.4 45.1/67.0 52.9/65.6 56.1/64.0 60.8/63.2 64.1/60.9 68.2/60.0 71.3/58.1
0.3 40.1/77.4 47.8/74.7 55.8/73.9 59.0/72.3 63.8/71.2 67.1/69.6 71.1/68.2 74.1/66.8
0.2 41.2/82.3 49.3/79.2 57.2/78.3 60.4/76.4 65.1/75.8 68.5/74.2 72.6/73.2 75.5/72.0
0.1 42.2/84.4 49.9/81.0 58.0/80.6 61.3/79.4 66.0/78.9 69.6/77.9 73.6/77.1 76.4/75.7
0.0 42.8/86.6 50.7/83.7 58.8/83.4 62.1/82.4 66.8/81.8 70.5/81.6 74.4/80.6 77.2/79.4

Table 2
The Recall Rate and Precision Rate (R/P) of the Ensemble Model with Different IOUs and Scores

IOU Score=0.9 Score=0.85 Score=0.8 Score=0.75 Score=0.7 Score=0.65 Score=0.6 Score=0.55

0.9 0.0/0.0 0.7/0.3 1.0/0.3 1.5/0.3 2.8/0.3 5.0/0.3 9.0/0.3 14.3/0.3
0.8 6.0/5.6 8.8/4.9 12.5/4.6 17.5/4.2 28.6/3.8 42.4/3.7 58.3/3.6 70/3.5
0.7 16.8/17.8 23.7/15.8 31.0/14.5 40.5/13.4 56.8/12.6 70.8/12.0 82.1/11.7 88.5/11.6
0.6 28.0/34.3 36.6/29.3 45.6/27.1 56.9/26.0 72.0/24.6 82.9/24.1 90.2/23.5 93.9/23.3
0.5 36.3/50.2 48.1/47.0 57.2/43.2 67.5/40.9 80.2/38.8 88.3/37.7 93.5/36.8 96.0/36.5
0.4 42.3/64.8 54.5/60.9 63.6/56.4 73.3/54.0 84.2/51.1 90.9/49.5 95.0/48.6 97.0/48.4
0.3 44.9/71.8 57.1/67.7 66.6/64.4 76.0/62.4 86.1/59.0 92.1/57.9 95.7/57.0 97.4/56.7
0.2 47.2/78.9 59.2/73.7 68.7/71.0 77.8/69.0 87.2/65.3 92.8/64.4 96.1/63.4 97.7/63.3
0.1 48.6/83.6 60.5/77.8 69.9/75.2 78.8/73.1 88.0/70.2 93.4/69.9 96.4/69.1 97.8/68.6
0.0 49.2/85.4 61.3/80.5 70.8/78.5 79.4/76.1 88.6/74.1 93.7/73.8 96.6/72.9 97.9/72.4
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DETR:

= ( ) ( )out out Score , Score , 8max DETR DeformableDETR

where ScoreDETR and ScoreDeformableDETR are scores of the
DETR and the Deformable DETR. With Equation (8), we
would output candidates with high confidence of either of these
two algorithms. For comparison, the DETR is used as a
baseline for comparison as shown in Table 1. The results of the
ensemble learning algorithm are shown in Table 2. We find that
with an IOU of 0.1 and a Score of 0.7, the DETR has a recall
rate of 66.0% and a precision rate of 78.9%, while the ensemble

learning algorithm has a recall rate of 88.0% and a precision
rate of 70.2%. More CGSLs could be detected with ensemble
learning with only a small drop in precision rate. For rare target
detection, such as CGSLs, the ensemble learning would be a
better choice.

5. Interpretation of the Mechanism of the Attention-based
CGSL Detection Algorithm

Both the DETR and the Deformable DETR use the attention
mechanism to detect targets. The attention mechanism is quite
similar to the attention of human beings in observing a target.

Figure 14. The self-attention map of four pixels in the last layer of the encoder. Panels (a) and (b) are CGSLs with and without foreground central galaxies,
respectively. We find that the self-attention maps of them are similar, which indicates that our model can still identify CGSL features accurately and has good
robustness even in the presence of foreground central galaxies. It also shows that the encoder is paying attention to the main structure of the CGSL, regardless
of BCGs.
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In this part, we would draw attention maps in different attention
layers to show how the DETR and the Deformable DETR work
and help us to better evaluate their performance. There are two
types of attention maps from two different attention layers that
we are going to visualize: the self-attention map in the last self-
attention layer of the encoder part, and the cross-attention map
in the last cross-attention layer of the decoder part. We will
show both of these attention maps for two scenarios: a CGSL
that is obstructed by the foreground galaxies, and a CGSL that
is not obstructed by the foreground galaxies.

We will first show self-attention maps in the last self-
attention layer of the encoder part. When we input an image
into the model, the weight of the relation between feature
vectors of different pixels in the image will be calculated in the
last self-attention layer of the encoder as the attention map. If
we select feature vectors from one pixel and calculate relations
between other pixels, we would get an attention map with
reference to that pixel. Therefore, we could select several pixels
in the input image as sampling pixels and get their attention
maps in the encoder’s last self-attention layer. Then, we can

Figure 15. The cross-attention map of the last layer in the decoder. Input images are the same as those in Figure 14. In this figure, right panels are prediction results,
and left panels are cross-attention maps of object queries matching predicted results in the decorder, whose legend represents the serial number of the object query. We
can see that the decoder pays more attention to boundaries of CGSLs and gives similar results regardless of the interference of foreground central galaxies.
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visualize the relationship between sampling pixels and other
pixels in the input image to show us the attention of the
detection algorithm. As shown in Figure 14, we select four
pixels in the image to show their attention maps. We use the
right-handed Cartesian coordinate system to define coordinates
of these four pixels and use red circles to indicate their
positions in the figure. Figures 14(a) and (b) are CGSLs with
and without foreground central galaxies, respectively.

In Figure 14(a), we can see that when the sampling pixel
(560, 590) is not in the CGSL, the attention distribution is
uniform and random, indicating that there is no clear
correlation or significant difference between the current

sampling pixel and other pixels. Therefore, the sampling pixel
does not participate in the detection of CGSLs, and this pixel
does not belong to the image of the CGSL. Sampling pixels
(275, 560), (300, 560), and (410, 560) are inside the CGSL. We
can see that as sampling pixels approach the CGSL, the
distribution of the attention map gradually concentrates to a
circle around the CGSL. This tells us that there exists a higher
attention weight between the sampling pixel and other pixels
within the CGSL. This strong relationship shows that these
pixels are more closely related to each other, which could be
used to characterize the CGSL system. The self-attention map
within the CGSL is not exactly the same between different

Figure 16. This figure shows the schematic diagram of three different approaches. Panel (a) shows the classic method, which first detects images of galaxy clusters.
Then, these stamp images would be cut from original observation images and classified as either CGSLs or other targets, as discussed in Jacobs et al. (2017), Petrillo
et al. (2017), Ostrovski et al. (2017), Bom et al. (2017), Hartley et al. (2017), Avestruz et al. (2019), and Lanusse et al. (2018). Panel (b) shows the diagram to use our
algorithm in a one-step way, which directly detects CGSLs from observational images. Panel (c) shows the two-step strategy. We first obtain candidates with low IOU
and then detect CGSLs from these images.
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sampling pixels. It can be seen that the concentration of the
attention distribution of sampling pixels at the edge of the
CGSL system is relatively poor, and there is a certain
correlation with other irrelevant pixels around, which reflects
that pixels at the edge of the CGSL image have weaker effects
in obtaining final detection results. The concentration of the
attention distribution of sampling pixels in the center of the
CGSL is very high in the self-attention map, indicating that
these pixels are important in detection of CGSLs. It should be
noted that for labels in the training data set only the boundary
information of the target is given, instead of detailed pixel-level
information. However, in self-attention maps, we find that our
algorithm could obtain pixel-level information of CGSLs,
although in a relatively rough way. It still shows that, thanks to
the attention mechanism, our algorithm can learn and capture
some important nonhuman and nonprior features of the target
by itself and achieve simple image segmentation results. In
Figure 14(b), we can draw a similar conclusion. Whether or not
the CGSL is obstructed by foreground BCGs, we can output an
effective self-attention map, which indicates the effectiveness
of our method. We also find that the self-attention maps of
Figures 14(a) and (b) are similar, which indicates that our
model can still identify CGSL features accurately and robustly
even in the presence of foreground central galaxies. Overall,
Figures 14(a) and (b) maintain high similarity.

Then, we visualize the cross-attention map in the last cross-
attention layer of the decoder part. We directly use the cross-
attention map of predicted results to visualize attentions. As we
have mentioned earlier, each object query will predict a target,
and only a few of them are real targets. Here we will show
queries that match real targets. Then, we could obtain outputs of
these queries in the last decorder layer and visualize it to obtain
the cross-attention map of predicted targets. As shown in
Figure 15, compared with the self-attention encoder, which
focuses on the main part of the object, the decoder based on the
cross-attention mechanism pays more attention to boundaries of
CGSLs. Figures 15(a) and (b) are CGSLs with foreground central
galaxies and without foreground central galaxies, respectively.
We find that the cross-attention map pays more attention to
CGSL boundaries than other parts. Meanwhile, for the same
CGSL system, regardless of whether there is a foreground central
galaxy or not, the cross-attention map is very similar, which
indicates that our method is robust in detection of CGSLs.

With visualization methods mentioned above, we find that
attention-based detection algorithms first pay attention to the main
body of CGSLs with the self-attention layer in the encoder. Then,
the detection algorithms pay attention to the edge of CGSLs with
the cross-attention layer in the decoder part. This is similar to the
attention mechanism by which people observe things. However,
attention-based detection algorithms could directly use CGSL
images of multiple bands for detection. Although the image of the
CGSL is strongly obstructed by the foreground galaxies, these
detection algorithms could still detect the CGSLs. Thanks to this
property, attention-based detection algorithms could achieve
better performance in detection of CGSLs than could be obtained
by humans and would lead to new discoveries of CGSLs.

6. Performance Test with Simulated and Real
Observation Data

6.1. Performance Test with Simulated Data

In this subsection, we will consider using our method in real
applications. Since CGSLs are rare in real conditions and
detection results would be analyzed by scientists for further
study, it would be more appropriate to design a framework with
high precision, moderate completeness, and low false-positive
rate. Considering that the recall rate is more important than
position accuracy in practical applications, we do not need to
use very high position accuracy conditions all the time. First,
we use a low IOU to classify full-frame images and obtain
candidate images that may contain CGSLs. In this way, the
position accuracy is low, but the recall rate and precision rate
are high. Then, we use a high IOU to detect the candidate
images again, so as to accurately find the CGSLs in these
candidate images, which ensures the position accuracy. The
flowchart of the classic method, our previous method, and the
two-step strategy is shown in Figure 16. We would first use the
ensemble learning framework discussed above to detect CGSLs
from observational images, and we would further use the
following strategy to obtain final detection results. Detailed
steps are shown below:

1. We set the IOU as 0.0 and obtain images that may contain
CGSLs as candidates.

2. We set the IOU as 0.7 and detect CGSLs from these
candidate images with either the deformable DETR or the
DETR, whose detection result is adapted in the
previous step.

To test the performance of the two-step approach in real
applications, we have generated simulated data with 16,000
images, and 1% of them contain CGSLs. It would take about
180 minutes to process all these images. The test results show
that our method can achieve 99.63% accuracy, when the recall
rate is 90.32% and the precision rate is 87.53%. Besides, the
false-positive rate is only 0.23%. We have further plotted the
receiver operating characteristic (ROC) curve as shown in
Figure 17. The vertical coordinate of the curve represents true
positive rate and the horizontal coordinate represents false-
positive rate. The low false-positive rate ensures that future
applications of large-scale sky surveys will not produce a lot of
false positives, which means that there will not be too much
reliance on human inspection. Although the number of
candidates to be checked by scientists has been greatly
reduced, there are still lots of candidates that need to be
checked by human investigation. However, as we have

Figure 17. The ROC curve of our algorithm, which has an area of 0.99.
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discussed in Section 2, our algorithm could detect CGSLs that
could not be directly seen by humans. Therefore, we need to
integrate the attention map with observation images to generate
augmented images and use citizen science platforms to
investigate details of these images (Lintott et al. 2008; Smith
et al. 2011; Brink et al. 2013; Marshall et al. 2015). We will
further investigate this problem in future work.

6.2. Performance Test with Real Observation Data

We use real observation data obtained from the Frontier
Fields survey project and the RELICS survey project obtained

by the Hubble Space Telescope and the early release deep field
image from the James Webb Space Telescope to test the
performance of our algorithm. First, we select several images
obtained by the Frontier Fields survey project (Lotz et al. 2014;
Koekemoer et al. 2014; Lotz et al. 2017) to test the
performance of our algorithm. These images are downloaded
from the website (https://esahubble.org/) as full-size original
TIF files. We directly use the ensemble learning algorithm to
connect the DETR and the Deformable DETR trained with
simulated data to detect CGSLs in these images. Since these
images do not have any bounding boxes, we check these

Figure 19. Detection results for images containing Abell S1063 ( ¢ ´ ¢2.07 2.32) in images of different size, 2243 × 2511 pixels in the left panel and 1280 × 1433
pixels in the right panel. A star with a bright arc nearby is wrongly classified as a CGSL because it is relatively large and contains a central bright source and arcs
nearby. However, our algorithm could detect the CGSL from an image with a smaller size, when the star and the arc have smaller size. Original image of Abell S1063
by NASA, ESA, and J. Lotz (STScI).

Figure 18. Detection results of our algorithm for images containing A2744 ( ¢ ´ ¢3.05 4.38 with 3662 × 5253 pixels), MACS J1149.5+2223 ( ¢ ´ ¢1.90 1.90 with
3800 × 3800 pixels), and CIG 1358+62 ( ¢ ´ ¢1.06 0.96 with 640 × 583 pixels). These results show that our algorithm could directly detect gravitational arcs from real
observation data, when our algorithm is only trained with ideal simulated data without noise. Generally speaking, a model trained only with simulated data usually
needs some methods to adapt to real observation data. However, our algorithm can detect strong gravitational lensing on real data without further training, which
shows that it is effective to train an effective neural network with simulated data, if the simulation reflects real physical processes. Original image of A2744 by NASA,
ESA, and D. Coe (STScI)/J. Merten (Heidelberg/Bologna). Original image of MACS J1149.5+2223 by NASA, ESA, S. Rodney (John Hopkins University, USA),
and the FrontierSN team; T. Treu (University of California Los Angeles, USA), P. Kelly (University of California Berkeley, USA), and the GLASS team; J. Lotz
(STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI). Original image of CIG 1358+62 by Marijn Franx (University
of Groningen, The Netherlands), Garth Illingworth (University of California, Santa Cruz), and NASA/ESA.
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images by eye and use the dark matter distribution released on
the same website as a reference to locate CGSLs. We have
tested our algorithm with all these images, which include
images of A2744, MACS J0416.1–2403, MACS J0717.5
+3745, MACS J1149.5+2223, Abell S1063, and A370.
Generally speaking, our algorithm could detect almost all
gravitational arcs from these images, as shown in Figure 18.

The difference between training data and real data would
introduce problems to machine-learning algorithms, when they
are deployed. Although our algorithm has shown relatively
good generalization performance and robustness in Figure 18,
its performance is still affected. For the CGSL detection task,
images that have similar arc structures might introduce errors to
detection results. Since the training data do not contain any
diffraction effects brought by the optics system, our detection
algorithm has some risks to detect “arc” structures brought by
the diffraction effect as shown in Figure 19(a). We find that our
detection algorithm locates a star with an arc structure nearby.
However, if we use our algorithm to detect CGSLs in the same
image with lower resolution (smaller number of pixels here),
our algorithm could detect CGSLs as shown in Figure 19(b).
The problem of wrong detections brought by diffraction effects
could be solved if we add more realistic effects to simulated
images as training data, or if we use real observation data to
train the neural network with a transfer learning strategy.

To better investigate the performance of our algorithm. We
have further designed a test. Since there is normally only one
CGSL in observation images, we select the detection result
with the highest score as the output. However, we could also
output several detection results with high scores to test whether
the detection results are reliable. Based on this concept, we
output two detection results with the top two scores of an image
that contains A370 in the second test, as shown in Figure 20. In
this figure, we find that our algorithm could detect the main part

of the CGSL. There is a shift of only tens of pixels in these
detection results.
Finally, we test the performance of our algorithm in

processing the same CGSL obtained by telescopes with
different pixel scales. SMACS0723 has attracted a lot of
attention recently, since the observation data by the James
Webb Space Telescope were released on 2022 July 14.9

SMACS0723 has been observed by the Hubble Space
Telescope in the RELICS survey project (Salmon et al.
2018, 2020). In this paper, we test the performance of our
algorithm with images of the SMACS0723 observed by the
Hubble Space Telescope and the James Webb Space
Telescope. The image of SMACS0723 from the Hubble Space
Telescope is obtained from the official site of the RELICS
project as a color image.10 The image of SMACS0723 from the
James Webb Telescope is obtained from the official site as a
color image. Detection results and attention maps are shown in
Figure 21. As shown in this figure, our algorithm could detect
and locate CGSLs in both of these figures, and attentions of
these detection results are similar. According to these results,
we find that, even for real observation images, our algorithm
could still obtain effective results, when trained only with
simulated images.

7. Conclusions and Future Work

CGSLs are valuable in scientific research of galaxies, galaxy
clusters, and cosmology. Due to their significant sky coverage
and depth, future sky surveys are expected to reveal many
CGSLs. However, considering the complexity and variety of
the strong-lensing signals in CGSLs and the contamination of
the line-of-sight objects, it is challenging to detect strong-
lensing signals efficiently and automatically. Hence, we
propose a transformer-based algorithm for detecting CGSLs
from enormous data to solve the issue. The algorithm is
designed to learn features with a large extension because
CGSLs are sparsely distributed and often have extended
structures, which is adequate for the transformer-based
detection algorithm. Our method uses ensemble learning to
merge detection results from the DETR and the Deformable
DETR to give final detection results. Besides, our method
could detect CGSLs directly from images with any number of
channels (bands), which makes it adequate in the application of
detection of CGSLs from multicolor sky survey projects. We
use simulated images to train our algorithm, and the results
show that our algorithm takes advantage of the attention
mechanism and could achieve an 88% recall rate and 70%
precision rate in detecting CGSLs, although many of them are
blended with foreground galaxies. We use self-attention and
cross-attention to show features that attract our detection
algorithm. The results show that our algorithm focuses on the
arc-like structure of CGSLs.
We have also considered applications of our method in real

applications. To further increase detection efficiency, we
propose a two-step strategy, which first obtains candidate
images that contain CGSLs with small IOU threshold and then
detects CGSLs from these candidate images with high IOU
threshold. With this strategy, our method achieves a 99.63%
accuracy rate, 90.32% recall rate, 85.37% precision rate, and

Figure 20. Detection results with top two scores for an image that contains
A370 ( ¢ ´ ¢3.91 4.45 with 4164 × 4634 pixels). As shown in this figure, these
two detection results locate the same CGSL with a little horizontal shift, which
indicates that the detection results of our algorithm are reliable. Original image
of A370 by NASA, ESA, A. Koekemoer, M. Jauzac, C. Steinhardt, and the
BUFFALO team.

9 https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-
delivers-deepest-infrared-image-of-universe-yet
10 https://relics.stsci.edu/data/smacs0723-73/
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0.23% false-positive rate in detecting CGSLs from 16,000
images containing 1% CGSLs. We further use our method to
detect CGSLs from real observation images from the Hubble
Space Telescope and the James Webb Space Telescope. The
results show that our method can identify most of the strongly

lensed arcs but misses a couple owing to diffraction rings,
which can be improved with more training data containing
realistic PSFs and noise. Moreover, when applying our method
to the HST data, we find that elongated galaxies (panel (a) in
Figure 19) can be the primary sources of false positives. This

Figure 21. These figures show self-attention and cross-attention of our algorithm in detection of CGSLs from observation images. These two images contain the same
target SMACS0723 observed by the Hubble Space Telescope and the James Webb Space Telescope. As shown in this figure, we find that our algorithm could detect
locations of the CGSLs in both of these figures. Besides, attention maps are similar to each other, which indicates that our method could reveal similarities between
these two images.
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failure points out two issues in the training set that need to be
improved: (1) including bright stars beyond extragalactic
objects, and (2) making a more aggressive definition for giant
arcs to eliminate the contamination due to elongated galaxies.
Alternatively, we expect to improve the performance of
detecting CGSLs by involving humans in the loop, which is
thoroughly studied in another project of ours.

Compared to other machine-learning-based algorithms,
which try to find strong lenses by identifying stamp images
centered at galaxies containing CGSLs, our algorithm focuses
on recognizing arc-like features in an arbitrary field of view.
Our strategy is specifically suitable for cluster-scale lenses
because arcs in galaxy clusters are not guaranteed to be located
around the centers of BCGs of galaxy clusters. On the other
hand, compared to traditional arc-finder algorithms, our method
can detect and locate the strong gravitational lensing system
directly on the original image without the need to search and
cut galaxy clusters and then classify them, so it is simpler and
more efficient. At the same time, due to the application of the
attention mechanism, our algorithm has better detection
performance and robustness, particularly for the cases of faint
arcs, complex arcs, and highly blended images, particularly
when multiple-band information is taken into account in the
future. Therefore, we optimistically foresee the application of
the method to the data from upcoming large-scale surveys.

In the future, we will carry out simulations with multiple-
band information, PSFs, and noise to generate more appropriate
training sets for the data obtained by different instruments.
Additionally, we plan to design multistep detection strategies
and involve joint training by combining the data from various
telescopes to improve the precision and recall of the detection
of arcs in galaxy clusters. Eventually, the program will be
applied to available and upcoming observations, such as the
DESI Legacy surveys, the China Space Station Telescope, and
Euclid, and the data products will be released for exploring the
dark sectors of the universe.
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