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Abstract
We study for bounded multiplicative functions 𝑓 sums
of the form ∑

𝑛⩽𝑥
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛),

establishing that their variance over residue classes
𝑎 (mod 𝑞) is small as soon as 𝑞 = 𝑜(𝑥), for almost all
moduli 𝑞, with a nearly power-saving exceptional set
of 𝑞. This improves and generalizes previous results of
Hooley on Barban–Davenport–Halberstam type theo-
rems for such 𝑓, and moreover our exceptional set is
essentially optimal unless one is able to make progress
on certain well-known conjectures. We are nevertheless
able to prove stronger bounds for the number of the
exceptional moduli 𝑞 in the cases where 𝑞 is restricted
to be either smooth or prime, and conditionally on GRH
we show that our variance estimate is valid for every
𝑞. These results are special cases of a “hybrid result”
that we establish that works for sums of 𝑓 over almost
all short intervals and arithmetic progressions simul-
taneously, thus generalizing the Matomäki–Radziwiłł
theorem on multiplicative functions in short intervals.
We also consider the maximal deviation of 𝑓 over all
residue classes 𝑎 (mod 𝑞) in the square root range 𝑞 ⩽
𝑥1∕2−𝜀, and show that it is small for “smooth-supported”
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 367

𝑓, again apart from a nearly power-saving set of excep-
tional 𝑞, thus providing a smaller exceptional set than
what follows fromBombieri–Vinogradov type theorems.
As an application of our methods, we consider Linnik-
type problems for products of exactly three primes, and
in particular prove a ternary approximation to a con-
jecture of Erdős on representing every element of the
multiplicative groupℤ×𝑝 as the product of two primes less
than 𝑝.
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1 MAIN THEOREMS

Let 𝕌 ∶= {𝑧 ∈ ℂ ∶ |𝑧| ⩽ 1} denote the unit disc of the complex plane, and let 𝑓∶ ℕ → 𝕌 be a 1-
bounded multiplicative function. In this paper we study sums of the form∑

𝑛⩽𝑥
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) (1)

with (𝑎, 𝑞) = 1 and with the modulus 1 ⩽ 𝑞 ⩽ 𝑥 being very large as a function of 𝑥. We call such
arithmetic progressions short, since the number of terms is ∼ 𝑥∕𝑞, which is assumed to grow
slowly with 𝑥.

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12546 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [25/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



368 KLURMAN et al.

Ourmain results concern the deviation of multiplicative functions 𝑓∶ ℕ → 𝕌 in residue classes
in the square-root range 𝑞 ⩽ 𝑥1∕2−𝜀, as well as their variance in residue classes in the full range
𝑞 = 𝑜(𝑥). Here by deviation we mean

max
𝑎∈ℤ×𝑞

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||, (2)

where ℤ×𝑞 is the set of invertible residue classes (mod 𝑞), and by variance we mean

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||2, (3)

where
∑∗
𝑎(𝑞) denotes a sum over reduced residue classes (mod 𝑞). The character𝜒1 (mod 𝑞) here is

chosen† such that themap𝜒 ↦ inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) isminimized,where, given𝑓, g ∶ ℕ →
𝕌 we define

𝔻𝑞(𝑓, g ; 𝑥) ∶=

⎛⎜⎜⎜⎝
∑
𝑝⩽𝑥
𝑝∤𝑞

1 − Re(𝑓(𝑝)g(𝑝))
𝑝

⎞⎟⎟⎟⎠
1∕2

(4)

to be the pretentious distance function of Granville and Soundararajan (see, for example, [3, p. 3]).
As a consequence of a well-known theorem of Halász, it can be shown that any other character
𝜒 ≠ 𝜒1 (mod 𝑞) has small correlation sums∑𝑛⩽𝑥 𝑓(𝑛)𝜒(𝑛), and so informally wemay think of 𝜒1
as a character that “correlates the most” with 𝑓 among all the characters (mod 𝑞).
Comparing the sum (1) to the main term 𝜒1(𝑎)∕𝜑(𝑞) ⋅

∑
𝑛⩽𝑥 𝑓(𝑛)𝜒1(𝑛) is natural, since if, in

fact, 𝑓 “correlates” significantly with some Dirichlet character 𝜒, then we expect

∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) ≈

𝜒(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒(𝑛).

In this paper, we develop a systematic approach to estimating weighted character sums∑
𝑛⩽𝑥 𝑓(𝑛)𝜒(𝑛)𝑛

𝑖𝑡 for the wide range of parameters 𝑡, 𝑞 = 𝑂(𝑥), and deduce numerous estimates
for (2) and (3).

1.1 Results for prime moduli

Formany problems onwell distribution in arithmetic progressions one can obtain stronger results
for primemoduli than for general moduli (see, for example, [8, 15]); the same is true in our setting.
Our first main result concerns the variance (3) in the range where 𝑥∕𝑞 tends to infinity very

slowly. It is motivated by the groundbreaking work of Matomäki and Radziwiłł [32], which
produces a comparable result for multiplicative functions in short intervals.

† If there is more than one minimizing character, we may choose any of these.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 369

All the constants in this paper implied by the “≪” notation will be absolute unless otherwise
indicated.

Corollary 1.1. Let 1 ⩽ 𝑄 ⩽ 𝑥∕10 and (log(𝑥∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1. Then there exists a set [1, 𝑥𝜀200 ] ∩
ℤ ⊂ 𝑥,𝜀 ⊂ [1, 𝑥] ∩ ℤ with |[1, 𝑄] ⧵𝑥,𝜀|≪ (log 𝑥)𝜀−200 such that the following holds.
Let 𝑝 ∈ 𝑥,𝜀 ∩ [1, 𝑄] be a prime. Let 𝑓∶ ℕ → 𝕌 be amultiplicative function. Let 𝜒1 be a character

(mod 𝑝)minimizing the distance inf |𝑡|⩽log 𝑥 𝔻𝑝(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥). Then we have
∑∗

𝑎 (mod 𝑝)

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑝)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑝)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||2 ≪ 𝜀𝑥2𝑝 . (5)

Moreover, assuming GRH, (5) holds for all 𝑝 ∈ [1, 𝑄].

Remark 1.1. Applying Halász’s theorem (Lemma 7.4), we see that in Corollary 1.1 (as well as in
our other results to follow) the main term (𝜒1(𝑎)∕𝜑(𝑞)) ⋅

∑
𝑛⩽𝑥 𝑓(𝑛)𝜒1(𝑛) can be deleted from the

variance, unless

inf|𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛𝑖𝑡; 𝑥)2 ⩽ 2 log 1𝜀 . (6)

In particular, if GRH holds, then by the pretentious triangle inequality we see that (6) can hold
only if 𝜒1 is induced by 𝜒′, where 𝜒′ is the primitive character of conductor ⩽ 𝑄 that minimizes
inf |𝑡|⩽log 𝑥 𝔻(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) (without assuming GRH, the situation is somewhat more complicated;
cf. Subsection 3.3).

We refer to Section 3 for a discussion of the strength of this theorem as well as that of our
other theorems.

1.2 Smooth-supported functions in the square root range

We are also able to obtain a result on the deviation (2) of multiplicative functions in all arithmetic
progressions 𝑛 ≡ 𝑎 (mod 𝑞) in the “middle range” 𝑞 ⩽ 𝑥1∕2−𝑜(1). This supports the well-known
analogy between results for all moduli in the middle range 𝑞 ⩽ 𝑥1∕2−𝑜(1) and almost all moduli
in the large range 𝑥1−𝜀 ⩽ 𝑞 ⩽ 𝑥1−𝑜(1) (an example of this analogy is provided by the theorems of
Bombieri–Vinogradov and Barban–Davenport–Halberstam).
Transferring results from the almost all case to the case of all arithmetic progressions

requires a bilinear structure in our sums. In our case, we introduce this bilinear structure
by considering multiplicative functions 𝑓 supported on smooth (otherwise known as friable)
numbers.

Theorem 1.2. Let 𝜂 > 0 be fixed. Let 𝑥 ⩾ 10, (log 𝑥)−1∕200 ⩽ 𝜀 ⩽ 1, and 𝑄 ⩽ 𝑥1∕2−100𝜂 . There is a
set [1, 𝑥𝜀200 ] ∩ ℤ ⊂ 𝑥,𝜀 ⊂ [1, 𝑥] ∩ ℤ with |[1, 𝑄] ⧵𝑥,𝜀|≪ 𝑄𝑥−𝜀200 such that the following holds.
Let 𝑞 ∈ 𝑥,𝜀 ∩ [1, 𝑄]. Let 𝑓∶ ℕ → 𝕌 be a multiplicative function supported on 𝑥𝜂-smooth num-

bers. Let 𝜒1 be a character (mod 𝑞) minimizing the distance inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥). Then we
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370 KLURMAN et al.

have

max
𝑎∈ℤ×𝑞

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||≪ 𝜀𝑥𝑞 . (7)

Furthermore, if ′ is any subset of [1, 𝑄] whose elements are pairwise coprime, then we have the
bound |′ ⧵𝑥,𝜀|≪ (log 𝑥)𝜀−200 . Moreover, assuming GRH, (7) holds for all 𝑞 ∈ [1, 𝑄].
1.3 Results for smooth moduli

In addition to primality of moduli, we can also leverage their smoothness (see [37, 49] for some
other level of distribution estimates leveraging the smoothness of moduli). For moduli 𝑞 that are
𝑞𝜀
′ -smooth, we may prove a variant of Corollary 1.1 without any exceptional moduli at all, but

with the disadvantage that the upper bound for the variance is weaker (and possibly trivial) when
𝑞 has abnormally many small prime divisors. To this end, we make the following definition.

Definition 1.1. We say that an integer 𝑞 ⩾ 1 is 𝑦-typical if

|{𝑝 ⩽ 𝑧 ∶ 𝑝 ∣ 𝑞}| ⩽ 1

100
𝜋(𝑧) for all 𝑧 ⩾ 𝑦.

Theorem 1.3 analogizes Corollary 1.1 for smooth moduli that are, in addition, (𝑥∕𝑄)𝜀2 -typical
numbers. A simple argument (see Lemma 9.1) shows that all 𝑞 ⩽ 𝑥 are such numbers if 𝑄 =
𝑜(𝑥∕(log 𝑥)1∕𝜀

2
), and otherwise the number of 𝑞 ⩽ 𝑄 that are not (𝑥∕𝑄)𝜀2 -typical is bounded by

≪ 𝑄exp(−10−4(𝑥∕𝑄)𝜀
2
).

Theorem 1.3. Let 1 ⩽ 𝑄 ⩽ 𝑥∕10, (log(𝑥∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1, and 𝜀′ = exp(−𝜀−3). Let 𝑞 ⩽ 𝑄 be
𝑞𝜀
′ -smooth and (𝑥∕𝑄)𝜀2 -typical. Let 𝑓∶ ℕ → 𝕌 be a multiplicative function. Let 𝜒1 (mod 𝑞) be a

character minimizing the distance inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥). Then we have
∑∗

𝑎 (mod 𝑞)

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||2 ≪ 𝜀𝜑(𝑞)

(
𝑥

𝑞

)2
.

We note that the need to restrict to typical moduli arises naturally in our proof and is present
also in other works (formulated in slightly different terms), see, for example, [13, 30]. See also
Subsection 3.4 for a discussion of the necessity of this assumption.

1.4 General moduli

We may now state a result for general moduli 𝑞 that are not required to be prime or smooth. In
this case we obtain the desired bound for the variance (3) for all typical moduli outside a nearly
power-saving exceptional set.

Theorem 1.4. Let 1 ⩽ 𝑄 ⩽ 𝑥∕10 and (log(𝑥∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1. Then there exists a set [1, 𝑥𝜀200 ] ∩
ℤ ⊂ 𝑥,𝜀 ⊂ [1, 𝑥] ∩ ℤ with |[1, 𝑄] ⧵𝑥,𝜀|≪ 𝑄𝑥−𝜀200 such that the following holds.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 371

Let 𝑞 ∈ 𝑥,𝜀 ∩ [1, 𝑄] be (𝑥∕𝑄)𝜀2 -typical. Let 𝑓∶ ℕ → 𝕌 be a multiplicative function. Let 𝜒1 be a
character (mod 𝑞)minimizing the distance inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥). Then we have

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||2 ≪ 𝜀𝜑(𝑞)

(
𝑥

𝑞

)2
. (8)

Moreover, assuming GRH, (8) holds for all (𝑥∕𝑄)𝜀2 -typical 𝑞 ∈ [1, 𝑄].

1.5 Hybrid results

As already mentioned, our results are motivated by the following theorem from [32].

Theorem A (Matomäki–Radziwiłł). Let 10 ⩽ ℎ ⩽ 𝑋, and let 𝑓∶ ℕ → [−1, 1] be multiplicative.
Then we have

∫
2𝑋

𝑋

||| ∑
𝑥<𝑛⩽𝑥+ℎ

𝑓(𝑛) −
ℎ

𝑋

∑
𝑋⩽𝑛⩽2𝑋

𝑓(𝑛)
|||2 𝑑𝑥 ≪

((
log log ℎ

log ℎ

)2
+ (log𝑋)−1∕50

)
𝑋ℎ2.

This was generalized to functions 𝑓∶ ℕ → 𝕌 that are not 𝑛𝑖𝑡-pretentious for any |𝑡| ⩽ 𝑋 by
Matomäki–Radziwiłł–Tao [34]. Our next theorem is a hybrid result that allows us to “interpolate”
betweenTheoremA (in the complex-valued case) and ourTheorem 1.4 onmultiplicative functions
in short arithmetic progressions, thus generalizing both results. This theorem applies to sums of
the form ∑

𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛)

over short intervals and arithmetic progressions, with averaging over 𝑥 ∈ [𝑋, 2𝑋] and 𝑎 ∈ ℤ×𝑞 , as
soon as ℎ∕𝑞 → ∞.

Theorem1.5 (A hybrid theorem).Let𝑋 ⩾ ℎ ⩾ 10and 1 ⩽ 𝑄 ⩽ ℎ∕10. Let (log(ℎ∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1.
Then there is a set [1, 𝑋𝜀200 ] ∩ ℤ ⊂ 𝑋,𝜀 ⊂ [1, 𝑋] ∩ ℤ satisfying |[1, 𝑄]∖𝑋,𝜀|≪ 𝑄𝑋−𝜀200 such that
the following holds.
Let 𝑞 ∈ 𝑋,𝜀 ∩ [1, 𝑄] be (ℎ∕𝑄)𝜀2 -typical. Let 𝑓∶ ℕ → 𝕌 be multiplicative. Let 𝜒1 be a character

(mod 𝑞) minimizing the distance inf |𝑡|⩽𝑋 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑋), and for each 𝜒 let 𝑡𝜒 ∈ [−𝑋,𝑋] be a
point that minimizes† 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑋). Then we have

∫
2𝑋

𝑋

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −
𝜒1(𝑎)

𝜑(𝑞)

(
∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡𝜒1 𝑑𝑣

)
1

3𝑋

∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡𝜒1

|||2𝑑𝑥 (9)

≪ 𝜀𝜑(𝑞)𝑋

(
ℎ

𝑞

)2
.

Moreover, assuming GRH, (9) holds for all (ℎ∕𝑄)𝜀2 -typical 𝑞 ∈ [1, 𝑄].

† If there are several such 𝑡𝜒 , pick any one of them.
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372 KLURMAN et al.

We remark that for ℎ ⩽ 𝜀𝑋, by Taylor approximation we have

∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡𝜒1 𝑑𝑣 = ℎ𝑥𝑖𝑡𝜒1 + 𝑂(𝜀ℎ).

Taking 𝑄 = 1, 𝜀 = (log ℎ)−1∕200, and letting ℎ tend to infinity slowly with 𝑋, we recover Theo-
rem A (though with a smaller power of logarithm saving) in a form that applies to any 1-bounded
𝑓, whether 𝑛𝑖𝑡-pretentious or not (cf. [33, Theorem 1.7]). Taking in turn 𝑄 = 𝑜(ℎ) and ℎ = 𝑋, we
arrive at a slightly weaker form of our variance result, Theorem 1.4, where we nowneed to average
over 𝑥 ∈ [𝑋, 2𝑋].
In the case of real-valued multiplicative functions 𝑓∶ ℕ → [−1, 1], we have a simpler

formulation of the result as follows.

Corollary 1.6. Let the notation be as in Theorem 1.5, and assume additionally that 𝑓 is real-valued.
Then for all 𝑞 ∈ 𝑋,𝜀 ∩ [1, 𝑄] that are (ℎ∕𝑄)𝜀2 -typical we have

∫
2𝑋

𝑋

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −
𝜒1(𝑎)

𝜑(𝑞)

ℎ

3𝑋

∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒1(𝑛)
|||2 𝑑𝑥 ≪ 𝜀𝜑(𝑞)𝑋

(
ℎ

𝑞

)2
.

Moreover, the second sum inside the absolute values can be deleted unless 𝜒1 (mod 𝑞) is real.

We can also specialize Corollary 1.6 to 𝑓 = 𝜇 and to the smaller range 𝑞 ⩽ 𝑥𝜀200 to obtain a clean
statement, which has recently been used in [47] to obtain applications to ergodic theory.

Corollary 1.7. Let 𝐴 ⩾ 1 be fixed. Let 𝑋 ⩾ ℎ ⩾ 10𝑞 ⩾ 10, (log(ℎ∕𝑞))−1∕200 ⩽ 𝜀 ⩽ 1, 𝑞 ⩽ 𝑋𝜀200 , and
let 𝑞 be (ℎ∕𝑞)𝜀2 -typical. Then we have

∫
2𝑋

𝑋

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝜇(𝑛)
|||2 𝑑𝑥 ≪ 𝜀𝜑(𝑞)𝑋

(
ℎ

𝑞

)2
,

except possibly if 𝑞 is a multiple of a single number 𝑞0 ⩾ (log𝑋)𝐴 depending only on 𝐴 and 𝑋.

The exclusion of the multiples of a single modulus is necessary if Siegel zeros exist, as they bias
the distribution of 𝜇 in residue classes.

2 APPLICATIONS

Acelebrated theoremof Linnik states that the least prime𝑝 ≡ 𝑎 (mod 𝑞) is≪ 𝑞𝐿 for some absolute
constant 𝐿 and uniformly for 𝑎 ∈ ℤ×𝑞 and 𝑞 ⩾ 1. The record value to date is 𝐿 = 5, due to Xylouris
[48]. For 𝑞𝛿−smooth moduli (with 𝛿 = 𝛿(𝜀)), a better bound of≪ 𝑞12∕5+𝜀 is available, this being a
result of Chang [4, Corollary 11]. Under GRH, we would have 𝐿 = 2 + 𝑜(1) in place of 𝐿 = 5, and
assuming a conjecture of Cramér-type, 𝐿 = 1 + 𝑜(1) would be the optimal exponent.
We apply the techniques used to prove our main results to make progress on the analogue of

Linnik’s theorem for 𝐸3 numbers, that is, numbers that are the product of exactly 3 primes. We
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 373

seek bounds on the quantity

L3(𝑞) ∶= max
𝑎∈ℤ×𝑞

min{𝑛 ∈ ℕ ∶ 𝑛 ≡ 𝑎 (mod 𝑞) ∶ 𝑛 ∈ 𝐸3}.

One can show that under GRHone hasL3(𝑞) ≪ 𝑞
2+𝑜(1). The𝐸3 numbers, just like the primes, are

subject to the parity problem, and hence one cannot use sieve methods to tackle the problem of
boundingL3(𝑞) (in contrast, for products of at most two primes ⩽ 𝑥, it is known that one can find
them in every reduced residue class modulo 𝑞 for 𝑞 ⩽ 𝑥1∕2+𝛿 for some 𝛿 > 0 by a result of Heath-
Brown [18] proved using sieve methods). In relation to this problem, Ramaré and Walker [39]
obtained the boundL3(𝑞) ≪ 𝑞

16 by constructing products of primes𝑝1𝑝2𝑝3 with each𝑝𝑗 ⩽ 𝑞16∕3.
We showunconditionally thatL3(𝑞) ≪ 𝑞2+𝑜(1) for all smoothmoduli and for all but a fewprime

moduli; moreover, the products 𝑝1𝑝2𝑝3 constructed satisfy 𝑝𝑗 < 𝑞 for 𝑗 = 1, 2, 3.

Theorem 2.1. Let 𝜀 > 0, and let 𝜀′ > 0 be small enough in terms of 𝜀.

(i) For any integer 𝑞 ⩾ 1 that is 𝑞𝜀′ -smooth, for any 𝑎 ∈ ℤ×𝑞 , there exists some 𝑞-smooth 𝑛 ∈ 𝐸3 such
that 𝑛 ≪ 𝑞2+𝜀 and 𝑛 ≡ 𝑎 (mod 𝑞). Consequently,L3(𝑞) ≪ 𝑞2+𝜀 .

(ii) Let𝑄 ⩾ 2. Then for all but≪𝜀 1primes𝑞 ∈ [𝑄1∕2, 𝑄], for any𝑎 ∈ ℤ×𝑞 , there exists some𝑞-smooth
𝑛 ∈ 𝐸3 such that 𝑛 ≪ 𝑞2+𝜀 and 𝑛 ≡ 𝑎 (mod 𝑞). Consequently,L3(𝑞) ≪ 𝑞2+𝜀 .

This will be proved in Section 12. Since all the 𝐸3 numbers we detect are 𝑞-smooth, our results
are connected to the question of representing every element of the multiplicative group ℤ×𝑞 by
using only a bounded number of small primes. This problem was introduced by Erdős, Odlyzko
and Sárközy in [7]. In [7, Section 2] it is mentioned that Erdős conjectured that every residue class
in ℤ×𝑞 , with 𝑞 a large prime, has a representative of the form 𝑝1𝑝2 with 𝑝1, 𝑝2 ⩽ 𝑞 primes. As is
noted in [46], this remains open, even under GRH. The weaker “Schnirelmann-type” question of
representing every residue class in ℤ×𝑞 as the product of at most 𝑘 primes in [1, 𝑞] was studied by
Walker [46], who showed† that 𝑘 = 6 suffices for all large primes 𝑞, and moreover that 𝑘 = 48
suffices if we consider products of exactly 𝑘 primes. Shparlinski [41] then improved on the former
by showing that at most 5 primes suffice for every large integer 𝑞. See also the very recent works
[2, 43] for further results on this problem. From Theorem 2.1 we deduce the following.

Corollary 2.2 (Ternary version of Erdős’ conjecture with bounded exceptional set). There exists
an absolute constant𝐶 > 0 such that the following holds. For all𝑄 ⩾ 2 and all primes 𝑞 ∈ [𝑄1∕2, 𝑄],
apart from ⩽ 𝐶 exceptions, every element of the multiplicative group ℤ×𝑞 can be represented as the
product of exactly three primes from [1, 𝑞].

Finally, we consider an analogue of Linnik’s theorem concerning values of theMöbius function.
Since the theorems above giveL3(𝑞) ≪ 𝑞

2+𝑜(1) for smooth 𝑞 and all but a few primes 𝑞 (and since
the 𝐸3 numbers we detect are typically squarefree), for such 𝑞 the least number 𝑛 with 𝜇(𝑛) = −1
and 𝑛 ≡ 𝑎 (mod 𝑞) also satisfies 𝑛 ≪ 𝑞2+𝑜(1). Going further, we are able to obtain lower bounds
of the correct order of magnitude for the number of 𝑛 ⩽ 𝑥 with 𝜇(𝑛) = −1 in any residue class
𝑎 (mod 𝑞) as soon as 𝑥 ⩾ 𝑞2+𝜀, as opposed to just showing their existence.

† Both in [41, 46] a stronger result was shown, namely that one can restrict to primes in [1, 𝑞1−𝜂] for explicitly given values
of 𝜂 > 0. An inspection of the proof of our Corollary 2.2 shows that there also we could restrict to primes bounded by 𝑞1−𝜂 ,
with 𝜂 > 0 small enough.
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374 KLURMAN et al.

Proposition 2.3. Let 𝜀 > 0 and 𝑄 ⩾ 2. Then, for all but≪𝜀 1 primes 𝑞 ∈ [𝑄1∕2, 𝑄], we have

min
𝑎∈ℤ×𝑞

|{𝑛 ⩽ 𝑥 ∶ 𝑛 ≡ 𝑎 (mod 𝑞), 𝜇(𝑛) = −1}|≫𝜀 𝑥𝑞
for all 𝑥 ⩾ 𝑞2+𝜀 . The same holds when the condition 𝜇(𝑛) = −1 is replaced by 𝜇(𝑛) = +1.

We lastly remark that unconditionally proving the estimate L3(𝑞) ≪ 𝑞
2+𝑜(1) for every 𝑞

seems challenging, due to connections between this problem and Vinogradov’s conjecture (see
Subsection 3.3).

3 OPTIMALITY OF THEOREMS AND PREVIOUSWORK

3.1 Previous results

The study of the deviations (2) and (3) of 𝑓 in arithmetic progressions can roughly speaking be
divided into three different regimes: the small moduli 𝑞 ⩽ 𝑥𝜀, the middle moduli 𝑥𝜀 ⩽ 𝑞 ⩽ 𝑥1−𝜀,
and the large moduli 𝑥1−𝜀 ⩽ 𝑞 = 𝑜(𝑥), for 𝜀 > 0 small.

3.1.1 Small moduli

In the regime of small moduli, Linnik’s theorem, in its quantitative form [28, Theorem 18.6], gives
the expected asymptotic formula for the average of𝜇 (orΛ) over 𝑎 (mod 𝑞), valid for all 𝑎 ∈ ℤ×𝑞 and
𝑞 ⩽ 𝑥𝜀, apart possibly from multiples 𝑞 of a single number 𝑞0 (a Siegel modulus). A far-reaching
generalization of this to arbitrary 1-bounded multiplicative functions 𝑓 was achieved by Balog,
Granville and Soundararajan [3]. See also the work [10] of Granville, Harper and Soundararajan
for related results. One consequence of our Theorem 1.5 (noting that the set 𝑋,𝜀 there contains
[1, 𝑋𝜀

200
] ∩ ℤ) is a short interval version of the result of [3], albeit with an average over 𝑎.

3.1.2 Middle moduli

The middle regime 𝑞 = 𝑥𝜃 with 𝜀 ⩽ 𝜃 ⩽ 1 − 𝜀 (and typically with 𝜃 near 1∕2) is arguably the most
well-studied one. Results related to this range include the celebrated Bombieri–Vinogradov theo-
rem, which for 𝑓 = 𝜇 (or 𝑓 = Λ) can be interpreted as providing cancellation in the deviation (2)
for almost all 𝑞 ⩽ 𝑥1∕2−𝜀 and all 𝑎 ∈ ℤ×𝑞 . A complete generalization of the Bombieri–Vinogradov
theorem to arbitrary 1-bounded multiplicative functions was recently achieved by Granville and
Shao [11, Theorem 1.2].
The work of Granville and Shao in particular implies the following result applicable to almost

all moduli: if 𝑓∶ ℕ → 𝕌 is multiplicative, then for all but ⩽ 𝑄∕(log 𝑥)
1− 1√

2
−2𝜀

choices of 𝑞 ∈
[𝑄, 2𝑄] ⊂ [1, 𝑥1∕2−𝜀], we have

max
𝑎∈ℤ×𝑞

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
||| = 𝑜

(
𝑥

𝑞

)
. (10)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 375

In [11, Corollary 1.7], Granville and Shao obtained a saving of an arbitrary power of log 𝑥,
assuming that 𝑓 is supported on 𝑥𝜂-smooth numbers and that 𝑓 satisfies the Siegel–Walfisz
condition.
Our Theorem 1.2 improves on (10) in the aspect of the exceptional set, as our result implies that

if 𝑓 is supported on 𝑥𝜂-smooth numbers, then the size of the exceptional set of 𝑞 ⩽ 𝑥1∕2−𝜀 in (10)
can be reduced to an almost power-saving bound, or even to a power of logarithm in the case of
prime moduli. In this aspect, our result may also be compared with a recent result of Baker [1],
who showed that the estimate (10) holds for 𝑓 = Λ (with 𝜒1 ≡ 1) for all but a power of logarithm
number of primes 𝑞 ⩽ 𝑥9∕40−𝜀.
Though the theorems in this paper are not related to such developments, we note in passing that

in the literature there are several results, valid in themiddle range 𝑞 ⩽ 𝑥𝜃, that go beyond 𝜃 = 1∕2
for general multiplicative functions, provided that one removes the maximum over the residue
classes 𝑎 (mod 𝑞). See the works of Green [15], Granville–Shao [11], Drappeau–Granville–Shao
[6], and Fouvry–Radziwiłł [9], among others.

3.1.3 Large moduli

In the range 𝑥1−𝜀 ⩽ 𝑞 = 𝑜(𝑥), one aims for estimates valid for almost all 𝑞 and for almost all
𝑎 ∈ ℤ×𝑞 ; results of this shape arise from upper bounds for the variance (3). The most classical
theorem of this type is the Barban–Davenport–Halberstam theorem [28, Chapter 17], which states
that ∑

𝑞⩽𝑥∕(log 𝑥)𝐵

∑
𝑎∈ℤ×𝑞

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝜇(𝑛)

|||2 ≪𝐴 𝑥2

(log 𝑥)𝐴
, (11)

with 𝐵 = 𝐵(𝐴) explicit (and there is an analogue in which 𝜇 is replaced with Λ).
The Barban–Davenport–Halberstam theorem was extensively studied by Hooley in a sem-

inal series of publications titled “On the Barban–Davenport–Halberstam theorem,” spanning
19 papers. In this series, he significantly improved and generalized the Barban–Davenport–
Halberstam bound, and among other things produced an asymptotic formula for the left-hand
side of (11), and also with 𝜇 replaced by any bounded sequence satisfying a Siegel–Walfisz type
assumption. Of this series of papers, the ones related to the aims of the present paper are [21–25].
In particular, from [21] (where Hooley considers the variance summed over all moduli 𝑞 ⩽ 𝑄) one
extracts the following result (see also the work of Vaughan [45] for a related result, proved using
the circle method).

TheoremB (Hooley).Let 𝜀 > 0and𝐴 ⩾ 1 be fixed. Let 1 ⩽ 𝑄 ⩽ 𝑥, and let𝑓∶ ℕ → 𝕌 be anarbitrary
function satisfying the Siegel–Walfisz condition. Denote 𝐻 ∶= 𝑥∕𝑄. Then, for all 1 ⩽ 𝑞 ⩽ 𝑄 apart
from≪ 𝑄((log𝐻)∕𝐻 + (log 𝑥)−𝐴) exceptions we have

∑∗

𝑎 (mod 𝑞)

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒0(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒0(𝑛)
|||2 ⩽ 𝜀𝜑(𝑞)

(
𝑥

𝑞

)2
,

where, for each 𝑞 ⩽ 𝑄, the character 𝜒0 is principal modulo 𝑞.
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376 KLURMAN et al.

By our Theorem 1.4, and the fact that the number of moduli 𝑞 ⩽ 𝑄 that are not 𝐻𝜀2 -typical is
≪ 𝑄exp(−(1∕1000 + 𝑜(1))𝐻𝜀

2
) (see Lemma 9.1), the size of the exceptional set here for multi-

plicative 𝑓 reduces to≪ 𝑄exp(−𝑐0𝐻𝜀
2
), for 𝑐0 > 0 constant. We can at the same time remove the

Siegel–Walfisz assumption on 𝑓. If we restrict ourselves to 𝐻𝜀2 -typical moduli only, then Theo-
rem 1.4 bounds the exceptional set by≪ 𝑄𝑥−𝜀200 . This essentially power-saving bound was not,
according to our knowledge, previously available even for 𝑓 = 𝜇.
We now discuss some of the key features of our results when it comes to the strength

and optimality.

3.2 The description and size of the exceptional set

The set ([1, 𝑥] ∩ ℤ) ⧵𝑥,𝜀 of exceptionalmoduli present in ourmain theorems turns out to be com-
pletely independent of the function 𝑓 that we consider, a feature that does not arise from applying
the Barban–Davenport–Halberstam theorem or Hooley’s Theorem B. We have the following
explicit† description of 𝑥,𝜀 in terms of zeros of 𝐿-functions (mod 𝑞):

𝑥,𝜀 ∶=
⎧⎪⎪⎨⎪⎪⎩
𝑞 ⩽ 𝑥 ∶

∏
𝜒 (mod 𝑞)

cond(𝜒)>𝑥𝜀200

𝐿(𝑠, 𝜒) ≠ 0 for Re(𝑠) ⩾ 1 −
𝜀−100(log log 𝑥)

log 𝑥
, |Im(𝑠)| ⩽ 3𝑥

⎫⎪⎪⎬⎪⎪⎭
;

see Proposition 9.2 and Lemma 8.1 for this. Hence, assuming GRH (or even a weaker version
of it), 𝑥,𝜀 = [1, 𝑥] ∩ ℤ. From the description of 𝑥,𝜀 above and zero-density estimates, it is not
difficult to see thatwe have a structural description of the exceptionalmoduli as the set ofmultiples
of a subset 𝑥 ⊂ [𝑥𝜀200 , 𝑥] of integers of size 𝑂((log 𝑥)𝜀−200). This explains why the bound for the
number of exceptional primemoduli in Corollary 1.1 is so strong, compared to the case of general
moduli.

3.3 Connection to Vinogradov’s conjecture and character sums

For any fixed 𝜀 > 0, the number of exceptionalmoduli in Theorem 1.4 is of the form𝑄𝑥−𝜀200 , saving
a power of 𝑥 that tends to 0 as 𝜀 → 0. We show here that this is essentially the best possible, in
the sense that replacing𝑄𝑥−𝜀200 by𝑄𝑥−𝜂0 for 𝜂0 > 0 fixed would lead to the proof of some form of
Vinogradov’s conjecture‡ (which is known under GRH but not unconditionally).
Indeed, assume that Vinogradov’s conjecture is false. Then there exists 𝜂 > 0 and infinitely

many 𝑥 ⩾ 10 such that for some prime 𝑥𝜂−𝑜(1) ⩽ 𝑞0 ⩽ 𝑥𝜂 we have
( 𝑛
𝑞0

)
= 1 for all 𝑛with the largest

prime factor 𝑃+(𝑛) ⩽ 𝑞𝜂
0
.

Defining themultiplicative function 𝑓𝜂(𝑛) ∶= 1𝑃+(𝑛)⩽𝑞𝜂
0
, by the classical asymptotic formula for

smooth numbers (and the fact that 𝑞0 is prime), we have

†Here, given a Dirichlet character 𝜒 we denote by cond(𝜒) the conductor of 𝜒.
‡Vinogradov’s conjecture on the least quadratic non-residue states that for every 𝜂 > 0 and for any prime 𝑞 > 𝑞𝜂 there is
a quadratic non-residue (mod 𝑞) in the interval [1, 𝑞𝜂].
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 377

∑
𝑛⩽𝑥

𝑓𝜂(𝑛)

(
𝑛

𝑞0

)
=

∑
𝑛⩽𝑥

𝑓𝜂(𝑛)𝜒0(𝑛) = (𝜌(𝜂
−2) + 𝑜(1))𝑥, (12)

with 𝜒0 the principal character modulo 𝑞0 and 𝜌(⋅) the Dickman function (see Section 5 for its
definition). It follows that, regardless of the choice of 𝜒1 (mod 𝑞0),

1

𝜑(𝑞0)

∑
𝜒 (mod 𝑞0)
𝜒≠𝜒1

|||∑
𝑛⩽𝑥

𝑓𝜂(𝑛)𝜒(𝑛)
|||2 ≫𝜂 𝜑(𝑞0)𝑥2𝑞2

0

. (13)

However, by Parseval’s identity (that is, just expanding the square and using orthogonality),
(13) equals to the left-hand side of (8) (with 𝑓 = 𝑓𝜂), and thus 𝑞0 ∉ 𝑥,𝜀 if 𝜀 is small in terms
of 𝜂.
Note that if 𝑄 = 𝑥∕ log 𝑥 and 𝑟 = 𝑞0𝑝 with 𝑝 ∈ [log 𝑥, 𝑄∕𝑞0] a prime, then the same argument

as above (with 𝜒0(𝑛) and
( 𝑛
𝑞0

)
replaced by 𝜒0(𝑛)1(𝑛,𝑟)=1 and

( 𝑛
𝑞0

)
1(𝑛,𝑟)=1 in (12)) shows that also

𝑟 ∉ 𝑥,𝜀, meaning that there are ≫ 𝑄𝑥−𝜂+𝑜(1) exceptional 𝑞 ⩽ 𝑄 (again with 𝜀 small enough in
terms of 𝜂). Taking 𝜂 < 𝜂0, this shows that the number of exceptional moduli for (8) is in fact not
bounded by≪ 𝑄𝑥−𝜂0 . Thus, one cannot generally improve on the exceptional set in Theorem 1.4
without settling Vinogradov’s conjecture at the same time.
One could also adapt the argument above to showmore strongly that improving the exceptional

set for (8) implies cancellation in smooth-supported character sums. Using arguments from [14],
it should further be possible to say that this implies bounds for zeros of 𝐿-functions near 1 (which
is out of reach of current knowledge).
Similar conclusions apply to the size of the exceptional set in our other main theorems.

3.4 The restriction to typical moduli

We now discuss the importance of working with typical moduli in Theorems 1.4 and 1.5. In our
proofs, as in the work [32], it is important for us to be able to discard those 𝑛 ⩽ 𝑥, 𝑛 ≡ 𝑎 (mod 𝑞)
from the sum (8) that have no prime factors from certain long intervals [𝑃𝑖, 𝑄𝑖] (with 𝑄𝑖 ⩽ ℎ∕𝑄).
However, if 𝑞 is divisible by all (or most) primes in [𝑃𝑖, 𝑄𝑖], then the contribution of such integers
is not negligible. This would then prevent us from factorizing our character sums in a desirable
way, which is crucial to our method.
While Theorem 1.4 may remain valid for all moduli 𝑞 ⩽ 𝑄 (under GRH, say), there seem to

be serious obstacles to proving this. Indeed, Granville and Soundararajan [13] proved a very
general uncertainty principle for arithmetic sequences, which roughly speaking says that “mul-
tiplicatively interesting” sequences cannot be perfectly distributed in all arithmetic progressions.
For example, if 𝑓(𝑛) = 1(𝑛,𝑟)=1 with 𝑟 having very many small prime factors in the sense that∑
𝑝∣𝑟,𝑝⩽log 𝑥(log 𝑝)∕𝑝 ≫ log log 𝑥, then for large constant 𝐶 > 0 there exists 𝑦 ∈ (𝑥∕4, 𝑥) and a

progression 𝑎 (mod 𝑞) with (𝑎, 𝑞) = 1 and 𝑞 ⩽ 𝑥∕(log 𝑥)𝐶 and 𝑃−(𝑞) ≫ log log 𝑥 such that the
mean value of 𝑓 over 𝑛 ⩽ 𝑦, 𝑛 ≡ 𝑎 (mod 𝑞) does not obey the anticipated asymptotic formula.
Note that this is not due to “trivial” reasons such as 𝑓 having sparse support, as it is possible for
𝑓, constructed in this fashion, to have 𝑓(𝑛) = 1 for a positive proportion of 𝑛 ⩽ 𝑥, for example, if
𝑟 =

∏
(log 𝑥)1−𝜂⩽𝑝⩽log 𝑥 𝑝.
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378 KLURMAN et al.

Similarly, if for example 𝑓 is the indicator of sums of two squares, then the results of [13] imply
that 𝑓 is poorly distributed in some residue classes 𝑎 (mod 𝑞) with 𝑞 ⩽ 𝑥∕(log 𝑥)𝐶 .

3.5 Remarks on improvements

We finally list a few small improvements to our main theorems that could be obtained with only
slight modifications to the proofs.

∙ In Theorem 1.5, we obtain an upper bound for (9) of the form (log(ℎ∕𝑄))−𝑐𝜑(𝑞)(𝑥∕𝑞)2 for small
𝑐 > 0 by choosing 𝜀 = (log(ℎ∕𝑄))−1∕500, say. Thus our savings are comparable to those in [32,
Theorem 3]. Due to our reliance on typical factorizations, one cannot hope for larger savings
than ((log log(ℎ∕𝑄))∕ log(ℎ∕𝑄))2 in general. However, if one specializes to the case𝑓 = 𝜇 in our
main theorems, one can easily adapt the proof to yield savings of the form≪ (log(ℎ∕𝑄))−2+𝑜(1)
by applying the Siegel–Walfisz theorem in place of Hálasz-type estimates. We leave the details
to the interested reader.

∙ As in the work of Granville and Shao [11] on the Bombieri–Vinogradov theorem for multiplica-
tive functions, we could obtain stronger bounds for (8) if we subtracted the contribution of
more than one character from the sum of 𝑓 over an arithmetic progression. Moreover, it fol-
lows directly from our proof that if we subtracted the contribution of≪ (log 𝑥)𝐶(𝜀) characters,
where 𝐶(𝜀) > 0 is large, then there would be no exceptional 𝑞 at all in the theorem. We leave
these modifications to the interested reader.

4 PROOF IDEAS

We shall briefly outline some of the ideas that go into the proofs of our main results.

4.1 Proof ideas for the variance results

We start by discussing the proof of the hybrid result, Theorem 1.5; the proof of our result on
multiplicative functions in short progressions, Theorem 1.4, is similar but slightly easier in
some aspects.
As in the groundbreaking work of Matomäki–Radziwiłł [32], we begin by applying a suitable

version of Parseval’s identity to transfer the problem to estimating an 𝐿2-average of partial sums
of 𝑓 twisted by characters from a family. Of course, since we are working with both intervals
and arithmetic progressions, the right family of characters to employ are the twisted characters
{𝜒(𝑛)𝑛𝑖𝑡}𝜒 (mod 𝑞)|𝑡|⩽𝑋∕ℎ . In this way, we reduce our task to obtaining cancellation in∑

𝜒 (mod 𝑞)
∫𝑡∈𝑇𝜒

||| ∑
𝑋⩽𝑛⩽2𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||2 𝑑𝑡,

with 𝑇𝜒 = [−𝑋∕ℎ,𝑋∕ℎ] if 𝜒 ≠ 𝜒1 and 𝑇𝜒1 = [−𝑋∕ℎ,𝑋∕ℎ] ⧵ [𝑡𝜒1 − 𝜀−10, 𝑡𝜒1 + 𝜀−10], with 𝜒1 and
𝑡𝜒1 as in the theorem (so (𝜒, 𝑡) ↦ 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑋) for 𝜒 (mod 𝑞) and |𝑡| ⩽ 𝑋 is minimized at
(𝜒1, 𝑡𝜒1)); the contribution from the deleted segment in 𝑇𝜒1 accounts for our main term.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 379

We make crucial use of the Ramaré identity, thus obtaining a factorization†∑
𝑋⩽𝑛⩽2𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑖𝑡 ≈
∑

𝑃𝑗⩽𝑝⩽𝑄𝑗

𝑓(𝑝)𝜒(𝑝)𝑝−𝑖𝑡
∑

𝑋∕𝑝⩽𝑚⩽2𝑋∕𝑝

𝑓(𝑚)𝑎𝑚,𝑃𝑗,𝑄𝑗𝜒(𝑚)𝑚
−𝑖𝑡,

with parameters 𝑃𝑗, 𝑄𝑗 , 1 ⩽ 𝑗 ⩽ 𝐽, at our disposal, and the approximation being accurate in an
𝐿2-sense (after splitting the 𝑝 variable into short intervals). Here 𝑎𝑚,𝑃𝑗,𝑄𝑗 ∶=

1

1+𝜔[𝑃𝑗 ,𝑄𝑗](𝑚)
is a

well-behaved sequence, behaving essentially like constant 1 for the purposes of our argument.
After having obtained this bilinear structure, we split the “spectrum” {𝜒 (mod 𝑞)} × [−𝑋∕ℎ,𝑋∕ℎ]
into parts depending on which (if any) of the sums

∑
𝑃𝑗⩽𝑝⩽𝑄𝑗

𝑓(𝑝)𝜒(𝑝)𝑝−𝑖𝑡 with 𝑗 ⩽ 𝐽 exhibits
cancellation. The contributions from different parts of the spectrum are bounded differently by
establishing various mean and large value estimates for twisted character sums (see Section 6), in
analogy with [32, Section 4] for Dirichlet polynomials.
The outcome of all of this is that we can reduce to the case where the longest of our twisted

character sums,
∑
𝑃𝐽⩽𝑝⩽𝑄𝐽

𝑓(𝑝)𝜒(𝑝)𝑝−𝑖𝑡, has (essentially) no cancellation at all. It is this large
spectrum case where we significantly deviate from [32]; in that work, the large spectrum is not
the most difficult case to deal with, thanks to the Vinogradov–Korobov zero-free region for the
Riemann zeta function. In our setting, in turn, we encounter 𝐿-functions 𝐿(𝑠, 𝜒) with 𝜒 having
very large conductor, and for these 𝐿-functions the known zero-free regions are very poor (the
best region being the Landau–Page zero-free region 𝜎 > 1 − 𝑐0

log(𝑞(|𝑡|+1)) , valid apart from possible
Siegel zeros). At this point, we restrict the set of moduli in question to those 𝑞 ⩽ 𝑄 for which
the functions 𝐿(𝑠, 𝜒) for every 𝜒 (mod 𝑞) (of large conductor) enjoy a suitable zero-free region
(see Proposition 9.4 and Lemma 8.1 for the definition of the region involved). Our bounds for
the number of moduli omitted in this fashion come from log-free zero-density estimates for 𝐿-
functions (Lemma 7.3); in the case of pairwise coprime moduli, as in Corollary 1.1, the bound is
much better thanks to there being no effect from a single bad character inducing many others.
Having restricted to such moduli we establish a bound essentially of the form

sup
𝜒 (mod 𝑞)

sup|𝑡|⩽𝑋
𝜒=𝜒1⟹|𝑡−𝑡𝜒1 |⩾𝜀−10

||| ∑
𝑋⩽𝑛⩽2𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||≪ 𝜀𝜑(𝑞)𝑞 𝑋 (14)

for the sup norm of the twisted character sums involved, and also prove that the large spectrum
set under consideration is extremely small,‡ that is,

sup
𝑃∈[𝑋𝜀,𝑋]

|||||
{
(𝜒, 𝑡) ∈ {𝜒 (mod 𝑞)} ×  ∶ | ∑

𝑃⩽𝑝⩽2𝑃

𝑓(𝑝)𝜒(𝑝)𝑝−𝑖𝑡| ⩾ 𝜀𝑃

log 𝑃

}|||||≪ 𝜀−2,
†Due to the restriction to reduced residue classes 𝑎 (mod 𝑞) in our theorems, we have desirable factorizations for typical
integers only if 𝑞 is not divisible by an atypically large number of small primes, for example, by almost all of the primes
up to (ℎ∕𝑄)0.01. This is what results in the need in our main theorems to restrict to typical moduli. This issue of course
does not arise in the short interval setting of [32].
‡One could use moment estimates (for example, Lemma 6.5) to show that the large values set is ≪ (log𝑋)𝑂𝜀(1) in size;
however, in our case that would be a fatal loss, since the saving we get in (14) is at best 1∕ log𝑋 and is therefore not
enough to compensate this. In [32], a Halász–Montgomery type estimate for prime-supported Dirichlet polynomials is
established to deal with the large spectrum; our Proposition 8.5 essentially establishes a hybrid version of this, but in a
very different regime.
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380 KLURMAN et al.

with  ⊂ [−𝑋,𝑋] well spaced. These two bounds are our two key Propositions 8.3 and 8.5 in the
proof of the hybrid theorem. We need full uniformity in |𝑡|, 𝑞 ⩽ 𝑋, which makes the proofs some-
what involved: in particular, our proofs rely on some lemmas from the works of Koukoulopoulos
[31] and Granville–Harper–Soundararajan [10] (as well as a result of Chang [4, Theorem 5] for
Theorem 1.3 on smooth moduli).

4.2 Proof ideas for the case of all moduli in the square-root range

The starting point of the proof of Theorem 1.2 is the simple Lemma 11.4 that allows us to con-
veniently decompose any 𝑥𝜂-smooth number into a product 𝑛 = 𝑑𝑚 with an appropriate choice
of 𝑑,𝑚 ∈ [𝑥1∕2−𝜂, 𝑥1∕2+𝜂]. However, the decoupling of the 𝑑 and 𝑚 variables here is somewhat
delicate and requires some smooth number estimates. After decoupling the variables (and extract-
ing a further small prime factor), we have introduced a trilinear structure with two variables of
almost equal length, which (by Cauchy–Schwarz) means that we can employ the techniques from
previous sections to bound the mean squares of the product of three character sums involved.

4.3 Proof ideas for the Linnik-type results

For the proof of our Linnik-type results, Theorems 2.1(i) and (ii), we use similar ideas as for The-
orem 1.2, with a couple of additions. Since we need only a positive lower bound for the number
of 𝑛 ≡ 𝑎 (mod 𝑞) that are 𝐸3 numbers, we can require that these 𝑛 have prime factors from any
intervals that we choose. Thanks to this flexibility in the sizes of the prime factors, we can get
good bounds for the trilinear sums that arise. A key maneuver here is to count suitable 𝑛 with the
logarithmic weight 1∕𝑛, so that we will be able to utilize a modification of the “Rodosskii bound”
from the works of Soundararajan [42] and Harper [17], which establishes cancellation in logarith-
mically averaged character sums over primes assuming only a very narrow zero-free region. For
smooth moduli, we have a suitable zero-free region by a result of Chang [4, Theorem 5], whereas
for prime 𝑞 we apply the log-free zero-density estimate to obtain a suitable region apart from a
few bad moduli.

STRUCTURE OF THE PAPER

We will present the proofs of Theorems 1.4 and 1.5 in Subsections 9.4 and 9.3, respectively. The
necessary lemmas for proving these results are presented in Sections 6 and 7. Section 8 in turn
contains twopropositions that are key ingredients in the proofs of themain theorems. In Section 10
weproveTheorem 1.3 on smoothmoduli. Our result on smooth-supported functions in the square-
root range is proved in Section 11. Section 12 in turn contains the proofs of the applications to
Linnik-type theorems. We remark that Sections 9, 11 and 12 can be read independently of each
other, but they all depend on the work in Section 8.

5 NOTATION

Weuse the usualVinogradov andLandau asymptotic notation≪,≫,≍,𝑂(⋅), 𝑜(⋅), with the implied
constants being absolute unless otherwise stated. If we write ≪𝜀,≫𝜀 or 𝑂𝜀(⋅), this signifies that
the implied constant depends on the parameter 𝜀.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 381

We write 1𝑆(𝑛) for the indicator function of a set 𝑆. The functions Λ, 𝜑 and 𝜏𝑘 are the usual
von Mangoldt, Euler phi and 𝑘-fold divisor functions, and 𝜋(𝑥) is the prime-counting function.
By 𝑃+(𝑛) and 𝑃−(𝑛) we mean the largest and smallest prime factors of 𝑛, respectively. We say
that 𝑛 is 𝑦-smooth if 𝑃+(𝑛) ⩽ 𝑦. We write 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥 for the complex exponential. The symbol
𝜌∶ (0,∞) → [0, 1] denotes the Dickman function, the unique solution to the delay differential
equation 𝜌(𝑢 − 1) = −𝑢𝜌′(𝑢) for 𝑢 > 1, with the initial data 𝜌(𝑢) = 1 for 0 < 𝑢 ⩽ 1; see [20] for
further properties of this function.
The symbol 𝑝 is reserved for primes, whereas 𝑗, 𝑘,𝑚, 𝑛, 𝑞 are positive integers.
Below we list for the reader’s convenience the notation we introduce in later sections.

NOMENCLATURE∑∗

𝑎 (mod 𝑞)

a sum over the invertible residue classes (mod 𝑞)∑∗

𝜒 (mod 𝑞)

a sum over the primitive characters (mod 𝑞)

𝜒0 the principal character
𝜒∗ the primitive character inducing the character 𝜒

cond(𝜒) the conductor of the character 𝜒
ℤ×𝑞 the set of invertible residue classes (mod 𝑞)

Ω[𝑃,𝑄](𝑛), 𝜔[𝑃,𝑄](𝑛) the number of prime factors of 𝑛 from an interval [𝑃, 𝑄], with and without
multiplicities, respectively

Δ(𝑞, 𝑍) Equation (48)
Ψ𝑞(𝑋, 𝑌) Equation (77)
𝔻𝑞(𝑓, g ; 𝑥) Equation (4)
𝔻(𝑓, g ; 𝑦, 𝑥) Equation (22)

𝐹(𝜒) Equation (67)
𝐿𝑦(𝑠, 𝑓) Equation (19)
𝑀𝑞(𝑇) Equation (21)

𝑁(𝜎, 𝑇, 𝜒) Equation (20)
𝑥,𝜀,𝑀 Equation (32)
𝑉𝑡 Equation (18)

6 MEAN AND LARGE VALUES ESTIMATES

We begin this section with several standard 𝐿2-bounds for sums twisted both by Dirichlet and
Archimedean characters.

Important note. In what follows, we will seek to make all of our estimates as sharp as possible
as a function of 𝑞, in particular obtaining factors of 𝜑(𝑞)∕𝑞 in our estimates wherever possible.
While this increases the lengths of some proofs (particularly in Section 7), it is critical in order for
us to state our main variance estimates with no loss.

Lemma 6.1 (Large sieve for characters). Let 𝑞,𝑀,𝑁 ⩾ 1, and let (𝑎𝑛)𝑛 be complex numbers. Then∑
𝜒 (mod 𝑞)

||| ∑
𝑀<𝑛⩽𝑀+𝑁

𝑎𝑛𝜒(𝑛)
|||2 ≪

(
𝜑(𝑞) +

𝜑(𝑞)

𝑞
𝑁

) ∑
𝑀<𝑛⩽𝑀+𝑁
(𝑛,𝑞)=1

|𝑎𝑛|2.
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382 KLURMAN et al.

Proof. This is [35, Theorem 6.2]. □

Lemma 6.2 (Hybrid large sieve for characters). Let 𝑇,𝑁, 𝑞 ⩾ 1. Then∑
𝜒 (mod 𝑞)

∫
𝑇

0

||| ∑
𝑛⩽𝑁

𝑎𝑛𝜒(𝑛)𝑛
𝑖𝑡|||2𝑑𝑡 ≪

(
𝜑(𝑞)𝑇 +

𝜑(𝑞)

𝑞
𝑁

) ∑
𝑛⩽𝑁
(𝑛,𝑞)=1

|𝑎𝑛|2.
Proof. This is a slight sharpening of [35, Theorem 6.4] (more precisely, see (6.14) there). □

For the proof of Lemma 6.5, we will also need a discrete version of the large sieve estimate,
in which we sum over well-spaced sets. We say that a set  ⊂ ℝ is well spaced if 𝑡, 𝑢 ∈  , 𝑡 ≠ 𝑢
implies |𝑡 − 𝑢| ⩾ 1. We give two such results below, one of which is sensitive to sparse families of
characters.

Lemma 6.3 (Discrete hybrid large sieve for characters). Let 𝑇,𝑁, 𝑞 ⩾ 1, and let  ⊂ [−𝑇, 𝑇] be a
well-spaced set. Then

∑
𝜒 (mod 𝑞)

∑
𝑡∈

||| ∑
𝑛⩽𝑁

𝑎𝑛𝜒(𝑛)𝑛
𝑖𝑡|||2 ≪

(
𝜑(𝑞)𝑇 +

𝜑(𝑞)

𝑞
𝑁

)
log(3𝑁)

∑
𝑛⩽𝑁
(𝑛,𝑞)=1

|𝑎𝑛|2.
Proof. This result, which is a slight sharpening of [35, Theorem 7.4] (taking 𝛿 = 1 there), is proved
in a standardway by combiningGallagher’s Sobolev-type lemma [28, Lemma9.3]with Lemma6.2;
we leave the details to the reader. □

Lemma 6.4 (Halász–Montgomery large values estimate). Let 𝑇, 𝑞 ⩾ 1 and let  ⊂ {𝜒 (mod 𝑞)} ×
[−𝑇, 𝑇] be such that if 𝑡 ≠ 𝑢 and (𝜒, 𝑡), (𝜒, 𝑢) ∈  then |𝑡 − 𝑢| ⩾ 1. Then∑

(𝜒,𝑡)∈
||| ∑
𝑛⩽𝑁

𝑎𝑛𝜒(𝑛)𝑛
𝑖𝑡|||2 ≪

(
𝜑(𝑞)

𝑞
𝑁 + ||(𝑞𝑇)1∕2 log(2𝑞𝑇)) ∑

𝑛⩽𝑁
(𝑛,𝑞)=1

|𝑎𝑛|2.
Proof. This is a slight sharpening (paying attention to coprimality with 𝑞) of [35, Theorem 8.3]
(see especially (8.16), taking 𝛿 = 1 and 𝜎0 = 0), and is proven in much the same way. We leave the
details to the interested reader. □

When it comes to estimating the size of the large values set of a short twisted character sum
supported on the primes, the following hybrid version of [32, Lemma 8] will be important.

Lemma 6.5 (Basic large values estimate — prime support). Let 𝑃, 𝑇 ⩾ 2. Let  ⊂ [−𝑇, 𝑇] be well
spaced. Let

𝑃𝜒(𝑠) ∶=
∑

𝑃<𝑝⩽2𝑃

𝑎𝑝𝜒(𝑝)𝑝
−𝑠,

where |𝑎𝑝| ⩽ 1 for all 𝑃 < 𝑝 ⩽ 2𝑃. Then for any 𝛼 ∈ [0, 1] we have
|{(𝜒, 𝑡) ∈ {𝜒′ (mod 𝑞)} ×  ∶ |𝑃𝜒(𝑖𝑡)| ⩾ 𝑃1−𝛼}|≪ (𝑞𝑇)2𝛼(𝑃2𝛼 + exp(100 log(𝑞𝑇)log 𝑃

log log(𝑞𝑇)

))
.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 383

Proof. Without loss of generality, we may assume that 𝑃 and 𝑇 are larger than any given constant.
Let 𝑁 be the number of pairs (𝜒, 𝑡) in question and 𝑉 ∶= 𝑃1−𝛼; then

𝑁 ⩽ 𝑉−2𝑘
∑

𝜒 (mod 𝑞)

∑
𝑡∈

|𝑃𝜒(𝑖𝑡)|2𝑘
for any 𝑘 ⩾ 1. We pick 𝑘 = ⌈ log(𝑞𝑇)

log 𝑃
⌉. Expanding out, we see that

𝑃𝜒(𝑠)
𝑘 =

∑
𝑃𝑘<𝑛⩽(2𝑃)𝑘

𝑏(𝑛)𝜒(𝑛)𝑛−𝑠, where 𝑏(𝑛) =
∑

𝑝1⋯𝑝𝑘=𝑛
𝑝𝑗∈[𝑃,2𝑃] ∀𝑗

𝑎𝑝1⋯𝑎𝑝𝑘 .

By the discrete large sieve (Lemma 6.3), we have∑
𝜒 (mod 𝑞)

∑
𝑡∈

|𝑃𝜒(𝑖𝑡)|2𝑘 ≪ (
𝜑(𝑞)𝑇 + (2𝑃)𝑘

)
log(3 ⋅ (2𝑃)𝑘)

∑
𝑃𝑘⩽𝑛⩽(2𝑃)𝑘

|𝑏(𝑛)|2.
We can then compute the mean square over 𝑛 as

∑
𝑃𝑘⩽𝑛⩽(2𝑃)𝑘

|𝑏(𝑛)|2 ⩽ ∑
𝑝1⋯𝑝𝑘=𝑞1⋯𝑞𝑘
𝑃⩽𝑝𝑗,𝑞𝑗⩽2𝑃

1 ⩽ 𝑘!

( ∑
𝑃<𝑝⩽2𝑃

1

)𝑘
⩽ 𝑘!

(
2𝑃

log 𝑃

)𝑘
.

This gives the bound

∑
𝜒 (mod 𝑞)

∑
𝑡∈

|𝑃𝜒(𝑖𝑡)|2𝑘 ≪ 𝑘!(𝜑(𝑞)𝑇 + (2𝑃)𝑘) log((2𝑃)𝑘+1)( 2𝑃

log 𝑃

)𝑘

⩽ (𝑘 + 1)! log(2𝑃)

(
1 +
𝜑(𝑞)𝑇

(2𝑃)𝑘

)(
4𝑃2

log 𝑃

)𝑘
.

Multiplying this by 𝑉−2𝑘 and recalling the choices of 𝑉 and 𝑘, this becomes

≪ (𝑞𝑇)2𝛼𝑃2𝛼
(
8𝑘

log 𝑃

)𝑘−1
.

If log 𝑃 ⩾ 8𝑘 then this bound is ≪ (𝑞𝑇)2𝛼𝑃2𝛼; otherwise, we obtain the bound ≪ (𝑞𝑇)2𝛼(𝑒20𝑘)𝑘
(for 𝑃 large enough). Together, these two bounds imply the claim. □

The proofs of the next two lemmas are almost identical to the proofs of the corresponding results
in [32], with the following smallmodifications. First, one applies Lemma6.2, rather than themean
value theorem for Dirichlet polynomials. Second, the corresponding Dirichlet polynomials are
considered on the zero line rather than the one line. Finally, the coefficients are supported on the
integers (𝑛, 𝑞) = 1which accounts for the extra factor 𝜑(𝑞)∕𝑞. We give the proof of one of them to
illustrate the changes needed.

Lemma 6.6. Let 𝑞, 𝑇 ⩾ 1, 2 ⩽ 𝑌1 ⩽ 𝑌2 and 𝓁 ∶= ⌈ log𝑌2
log𝑌1

⌉. For 𝑎𝑚, 𝑐𝑝1-bounded complex numbers,
define

𝑄(𝜒, 𝑠) ∶=
∑

𝑌1⩽𝑝⩽2𝑌1

𝑐𝑝𝜒(𝑝)𝑝
−𝑠 and 𝐴(𝜒, 𝑠) ∶=

∑
𝑋∕𝑌2⩽𝑚⩽2𝑋∕𝑌2

𝑎𝑚𝜒(𝑚)𝑚
−𝑠.
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384 KLURMAN et al.

Then

∑
𝜒 (mod 𝑞)

∫
𝑇

−𝑇
|𝑄(𝜒, 𝑖𝑡)𝓁𝐴(𝜒, 𝑖𝑡)|2𝑑𝑡 ≪ 𝜑(𝑞)

𝑞
𝑋𝑌12

𝓁
(
𝜑(𝑞)𝑇 +

𝜑(𝑞)

𝑞
𝑋𝑌12

𝓁
)
(𝓁 + 1)!2.

Moreover, we have the same bound for∑
𝜒 (mod 𝑞)

|𝑄(𝜒, 0)𝓁𝐴(𝜒, 0)|2
when we put 𝑇 = 1 on the right-hand side.

Proof. This is analogous to [32, Lemma 13]. The Dirichlet polynomial 𝑄(𝜒, 𝑠)𝓁𝐴(𝜒, 𝑠) has its
coefficients supported on the interval

[𝑌𝓁
1 ⋅ 𝑋∕𝑌2, (2𝑌1)

𝓁 ⋅ 2𝑋∕𝑌2] ⊂ [𝑋, 2
𝓁+1𝑌1𝑋].

We now apply Lemma 6.2 to arrive at∑
𝜒 (mod 𝑞)

∫
𝑇

−𝑇
|𝑄(𝜒, 𝑖𝑡)𝓁𝐴(𝜒, 𝑖𝑡)|2𝑑𝑡

≪

(
𝜑(𝑞)𝑇 +

𝜑(𝑞)

𝑞
2𝓁𝑌1𝑋

) ∑
𝑋⩽𝑛⩽2𝓁+1𝑌1𝑋
(𝑛,𝑞)=1

⎛⎜⎜⎜⎜⎜⎝
∑

𝑛=𝑚𝑝1⋯𝑝𝓁
𝑌1⩽𝑝1,…,𝑝𝓁⩽2𝑌1,
𝑋∕𝑌2⩽𝑚⩽2𝑋∕𝑌2

1

⎞⎟⎟⎟⎟⎟⎠

2

.

We note that, for each 𝑛 in the outer sum, we have∑
𝑛=𝑚𝑝1…𝑝𝓁

𝑌1⩽𝑝1…𝑝𝓁⩽2𝑌1,
𝑋∕𝑌2⩽𝑚⩽2𝑋∕𝑌2

1 ⩽ 𝓁! ⋅
∑
𝑛=𝑚𝑟

𝑝|𝑟⟹𝑌1⩽𝑝⩽2𝑌1

1 ∶= 𝓁!g(𝑛),

where g(𝑛) is a multiplicative function defined by g(𝑝𝑘) = 𝑘 + 1 for 𝑌1 ⩽ 𝑝 ⩽ 2𝑌1 and g(𝑝𝑘) = 1
otherwise. Consequently,

∑
𝜒 (mod 𝑞)

∫
𝑇

−𝑇
|𝑄(𝜒, 𝑖𝑡)𝓁𝐴(𝜒, 𝑖𝑡)|2𝑑𝑡 ≪ (

𝜑(𝑞)𝑇 +
𝜑(𝑞)

𝑞
2𝓁𝑌1𝑋

)
(𝓁!)2

∑
𝑋⩽𝑛⩽2𝓁+1𝑌1𝑋
(𝑛,𝑞)=1

g(𝑛)2. (15)

Shiu’s bound [40, Theorem 1] in dyadic ranges yields∑
𝑌⩽𝑛⩽2𝑌
(𝑛,𝑞)=1

g(𝑛)2 ≪ 𝑌
𝜑(𝑞)

𝑞

∏
𝑝⩽𝑌
𝑝∤𝑞

(
1 +

|g(𝑝)|2 − 1
𝑝

)
≪ 𝑌

𝜑(𝑞)

𝑞
. (16)

We now split the right-hand side of (15) into dyadic ranges, apply (16) to each of them and sum
the results up to finish the proof of the first claim. The second claim is proven in the same way,
but using Lemma 6.1 in place of Lemma 6.2. □
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 385

Lemma 6.7. Let 𝑋 ⩾ 𝐻 ⩾ 1, 𝑄 ⩾ 𝑃 ⩾ 1. Let 𝑎𝑚, 𝑏𝑚, 𝑐𝑝 be 1-bounded sequences with 𝑎𝑚𝑝 = 𝑏𝑚𝑐𝑝
whenever 𝑝 ∤ 𝑚 and 𝑃 ⩽ 𝑝 ⩽ 𝑄. Let Ξ be a collection of Dirichlet characters modulo 𝑞 ⩾ 1. Let

𝑄𝑣,𝐻(𝜒, 𝑠) ∶=
∑
𝑃⩽𝑝⩽𝑄

𝑒𝑣∕𝐻⩽𝑝⩽𝑒(𝑣+1)∕𝐻

𝑐𝑝𝜒(𝑝)𝑝
−𝑠

and

𝑅𝑣,𝐻(𝜒, 𝑠) ∶=
∑

𝑋𝑒−𝑣∕𝐻⩽𝑚⩽2𝑋𝑒−𝑣∕𝐻

𝑏𝑚𝜒(𝑚)𝑚
−𝑠 ⋅

1

1 + 𝜔[𝑃,𝑄](𝑚)
,

for each 𝜒 ∈ Ξ and 𝑣 ⩾ 0. Let  ⊂ [−𝑇, 𝑇] be measurable, and  ∶= {𝑗 ∈ ℤ ∶ ⌊𝐻 log 𝑃⌋ ⩽ 𝑗 ⩽
𝐻 log𝑄}. Then∑

𝜒∈Ξ
∫

||| ∑
𝑛⩽𝑋

𝑎𝑛𝜒(𝑛)𝑛
−𝑖𝑡|||2𝑑𝑡 ≪ 𝐻 log

(
𝑄

𝑃

)∑
𝑗∈

∑
𝜒∈Ξ

∫
|||𝑄𝑗,𝐻(𝜒, 𝑖𝑡)𝑅𝑗,𝐻(𝜒, 𝑖𝑡)|||2𝑑𝑡

+
𝜑(𝑞)

𝑞
𝑋

(
𝜑(𝑞)𝑇 +

𝜑(𝑞)

𝑞
𝑋

)(
1

𝐻
+
1

𝑃

)
+
𝜑(𝑞)

𝑞
𝑋

⎛⎜⎜⎜⎝
∑
𝑛⩽𝑋
(𝑛,𝑞)=1

|𝑎𝑛|21(𝑛,)=1⎞⎟⎟⎟⎠,
where  ∶=∏

𝑃⩽𝑝⩽𝑄 𝑝.
Moreover, the same bound holds for ∑

𝜒∈Ξ

||| ∑
𝑛⩽𝑋

𝑎𝑛𝜒(𝑛)
|||2 (17)

with 𝑇 = 1 and the integration removed on the right-hand side.

Proof. The proof is almost identical to the proof of [32, Lemma 12], the only slight difference
being that after splitting the sum involving 𝑎𝑛 into short sums, one estimates the error terms by
applying Lemma 6.2 (or Lemma 6.1 in the case of (17)) instead of the mean value theorem for
Dirichlet polynomials. □

7 LEMMAS ONMULTIPLICATIVE FUNCTIONS

7.1 Preliminaries

Throughout this section, given 𝑡 ∈ ℝ we set

𝑉𝑡 ∶= exp
(
log(3 + |𝑡|)2∕3 log log(3 + |𝑡|)1∕3). (18)

For 𝑦 ⩾ 2, Re(𝑠) > 1, and a multiplicative 𝑓∶ ℕ → 𝕌, we define

𝐿𝑦(𝑠, 𝑓) ∶=
∏
𝑝>𝑦

∑
𝑘⩾0

𝑓(𝑝𝑘)

𝑝𝑘𝑠
. (19)

Also recall the definition of the 𝔻𝑞 distance from (4), and let 𝔻 ∶= 𝔻1.
We begin with two estimates for 𝐿𝑦(𝑠, 𝑓) from the work of Koukoulopoulos [31].
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386 KLURMAN et al.

Lemma 7.1 (Relating 𝐿𝑦(𝑠, 𝑓) to pretentious distance). Let 𝑥, 𝑦 ⩾ 2, 𝑡 ∈ ℝ, and let 𝑓∶ ℕ → 𝕌 be
multiplicative. Then

log
|||||𝐿𝑦

(
1 +

1

log 𝑥
+ 𝑖𝑡, 𝑓

)||||| = Re

( ∑
𝑦<𝑝⩽𝑥

𝑓(𝑝)𝑝−𝑖𝑡

𝑝

)
+ 𝑂(1).

Proof. This is [31, Lemma 3.2]. □

Lemma 7.2 (Bounding 𝐿𝑦(𝑠, 𝜒)). Let 𝜀 > 0. Let 𝑞 ⩾ 1 and 𝑠 = 𝜎 + 𝑖𝑡 with 𝜎 > 1 and 𝑡 ∈ ℝ. Let 𝑦 ⩾
𝑞𝑉𝑡 , and let𝜒 (mod𝑞) be a character. Then, if |𝑡| ⩾ 𝜀∕ log 𝑦 or if𝜒 is complex,we have |𝐿𝑦(𝑠, 𝜒)| ≍𝜀 1.
Proof. This is [31, Lemma 4.2]. □

In this section and the next, we need estimates for the count of zeros of 𝐿(𝑠, 𝜒), namely

𝑁(𝜎, 𝑇, 𝜒) ∶=
∑

𝜌∶ 𝐿(𝜌,𝜒)=0
Re(𝜌)⩾𝜎|Im(𝜌)|⩽𝑇

1, (20)

where multiple zeros are counted according to their multiplicities.

Lemma 7.3 (Log-free zero-density estimate). For 𝑄, 𝑇 ⩾ 1, 1
2
⩽ 𝜎 ⩽ 1 and 𝜀 > 0, we have

∑
𝑞⩽𝑄

∑∗

𝜒 (mod 𝑞)

𝑁(𝜎, 𝑇, 𝜒) ≪𝜀 (𝑄
2𝑇)(

12
5
+𝜀)(1−𝜎).

Proof. This is well known (see “Zeros Result 1 (iv)” in [16]). For 1
2
⩽ 𝜎 ⩽ 4∕5, say, the lemma

follows from the work of Huxley [26], whereas in the complementary region we can apply Jutila’s
log-free zero-density estimate [29] (with 12∕5 + 𝜀 replaced with the better exponent 2 + 𝜀). □

7.2 General estimates for partial sums of multiplicative functions

In this subsection we collect various estimates for partial sums of 1-bounded multiplicative
functions.

Lemma 7.4 (A Halász-type inequality). Let 𝑥 ⩾ 10 and 1 ⩽ 𝑞, 𝑇 ⩽ 10𝑥. Let 𝑓∶ ℕ → 𝕌 be a
multiplicative function. Then

1

𝑥

∑
𝑛⩽𝑥
(𝑛,𝑞)=1

𝑓(𝑛) ≪
𝜑(𝑞)

𝑞

(
(𝑀𝑞(𝑇) + 1)𝑒

−𝑀𝑞(𝑇) +
1√
𝑇
+ (log 𝑥)−1∕4

)
,

where

𝑀𝑞(𝑇) = 𝑀𝑞(𝑓; 𝑥, 𝑇) ∶= inf|𝑡|⩽𝑇 𝔻𝑞(𝑓, 𝑛𝑖𝑡; 𝑥)2. (21)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 387

Proof. We may assume that 𝑇 ⩽
√
log 𝑥, since otherwise we can use 𝑀𝑞(𝑇) ⩽ 𝑀𝑞(

√
log 𝑥) and

the fact that 𝑦 ↦ (𝑦 + 1)𝑒−𝑦 is decreasing to reduce to the case 𝑇 =
√
log 𝑥. But then the claim

follows† from [3, Corollary 2.2]. □

We also need a version of Halász’s inequality that is sharp for sums that are restricted to rough
numbers (that is, integers having only large prime factors). This will be employed in the proof of
Lemma 7.9.

Lemma 7.5 (Halász over rough numbers). Let 2 ⩽ 𝑦 ⩽ 𝑥, and let 𝑓∶ ℕ → 𝕌 be multiplicative.
Then

1

𝑥

∑
𝑛⩽𝑥

𝑃−(𝑛)>𝑦

𝑓(𝑛) ≪
(1 +𝑀(𝑓; (𝑦, 𝑥],

log 𝑥

log 𝑦
))𝑒
−𝑀(𝑓;(𝑦,𝑥],

log 𝑥

log 𝑦
)

log 𝑦
+
1

log 𝑥
,

where𝑀(𝑓; (𝑦, 𝑥], 𝑇) is defined for 𝑇 ⩾ 0 by

𝑀(𝑓; (𝑦, 𝑥], 𝑇) ∶= inf|𝑡|⩽𝑇 𝔻(𝑓, 𝑛𝑖𝑡; 𝑦, 𝑥)2
with

𝔻(𝑓, g ; 𝑦, 𝑥) ∶=

( ∑
𝑦<𝑝⩽𝑥

1 − Re(𝑓(𝑝)g(𝑝))
𝑝

)1∕2
. (22)

Proof. Without loss of generality, wemay assume that 𝑓(𝑝𝑘) = 0 for all primes𝑝 ⩽ 𝑦 and all 𝑘 ⩾ 1.
We may also assume that 𝑦 ⩽ 𝑥1∕2, since otherwise the estimate follows trivially from the prime
number theorem.
A consequence of [10, Proposition 7.1] (see in particular formula (7.3) there) implies that∑

𝑛⩽𝑥

𝑓(𝑛) ≪ (1 +𝑀)𝑒−𝑀
𝑥

log 𝑦
+
𝑥

log 𝑥
, (23)

where𝑀 is defined implicitly via

sup|𝑡|⩽ log 𝑥
log 𝑦

|||𝐹(1 + 1∕ log 𝑥 + 𝑖𝑡)1 + 1∕ log 𝑥 + 𝑖𝑡

||| = 𝑒−𝑀 log 𝑥log 𝑦 ,
where 𝐹(𝑠) ∶=

∏
𝑝

∑
𝑘⩾0 𝑓(𝑝

𝑘)∕𝑝𝑘𝑠 for Re(𝑠) > 1. On the other hand, as 𝑓(𝑝𝑘) = 0 for all 𝑝 ⩽ 𝑦,
by Lemma 7.1 for any 𝑡 ∈ ℝ we have

|𝐹(1 + 1∕ log 𝑥 + 𝑖𝑡)| log 𝑦
log 𝑥

≍ exp

(
−

∑
𝑦<𝑝⩽𝑥

1 − Re(𝑓(𝑝)𝑝−𝑖𝑡)
𝑝

)
= 𝑒−𝔻(𝑓,𝑛

𝑖𝑡 ;𝑦,𝑥)2 ,

† In [3, Corollary 2.2], it is assumed that 𝑞 ⩽
√
𝑥, but the same proof works for 𝑞 ⩽ 10𝑥.
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388 KLURMAN et al.

so that

𝑒−𝑀 ≪ sup|𝑡|⩽ log 𝑥
log 𝑦

𝑒−𝔻(𝑓,𝑛
𝑖𝑡 ;𝑦,𝑥)2|1 + 1∕ log 𝑥 + 𝑖𝑡| ≪ 𝑒−𝑀(𝑓;(𝑦,𝑥], log 𝑥log 𝑦 ).

In particular,𝑀(𝑓; (𝑦, 𝑥], log 𝑥
log 𝑦
) ⩽ 𝑀 + 𝑂(1).

Since 𝑡 ↦ (1 + 𝑡)𝑒−𝑡 is decreasing, it now follows from (23) that∑
𝑛⩽𝑥

𝑓(𝑛) ≪

(
1 +𝑀

(
𝑓; (𝑦, 𝑥],

log 𝑥

log 𝑦

))
𝑒
−𝑀(𝑓;(𝑦,𝑥],

log 𝑥

log 𝑦
) 𝑥

log 𝑦
+
𝑥

log 𝑥
,

as claimed. □

In the proof of Theorem 1.5, we will also need the following three lemmas.

Lemma 7.6 (Twisting by 𝑛𝑖𝑡). Let 𝛼 ∈ ℝ. Then for any 𝑥 ⩾ 3 and any multiplicative 𝑓∶ ℕ → 𝕌,

1

𝑥

∑
𝑛⩽𝑥

𝑓(𝑛)𝑛𝑖𝛼 =
𝑥𝑖𝛼

1 + 𝑖𝛼

1

𝑥

∑
𝑛⩽𝑥

𝑓(𝑛) + 𝑂

(
log(2 + |𝛼|)
log 𝑥

exp
(
𝔻(𝑓, 1; 𝑥)

√
(2 + 𝑜(1)) log log 𝑥

))
.

Proof. From [12, Lemma 7.1], we have the claimed estimate with the error term

𝑂

(
log(2 + |𝛼|)
log 𝑥

exp

(∑
𝑝⩽𝑥

|1 − 𝑓(𝑝)|
𝑝

))
.

Hence, the claim follows from

∑
𝑝⩽𝑥

|1 − 𝑓(𝑝)|
𝑝

⩽

(∑
𝑝⩽𝑥

1

𝑝

) 1
2
(∑
𝑝⩽𝑥

|1 − 𝑓(𝑝)|2
𝑝

) 1
2

⩽ (log log 𝑥 + 𝑂(1))
1
2

(
2
∑
𝑝⩽𝑥

1 − Re(𝑓(𝑝))
𝑝

) 1
2

.

□

Lemma 7.7 (Simplifying a Perron integral). Let𝑋, 𝑍 ⩾ 10, with 1 ⩽ 𝑍 ⩽ (log𝑋)1∕20. Let 1 ⩽ ℎ ⩽ 𝑋,
and let 1 ⩽ 𝑞 ⩽ ℎ∕10. Let g ∶ ℕ → 𝕌 be multiplicative, and let 𝑡0 be a minimizer of 𝑡 ↦ 𝔻(g , 𝑛𝑖𝑡; 𝑋)
on |𝑡| ⩽ 𝑋. Then for every 𝑥 ∈ [𝑋, 2𝑋] we have
1

2𝜋ℎ ∫
𝑡0+𝑍

𝑡0−𝑍

⎛⎜⎜⎜⎝
∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g(𝑛)𝑛−𝑖𝑡
⎞⎟⎟⎟⎠
(𝑥 + ℎ)𝑖𝑡 − 𝑥𝑖𝑡

𝑖𝑡
𝑑𝑡 =

⎛⎜⎜⎜⎝
1

3ℎ𝑋

∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g(𝑛)𝑛−𝑖𝑡0
⎞⎟⎟⎟⎠∫

𝑥+ℎ

𝑥

𝑣𝑖𝑡0𝑑𝑣 + 𝑂

(
𝜑(𝑞)

𝑞𝑍1∕2

)
.

Proof. We note that (𝑥+ℎ)
𝑖𝑡−𝑥𝑖𝑡

𝑖𝑡
= ∫ 𝑥+ℎ𝑥 𝑣−1+𝑖𝑡𝑑𝑣 for each 𝑡 ∈ [𝑡0 − 𝑍, 𝑡0 + 𝑍]. Inserting this into

the left-hand side of the statement, swapping the orders of integration and making the change of
variables 𝑢 ∶= 𝑡 − 𝑡0, we obtain

1

2𝜋ℎ ∫
𝑥+ℎ

𝑥
𝑣−1+𝑖𝑡0

⎛⎜⎜⎜⎝∫
𝑍

−𝑍
𝑣𝑖𝑢

∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g(𝑛)𝑛−𝑖𝑡0−𝑖𝑢 𝑑𝑢

⎞⎟⎟⎟⎠ 𝑑𝑣. (24)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 389

Let𝑀 ∶= min|𝑢|⩽ 1
2
log𝑋

𝔻𝑞(g , 𝑛𝑖(𝑡0+𝑢); 𝑋)2. By Lemma 7.4, if𝑀 ⩾ (1∕4) log log𝑋, then

sup|𝑢|⩽𝑍 ||| ∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g(𝑛)𝑛−𝑖𝑡0−𝑖𝑢|||≪ 𝜑(𝑞)𝑞 (𝑋(1 +𝑀)𝑒−𝑀 + 𝑋∕(log𝑋)1∕4) ≪ 𝑋(log𝑋)−1∕4+𝑜(1),
in which case the expression (24) can be bounded by

≪
ℎ

ℎ𝑥
⋅ 𝑍𝑋(log𝑋)−1∕4+𝑜(1) ≪ (log𝑋)−1∕5

for 𝑋 sufficiently large, given that 𝑍 ⩽ (log𝑋)1∕20. The claim follows in this case, so we may
assume in the sequel that𝑀 < (1∕4) log log𝑋.
Put g𝑡0 (𝑛) ∶= g(𝑛)𝑛−𝑖𝑡0 . Since |𝑢| ⩽ 𝑍, Lemma 7.6 yields

∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g𝑡0 (𝑛)𝑛
−𝑖𝑢 =

(3𝑋)−𝑖𝑢

1 − 𝑖𝑢

∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g𝑡0 (𝑛) + 𝑂
(
𝑋(log(2𝑍))

log𝑋
𝑒
√
(2+𝑜(1))𝑀 log log𝑋

)

=
(3𝑋)−𝑖𝑢

1 − 𝑖𝑢

∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g𝑡0 (𝑛) + 𝑂
(

𝑋

(log𝑋)0.29−𝑜(1)

)
,

as
√
1∕2 − 1 < −0.29. Furthermore, 0.29 − 1∕20 > 1∕5, so upon inserting this estimate into (24)

that expression becomes

⎛⎜⎜⎜⎝
∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g(𝑛)𝑛−𝑖𝑡0
⎞⎟⎟⎟⎠∫

𝑥+ℎ

𝑥
𝑣−1+𝑖𝑡0

𝐼(𝑣; 3𝑋)

ℎ
𝑑𝑣 + 𝑂

(
1

(log𝑋)1∕5

)
, (25)

where for 𝑦 ⩾ 1 we have defined

𝐼(𝑣; 𝑦) ∶=
1

2𝜋 ∫
𝑍

−𝑍
𝑣𝑖𝑢
𝑦−𝑖𝑢

1 − 𝑖𝑢
𝑑𝑢.

Using a standard, truncated version of Perron’s formula (for example, [28, Proposition 5.54]), if
𝑦 ≠ 𝑣 then

𝐼(𝑣; 𝑦) =
𝑣

𝑦

(
1

2𝜋𝑖 ∫Re(𝑠)=1
(𝑦∕𝑣)𝑠

𝑠
𝑑𝑠 + 𝑂

(
𝑦∕𝑣

𝑍| log(𝑦∕𝑣)|
))

=
𝑣

𝑦
1𝑦>𝑣 + 𝑂

(
1

𝑍| log(𝑦∕𝑣)|
)
.

As [𝑥, 𝑥 + ℎ] is disjoint from [3𝑋 − 3𝑋√
𝑍
, 3𝑋 + 3𝑋√

𝑍
], we have 𝑍| log(3𝑋∕𝑣)|≫ 𝑍1∕2 for all 𝑣 ∈

[𝑥, 𝑥 + ℎ] and (25) becomes
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390 KLURMAN et al.

(3ℎ𝑋)−1

⎛⎜⎜⎜⎝
∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g𝑡0 (𝑛)

⎞⎟⎟⎟⎠∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡0𝑑𝑣 + 𝑂

(
𝜑(𝑞)

𝑞ℎ𝑍 ∫
𝑥+ℎ

𝑥

𝑑𝑣| log(3𝑋∕𝑣)| + 1

(log𝑋)1∕5

)

= (3ℎ𝑋)−1

⎛⎜⎜⎜⎝
∑
𝑛⩽3𝑋
(𝑛,𝑞)=1

g𝑡0 (𝑛)

⎞⎟⎟⎟⎠∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡0𝑑𝑣 + 𝑂

(
𝜑(𝑞)

𝑞𝑍1∕2
+

1

(log𝑋)1∕5

)
.

Since (log𝑋)−1∕5 ≪ 𝜑(𝑞)∕(𝑞𝑍1∕2), this completes the proof. □

7.3 Bounds on prime sums of twisted Dirichlet characters

The following lower bound on the pretentious distance 𝔻 between Dirichlet and Archimedean
characters will enable us to show that 𝑓 can only correlate significantly with at most one Dirichlet
character 𝜒 (mod 𝑞), which must then be 𝜒1 (see Proposition 8.3).

Lemma 7.8 (A pretentious distance bound). Let 𝑥 ⩾ 10, 1 ⩽ 𝑞 ⩽ 𝑥, and let 𝜒 be any non-principal
Dirichlet character modulo 𝑞 induced by a primitive character 𝜒∗ modulo 𝑞∗. Then

inf|𝑡|⩽10𝑥 𝔻𝑞(𝜒, 𝑛𝑖𝑡; 𝑥)2 ⩾ 14 log
(
log 𝑥

log(2𝑞∗)

)
+ 𝑂(1).

Remark 7.1. For the purpose of proving Theorem 1.4, our estimates only require uniformity in
the 𝑡-aspect for |𝑡| ⩽ log 𝑥, and in that regime Lemma 7.8 is easier to prove. However, in order
to prove Theorem 1.5, we will need full uniformity in the much larger range |𝑡|≪ 𝑥. The same
remark applies to Lemma 7.9 and several lemmas in Section 8.

Proof. We may assume that 𝑥 is larger than any fixed absolute constant, since otherwise the
bound is trivial upon choosing the term 𝑂(1) appropriately. Let 𝑡0 be a minimizer for the map
𝑡 ↦ 𝔻(𝜒, 𝑛𝑖𝑡; 𝑥) on [−10𝑥, 10𝑥]. We split the proof of the lemma into two cases.
Case 1. If |𝑡0| ⩽ log 𝑥, then the claim follows directly from [3, Lemma 3.4].
Case 2. Next assume that |𝑡0| > log 𝑥. Let us write 𝜒(𝑛) = 𝜒∗(𝑛)1(𝑛,𝑟)=1, where 𝜒∗ (mod 𝑞∗)

induces 𝜒 and (𝑟, 𝑞∗) = 1. Let 𝑦 ∶= 𝑞∗𝑉10𝑥; then we have 𝑉10𝑥 ⩽ 𝑦 ⩽ max{(𝑞∗)2, 𝑉210𝑥}.
We now observe that, since 𝑞∗ < 𝑦, we have

𝔻𝑞(𝜒, 𝑛
𝑖𝑡0 ; 𝑥)2 ⩾ Re

( ∑
𝑦<𝑝⩽𝑥

1 − 𝜒∗(𝑝)𝑝−𝑖𝑡0

𝑝

)
− 𝑂

⎛⎜⎜⎜⎝
∑
𝑝∣𝑞
𝑝⩾𝑦

1

𝑝

⎞⎟⎟⎟⎠
= log

(
log 𝑥

log 𝑦

)
− log

|||𝐿𝑦
(
1 +

1

log 𝑥
+ 𝑖𝑡0, 𝜒

∗

)||| + 𝑂(1),
where for the last line we used Lemma 7.1 and the crude estimate

∑
𝑝∣𝑞 1 ≪ log 𝑥 = 𝑜(𝑦).
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 391

Recalling log 𝑥 ⩽ |𝑡0| ⩽ 10𝑥 and our choice of 𝑦, Lemma 7.2 gives |𝐿𝑦(1 + 1∕ log 𝑥 + 𝑖𝑡0, 𝜒∗)| ≍
1. It follows that

𝔻𝑞(𝜒, 𝑛
𝑖𝑡0 ; 𝑥)2 ⩾ log

(
log 𝑥

log 𝑦

)
+ 𝑂(1) ⩾

1

4
log

(
log 𝑥

log(2𝑞∗)

)
+ 𝑂(1),

where for the last inequality we used 𝑦 ⩽ max{(𝑞∗)2, 𝑉2
10𝑥
}. □

The following pointwise bound for twisted character sums over primes will be needed in the
proof of Proposition 8.5.

Lemma 7.9 (Character sums over primes). Let 𝑥 ⩾ 10, 𝑋 = 𝑥(log 𝑥)1∕25 , and 1 ⩽ 𝑞 ⩽ 𝑥. Let ℎ be a
fixed smooth function supported on [1∕2, 4]. Then, for 𝜀 ∈ (0, 1) and for any character 𝜒 (mod 𝑞)
with cond(𝜒) ⩽ 𝑥𝜀, uniformly in the range |𝑡| ⩽ 𝑋 we have

|||∑
𝑛

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)|||≪ℎ 𝜀(log3 1𝜀 )𝑥 + 𝑥

(log 𝑥)0.3
+

𝑥

𝑡2 + 1
. (26)

Moreover, the 𝑥

𝑡2+1
term can be deleted for all but possibly one non-principal 𝜒 (mod 𝑞), and this 𝜒

(if it exists) must be real and satisfy 𝐿(𝛽, 𝜒) = 0 for some real 𝛽 > 1 − 𝑐0∕(log 𝑞) for some absolute
constant 𝑐0 > 0.

Remark 7.2. By looking at the proof of Lemma 7.9, it is clear that (26) works also for the sharp
weight ℎ(𝑢) = 1𝑢∈(0,1] if 𝑥∕(𝑡2 + 1) is replacedwith 𝑥∕(|𝑡| + 1) there. The 1∕(𝑡2 + 1) decay is help-
ful when we apply Lemma 7.9 in the proof of Proposition 8.5 to ensure that when (26) is summed
over a well-spaced set of 𝑡 the resulting bound will not be too large.

Proof. Without loss of generality, we may assume that 𝑥 is larger than any given constant, that
𝜀 ⩾ (log 𝑥)−0.4, and that 𝜀 is smaller than any fixed constant. If 𝜒 is induced by 𝜒∗ (mod 𝑞∗), we
have ∑

𝑛

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)
=

∑
𝑛

Λ(𝑛)𝜒∗(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)
+ 𝑂ℎ((log 𝑥)

2),

and as the error term is small, may assume that 𝜒 is primitive and 𝑞 = 𝑞∗.
We split into cases depending on the sizes of 𝑞 and 𝑡.
Case 1. Suppose first that 𝑞 = 1. Then 𝜒 is identically 1, and in that case by Mellin inversion

we have ∑
𝑛

Λ(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)
= −

1

2𝜋𝑖 ∫
2+𝑖∞

2−𝑖∞

𝜁′

𝜁
(𝑠 + 𝑖𝑡)ℎ̃(𝑠)𝑥𝑠 𝑑𝑠.

Since ℎ is smooth, its Mellin transform ℎ̃ satisfies |ℎ̃(𝑠)|≪ℎ 1∕(1 + |𝑠|10) for Re(𝑠) ∈ [−100, 100].
Hence, shifting the line of integration to Re(𝑠) = 𝑏 ∶= 1 − (log 𝑥)1∕10, we obtain

∑
𝑛

Λ(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)
= −

1

2𝜋𝑖 ∫
𝑏+𝑖 log 𝑥

𝑏−𝑖 log 𝑥

𝜁′

𝜁
(𝑠 + 𝑖𝑡)ℎ̃(𝑠)𝑥𝑠 𝑑𝑠 + ℎ̃(1 − 𝑖𝑡)𝑥 + 𝑂ℎ

(
𝑥

log 𝑥

)
,
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392 KLURMAN et al.

and this is ≪ 𝑥∕(𝑡2 + 1) + 𝑂ℎ(𝑥∕ log 𝑥) by using the Vinogradov–Korobov bound | 𝜁′
𝜁
(𝑠 + 𝑖𝑡)|≪

log 𝑥 in the region of the integrand. We may thus assume that 𝑞∗ ⩾ 2.
Case 2. Suppose then that 2 ⩽ 𝑞∗ ⩽ (log 𝑥)10, |𝑡| ⩽ (log 𝑥)10. Then (26) follows straightfor-

wardly from partial summation and the Siegel–Walfisz theorem (with a better bound of ≪ℎ
𝑥(log 𝑥)−100).
Case 3. Next, suppose 𝑞∗ > (log 𝑥)10, |𝑡| ⩽ (log 𝑥)10. We apply the explicit formula (proven

similar to [28, Proposition 5.25])∑
𝑛

Λ(𝑛)𝜒∗(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑥

)
= −

∑
𝜌=𝛽+𝑖𝛾∶
𝐿(𝜌,𝜒∗)=0|𝛾−𝑖𝑡|⩽𝑇
0⩽𝛽⩽1

𝑥𝜌−𝑖𝑡ℎ̃(𝜌 − 𝑖𝑡) + 𝑂ℎ

(
𝑥

𝑇
(log3(𝑞𝑥(|𝑡| + 2)))), (27)

where we choose 𝑇 = (log 𝑥)100 to make the error term small.
Let 𝐷 = log(𝑥𝜀(|𝑡| + 2)). Note that by the Landau–Page theorem [44, Theorem II.8.25] we have

the zero-free region 𝐿(𝑠, 𝜒∗) ≠ 0 for Re(𝑠) ⩾ 1 − 𝑐0∕(log𝐷) for some constant 𝑐0 > 0, apart from
possibly one zero 𝜌 = 𝛽, which has to be real and simple; additionally, such an exceptional zero
can only exist for at most one character 𝜒∗ of conductor ⩽ 𝑥𝜀, which has to be real and non-
principal. Applying the bound ℎ̃(𝑠) ≪ 1∕(1 + |𝑠|10) for Re(𝑠) ∈ [−100, 100], the contribution of
𝜌 = 𝛽 to the right of (27) is certainly

≪ℎ
𝑥

𝑡2 + 1
, (28)

which is admissible. Moreover, the contribution of Re(𝜌) ⩽ 9∕10 to (27) is trivially≪ 𝑥91∕100.
By splitting the sum in (27) into pieces Re(𝑠) ∈ (1 − (𝑘 + 1)𝑐0∕(log𝐷), 1 − 𝑘𝑐0∕ log𝐷], Im(𝑠) ∈

[𝑇, 2𝑇], the sum becomes

≪ℎ
𝑥

𝑡2 + 1
+ 𝑥91∕100 +

∑
1⩽𝑘⩽(log𝐷)∕(5𝑐0)

∑
𝑇=2𝑗

𝑗⩾0

𝑥
1−

𝑘𝑐0
log𝐷

𝑁
(
1 −

𝑘𝑐0
log𝐷
, 2𝑇, 𝜒∗

)
𝑇10 + 1

.

The log-free zero-density estimate (see Lemma 7.3) allows us to bound this by

≪ℎ
𝑥

𝑡2 + 1
+ 𝑥91∕100 +

∑
1⩽𝑘⩽(log𝐷)∕(5𝑐0)

∑
𝑇=2𝑗

𝑗⩾0

𝑥
1−

𝑘𝑐0
log𝐷
(𝑞∗)6𝑘𝑐0∕(log𝐷)

𝑇5 + 1
≪ 𝑥

−
𝑐0
2 log𝐷 ,

by the geometric sum formula and the fact that 𝑞∗ ⩽ 𝑥1∕1000. Noting that 𝑥−𝑐0∕(2 log𝐷) ≪ 𝜀100 for|𝑡| ⩽ (log 𝑥)10 ⩽ 𝑞∗ ⩽ 𝑥𝜀, this case has now been handled.
Case4.Weare leftwith the case |𝑡| > (log 𝑥)10, 𝑞∗ ⩾ 2. Since 𝑞∗ = cond(𝜒) ⩽ 𝑥𝜀 by assumption,

we may assume that 2 ⩽ 𝑞∗ ⩽ 𝑥1∕50 000 by selecting 𝜀 smaller if necessary. Since |𝑡| is large, we no
longer need the smoothing factor ℎ(𝑛∕𝑥), and in fact by partial summation (and the fact that ℎ′
is bounded) we see that (26) in the regime under consideration follows once we prove

||| ∑
𝑛⩽𝑥′

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||≪ 𝜀 log3 (1𝜀 )𝑥′ + 𝑥′

(log 𝑥)0.3
(29)

for any 𝑥′ ∈ [𝑥∕2, 4𝑥]. In what follows, for notational convenience we denote 𝑥′ by 𝑥.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 393

Put 𝑦 = (𝑞∗)4𝑉100
𝑋
, so that for 𝑞∗ ⩽ 𝑥1∕50 000 we have 𝑦 ⩽ 𝑥1∕10 000. We define

𝜇𝑦(𝑚) ∶= 𝜇(𝑚)1𝑃−(𝑚)>𝑦,

log𝑦 𝑚 ∶= (log𝑚)1𝑃−(𝑚)>𝑦,

and as in [10, Section 7] we use the convolution identity

Λ(𝑛)1𝑃−(𝑛)>𝑦 = 𝜇𝑦 ∗ log𝑦(𝑛), 𝑛 > 𝑦.

By the prime number theorem, we then see that for any 𝑡 ∈ ℝ we have∑
𝑛⩽𝑥

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡 =
∑
𝑦2<𝑛⩽𝑥

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡 + 𝑂(𝑦2)

=
∑

𝑦2<𝑚𝑑⩽𝑥

𝜇𝑦(𝑚)𝜒(𝑚)𝑚
−𝑖𝑡 log𝑦(𝑑)𝜒(𝑑)𝑑

−𝑖𝑡 + 𝑂(𝑦2 + 𝑥1∕3).

Let 𝑀,𝐷 ∈ [𝑦, 𝑥] be parameters that satisfy 𝑀𝐷 = 𝑥, with 𝐷 ⩽ 𝑥1∕2. Using the hyperbola
method, we have ∑

𝑦2<𝑛⩽𝑥

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡 = 𝑇1 + 𝑇2 + 𝑂(𝑦
2 + 𝑥1∕3),

𝑇1 ∶=
∑
𝑚⩽𝑀

𝜇𝑦(𝑚)𝜒(𝑚)𝑚
−𝑖𝑡

∑
𝑦2∕𝑚<𝑑⩽𝑥∕𝑚

log𝑦(𝑑)𝜒(𝑑)𝑑
−𝑖𝑡

𝑇2 ∶=
∑
𝑑⩽𝐷

log𝑦(𝑑)𝜒(𝑑)𝑑
−𝑖𝑡

∑
𝑦2∕𝑑<𝑚⩽𝑥∕𝑑
𝑚>𝑀

𝜇𝑦(𝑚)𝜒(𝑚)𝑚
−𝑖𝑡.

We first deal with 𝑇2. By Halász’s theorem for rough numbers (Lemma 7.5), for each 𝑑 ⩽ 𝐷 the
inner sum is

≪
𝑥

𝑑

(
(𝑁 + 1)𝑒−𝑁

log 𝑦
+
log log𝑀

log𝑀

)
+
𝑦2

𝑑
,

where we have defined

𝑁 ∶= inf|𝑢|⩽log 𝑥
∑
𝑦<𝑝⩽𝑀

1 − Re(𝜇𝑦(𝑝)𝜒(𝑝)𝑝−𝑖(𝑡+𝑢))
𝑝

.

As 𝐷 ⩽ 𝑥1∕2,𝑀 ⩾ 𝑥1∕2 and 𝜇𝑦(𝑝) = −1𝑝>𝑦 , it follows (as in the proof of Lemma 7.8) that

𝑁 ⩾ inf|𝑢|⩽log 𝑥
∑
𝑦<𝑝⩽𝑥

1 + Re(𝜒(𝑝)𝑝−𝑖(𝑡+𝑢))
𝑝

+ 𝑂(1)

⩾ log
log 𝑥

log 𝑦
+ inf|𝑢|⩽log 𝑥 log |𝐿𝑦(1 + 1∕ log 𝑥 + 𝑖(𝑡 + 𝑢), 𝜒)| + 𝑂(1). (30)

Now since 𝑦 > 𝑞∗𝑉2𝑋 , Lemma 7.2 tells us that

|𝐿𝑦(1 + 1∕ log 𝑥 + 𝑖𝑤, 𝜒)| ≍ 1 (31)
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394 KLURMAN et al.

for 𝜒 complex and |𝑤| ⩽ 2𝑋, or for 𝜒 real and 1 ⩽ |𝑤| ⩽ 2𝑋. Note that since |𝑡| ⩾ (log 𝑥)10 in
(30) by assumption, we have |𝑡 + 𝑢| ⩾ 1 there, and thus (31) holds in any case for 𝑤 = 𝑡 + 𝑢,|𝑢| ⩽ log 𝑥.
The above implies that 𝑁 ⩾ log((log 𝑥)∕(log 𝑦)) − 𝑂(1). Hence, by partial summation and the

estimate
∑
𝑑⩽𝑢 1𝑃−(𝑑)>𝑦 ≪ 𝑢∕(log 𝑦) coming from Selberg’s sieve, we have

𝑇2 ≪
𝑥 log

log 𝑥

log 𝑦

log 𝑥

∑
𝑑⩽𝐷
𝑃−(𝑑)>𝑦

log 𝑑

𝑑
+ (𝑦 log 𝑥)2

≪
𝑥 log

log 𝑥

log 𝑦

log 𝑥

⎛⎜⎜⎜⎝
log𝐷

log 𝑦
+ ∫

𝐷

𝑦

⎛⎜⎜⎜⎝
∑
𝑑⩽𝑢

𝑃−(𝑑)>𝑦

1

⎞⎟⎟⎟⎠ log
(
𝑢

𝑒

)
𝑑𝑢

𝑢2

⎞⎟⎟⎟⎠ + (𝑦 log 𝑥)
2

≪ 𝑥
(log𝐷)2 log

log 𝑥

log 𝑦

(log 𝑥)(log 𝑦)
+ (𝑦 log 𝑥)2,

for all non-principal characters 𝜒 modulo 𝑞 (recalling that 𝑦 ⩽ 𝑥1∕10000).
We next estimate 𝑇1. By partial summation, the inner sum in 𝑇1, for each𝑚 ⩽ 𝑀, is||| ∑

𝑦2∕𝑚<𝑑⩽𝑥∕𝑚
𝑃−(𝑑)>𝑦

(log 𝑑)𝜒(𝑑)𝑑−𝑖𝑡
|||≪ (log 𝑥) max

𝑦⩽𝑢1⩽𝑢2⩽𝑥∕𝑚

||| ∑
𝑢1⩽𝑑⩽𝑢2
𝑃−(𝑑)>𝑦

𝜒(𝑑)𝑑−𝑖𝑡
||| ∶= 𝑅(𝑚).

Recalling that 𝑦 = (𝑞∗)4𝑉100
𝑋
, we apply [31, Lemma 2.4] to the 𝑅(𝑚) terms, obtaining

𝑅(𝑚) ≪
log 𝑥

log 𝑦

(
(𝑥∕𝑚)1−1∕(30 log 𝑦) + (𝑥∕𝑚)1−1∕(100 log𝑉𝑡)

)
,

and since 𝑦 ⩾ 𝑉100𝑡 , the second term can be ignored.
Summing over𝑚 ⩽ 𝑀, and using Selberg’s sieve to bound the number of integers with𝑃−(𝑚) >

𝑦, we conclude that 𝑇1 is bounded by∑
𝑚⩽𝑀
𝑃−(𝑚)>𝑦

|𝑅(𝑚)|≪ 𝑥log 𝑥
log 𝑦

𝑥−1∕(30 log 𝑦)
∑
𝑚⩽𝑀
𝑃−(𝑚)>𝑦

𝑚−1+1∕(30 log 𝑦)

≪ 𝑥

(
log 𝑥

log 𝑦

)2(
𝑥

𝑀

)−1∕(30 log 𝑦)
.

Putting this all together and recalling |𝑡| ⩽ 𝑋, we find that
𝑇1 ≪ 𝑥

(
log 𝑥

log 𝑦

)2(
𝑥

𝑀

)−1∕(30 log 𝑦)
,

𝑇2 ≪ 𝑥
(log(𝑥∕𝑀))2 log

log 𝑥

log 𝑦

(log 𝑥)(log 𝑦)
.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 395

We select 𝑀 = 𝑥∕𝑦1000 log(log 𝑥∕ log 𝑦) ∈ [𝑥1∕2, 𝑥] (so in particular 𝑦 ⩽ 𝑥∕𝑀 = 𝐷 ⩽ 𝑥1∕2, as
required). Then log(𝑥∕𝑀) = 1000 log 𝑦 log( log 𝑥

log 𝑦
) and thus, as 𝑞∗ ⩽ 𝑥1∕10, we have

𝑇1 + 𝑇2 ≪ 𝑥

(
log 𝑦

log 𝑥

)30
+ 𝑥
log 𝑦

log 𝑥
log3

(
log 𝑥

log 𝑦

)
≪ 𝑥

log 𝑦

log 𝑥
log3

(
log 𝑥

log 𝑦

)
.

If 𝑞∗ ⩽ 𝑉𝑋 then log 𝑦 ≪ (log 𝑥)0.694 for large enough 𝑥, and hence the bound reduces to
≪ 𝑥∕(log 𝑥)0.3. On the other hand, if 𝑉𝑋 < 𝑞∗ ⩽ 𝑥𝜀 then the above bound becomes ≪
𝑥
log 𝑞∗

log 𝑥
log3(

log 𝑥

log 𝑞∗
) ≪ 𝜀 log3(1∕𝜀)𝑥. This proves (29), and thus completes the proof of the

lemma. □

8 KEY PROPOSITIONS

The goal of this section is to prove two key propositions, namely Propositions 8.3 and 8.5. For
the proofs of both of these propositions, we will need good bounds on the number of Dirichlet
characters whose 𝐿-functions have a bad zero-free region.
The log-free zero-density estimate is easily employed to yield the following.

Lemma8.1. Let𝑥 ⩾ 10, 𝜀 ∈ ((log 𝑥)−1∕20, 1), and 1∕(log log 𝑥) ⩽ 𝑀 ⩽ 𝜀20 log 𝑥∕(20 log log 𝑥), and
define the set

𝑥,𝜀,𝑀 ∶=
{
𝑞 ⩽ 𝑥 ∶

∏
𝜒 (mod 𝑞)

cond(𝜒)>𝑥𝜀20

𝐿(𝑠, 𝜒) ≠ 0 for Re(𝑠) ⩾ 1 −
𝑀(log log 𝑥)

log 𝑥
, |Im(𝑠)| ⩽ 3𝑥}.

(32)

Then for 1 ⩽ 𝑄 ⩽ 𝑥 we have |[1, 𝑄] ⧵𝑥,𝜀,𝑀|≪ 𝑄𝑥−𝜀20∕2. Moreover, there exists a set 𝑥,𝜀,𝑀 ⊂
[𝑥𝜀

20
, 𝑥] of size≪ (log 𝑥)10𝑀 such that every integer in [1, 𝑥] ⧵𝑥,𝜀,𝑀 is a multiple of some element

of 𝑥,𝜀,𝑀 .
Proof. If𝑄 ⩽ 𝑥𝜀20 , then trivially [1, 𝑄] ∩ ℤ ⊆ 𝑥,𝜀,𝑀 , so there is nothing to be proved. Wemay thus
assume that 𝑄 > 𝑥𝜀20 .
Let

𝑥,𝑀 ∶=
{
𝑞 ⩽ 𝑥 ∶ ∃𝜎 ⩾ 1 −

𝑀 log log 𝑥

log 𝑥
, |𝑡| ⩽ 3𝑥 with

∏
𝜒 (mod 𝑞)
𝜒 primitive

𝐿(𝜎 + 𝑖𝑡, 𝜒) = 0
}
.

By Lemma 7.3, we have

|𝑥,𝑀| ⩽∑
𝑞⩽𝑥

∑∗

𝜒 (mod 𝑞)

𝑁(1 −
𝑀 log log 𝑥

log 𝑥
, 3𝑥, 𝜒) ≪ (𝑥3)

(12∕5+0.1)
𝑀 log log 𝑥

log 𝑥 ≪ (log 𝑥)10𝑀.
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396 KLURMAN et al.

Since 𝐿(𝑠, 𝜒) and 𝐿(𝑠, 𝜒′) have the same zeros in the region Re(𝑠) > 0 if 𝜒 and 𝜒′ are induced
by the same character, we see that every 𝑞 ⩽ 𝑥 with 𝑞 ∉ 𝑥,𝜀,𝑀 is a multiple of some ele-
ment of 𝑥,𝜀,𝑀 ∶= 𝑥,𝑀 ∩ [𝑥𝜀20 , 𝑥], and each such element has ⩽ 𝑄𝑥−𝜀20 + 1 multiples up to 𝑄.
Thus

|[1, 𝑄] ⧵𝑥,𝜀,𝑀|≪ (log 𝑥)10𝑀𝑄𝑥−𝜀20 ≪ 𝑄𝑥−𝜀20∕2,
since𝑀 ⩽ 𝜀20(log 𝑥)∕(20 log log 𝑥), 𝜀 > (log 𝑥)−1∕20, and 𝑄 > 𝑥𝜀20 . □

The next lemma will be a crucial ingredient in the proof of Propositions 8.3 and 8.5.

Lemma 8.2. Let 𝑥 ⩾ 10 and (log 𝑥)−1∕50 ⩽ 𝜀 ⩽ 1. For a character 𝜒 (mod 𝑞), let

𝑢𝜒 =

{
1, 𝜒 principal or 𝜒 real and cond(𝜒) ⩽ 𝑥𝜀20

0, otherwise.
𝑣𝜒 =

{
1, 𝜒 principal
0, otherwise.

Let 𝑞 ∈ 𝑥,𝜀,𝜀−6 .
(i) Uniformly for 𝑥𝜀5.5 ⩽ 𝑃 ⩽ 𝑥, we have

sup
𝜒 (mod 𝑞)

sup
𝜀−10𝑢𝜒⩽|𝑡|⩽2.1𝑥

|||∑
𝑛⩽𝑃

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||≪ 𝜀10𝑃.

(ii) We have

inf
𝜒 (mod 𝑞)

inf
𝑣𝜒√
log 𝑥

⩽|𝑡|⩽2.1𝑥 𝔻𝑞(𝜒(𝑛)𝑛
𝑖𝑡, 1; 𝑥)2 ⩾ 5.5 log

1

𝜀
+ 𝑂(1).

Proof of (i). We may assume that 𝑥 is large enough and that 𝜀 > 0 is small enough.
Suppose first that cond(𝜒) > 𝑥𝜀20 . In that case we shall show the stronger bound

sup|𝑡|⩽2.1𝑥 |||∑𝑛⩽𝑃 Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡|||≪ 𝑃

(log 𝑃)100
. (33)

By Perron’s formula, we have

∑
𝑛⩽𝑃

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡 = −
1

2𝜋𝑖 ∫
1+1∕ log 𝑥+𝑖𝑇

1+1∕ log 𝑥−𝑖𝑇

𝐿′

𝐿
(𝑠 + 𝑖𝑡, 𝜒)

𝑃𝑠

𝑠
𝑑𝑠 + 𝑂

(
𝑃

(log 𝑃)100

)
, (34)

where 𝑇 ∶= (log 𝑥)1000. Recall that by the definition of 𝑥,𝜀,𝜀−6 the function 𝐿(𝑠, 𝜒) has the zero-
free region Re(𝑠) ⩾ 1 − 𝜎0 ∶= 1 − 𝜀−6(log log 𝑥)∕(log 𝑥), |Im(𝑠)| ⩽ 3𝑥. Shift the line of integration
in (34) to Re(𝑠) = 1 − 𝜎0∕2. By [36, Lemma 11.1], we have

|||𝐿′𝐿 (𝑠, 𝜒)|||≪ (log 𝑥)2
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 397

whenever 9∕10 ⩽ Re(𝑠) ⩽ 2, |Im(𝑠)| ⩽ 10𝑥, and the distance from 𝑠 to the nearest zero of 𝐿(⋅, 𝜒)
is ⩾ 1

log 𝑥
. Hence, we obtain for (34) the bound

≪ 𝑃
1−
𝜎0
2 (log 𝑥)2(log log 𝑥) ≪ 𝑃

1−𝜀−1∕2
log log 𝑃

4 log 𝑃 ≪
𝑃

(log 𝑃)100
.

Suppose then that cond(𝜒) ⩽ 𝑥𝜀20 . Then, since cond(𝜒) ⩽ 𝑃𝜀14 , by Lemma 7.9 and Remark 7.2
we have |||∑

𝑛⩽𝑃

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||≪ 𝜀14 log3 (1𝜀 )𝑃 + 𝑃

(log 𝑃)0.3
+

𝑃

1 + |𝑡| ,
where the last term can be deleted if 𝜒 is complex. Since (log 𝑃)−0.3 ⩽ 𝜀10 and by assumption|𝑡| ⩾ 𝜀−10 if 𝜒 is real and cond(𝜒) ⩽ 𝑥𝜀20 , we obtain the desired bound. □

Proof of (ii). Suppose first that 𝜒 is principal. Let 𝑦 = 𝑉10𝑥 in the notation of (18) (in particular,
log 𝑦 ⩾

√
log 𝑥). Note that

∑
𝑝∣𝑞,𝑝⩾𝑦 1∕𝑝 ≪ 1. Then byMertens’ theorem and Lemma 7.1, we have

𝔻𝑞(𝜒(𝑛)𝑛
𝑖𝑡, 1; 𝑥)2 = 𝔻𝑞(𝑛

𝑖𝑡, 1; 𝑥)2 ⩾ log
log 𝑥

log 𝑦
+ Re

( ∑
𝑦<𝑝⩽𝑥

1

𝑝1+𝑖𝑡

)
+ 𝑂(1)

= log
log 𝑥

log 𝑦
+ log

|||||𝐿𝑦
(
1 +

1

log 𝑥
+ 𝑖𝑡, 1

)||||| + 𝑂(1).
Lemma 7.2 tells us that |𝐿𝑦(1 + 1

log 𝑥
+ 𝑖𝑡, 1)| ≍ 1 for 1

log 𝑦
⩽ |𝑡| ⩽ 10𝑥, so we obtain

inf
1√
log 𝑥

⩽|𝑡|⩽10𝑥 𝔻𝑞(𝑛
𝑖𝑡, 1; 𝑥)2 ⩾

(
1

3
− 𝑜(1)

)
log log 𝑥, (35)

which suffices.
If 𝜒 is non-principal (so that 𝑣𝜒 = 0) and cond(𝜒) ⩽ 𝑥𝜀

20 , then Lemma 7.8 gives the desired
bound

𝔻𝑞(𝜒(𝑛)𝑛
𝑖𝑡, 1; 𝑥)2 ⩾

11

40
log

(
log 𝑥

log 𝑥𝜀20

)
+ 𝑂(1) = 5.5 log

1

𝜀
+ 𝑂(1).

We are then left with the case where cond(𝜒) > 𝑥𝜀20 .
Since

∑
𝑝∣𝑞,𝑝>𝑥𝜀5.5

1∕𝑝 ≪ 1, we have

𝔻𝑞(𝜒(𝑛)𝑛
𝑖𝑡, 1; 𝑥)2 ⩾ Re

⎛⎜⎜⎝
∑

𝑥𝜀5.5⩽𝑝⩽𝑥

1 − 𝜒(𝑝)𝑝𝑖𝑡

𝑝

⎞⎟⎟⎠ + 𝑂(1).
By Mertens’ theorem, this is

⩾ 5.5 log
1

𝜀
+ 𝑆 + 𝑂(1),

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12546 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [25/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



398 KLURMAN et al.

where by partial summation

𝑆 ∶=
∑

𝑥𝜀5⩽𝑝⩽𝑥

𝜒(𝑝)𝑝−𝑖𝑡

𝑝
=

1

𝑥 log 𝑥

∑
𝑥𝜀5⩽𝑝⩽𝑥

𝜒(𝑝)(log 𝑝)𝑝−𝑖𝑡

+ ∫
𝑥

𝑥𝜀5

(log 𝑦 + 1)
∑
𝑥𝜀5⩽𝑝⩽𝑦

𝜒(𝑝)(log 𝑝)𝑝−𝑖𝑡

𝑦2 log2 𝑦
𝑑𝑦.

From part (i) we now see that 𝑆 = 𝑂(1), completing the proof. □

Proposition 8.3 (Sup norm bound for twisted sums of a multiplicative function). Let 𝑥 ⩾ 10 and
(log 𝑥)−1∕50 ⩽ 𝜀 ⩽ 1. Let 𝑓∶ ℕ → 𝕌 be a multiplicative function. Let (𝜒1, 𝑡𝜒1) be a point minimizing
the map (𝜒, 𝑡) ↦ 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) among 𝜒 (mod 𝑞) and |𝑡| ⩽ 𝑥.
Let 10 ⩽ 𝑃,𝑄 ⩽ 𝑥 with log𝑄

log 𝑃
⩽ 𝜀−1∕6, and let g ∶ ℕ → [0, 1] be any multiplicative function with

the property that g(𝑝) = 1 for all 𝑝 ∉ [𝑃, 𝑄].
Then, with the notation of Lemma 8.1, for all 𝑞 ∈ 𝑥,𝜀,𝜀−6 we have

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑥∕2 sup
𝑦∈[𝑥0.1,𝑥]

|||1𝑦∑
𝑛⩽𝑦

𝑓(𝑛)g(𝑛)𝜒(𝑛)𝑛−𝑖𝑡|||≪ 𝜀𝜑(𝑞)𝑞 . (36)

In addition, for all 1 ⩽ 𝑍 ⩽ 𝑥 and 1 ⩽ 𝑞 ⩽ 𝑥 we have

sup|𝑡|⩽𝑥|𝑡−𝑡𝜒1 |⩾𝑍
sup

𝑦∈[𝑥0.1,𝑥]

|||1𝑦∑
𝑛⩽𝑦

𝑓(𝑛)g(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡|||≪ 𝜑(𝑞)𝑞

(
(log 𝑥)−1∕15 +

1√
𝑍

)
. (37)

Remark 8.1. For the proofs of Theorem 1.4 and 1.2, we need a version of this proposition where
the supremum over 𝑡 is over the smaller range [−1

2
log 𝑥, 1

2
log 𝑥], and (𝜒1, 𝑡𝜒1) is taken be a min-

imizing point of (𝜒, 𝑡) ↦ 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥) with |𝑡| ⩽ log 𝑥. The same proof applies to this case,
and we can obtain a similar variant of Corollary 8.4 as well.

Remark 8.2. The same arguments as in Subsection 3.3 show that we cannot prove (36) for all
𝑞 ⩽ 𝑥 without settling Vinogradov’s conjecture at the same time. However, in the smaller range of
𝑞 ⩽ 𝑥𝜀

20 there are no exceptional moduli in Proposition 8.3; cf. [3, Lemma 3.1] for a related result
in this range.

Proof. We begin with the first claim. We may assume in what follows that 𝑥 is larger than any
fixed constant and that 𝜀 is smaller than any fixed constant.
Suppose for the sake of contradiction that there is a character𝜒 ≠ 𝜒1 (mod 𝑞) and a real number

𝑡 ∈ [−𝑥∕2, 𝑥∕2] for which

|||∑
𝑛⩽𝑦

𝑓(𝑛)g(𝑛)𝜒(𝑛)𝑛−𝑖𝑡||| ⩾ 𝜀𝜑(𝑞)𝑞 𝑦
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 399

for some 𝑦 ∈ [𝑥0.1, 𝑥]. Owing to 𝜀 > (log 𝑥)−1∕50 and the fact that
∑
𝑦⩽𝑝⩽𝑥

1

𝑝
≪ 1, Lemma 7.4

implies that there is some 𝑣 ∈ [−1
2
log 𝑥, 1

2
log 𝑥] for which

𝔻𝑞(𝑓g , 𝜒(𝑛)𝑛
𝑖(𝑡+𝑣); 𝑥)2 ⩽ 1.001 log

1

𝜀
+ 𝑂(1).

Since 𝑓g(𝑝) = 𝑓(𝑝) for all 𝑝 ∉ [𝑃, 𝑄] we have that

max
𝛼∈ℝ

|𝔻𝑞(𝑓g , 𝜒(𝑛)𝑛𝑖𝛼; 𝑥)2 − 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝛼; 𝑥)2|
= max
𝛼∈ℝ

|||||||||
∑
𝑃⩽𝑝⩽𝑄
𝑝∤𝑞

(1 − g(𝑝))Re(𝑓(𝑝)𝜒(𝑝)𝑝−𝑖𝛼)
𝑝

|||||||||
⩽

∑
𝑃⩽𝑝⩽𝑄

1 − g(𝑝)
𝑝

⩽ log

(
log𝑄

log 𝑃

)
+ 𝑂(1), (38)

and thus as log𝑄 ⩽ 𝜀−1∕6 log 𝑃 we obtain

𝔻𝑞(𝑓, 𝜒(𝑛)𝑛
𝑖(𝑡+𝑣); 𝑥)2 ⩽ 1.17 log(1∕𝜀) + 𝑂(1).

According to the definition of 𝜒1, we also have 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 ; 𝑥)2 ⩽ 1.17 log(1∕𝜀) + 𝑂(1) with

𝑡𝜒1 ∈ [−𝑥, 𝑥]. As such, the pretentious triangle inequality implies that

𝔻𝑞(𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 , 𝜒(𝑛)𝑛𝑖(𝑡+𝑣); 𝑥)2 ⩽

(
𝔻𝑞(𝑓, 𝜒(𝑛)𝑛

𝑖(𝑡+𝑣); 𝑥) + 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 ; 𝑥)

)2
⩽ 5.48 log

1

𝜀
+ 𝑂(1).

But since 𝜒1𝜒 is non-principal, this contradicts Lemma 8.2(ii).
We proceed to the second claim of the proposition. We may assume that 𝑍 ⩾ 2. Suppose |𝑡 −

𝑡𝜒1 | ⩾ 𝑍 and |𝑡| ⩽ 𝑥. Let |𝑢| ⩽ 𝑍∕2, so that 𝑍∕2 ⩽ |𝑡 + 𝑢 − 𝑡𝜒1 | ⩽ 2𝑥. By the definition of 𝑡𝜒1 and
the triangle inequality,

2𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖(𝑡+𝑢); 𝑥) ⩾ 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛

𝑖(𝑡+𝑢); 𝑥) + 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 ; 𝑥)

⩾ 𝔻𝑞(1, 𝑛
𝑖(𝑡+𝑢−𝑡𝜒1 ); 𝑥).

From (35), we see that

inf
1⩽|𝛼|⩽2𝑥 𝔻𝑞(𝑛𝑖𝛼, 1; 𝑥)2 ⩾

(
1

3
− 𝑜(1)

)
log log 𝑥 + 𝑂(1). (39)

Therefore, we conclude that

𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖(𝑡+𝑢); 𝑥)2 ⩾

(
1

12
− 𝑜(1)

)
log log 𝑥.

Using (38) and 𝜀 ⩾ (log 𝑥)−1∕50, we deduce that for 𝑥 sufficiently large,
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400 KLURMAN et al.

𝔻𝑞(𝑓g , 𝜒1(𝑛)𝑛
𝑖(𝑡+𝑢); 𝑥)2 ⩾

(
1

12
− 𝑜(1)

)
log log 𝑥 − log

(
log𝑄

log 𝑃

)
⩾
1

15
log log 𝑥.

Applying the Halász-type bound of Lemma 7.4 with 𝑇 = 𝑍∕2, this yields

|||∑
𝑛⩽𝑦

𝑓(𝑛)g(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡|||≪ 𝜑(𝑞)𝑞

(
(log 𝑥)−1∕15 +

1√
𝑍

)
𝑦,

for every |𝑡| ⩽ 𝑥 satisfying |𝑡 − 𝑡𝜒1 | ⩾ 𝑍, as claimed. □

We will also require a variant of Proposition 8.3 for sums weighted by the factor 1∕(1 +
𝜔[𝑃,𝑄](𝑚)) that arises in the statement of Lemma 6.7.

Corollary 8.4. Let𝑥 ⩾ 𝑅 ⩾ 10, 𝜀 ∈ ((log 𝑥)−1∕50, 1) and (log 𝑥)−0.1 < 𝛼 < 𝛽 < 1, with 𝛽∕𝛼 ⩽ 𝜀−1∕6.
Set 𝑃 = 𝑥𝛼 , 𝑄 = 𝑥𝛽 and for 𝑓∶ ℕ → 𝕌multiplicative consider the twisted character sum

𝑅(𝜒, 𝑠) ∶=
∑

𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)𝜒(𝑚)𝑚−𝑠

1 + 𝜔[𝑃,𝑄](𝑚)
.

Let (𝜒1, 𝑡𝜒1) be a point minimizing the map (𝜒, 𝑡) ↦ 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛
𝑖𝑡; 𝑥) for 𝜒 (mod 𝑞) and |𝑡| ⩽ 𝑥.

Then, with the notation of Lemma 8.1, for 𝑞 ∈ 𝑥,𝜀,𝜀−6 we have

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑥∕2 sup
𝑅∈[𝑥1∕2,𝑥]

1

𝑅
|𝑅(𝜒, 𝑖𝑡)|≪ 𝜀𝜑(𝑞)

𝑞
. (40)

Furthermore, for 1 ⩽ 𝑍 ⩽ (log 𝑥)1∕10 we have

sup|𝑡|⩽𝑥|𝑡−𝑡𝜒1 |⩾𝑍
sup

𝑅∈[𝑥1∕2,𝑥]

1

𝑅
|𝑅(𝜒1, 𝑖𝑡)|≪ 1√

𝑍

𝜑(𝑞)

𝑞
. (41)

Remark 8.3. The case 𝑞 = 1 of the corollary is a variant of [32, Lemma 3].

Proof. We may assume that 𝑥 is larger than any fixed constant, and 𝜀 is smaller than any fixed
constant, since otherwise both results are immediate from the trivial bound |𝑅(𝜒, 𝑖𝑡)| ⩽ |{𝑅 ⩽ 𝑚 ⩽
2𝑅 ∶ (𝑚, 𝑞) = 1}.
The proof of both (40) and (41) rely on the following simple observation: for any𝑚 ⩾ 1we have

1

1 + 𝜔[𝑃,𝑄](𝑚)
= ∫

1

0
𝑟𝜔[𝑃,𝑄](𝑚)𝑑𝑟.

For each 𝑟 ∈ (0, 1] the map g𝑟(𝑚) ∶= 𝑟
𝜔[𝑃,𝑄](𝑚) is a multiplicative function satisfying 0 ⩽ g𝑟 ⩽ 1,

and such that g𝑟(𝑝) = 1 for every prime 𝑝 ∉ [𝑃, 𝑄].
Given 𝜒 (mod 𝑞) and 𝑡 ∈ ℝ, we therefore have

1

𝑅
|𝑅(𝜒, 𝑖𝑡)| = ∫

1

0

(
1

𝑅

∑
𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)g𝑟(𝑚)𝜒(𝑚)𝑚
−𝑖𝑡

)
𝑑𝑟.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 401

With regards to (40) there is thus some 𝑟0 ∈ (0, 1] such that if g = g𝑟0 then

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑥∕2 sup
𝑅∈[𝑥1∕2,𝑥]

1

𝑅
|𝑅(𝜒, 𝑖𝑡)|

⩽ ∫
1

0

⎛⎜⎜⎜⎝ sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑥∕2 sup
𝑅∈[𝑥1∕2,𝑥]

|||||| 1𝑅
∑

𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)g𝑟(𝑚)𝜒(𝑚)𝑚
−𝑖𝑡

||||||
⎞⎟⎟⎟⎠𝑑𝑟

⩽ sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑥∕2 sup
𝑅∈[𝑥1∕2,𝑥]

|||||| 1𝑅
∑

𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)g(𝑚)𝜒(𝑚)𝑚−𝑖𝑡
||||||,

and similarly toward (41) there is some 𝑟1 ∈ (0, 1] such that if g = g𝑟1 then

sup|𝑡|⩽𝑥|𝑡−𝑡𝜒1 |⩾𝑍
sup

𝑅∈[𝑥1∕2,𝑥]

1

𝑅
|𝑅(𝜒1, 𝑖𝑡)| ⩽ sup|𝑡|⩽𝑥|𝑡−𝑡𝜒1 |⩾𝑍

sup
𝑅∈[𝑥1∕2,𝑥]

|||||| 1𝑅
∑

𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)g(𝑚)𝜒1(𝑚)𝑚
−𝑖𝑡

||||||.
The corollary is proved upon applying (36) and (37) of Proposition 8.3, respectively, to each of the
last two estimates. □

Proposition 8.5 (Sharp large values bound for weighted sums of twisted characters). Let
𝑥 ⩾ 10, (log 𝑥)−1∕30 < 𝜀 ⩽ 𝛿 ⩽ 1∕2, and 𝜂 = max{(log 𝑥)−1∕30, 𝜀4}. Let (𝑎𝑝)𝑝 be 1-bounded com-
plex numbers, let  ⊂ [−𝑥, 𝑥] be a well-spaced set, and let  ∶= {(𝜒, 𝑡) ∶ 𝜒 (mod 𝑞), 𝑡 ∈  }.
Define

𝑁𝑞, ∶= sup
𝑥𝜂⩽𝑃⩽𝑥

|||{(𝜒, 𝑡) ∈  ∶ ||| log 𝑃𝛿𝑃 ∑
𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝𝜒(𝑝)𝑝
−𝑖𝑡||| ⩾ 𝜀}|||.

Then, with the notation of Lemma 8.1, for 𝑞 ∈ 𝑥,𝜀,𝜀−6 we have𝑁𝑞, ≪ 𝜀−2𝛿−1. The implied constant
is absolute.

Remark 8.4. For the proof of Theorem 1.4 will only require the special, simpler case  = {0}.
Proof. Wemay assume without loss of generality that 𝜀 > 0 is smaller than any fixed constant. Let
𝑃 ∈ [𝑥𝜂, 𝑥] yield the set of largest cardinality that is counted by 𝑁𝑞, , and let 𝑞, denote the set
of pairs (𝜒, 𝑡) yielding the large values counted by𝑁𝑞, at scale 𝑃. We have, for some unimodular
𝑐𝜒,𝑡,

𝜀𝛿𝑃

log 𝑃
𝑁𝑞, ⩽

∑
(𝜒,𝑡)∈𝑞,

||| ∑
𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝𝜒(𝑝)𝑝
−𝑖𝑡||| = ∑

(𝜒,𝑡)∈𝑞,
𝑐𝜒,𝑡

∑
𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝𝜒(𝑝)𝑝
−𝑖𝑡

=
∑

𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝
∑

(𝜒,𝑡)∈𝑞,
𝑐𝜒,𝑡𝜒(𝑝)𝑝

−𝑖𝑡.

(42)
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402 KLURMAN et al.

Applying the Cauchy–Schwarz and Brun–Titchmarsh inequalities, this is

≪

(
𝛿𝑃

log 𝑃

)1∕2⎛⎜⎜⎝
∑

𝑃⩽𝑝⩽(1+𝛿)𝑃

||| ∑
(𝜒,𝑡)∈𝑞,

𝑐𝜒,𝑡𝜒(𝑝)𝑝
−𝑖𝑡|||2⎞⎟⎟⎠

1∕2

≪

(
𝛿𝑃

log 𝑃

)1∕2⎛⎜⎜⎝
∑

𝑃⩽𝑛⩽(1+𝛿)𝑃

Λ(𝑛)

log 𝑃
||| ∑
(𝜒,𝑡)∈𝑞,

𝑐𝜒,𝑡𝜒(𝑛)𝑛
−𝑖𝑡|||2⎞⎟⎟⎠

1∕2

. (43)

Let ℎ be a smooth function supported on [1∕2, 2]with ℎ(𝑢) = 1 for 𝑢 ∈ [1, 3∕2], and 0 ⩽ ℎ(𝑢) ⩽
1 for all 𝑢.We insert theweight ℎ(𝑛∕𝑃) into the 𝑛 sum in (43) and expand out the square, obtaining
the upper bound

≪

(
𝛿𝑃

(log 𝑃)2

)1∕2⎛⎜⎜⎝
∑

(𝜒1,𝑡1)∈𝑞,

∑
(𝜒2,𝑡2)∈𝑞,

|||∑
𝑛

Λ(𝑛)𝜒1𝜒2(𝑛)𝑛
−𝑖(𝑡1−𝑡2)ℎ

(
𝑛

𝑃

)|||⎞⎟⎟⎠
1∕2

=

(
𝛿𝑃

(log 𝑃)2

)1∕2
(𝑆1 + 𝑆2)

1∕2,

where we let 𝑆1 be the sum over the pairs with cond(𝜒1𝜒2) ⩽ 𝑥𝜀
20 and 𝑆2 be the sum over the pairs

with cond(𝜒1𝜒2) > 𝑥𝜀
20 .

We first treat 𝑆1. If cond(𝜒1𝜒2) ⩽ 𝑥𝜀
20 , then cond(𝜒1𝜒2) ⩽ 𝑃(𝜂

−1∕20𝜀)20 ⩽ 𝑃𝜀
10 , so by Lemma 7.9

(and the fact that𝑥 ⩽ 𝑃𝜂−1 ⩽ 𝑃(log 𝑃)1∕25) for somenon-principal real character 𝜉1 (mod 𝑞)wehave

|||∑
𝑛

Λ(𝑛)𝜒1𝜒2(𝑛)𝑛
−𝑖(𝑡1−𝑡2)ℎ

(
𝑛

𝑃

)|||≪ 𝜀10 log3 (1𝜀 )𝑃 + 𝑃

(log 𝑃)0.3
+
𝑃1𝜒1𝜒2∈{𝜒0,𝜉1}|𝑡1 − 𝑡2|2 + 1 , (44)

with 𝜒0 (mod 𝑞) the principal character.
Since |𝑞, | = 𝑁𝑞, and (log 𝑃)−0.3 ⩽ 𝜀5, summing (44) over (𝜒1, 𝑡1), (𝜒2, 𝑡2) ∈ 𝑞, shows that

the contribution of the characters with small conductor obeys the bound

𝑆1 ≪ 𝜀
5𝑁2𝑞,𝑃 +

∑
(𝜒1,𝑡1)∈𝑞,

∑
𝜒2 (mod 𝑞)

∑
𝑡2∈

𝑃|𝑡1 − 𝑡2|2 + 11𝜒1𝜒2∈{𝜒0,𝜉1}
≪ 𝜀5𝑁2𝑞,𝑃 + 𝑁𝑞,𝑃

∑
𝑘∈ℤ

1

𝑘2 + 1

≪ (𝜀5𝑁2𝑞, +𝑁𝑞, )𝑃,

(45)

where in the second-to-last step we used the fact that  is well spaced.
We then consider the contribution of 𝑆2. By Lemma 8.2(i) and partial summation (and the fact

that 𝑃 ⩾ 𝑥𝜂 ⩾ 𝑥𝜀4), for 𝑞 ∈ 𝑥,𝜀,𝜀−6 , we have

sup
𝜒 (mod 𝑞)

cond(𝜒)>𝑥𝜀20

sup|𝑡|⩽𝑥 |||∑𝑛 Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑃

)|||≪ 𝜀10𝑃. (46)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 403

On the other hand, for 𝜒 principal we use Lemma 7.9 with 𝑞 = 1 and 𝜀 = 1∕ log 𝑃 to estimate

|||∑
𝑛

Λ(𝑛)𝜒(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑃

)||| ⩽ |||∑
𝑛

Λ(𝑛)𝑛−𝑖𝑡ℎ
(
𝑛

𝑃

)||| + 𝑂((log 𝑃)2) ≪ 𝑃

(log 𝑃)0.3
+

𝑃|𝑡|2 + 1 (47)

for |𝑡| ⩽ 𝑥.
Applying (46) or (47) with 𝜒 = 𝜒1𝜒2 and 𝑡 = 𝑡1 − 𝑡2 for each (𝜒1, 𝑡1), (𝜒2, 𝑡2) ∈ 𝑞, counted by

𝑆2, and handling the contributions from these as in (45), we find

𝑆2 ≪ (𝜀
10𝑁2𝑞, +𝑁𝑞, )𝑃.

Combining the bounds on 𝑆1 and 𝑆2 with (42) and (43), we see that

𝜀𝛿𝑃

log 𝑃
𝑁𝑞, ≪ 𝛿

1∕2𝑃

log 𝑃
(𝜀5𝑁𝑞, +𝑁1∕2𝑞, ),

and since 𝜀 ⩽ 𝛿 and 𝜀 > 0 is small enough, we deduce from this that 𝑁𝑞, ≪ 𝜀−2𝛿−1, which was
to be shown. □

Remark 8.5. If in Proposition 8.3 or 8.5 we restrict to a set ′ ⊂ [1, 𝑥] of pairwise coprime moduli
𝑞, then by Lemma 8.1 the sizes of the corresponding sets of exceptional 𝑞 ⩽ 𝑥 are≪ (log 𝑥)10𝜀−6 .
Moreover, under GRH there are no exceptional moduli.

9 VARIANCE IN PROGRESSIONS AND SHORT INTERVALS

9.1 Typical number of prime factors

Before proceeding to the proofs of our main theorems, we elaborate on some observations about
typicalmoduli (in the sense of Definition 1.1) that were made in the introduction.
Let 𝜔[𝑃,𝑄](𝑛) ∶= |{𝑝 ∣ 𝑛 ∶ 𝑝 ∈ [𝑃, 𝑄]}| denote the number of prime factors of 𝑛 belonging to

the interval [𝑃, 𝑄]. Given 𝑦 ⩾ 1, define

Δ(𝑞, 𝑦) ∶= max
𝑧⩾𝑦

𝜔[𝑧,2𝑧](𝑞)

𝑧∕ log 𝑧
, (48)

which gives the maximal relative density of prime divisors of 𝑞 on a dyadic subinterval of [𝑦,∞).
Clearly, if 𝑞 is 𝑦-typical in the sense of Definition 1.1, then Δ(𝑞, 𝑦) ⩽ 1∕50 + 𝑜(1) by the prime
number theorem. Note also that 0 ⩽ Δ(𝑞, 𝑦) ≪ 1 always.

Lemma 9.1 (Density of atypical integers). Let𝑄 ⩾ 1, 𝑦 ⩾ 1. Then the number of 𝑞 ⩽ 𝑄 that are not
𝑦-typical is≪ 𝑄exp(−10−4𝑦). Moreover, if 𝑦 ⩾ 1000(log𝑄) and 𝑄 is large enough, then all 𝑞 ⩽ 𝑄
are 𝑦-typical.

Proof. We may assume that 𝑦 is large enough. Note that by dyadic summation, if

Δ(𝑞, 𝑦) ⩽
1

500
,
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404 KLURMAN et al.

then 𝑞 is 𝑦-typical. The second claim of the lemma follows directly from this and the estimate
𝜔(𝑞) ⩽ (1 + 𝑜(1))(log 𝑞)∕(log log 𝑞).
We are left with the first claim. Observe that for any fixed 𝑐 > 0, by the union bound we have

|{𝑞 ⩽ 𝑄 ∶ Δ(𝑞, 𝑦) > 𝑐}| ⩽ ∑
2𝑗⩾𝑦

|||{𝑞 ⩽ 𝑄 ∶ 𝜔[2𝑗−1,2𝑗](𝑛) ⩾ 𝑐 ⋅ 2𝑗

5 log(2𝑗)

}|||
⩽

∑
2𝑗⩾𝑦

∑
⊂ℙ∩[2𝑗−1,2𝑗]||⩾𝑐⋅2𝑗∕(5 log(2𝑗))

|||{𝑞 ⩽ 𝑄 ∶ ∏
𝑝∈
𝑝 ∣ 𝑞

}|||
≪

∑
2𝑗⩾𝑦

22
𝑗∕(log(2𝑗)) ⋅ 𝑄𝑒−𝑐⋅2

𝑗−1∕5

≪ 𝑄𝑒−𝑐𝑦∕20.

Applying this with 𝑐 = 1∕500, we obtain the claim. □

From Lemma 9.1, we deduce the claims made before Theorem 1.3 that all 𝑞 ⩽ 𝑥 are (𝑥∕𝑄)𝜀2 -
typical if 𝑄 = 𝑜(𝑥∕(log 𝑥)1∕𝜀2) and otherwise the number of 𝑞 ⩽ 𝑥 that are not (𝑥∕𝑄)𝜀2 -typical is
≪ exp(−10−4(𝑥∕𝑄)𝜀

2
).

9.2 Parseval-type bounds

We reduce the proofs of Corollary 1.1 and Theorems 1.4 and 1.5 to 𝐿2 bounds for (twisted) character
sums.

Proposition 9.2. Let 1 ⩽ 𝑄 ⩽ 𝑥∕10 and (log(𝑥∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1, and let𝑓∶ ℕ → 𝕌 bemultiplica-
tive. Let 𝜒1 be a character (mod 𝑞)minimizing the distance inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑥). Then, with
the notation of Lemma 8.1, for 𝑞 ∈ 𝑥,𝜀6,𝜀−80 ∩ [1, 𝑄] we have

∑
𝜒 (mod 𝑞)
𝜒≠𝜒1

|||∑
𝑛⩽𝑥

𝑓(𝑛)𝜒(𝑛)
|||2 ≪ 𝜀1−3Δ(𝑞,(𝑥∕𝑄)𝜀)

(
𝜑(𝑞)

𝑞
𝑥

)2
. (49)

Moreover, assuming GRH, (49) holds for all 𝑞 ∈ [1, 𝑄].

Regarding Corollary 1.1, we in fact prove the following generalization.

Theorem 9.3. Let ′ ⊂ [1, 𝑄] be any set of pairwise coprime numbers. Corollary 1.1 continues to
hold if the moduli 𝑝, rather than being prime, are taken to be (𝑥∕𝑄)𝜀2 -typical elements of ′, and if
the right-hand side of (5) is replaced with 𝜀𝜑(𝑝)(𝑥∕𝑝)2.

Deduction of Theorems 9.3, 1.4 from Proposition 9.2. We apply Proposition 9.2 with 𝜀1.1 in place
of 𝜀. We haveΔ(𝑞, (𝑥∕𝑄)𝜀1.1 ) ⩽ 1∕50 + 𝑜(1) by the assumption that 𝑞 is (𝑥∕𝑄)𝜀2 -typical. Therefore,
(𝜀1.1)1−3Δ(𝑞,(𝑥∕𝑄)

𝜀1.1 ) ≪ 𝜀1.1⋅(1−3∕50+𝑜(1)) ≪ 𝜀.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 405

By orthogonality of Dirichlet characters, we have the Parseval-type identity

1

𝜑(𝑞)

∑
𝜒 (mod 𝑞)
𝜒∉Ξ

|||∑
𝑛⩽𝑥

𝑓(𝑛)𝜒(𝑛)
|||2 = ∑∗

𝑎(𝑞)

||| ∑
𝑛⩽𝑥
𝑛≡𝑎(𝑞)

𝑓(𝑛) −
∑
𝜒∈Ξ

𝜒(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒(𝑛)
|||2

for any Ξ ⊂ {𝜒 (mod 𝑞)}. Each of the claimed results follows from this, as the corresponding
bounds for exceptional moduli in each theorem may be deduced from Lemma 8.1 (see also
Remark 8.5): for any 1 ⩽ 𝑄 ⩽ 𝑥 we have |[1, 𝑄] ⧵𝑥,(𝜀1.1)6,(𝜀1.1)−80 |≪ 𝑄𝑥−𝜀200 , while if ′ ⊂ [1, 𝑥]
is a set of pairwise coprime numbers then |′ ⧵𝑥,(𝜀1.1)6,(𝜀1.1)−80 |≪ (log 𝑥)𝜀−100 .
Finally, assuming GRH, each of the claims holds without exception.

Similarly, we will deduce Theorem 1.5 from the following proposition.

Proposition 9.4. Let 1 ⩽ 𝑄 ⩽ ℎ∕10 and (log(ℎ∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1, and let 𝑓∶ ℕ → 𝕌 be multi-
plicative. Let 𝜒1 be a character (mod 𝑞) minimizing the distance inf |𝑡|⩽𝑋 𝔻𝑞(𝑓, 𝜒(𝑛)𝑛𝑖𝑡; 𝑋), and let
𝑡𝜒1 ∈ [−𝑋,𝑋] be a point that minimizes 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛

𝑖𝑡; 𝑋). Let 𝑍𝜒1 = 𝜀
−10 and 𝑍𝜒 = 0 for 𝜒 ≠ 𝜒1.

Then, with the notation of Lemma 8.1, for all 𝑞 ∈ 𝑋,𝜀6,𝜀−80 ∩ [1, 𝑄] and for 𝑇 = (𝑋∕ℎ)(ℎ∕𝑄)0.01𝜀,
we have

∑
𝜒 (mod 𝑞)

∫|𝑡−𝑡𝜒|⩾𝑍𝜒|𝑡|⩽𝑇
||| ∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||2 𝑑𝑡 ≪ 𝜀1−3Δ(𝑞,(ℎ∕𝑄)𝜀)

(
𝜑(𝑞)

𝑞
𝑋

)2
.

Moreover, assuming either the GRH or that 𝑄 ⩽ 𝑋𝜀150 , the exceptional set of 𝑞 vanishes.

Deduction of Theorem 1.5 from Proposition 9.4. We use Proposition 9.4 with 𝜀1.1 in place of 𝜀.
By Lemma 7.7, for 𝑥 ∈ [𝑋, 2𝑋] the second term inside the square in (9) is

𝜒1(𝑎)

𝜑(𝑞)
⋅
1

2𝜋 ∫
𝑡𝜒1+𝜀

−11

𝑡𝜒1−𝜀
−11

( ∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡

)
(𝑥 + ℎ)𝑖𝑡 − 𝑥𝑖𝑡

𝑖𝑡
𝑑𝑡 + 𝑂

(
𝜀11∕2

ℎ

𝑞

)
.

Let us call the main term here(𝑋; 𝑥, 𝑞, 𝑎).
By the Cauchy–Schwarz inequality, this implies that (9) is

≪
∑∗

𝑎 (mod 𝑞)
∫
2𝑋

𝑋

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −(𝑋; 𝑥, 𝑞, 𝑎)|||2𝑑𝑥 + 𝜀𝑋𝜑(𝑞)
(
ℎ

𝑞

)2
.

We will now show that the following Parseval-type bound holds: for 1 ⩽ 𝑞 ⩽ ℎ ⩽ 𝑋, we have

∑∗

𝑎 (mod 𝑞)
∫
2𝑋

𝑋

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −(𝑋; 𝑥, 𝑞, 𝑎)|||2𝑑𝑥 ≪ max𝑇⩾𝑋∕ℎ

ℎ

𝑇𝜑(𝑞)

∑
𝜒 (mod 𝑞)

∫|𝑡−𝑡𝜒 |⩾𝑍𝜒|𝑡|⩽𝑇 |𝐹(𝜒, 𝑖𝑡)|2𝑑𝑡,
(50)

where 𝐹(𝜒, 𝑠) ∶=
∑
𝑛⩽3𝑋 𝑓(𝑛)𝜒(𝑛)𝑛

−𝑠 and 𝑍𝜒 = 𝜀−11 if 𝜒 = 𝜒1 and 𝑍𝜒 = 0 otherwise.
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406 KLURMAN et al.

Once we have this, the case where themaximum in (50) is attained with 𝑇 ⩾ 𝑋∕ℎ ⋅ (ℎ∕𝑄)0.01𝜀1.1

can be bounded using Lemma 6.2 as

≪ ℎ

(
1 +

𝑋

𝑞𝑇

)
𝜑(𝑞)

𝑞
𝑋 ⩽

(
1

ℎ∕𝑄
+
𝑋

𝑇ℎ

)
𝜑(𝑞)

𝑞2
𝑋ℎ2 ≪ 𝜀

𝜑(𝑞)

𝑞2
𝑋ℎ2,

since (log ℎ∕𝑄)−1∕200 ⩽ 𝜀1.1 certainly implies (ℎ∕𝑄)−0.01𝜀1.1 ≪ 𝜀. This contribution is small enough
for Theorem 1.5. If instead 𝑇 ∈ [𝑋∕ℎ, 𝑋∕ℎ ⋅ (ℎ∕𝑄)0.01𝜀1.1 ], we have ℎ

𝑇𝜑(𝑞)
≪ ℎ2

𝜑(𝑞)𝑋
, so the bound of

Proposition 9.4 (with 𝜀1.1 in place of 𝜀) suffices.
The proof of (50) follows closely that of [32, Lemma 14] (here we choose to work on the 0-line

rather than on the 1-line for convenience, though). Let us write 𝜒 ∶= (𝑡𝜒 − 𝑍𝜒, 𝑡𝜒 + 𝑍𝜒], where
𝑍𝜒 is as above. Recall that 𝜒 = ∅ if 𝜒 ≠ 𝜒1. We note first of all that†∑

𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −(𝑋; 𝑥, 𝑞, 𝑎)

=
∑

𝜒 (mod 𝑞)

𝜒(𝑎)

𝜑(𝑞)

( ∑
𝑥<𝑛⩽𝑥+ℎ

𝑓(𝑛)𝜒(𝑛) −
1

2𝜋 ∫𝜒 𝐹(𝜒, 𝑖𝑡)
(𝑥 + ℎ)𝑖𝑡 − 𝑥𝑖𝑡

𝑖𝑡
𝑑𝑡

)
,

so that by orthogonality of Dirichlet characters we find∑∗

𝑎 (mod 𝑞)

||| ∑
𝑥<𝑛⩽𝑥+ℎ
𝑛≡𝑎 (mod 𝑞)

𝑓(𝑛) −(𝑋; 𝑥, 𝑞, 𝑎)|||2

=
1

𝜑(𝑞)

∑
𝜒 (mod 𝑞)

||| ∑
𝑥<𝑛⩽𝑥+ℎ

𝑓(𝑛)𝜒(𝑛) −
1

2𝜋𝑖 ∫𝜒 𝐹(𝜒, 𝑖𝑡)
(𝑥 + ℎ)𝑖𝑡 − 𝑥𝑖𝑡

𝑡
𝑑𝑡

|||2.
Now, by Perron’s formula (taking the line of integration Re(𝑠) = 𝑐 → 0+ since 𝑃𝑓𝜒 is finitely

supported), whenever 𝑥, 𝑥 + ℎ are not integers, for each 𝜒 we have

∑
𝑥<𝑛⩽𝑥+ℎ

𝑓(𝑛)𝜒(𝑛) =
1

2𝜋𝑖 ∫
∞

−∞
𝐹(𝜒, 𝑖𝑡)

(𝑥 + ℎ)𝑖𝑡 − 𝑥𝑖𝑡

𝑡
𝑑𝑡,

so that, if  is the expression on the left-hand side of (50), we have

 = 1

𝜑(𝑞)

∑
𝜒 (mod 𝑞)

∫
2𝑋

𝑋

||| 12𝜋𝑖 ∫ℝ∖𝜒 𝐹(𝜒, 𝑖𝑡) (𝑥 + ℎ)
𝑖𝑡 − 𝑥𝑖𝑡

𝑡
𝑑𝑡

|||2𝑑𝑥.
Repeating the trick at the bottom of [32, p. 22], we can find some point 𝑢 ∈ [−3ℎ∕𝑋, 3ℎ∕𝑋] for

which

≪ 1

𝜑(𝑞)

∑
𝜒 (mod 𝑞)

∫
2𝑋

𝑋

|||∫ℝ∖𝜒 𝐹(𝜒, 𝑖𝑡)𝑥𝑖𝑡 (1 + 𝑢)
𝑖𝑡 − 1

𝑡
𝑑𝑡

|||2𝑑𝑥.
†Here the integral is interpreted as zero if 𝜒 is empty.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 407

The rest of the proof of (50) then follows that of [32, Lemma 14] almost verbatim (adding a smooth
weight to the 𝑥 integral, expanding the square and swapping the order of integration).

9.3 Proof of hybrid theorem

Wemay of course assume in what follows that ℎ∕𝑄 is larger than any given absolute constant and
that 𝜀 > 0 is smaller than any given positive constant.
We have shown that to prove Theorem 1.5 it is enough to prove Proposition 9.4, that is, that

∑
𝜒 (mod 𝑞)

∫|𝑡−𝑡𝜒|⩾𝑍𝜒|𝑡|⩽𝑇 |𝐹(𝜒, 𝑖𝑡)|2𝑑𝑡 ≪ 𝜀1−3Δ(𝑞,(ℎ∕𝑄)𝜀)(𝜑(𝑞)
𝑞
𝑋

)2
(51)

for 𝑇 = (𝑋∕ℎ)(ℎ∕𝑄)0.01𝜀, where

𝐹(𝜒, 𝑠) ∶=
∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑠.

As in [32], we restrict the support of 𝐹(𝜒, 𝑠) to integers with typical factorization. Define
a “well-factorable” set  as follows. For 1 ⩽ 𝑄 ⩽ ℎ∕10, 𝜀 ∈ ((log ℎ

𝑄
)−1∕200, 1) and 2 ⩽ 𝑗 ⩽ 𝐽 − 1,

set

𝑃1 = 𝑄
𝜀
1, 𝑄1 = ℎ∕𝑄,

𝑃𝑗 = exp
(
𝑗4𝑗(log𝑄1)

𝑗−1 log 𝑃1
)
, 𝑄𝑗 = exp

(
𝑗4𝑗+2(log𝑄1)

𝑗
)
,

𝑃𝐽 = 𝑋
𝜀2 , 𝑄𝐽 = 𝑋

𝜀,

with 𝐽 ⩾ 2 being chosen minimally subject to the constraint 𝐽4𝐽+2(log𝑄1)𝐽 > (log𝑋)1∕2. (If 𝐽 = 2,
only use the definitions of 𝑃1, 𝑄1, 𝑃𝐽, 𝑄𝐽 .)
Then let

 ∶= {𝑛 ⩽ 𝑥 ∶ 𝜔[𝑃𝑖,𝑄𝑖](𝑛) ⩾ 1 ∀1 ⩽ 𝑖 ⩽ 𝐽}.

One sees that for 2 ⩽ 𝑗 ⩽ 𝐽 the inequalities

log log𝑄𝑗

log 𝑃𝑗−1 − 1
⩽
𝜂

4𝑗2
,
𝜂

𝑗2
log 𝑃𝑗 ⩾ 8 log𝑄𝑗−1 + 16 log 𝑗 (52)

hold for fixed 𝜂 ∈ (0, 1) and large enough ℎ∕𝑄 (the 𝑗 = 2 case follows from the assumption
log(ℎ∕𝑄) > 𝜀−100, and for the 𝑗 = 𝐽 case it is helpful to note that 𝐽 ≪ log log𝑋 and 𝑃𝐽−1 ≫
exp((log log𝑋)10) if 𝐽 ⩾ 3), and thus the 𝑃𝑗 , 𝑄𝑗 satisfy all the same requirements as in [32]. A
simple sieve upper bound shows that

|[1, 3𝑋] ⧵ |≪∑
𝑗⩽𝐽

𝑋
log 𝑃𝑗

log𝑄𝑗
≪ 𝑋

log 𝑃1
log𝑄1

∑
𝑗⩾1

1

𝑗2
≪ 𝜀𝑋.
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408 KLURMAN et al.

We next define

𝐻1 = 𝐻𝐽 = 𝐻 ∶= ⌊𝜀−1⌋, 𝐻𝑗 ∶= 𝑗2𝑃0.11 for 2 ⩽ 𝑗 ⩽ 𝐽 − 1;

𝑗 ∶= [⌊𝐻𝑗 log 𝑃𝑗⌋, 𝐻𝑗 log𝑄𝑗];
𝑄𝑣,𝐻𝑗 (𝜒, 𝑠) ∶=

∑
𝑒
𝑣∕𝐻𝑗⩽𝑝<𝑒

(𝑣+1)∕𝐻𝑗

𝑓(𝑝)𝜒(𝑝)𝑝−𝑠 for 𝑣 ∈ 𝑗;

𝑅𝑣,𝐻𝑗 (𝜒, 𝑠) ∶=
∑

𝑚⩽3𝑋𝑒
−𝑣∕𝐻𝑗

𝑓(𝑚)𝜒(𝑚)𝑚−𝑠

1 + 𝜔[𝑃𝑗,𝑄𝑗](𝑚)
for 𝑣 ∈ 𝑗 .

We split the set

 ∶= {(𝜒, 𝑡) ∈ {𝜒 (mod 𝑞)} × [−𝑋,𝑋] ∶ |𝑡 − 𝑡𝜒| ⩾ 𝑍𝜒, |𝑡| ⩽ 𝑇}
as  = ⋃

𝑗⩽𝐽−1 𝑗 ∪ with

1 = {(𝜒, 𝑡) ∈  ∶ |𝑄𝑣,𝐻1(𝜒, 𝑖𝑡)| ⩽ 𝑒(1−𝛼1)𝑣∕𝐻1 ∀𝑣 ∈ 1},
𝑗 = {(𝜒, 𝑡) ∈  ∶ |𝑄𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)| ⩽ 𝑒(1−𝛼𝑗)𝑣∕𝐻𝑗 ∀𝑣 ∈ 𝑗} ⧵

⋃
𝑖⩽𝑗−1

𝑖 , 2 ⩽ 𝑗 ⩽ 𝐽 − 1,

 =  ⧵ ⋃
𝑖⩽𝐽−1

𝑖 ,

where we take

𝛼𝑗 =
1

4
− 𝜂

(
1 +

1

2𝑗

)
, 𝜂 = 0.01.

We may of course write, for some (possibly empty) sets 𝑗,𝜒 ⊂ [−𝑇, 𝑇],
𝑗 =

⋃
𝜒 (mod 𝑞)

{𝜒} × 𝑗,𝜒.

By Lemma 6.7, for each 1 ⩽ 𝑗 ⩽ 𝐽 − 1 we have

∑
𝜒 (mod 𝑞)

∫𝑗,𝜒
||| ∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒(𝑛)𝑛−𝑖𝑡
|||2𝑑𝑡

≪ 𝐻𝑗 log
𝑄𝑗

𝑃𝑗

∑
𝑣∈𝑗

∑
𝜒 (mod 𝑞)

∫𝑗,𝜒 |𝑄𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)|2|𝑅𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡

+

(
𝜑(𝑞)

𝑞
𝑋

)2⎛⎜⎜⎜⎜⎝
1

𝐻𝑗
+
1

𝑃𝑗
+

∏
𝑃𝑗⩽𝑝⩽𝑄𝑗
𝑝∤𝑞

(
1 −
1

𝑝

)⎞⎟⎟⎟⎟⎠
,

the integrals here being interpreted as zero if 𝑗,𝜒 = ∅. By our choices of 𝑃𝑗 and𝐻𝑗 , the error terms
involving 1∕𝐻𝑗 or 1∕𝑃𝑗 are ≪ 𝜀(𝜑(𝑞)∕𝑞 ⋅ 𝑋)2 when summed over 𝑗 ⩽ 𝐽 − 1, since log(ℎ∕𝑄) ⩾
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 409

𝜀−100 by assumption. After summing over 𝑗 ⩽ 𝐽 − 1, the error terms involving
∏
𝑃𝑗⩽𝑝⩽𝑄𝑗
𝑝∤𝑞

(1 − 1
𝑝
)

contribute

≪

(
𝜑(𝑞)

𝑞
𝑋

)2 ∑
𝑗⩽𝐽−1

log 𝑃𝑗

log𝑄𝑗

∏
𝑝∣𝑞

𝑃𝑗⩽𝑝⩽𝑄𝑗

(
1 +
1

𝑝

)
≪

(
𝜑(𝑞)

𝑞
𝑋

)2 ∑
𝑗⩽𝐽−1

𝜀

𝑗2

∏
𝑝∣𝑞

𝑃𝑗⩽𝑝⩽𝑄𝑗

(
1 +
1

𝑝

)
.

In terms of the Δ(⋅) function defined in (48), for 𝑗 ⩽ 𝐽 − 1 we have

∏
𝑝∣𝑞

𝑃𝑗⩽𝑝⩽𝑄𝑗

(
1 +
1

𝑝

)
≪ exp

⎛⎜⎜⎜⎜⎝
∑
𝑝∣𝑞

𝑃𝑗⩽𝑝⩽𝑄𝑗

1

𝑝

⎞⎟⎟⎟⎟⎠
≪ exp

⎛⎜⎜⎝
∑

2𝑘∈[𝑃𝑗∕2,𝑄𝑗]

Δ(𝑞, 𝑃1)

log(2𝑘)

⎞⎟⎟⎠
≪

(
log𝑄𝑗

log 𝑃𝑗

) 1
log 2
Δ(𝑞,𝑃1)

≪ (𝑗2𝜀−1)
1
log 2
Δ(𝑞,𝑃1).

Hence, onmultiplying by 𝜀∕𝑗2 and summing over 𝑗 ⩽ 𝐽 − 1, forΔ(𝑞, 𝑃1) ⩽ 1∕3, we get a contribu-
tion of≪ 𝜀1−3Δ(𝑞,𝑃1), which is the desired savings (the 𝑗 sum converges since 2( 1

3 log 2
− 1) < −1).

For Δ(𝑞, 𝑃1) > 1∕3, in turn, we simply use the triangle inequality to note that the trivial bound
≪ (𝜑(𝑞)∕𝑞 ⋅ 𝑋)2 for (51) coming from Lemma 6.2 (after forgetting the condition |𝑡 − 𝑡𝜒| ⩾ 𝑍𝜒) is
good enough.
Using the assumption defining 𝑗 , we have

𝐻𝑗 log
𝑄𝑗

𝑃𝑗

∑
𝑣∈𝑗

∑
𝜒 (mod 𝑞)

∫𝑗,𝜒 |𝑄𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)|2|𝑅𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡
≪ 𝐻𝑗 log

𝑄𝑗

𝑃𝑗

∑
𝑣∈𝑗
𝑒(2−2𝛼𝑗)𝑣∕𝐻𝑗

∑
𝜒 (mod 𝑞)

∫𝑗,𝜒 |𝑅𝑣,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡 =∶ 𝐸𝑗.
It thus remains to bound 𝐸𝑗 for 1 ⩽ 𝑗 ⩽ 𝐽 − 1, as well as the contributions from the pairs (𝜒, 𝑡) ∈
 .
Case of1. For the pairs in1, we crudely extend the 𝑡-integral to [−𝑇, 𝑇] and apply Lemma 6.2

to arrive at

𝐸1 ≪ 𝐻1 log
𝑄1
𝑃1

∑
𝑣∈1
𝑒(2−2𝛼1)𝑣∕𝐻1

(
𝜑(𝑞)

𝑞
𝑋𝑒−𝑣∕𝐻1 + 𝜑(𝑞)𝑇

)
⋅
𝜑(𝑞)

𝑞
𝑋𝑒−𝑣∕𝐻1

≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝐻1 log𝑄1 ⋅

∑
𝑣∈1
𝑒−2𝛼1𝑣∕𝐻1

≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝐻1 log𝑄1 ⋅

1

𝑃
2𝛼1
1

⋅
1

1 − 𝑒−2𝛼1∕𝐻1

≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝑃−0.11 𝐻21,
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410 KLURMAN et al.

where on the second line we used 𝑋𝑒−𝑣∕𝐻 ⩾ 𝑋∕𝑄1 ⩾ 𝑞𝑇 by the assumptions 𝑇 = (𝑋∕ℎ) ⋅ 𝑃0.011
and 𝑄1 ⩽ ℎ∕(𝑄𝑃0.011 ). We see that the contribution of 𝐸1 is small enough, since 𝐻1 ≪ 𝜀−1 and
𝑃−0.1
1
= (ℎ∕𝑄)−0.1𝜀 ≪ 𝜀10.

Case of 𝑗 . Let 2 ⩽ 𝑗 ⩽ 𝐽 − 1. We partition
𝑗 =

⋃
𝑟∈𝑗−1

𝑗,𝑟,

where 𝑗,𝑟 is the set of (𝜒, 𝑡) ∈ 𝑗 such that 𝑟 is the minimal index in 𝑗−1 with |𝑄𝑟,𝐻𝑗−1(𝜒, 𝑖𝑡)| >
𝑒(1−𝛼𝑗−1)𝑟∕𝐻𝑗−1 . Letting 𝑟0 ∈ 𝑗−1 and 𝑣0 ∈ 𝑗 denote the choices of 𝑟 and 𝑣, respectively, with
maximal contribution, we obtain

𝐸𝑗 ≪ 𝐻𝑗(log𝑄𝑗)|𝑗||𝑗−1|
⋅

∑
𝜒 (mod 𝑞)

𝑒(2−2𝛼𝑗)𝑣0∕𝐻𝑗 ∫
𝑇

−𝑇

(|𝑄𝑟0,𝐻𝑗−1(𝜒, 𝑖𝑡)|∕𝑒(1−𝛼𝑗−1)𝑟0∕𝐻𝑗−1)2𝓁𝑗,𝑟0 |𝑅𝑣0,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡,
where 𝓁𝑗,𝑟0 ∶= ⌈ 𝑣0∕𝐻𝑗

𝑟0∕𝐻𝑗−1
⌉ > 1.

Using |𝑗−1| ⩽ |𝑗|≪ 𝐻𝑗 log𝑄𝑗 , this becomes
𝐸𝑗 ≪

(
𝐻𝑗 log𝑄𝑗

)3
𝑒(2−2𝛼𝑗)𝑣0∕𝐻𝑗−(2−2𝛼𝑗−1)𝓁𝑗,𝑟0 𝑟0∕𝐻𝑗−1

×
∑

𝜒 (mod 𝑞)
∫
𝑇

−𝑇
|𝑄𝑟0,𝐻𝑗−1(𝜒, 𝑖𝑡)𝓁𝑗,𝑟0 𝑅𝑣0,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡.

We apply Lemma 6.6 to obtain

∑
𝜒 (mod 𝑞)

∫
𝑇

−𝑇
|𝑄𝑟0,𝐻𝑗−1(𝜒, 𝑖𝑡)𝓁𝑗,𝑟0 𝑅𝑣0,𝐻𝑗 (𝜒, 𝑖𝑡)|2𝑑𝑡 ≪ (

𝜑(𝑞)

𝑞
𝑋𝑒𝑟0∕𝐻𝑗−12𝓁𝑗,𝑟0

)2
((𝓁𝑗,𝑟0 + 1)!)

2.

We have 𝓁𝑗,𝑟0 ⩾
𝑣0∕𝐻𝑗

𝑟0∕𝐻𝑗−1
, whence using 2𝓁(𝓁 + 1)! ≪ 𝓁𝓁 we get

𝐸𝑗 ≪ (𝐻𝑗 log𝑄𝑗)
3

(
𝜑(𝑞)

𝑞
𝑋𝑒𝑟0∕𝐻𝑗−1

)2
𝑒2(𝛼𝑗−1−𝛼𝑗)𝑣0∕𝐻𝑗+2𝓁𝑗,𝑟0 log𝓁𝑗,𝑟0 . (53)

Since 𝓁𝑗,𝑟0 ⩽
𝑣0∕𝐻𝑗

𝑟0∕𝐻𝑗−1
+ 1 and 𝑟0∕𝐻𝑗−1 ⩾ log 𝑃𝑗−1 − 1, 𝑣0∕𝐻𝑗 ⩽ log𝑄𝑗 , we have

𝓁𝑗,𝑟0 log𝓁𝑗,𝑟0 ⩽
𝑣0
𝐻𝑗

log log𝑄𝑗

log 𝑃𝑗−1 − 1
+ log log𝑄𝑗 + 1.

Thus, (53) is

≪

(
𝜑(𝑞)

𝑞
𝑋𝑒𝑟0∕𝐻𝑗−1

)2
𝐻3
𝑗
(log𝑄𝑗)

5 exp

((
2
log log𝑄𝑗

log 𝑃𝑗−1 − 1
+ 2(𝛼𝑗−1 − 𝛼𝑗)

)
𝑣0∕𝐻𝑗

)
.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 411

By (52) and the choice of the 𝛼𝑗 , we have the inequalities

log log𝑄𝑗−1

log 𝑃𝑗 − 1
⩽
𝜂

4𝑗2
, 𝛼𝑗−1 − 𝛼𝑗 ⩽ −

𝜂

2𝑗2
, log𝑄𝑗 ⩽ 𝑄

1∕24

𝑗−1
,

so we get

𝐸𝑗 ≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝐻3
𝑗
(log𝑄𝑗)

5𝑄2𝑗−1𝑃
−
𝜂

2𝑗2

𝑗

≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝑗6𝑃0.31 𝑄

2+5∕24

𝑗−1
𝑃
−
𝜂

2𝑗2

𝑗

≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝑗6𝑄3

𝑗−1
𝑃
−
𝜂

2𝑗2

𝑗
.

Again by (52), we have the inequality

𝜂

𝑗2
log 𝑃𝑗 ⩾ 8 log𝑄𝑗−1 + 16 log 𝑗,

so

𝐸𝑗 ≪

(
𝜑(𝑞)

𝑞
𝑋

)2
1

𝑗2𝑄𝑗−1
≪

(
𝜑(𝑞)

𝑞
𝑋

)2
1

𝑗2𝑃1
.

Summing over 𝑗 gives

∑
2⩽𝑗⩽𝐽−1

𝐸𝑗 ≪

(
𝜑(𝑞)

𝑞
𝑋

)2
𝑃−11 ,

and this is acceptable. It remains to deal with .
Case of . Let us write

 = ⋃
𝜒 (mod 𝑞)

{𝜒} × 𝜒.

By Lemma 6.7 and the definitions of 𝑃𝐽 , 𝑄𝐽 and𝐻 ∶= 𝐻𝐽 , we have∑
𝜒 (mod 𝑞)

∫𝜒 |𝐹(𝜒, 𝑖𝑡)|2𝑑𝑡 ≪ 𝐻 log 𝑄𝐽𝑃𝐽
∑
𝑣∈𝐽

∑
𝜒 (mod 𝑞)

∫𝜒 |𝑄𝑣,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣,𝐻(𝜒, 𝑖𝑡)|2𝑑𝑡
+

(
𝜑(𝑞)

𝑞
𝑋

)2⎛⎜⎜⎜⎝
1

𝐻
+
1

𝑃𝐽
+ 𝜀

∏
𝑃𝐽⩽𝑝⩽𝑄𝐽
𝑝∣𝑞

(
1 +
1

𝑝

)⎞⎟⎟⎟⎠.
(54)
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412 KLURMAN et al.

Since 𝐻 = ⌊𝜀−1⌋ and ∏
𝑃𝐽⩽𝑝⩽𝑄𝐽
𝑝∣𝑞

(1 + 1
𝑝
) ≪ 𝜀−3Δ(𝑞,𝑃1) (similar to the 𝑗 case), the terms on the

second line of (54) contribute≪ 𝜀1−3Δ(𝑞,𝑃1)( 𝜑(𝑞)
𝑞
𝑋)2. Thus we have

∑
𝜒 (mod 𝑞)

∫𝜒 |𝐹(𝜒, 𝑖𝑡)|2𝑑𝑡
≪ (𝐻 log

𝑄𝐽
𝑃𝐽
)2

∑
𝜒 (mod 𝑞)

∫𝜒 |𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2𝑑𝑡 + 𝜀1−3Δ(𝑞,𝑃1)
(
𝜑(𝑞)

𝑞
𝑋

)2

≪ 𝐻2𝜀2(log𝑋)2
∑

𝜒 (mod 𝑞)
∫𝜒 |𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2𝑑𝑡 + 𝜀1−3Δ(𝑞,𝑃1)

(
𝜑(𝑞)

𝑞
𝑋

)2
(55)

for some 𝑣0 ∈ [𝐻𝜀2 log𝑋 − 1,𝐻𝜀 log𝑋], with𝐻 = ⌊𝜀−1⌋.
We discretize the integral, so that the term on the right of (55) is bounded by

≪ 𝐻2𝜀2(log𝑋)2
∑

𝜒 (mod 𝑞)

∑
𝑡∈ ′𝜒

|𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2 (56)

for some (possibly empty) well-spaced set  ′𝜒 ⊂ 𝜒 ⊂ [−𝑇, 𝑇].
Let us define the discrete version of as

 ′ = ⋃
𝜒 (mod 𝑞)

{𝜒} ×  ′𝜒 .

We consider separately the subsets

𝑆 ∶ =
{
(𝜒, 𝑡) ∈  ′ ∶ |𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)| ⩽ 𝜀2 𝑒𝑣0∕𝐻𝑣0

}
,

𝐿 ∶ =
{
(𝜒, 𝑡) ∈  ′ ∶ |𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)| > 𝜀2 𝑒𝑣0∕𝐻𝑣0

}
;

note that by the Brun–Titchmarsh inequality the trivial upper bound is |𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|≪ 𝑒𝑣0∕𝐻∕𝑣0.
We start with the 𝑆 case. Observe that if (𝜒, 𝑡) ∈ 𝑆 then |𝑄𝑣′,𝐻𝐽−1(𝜒, 𝑖𝑡)| > 𝑒(1−𝛼𝐽−1)𝑣′∕𝐻𝐽−1

for some 𝑣′ ∈ 𝐽−1. Applying our large values estimate, Lemma 6.5, together with the fact that
𝑞𝑇 ≪ 𝑋1+𝑜(1), this leads to

|𝑆|≪ (𝑞𝑇)2𝛼𝐽−1(𝑄2𝛼𝐽−1𝐽−1
+ (log𝑋)200𝜀

−2
) ≪ 𝑋0.49,

since 𝛼𝐽−1 ⩽ 1∕4 − 𝜂 and 𝜂 = 0.01. Hence, by the Halász–Montgomery inequality for twisted
character sums (Lemma 6.4), we have

∑
(𝜒,𝑡)∈𝑆

|𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2 ≪ 𝜀4 𝑒2𝑣0∕𝐻𝑣2
0

∑
(𝜒,𝑡)∈𝑆

|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 413

≪ 𝜀4
𝑒2𝑣0∕𝐻

𝑣2
0

(
𝜑(𝑞)

𝑞
𝑋𝑒−𝑣0∕𝐻 + (𝑞𝑇)1∕2(log(2𝑞𝑇))|𝑆|)𝜑(𝑞)𝑞 𝑋𝑒−𝑣0∕𝐻

≪ 𝜀4
𝑒2𝑣0∕𝐻

𝑣2
0

(
𝜑(𝑞)

𝑞
𝑋𝑒−𝑣0∕𝐻

)2
≪ 𝐻−2 ⋅ (log𝑋)−2

(
𝜑(𝑞)

𝑞
𝑋

)2
,

since 𝜑(𝑞)
𝑞
𝑋𝑒−𝑣0∕𝐻 ≫ 𝑋0.999 and 𝑣0 ≫ 𝐻𝜀2 log𝑋. This bound is admissible after multiplying by

𝐻2𝜀2(log𝑋)2.
Now we turn to the 𝐿 case. We recall that our modulus satisfies 𝑞 ∈ 𝑥,𝜀6,𝜀−80 , and note that

𝜀7 > (log𝑋)−1∕13.
By Proposition 8.5 (with 𝜀 → 𝜀2 and 𝛿 = 𝑒1∕𝐻 − 1 ≍ 1∕𝐻 and 𝜀 > 0 small enough), for 𝑞 ∈

𝑥,𝜀6,𝜀−80 , we have |𝐿|≪ 𝜀−4𝐻 ≪ 𝜀−5. In addition, by Corollary 8.4 (with 𝜀 replaced by 𝜀′ ∶= 𝜀6,
𝛼 and 𝛽 replaced, respectively, by 𝜀2 and 𝜀 so that 𝛽∕𝛼 = 𝜀−1 = (𝜀′)−1∕6), for 𝑞 ∈ 𝑥,𝜀6,𝜀−80 ⊆𝑥,𝜀′,(𝜀′)−6 we have the pointwise bound

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑋 |𝑅𝑣0(𝜒, 𝑖𝑡)|∕(𝑋𝑒−𝑣0∕𝐻) ≪ 𝜀′ 𝜑(𝑞)𝑞 = 𝜀6
𝜑(𝑞)

𝑞
.

Hence we can bound the contribution of the pairs (𝜒, 𝑡) with 𝜒 ≠ 𝜒1 by∑
(𝜒,𝑡)∈𝐿
𝜒≠𝜒1

|𝑄𝑣0,𝐻(𝜒, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2 ≪ |𝐿|𝑒2𝑣0∕𝐻
𝑣2
0

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup|𝑡|⩽𝑋 |𝑅𝑣0,𝐻(𝜒, 𝑖𝑡)|2

≪
𝜀−5+12

𝜀4𝐻2(log𝑋)2

(
𝜑(𝑞)

𝑞
𝑋

)2
,

and this multiplied by the factor𝐻2𝜀2(log𝑋)2 yields a more than sufficient bound for (56).
The contribution of 𝜒 = 𝜒1, in turn, is bounded using Corollary 8.4 in the form that

sup
𝑍⩽|𝑡−𝑡𝜒1 |⩽𝑥

|𝑅𝑣0,𝐻(𝜒1, 𝑖𝑡)|
𝑋𝑒−𝑣0∕𝐻

≪
1√
𝑍

𝜑(𝑞)

𝑞

for 𝑍 = 𝜀−10 ⩽ (log𝑋)1∕20 and for 𝑞 as before. This yields

∑
(𝜒1,𝑡)∈𝐿

|𝑄𝑣0,𝐻(𝜒1, 𝑖𝑡)|2|𝑅𝑣0,𝐻(𝜒1, 𝑖𝑡)|2 ≪ |𝐿|𝑒2𝑣0∕𝐻
𝑣2
0

sup
𝑍⩽|𝑡−𝑡𝜒1 |⩽𝑋 |𝑅𝑣0,𝐻(𝜒1, 𝑖𝑡)|2

≪
𝜀−5+10

𝜀4𝐻2(log𝑋)2

(
𝜑(𝑞)

𝑞
𝑋

)2
.

This multiplied by 𝐻2𝜀2(log𝑋)2 produces a good enough bound, finishing the proof of
Proposition 9.4, and hence that of Theorem 1.5.
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414 KLURMAN et al.

Proof of Corollary 1.6. Our task is to simplify the main term in Theorem 1.5 in the case of a real-
valued multiplicative 𝑓∶ ℕ → [−1, 1]. We work with the same set of moduli 𝑞 ∈ 𝑥,𝜀6,𝜀−80 as in
Proposition 9.4. By the triangle inequality and Theorem 1.5, it suffices to show that

∫
2𝑋

𝑋

||| 13𝑋 ∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒1(𝑛) −

(
1

ℎ ∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡𝜒𝑑𝑣

)
1

3𝑋

∑
𝑛⩽3𝑋

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡𝜒1

|||2 𝑑𝑥 ≪ 𝜀𝑋
(
𝜑(𝑞)

𝑞

)2
.

(57)

Set 𝑌 ∶= 3𝑋. By the triangle inequality for pretentious distance, we have

2𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 ; 𝑌) ⩾ 𝔻𝑞(𝑓

2, 𝜒21(𝑛)𝑛
2𝑖𝑡𝜒1 ; 𝑌) ⩾ 𝔻𝑞(1, 𝜒

2
1(𝑛)𝑛

2𝑖𝑡𝜒1 ; 𝑌) − 𝔻𝑞(𝑓
2, 1; 𝑌). (58)

We then split into several cases.
Case 1. Suppose first that𝔻𝑞(𝑓2, 1; 𝑌)2 > 2 log(1∕𝜀). Applying the Cauchy–Schwarz inequality,

for 𝑡 ∈ {0, 𝑡𝜒1} we obtain

||| ∑
𝑛⩽𝑌

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡|||≪

(
𝜑(𝑞)

𝑞
𝑌

)1∕2⎛⎜⎜⎜⎝
∑
𝑛⩽𝑌
(𝑛,𝑞)=1

𝑓(𝑛)2

⎞⎟⎟⎟⎠
1∕2

.

By an elementary upper bound [28, (1.85)] for mean values of multiplicative functions taking
values in [0,1], we have

∑
𝑛⩽𝑌
(𝑛,𝑞)=1

𝑓(𝑛)2 ≪
𝜑(𝑞)

𝑞
𝑌

∏
𝑝⩽𝑌
𝑝∤𝑞

(
1 +
𝑓(𝑝)2 − 1

𝑝

)
≪
𝜑(𝑞)

𝑞
𝑌 exp(−𝔻𝑞(𝑓

2, 1; 𝑌)2) ≪ 𝜀2
𝜑(𝑞)

𝑞
𝑌.

Hence (57) holds.
Case 2. Suppose then that 𝔻𝑞(𝑓2, 1; 𝑌)2 ⩽ 2 log(1∕𝜀) and that either 𝜒1 is complex or |𝑡𝜒1 | ⩾

2 log 𝑥. Then by Lemma 8.2(ii) (with 𝜀6 in place of 𝜀) from (58) (with 𝑡 in place of 𝑡𝜒1) we obtain

inf|𝑡−𝑡𝜒1 |⩽log 𝑥 𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛𝑖𝑡; 𝑌)2 ⩾
(√
5.5 ⋅ 6 −

√
2

2

)2
log
1

𝜀
> 4 log

1

𝜀
. (59)

By Lemma 7.4 and the minimal property of 𝑡𝜒1 , we then obtain

max
𝑡∈{0,𝑡𝜒1 }

||| ∑
𝑛⩽𝑌

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡|||≪ 𝜀3 𝜑(𝑞)𝑞 𝑌, (60)

which implies (57).
Case 3. Finally, suppose that𝔻𝑞(𝑓2, 1; 𝑌) ⩽ 2 log(1∕𝜀) and that𝜒1 is real and |𝑡𝜒1 | ⩽ 2 log 𝑥. We

may assume that

𝔻𝑞(𝑓, 𝜒1(𝑛)𝑛
𝑖𝑡𝜒1 ; 𝑌)2 ⩽ 2 log

1

𝜀
, (61)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 415

since otherwise (59) holds by theminimal property of 𝑡𝜒1 and then we can conclude as before. But
then by (58),

𝔻𝑞(1, 𝜒
2
1(𝑛)𝑛

2𝑖𝑡𝜒1 ; 𝑌) − 𝔻𝑞(𝑓
2, 1; 𝑌) ⩽

(
8 log

1

𝜀

)1∕2
,

so by the assumption on 𝔻𝑞(𝑓2, 1; 𝑌) and the fact that 𝜒1 is real we deduce

𝔻𝑞(1, 𝑛
2𝑖𝑡𝜒1 ; 𝑌)2 ⩽

(
21∕2 + 81∕2

)2
log
1

𝜀
= 18 log

1

𝜀
.

By (35) (and the fact that 𝜀 ⩾ (log𝑋)−1∕200) this is a contradiction unless |𝑡𝜒1 | ⩽ 𝜀.
For |𝑡𝜒1 | ⩽ 𝜀, in turn, we have
1

ℎ

(
∫
𝑥+ℎ

𝑥
𝑣𝑖𝑡𝜒1 𝑑𝑣

)
1

𝑌

∑
𝑛⩽𝑌

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡𝜒1 =

𝑥𝑖𝑡𝜒1

𝑌

∑
𝑛⩽𝑌

𝑓(𝑛)𝜒1(𝑛)𝑛
−𝑖𝑡𝜒1 + 𝑂

(
𝜀
𝜑(𝑞)

𝑞

)
.

by estimating the integrand trivially. Moreover, the expression on the right is by (61) and
Lemma 7.6 equal to

1

𝑌

∑
𝑛⩽𝑌

𝑓(𝑛)𝜒1(𝑛) + 𝑂

(
𝜀
𝜑(𝑞)

𝑞

)
. (62)

This proves (57) also in this case, and now all the cases have been dealt with. □

Corollary 1.7 follows quickly from Corollary 1.6.

Proof of Corollary 1.7. We apply Corollary 1.6 with 𝑓 = 𝜇. Note that the set 𝑋,𝜀 in Corollary 1.6
contains all positive integers ⩽ 𝑋𝜀200 . Now, let 𝑐0 be a small enough absolute constant, and let
𝑚 ⩽ 𝑋𝜀

200 be a modulus for which 𝐿(𝑠, 𝜒∗) for some real character 𝜒∗ (mod 𝑚) has a real zero
> 1 − 𝑐0∕ log(𝑋

𝜀200) (if it exists). By the Landau–Page theorem and Siegel’s theorem, all such 𝑚
are multiples of a single number 𝑞0 ≫ (log𝑋)𝐴 (if no such𝑚 exists, set 𝑞0 = 1).
It then suffices to show that for 𝑞 not divisible by 𝑞0 we have

||| ∑
𝑛⩽3𝑋

𝜇(𝑛)𝜒(𝑛)
|||≪ 𝜀1∕2 𝜑(𝑞)𝑞 𝑋 (63)

for all characters 𝜒 (mod 𝑞). We may assume that 𝜒 is non-principal, as otherwise the claim fol-
lows from the prime number theorem (with, for example, de la Vallée-Poussin error term). By
Lemma 7.4, we have (63) provided that

inf|𝑡|⩽log 𝑥 𝔻𝑞(𝜇, 𝜒(𝑛)𝑛𝑖𝑡; 3𝑋)2 ⩾ log(1∕𝜀), (64)

say. By Mertens’ theorem, for |𝑡| ⩽ log 𝑥 we can lower bound
𝔻𝑞(𝜇, 𝜒(𝑛)𝑛

𝑖𝑡; 3𝑋)2 ⩾
∑

𝑋𝜀10⩽𝑝⩽𝑋

1 + Re(𝜒(𝑝)𝑝𝑖𝑡)
𝑝

= 10 log
1

𝜀
+ Re

⎛⎜⎜⎝
∑

𝑋𝜀10⩽𝑝⩽𝑋

𝜒(𝑝)𝑝𝑖𝑡

𝑝

⎞⎟⎟⎠ + 𝑂(1).
(65)
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416 KLURMAN et al.

By Lemma 7.9 and Remark 7.2, for any 𝑞1∕𝜀100 ⩽ 𝑦 ⩽ 𝑋 and 𝑞 not divisible by 𝑞0 we have|||∑
𝑛⩽𝑦

Λ(𝑛)𝜒(𝑛)𝑛𝑖𝑡
|||≪ 𝜀100(log3 1𝜀 )𝑦 + 𝑦

(log 𝑦)0.3
. (66)

Using (66) and partial summation, we conclude that the left-hand side of (65) is ⩾ 9 log(1∕𝜀), say.
We thus obtain (64), and hence (63). □

9.4 The case of arithmetic progressions

In this subsection we prove Theorem 1.4 and Theorem 9.3. As shown in Section 9.2, it suffices to
prove Proposition 9.2.

Proof of Proposition 9.2. We may plainly assume that 𝑥 is larger than any fixed constant and that
𝜀 > 0 is smaller than any fixed positive constant.
The proof follows the same lines as that of Proposition 9.4, and we merely highlight the main

differences. For 𝑥 ⩾ 10, 1 ⩽ 𝑄 ⩽ 𝑥∕100 and (log(𝑥∕𝑄))−1∕200 ⩽ 𝜀 ⩽ 1 we set

𝑃1 = 𝑄
𝜀
1, 𝑄1 = 𝑥∕𝑄

𝑃𝑗 = exp
(
𝑗4𝑗(log𝑄1)

𝑗−1 log 𝑃1
)
, 𝑄𝑗 = exp

(
𝑗4𝑗+2(log𝑄1)

𝑗
)
, 2 ⩽ 𝑗 ⩽ 𝐽 − 1

𝑃𝐽 = 𝑥
𝜀2 , 𝑄𝐽 = 𝑥

𝜀,

where 𝐽 ⩾ 2 is the smallest integer with 𝐽4𝐽+2(log𝑄1)𝐽 > (log 𝑥)1∕2. (If 𝐽 = 2 then only define
𝑃1, 𝑄1, 𝑃𝐽, 𝑄𝐽 as above.)
In analogy to the definitions made in the proof of Proposition 9.4, we also define

𝐹(𝜒) ∶=
∑
𝑛⩽3𝑥

𝑓(𝑛)𝜒(𝑛), (67)

𝐻1 = 𝐻𝐽 = 𝐻 ∶=
⌊
𝜀−1

⌋
, 𝐻𝑗 ∶= 𝑗

2𝑃0.1 for 2 ⩽ 𝑗 ⩽ 𝐽 − 1,

𝑗 ∶= [⌊𝐻𝑗 log 𝑃𝑗⌋, 𝐻𝑗 log𝑄𝑗] for 2 ⩽ 𝑗 ⩽ 𝐽 − 1,
𝑄𝑣,𝐻𝑗 (𝜒) ∶=

∑
𝑒
𝑣∕𝐻𝑗⩽𝑝<𝑒

(𝑣+1)∕𝐻𝑗

𝑓(𝑝)𝜒(𝑝),

𝑅𝑣,𝐻𝑗 (𝜒) ∶=
∑

𝑚⩽3𝑥𝑒
−𝑣∕𝐻𝑗

𝑓(𝑚)𝜒(𝑚)

1 + 𝜔[𝑃𝑗,𝑄𝑗](𝑚)
for 𝑣 ∈ 𝑗, 1 ⩽ 𝑗 ⩽ 𝐽.

Finally, for 𝑞 ⩾ 1 and 2 ⩽ 𝑗 ⩽ 𝐽 − 1, let us write

1 ∶ = {𝜒 ≠ 𝜒1 (mod 𝑞) ∶ |𝑄𝑣,𝐻1(𝜒)| ⩽ 𝑒(1−𝛼1)𝑣∕𝐻1 ∀ 𝑣 ∈ 1},
𝑗 ∶ = {𝜒 ≠ 𝜒1 (mod 𝑞) ∶ |𝑄𝑣,𝐻𝑗 (𝜒)| ⩽ 𝑒(1−𝛼𝑗)𝑣∕𝐻𝑗 ∀ 𝑣 ∈ 𝑗} ⧵

⋃
𝑖⩽𝑗−1

𝑖 , 2 ⩽ 𝑗 ⩽ 𝐽 − 1

 ∶ = {𝜒 ≠ 𝜒1 (mod 𝑞)} ⧵
⋃
𝑖⩽𝐽−1

𝑖 ,
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 417

where, as before, we put

𝛼𝑗 =
1

4
− 𝜂

(
1 +

1

2𝑗

)
, 𝜂 = 0.01

for each 1 ⩽ 𝑗 ⩽ 𝐽 − 1. Similar to the proof of Proposition 9.4, the proof of Proposition 9.2 (and
hence of Theorem 1.4) splits into the cases 𝜒 ∈ 1, … ,𝐽−1, , depending on which character
sum is small or large.
The introduction of the typical factorizations corresponding to the set  is handled, as above,

using Lemma 6.7 (more precisely, (17) there), which gives

∑
𝜒∈𝑗

|𝐹(𝜒)|2 ≪𝐻𝑗 log 𝑄𝑗𝑃𝑗 ∑
𝑣∈𝐼𝑗

∑
𝜒∈𝑗

|𝑄𝑣,𝐻𝑗 (𝜒)𝑅𝑣,𝐻𝑗 (𝜒)|2

+

(
𝜑(𝑞)

𝑞
𝑥

)2⎛⎜⎜⎜⎜⎝
1

𝐻𝑗
+
1

𝑃𝑗
+

∏
𝑃𝑗⩽𝑝⩽𝑄𝑗
𝑝∤𝑞

(1 −
1

𝑝
)

⎞⎟⎟⎟⎟⎠
. (68)

When summed over 1 ⩽ 𝑗 ⩽ 𝐽 − 1, the error terms are small, analogously to the proof of
Theorem 1.5.
Letting 𝐸𝑗 denote the main term on the right of (68), we apply the same arguments, but with

Lemma 6.1 in place of Lemma 6.2 for 𝑗 = 1, and for 2 ⩽ 𝑗 ⩽ 𝐽 − 1 we use the second statement of
Lemma 6.6, rather than the first. In this way we obtain

𝐸1 ≪

(
𝜑(𝑞)

𝑞
𝑥

)2
𝐻21𝑃

−0.1
1 ≪ 𝜀

(
𝜑(𝑞)

𝑞
𝑥

)2
∑

2⩽𝑗⩽𝐽−1

𝐸𝑗 ≪

(
𝜑(𝑞)

𝑞
𝑥

)2 ∑
2⩽𝑗⩽𝐽−1

1

𝑗2𝑄𝑗−1
≪

(
𝜑(𝑞)

𝑞
𝑥

)2
𝑃−11 ,

which is sufficient.
In the case of , we apply Lemma 6.7 once again with the choices 𝑃𝐽 and𝑄𝐽 . As above, we find

a 𝑣0 ∈ 𝐽 such that
∑
𝜒∈

|𝐹(𝜒)|2 ≪ (𝐻 log𝑄𝐽)2 ∑
𝜒∈

|𝑄𝑣0,𝐻(𝜒)|2|𝑅𝑣0,𝐻(𝜒)|2 + 𝜀1−3Δ(𝑞,𝑃1)(𝜑(𝑞)𝑞 𝑥
)2
,

estimating the error term as for the sets 𝑗 , but invoking the specific choices of𝐻𝐽 , 𝑃𝐽 and 𝑄𝐽 .
As in the proof of Proposition 9.4, we split further into the subsets

𝑆 ∶=
{
𝜒 ≠ 𝜒1 ∶ |𝑄𝑣0,𝐻(𝜒)| ⩽ 𝜀2 𝑒𝑣0∕𝐻𝑣0

}
∩

𝐿 ∶=
{
𝜒 ≠ 𝜒1 ∶ |𝑄𝑣0,𝐻(𝜒)| > 𝜀2 𝑒𝑣0∕𝐻𝑣0

}
∩ .
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418 KLURMAN et al.

We combine Lemma 6.5 (with  = {0} this time) with Lemma 6.4 (wherein  consists of points
(𝜒, 0)), and argue as in the proof of Proposition 9.4 to obtain that

∑
𝜒∈𝑆

|𝑄𝑣0,𝐻(𝜒)|2|𝑅𝑣0,𝐻(𝜒)|2 ≪ (𝐻 log 𝑥)−2(𝜑(𝑞)𝑞 𝑥
)2
,

which, when multiplied by (𝐻 log𝑄𝐽)2 ≪ 𝜀2(𝐻 log 𝑥)2 yields an acceptable bound.
We treat the 𝐿 case in essentially the same way as in the proof of Proposition 9.4, and in fact

the claim is simpler, as it suffices to combine Proposition 8.5 (with the same parameter choices as
in the previous proof) with Corollary 8.4 (taking Remark 8.1 into account). □

10 THE CASE OF SMOOTHMODULI

In this section, we prove Theorem 1.3 on the variance ofmultiplicative functions in arithmetic pro-
gressions to all smoothmoduli. A key additional ingredient compared to the proof of Corollary 1.1
is the following estimate for short sums of Dirichlet characters with smooth conductor.

Lemma10.1. Let 𝑞,𝑁 ⩾ 1with𝑃+(𝑞) ⩽ 𝑁0.001 and𝑁 ⩾ 𝑞𝐶∕(log log 𝑞) where𝐶 > 0 is a large absolute
constant. Then, uniformly for any non-principal character 𝜒 (mod 𝑞) and any𝑀 ⩾ 1,

||| ∑
𝑀⩽𝑛⩽𝑀+𝑁

𝜒(𝑛)
|||≪ 𝑁 exp(−14√log𝑁). (69)

Proof. We may assume that 𝑞, and thus 𝑁, is larger than any fixed constant, since the claim is
immediate otherwise. We note moreover that for 𝑁 ⩾ 𝑞, the estimate (69) follows directly from
the Pólya–Vinogradov inequality, and thus we can assume that 𝑁 < 𝑞.
The result (69) holds for primitive 𝜒 (mod 𝑞) (in a wider range than stated above and with

exp(−
√
log𝑁) in place of exp(−1

4

√
log𝑁)) by a result of Chang [4, Theorem 5]. Indeed, Chang’s

estimate holds in the regime log𝑁 > (log 𝑞)1−𝑐 + 𝐶′ log(2 log 𝑞
log 𝑞′
)
log 𝑞′

log 𝑞

log 𝑞

log log 𝑞
for some 𝑐, 𝐶′ > 0 and

with 𝑞′ =
∏
𝑝∣𝑞 𝑝, so as 𝑢 log

2

𝑢
⩽ 1 for 𝑢 ⩽ 1 the range in Chang’s result contains the range 𝑁 >

𝑞2𝐶
′∕ log log 𝑞.
Let now 𝜒 (mod 𝑞) be a non-principal character induced by a primitive character 𝜒′ (mod 𝑞′)

with 𝑞′ ∣ 𝑞, so that 𝜒(𝑛) = 𝜒′(𝑛)1(𝑛,𝑞)=1. By Möbius inversion,∑
𝑀⩽𝑛⩽𝑀+𝑁

𝜒(𝑛) =
∑
𝑑∣𝑞

𝜇(𝑑)𝜒′(𝑑)
∑

𝑀∕𝑑⩽𝑚⩽(𝑀+𝑁)∕𝑑

𝜒′(𝑚).

Note that in our range
√
𝑁 ⩾ 𝑞0.5𝐶∕(log log 𝑞) and

√
𝑁𝜏(𝑞) ≪ 𝑁0.9, thus taking 𝐶 = 10𝐶′ and using

Chang’s strengthening of (69) for the primitive character 𝜒′ (mod 𝑞′), we arrive at∑
𝑀⩽𝑛⩽𝑀+𝑁

𝜒(𝑛) ≪
∑
𝑑∣𝑞

𝑑⩽
√
𝑁

||| ∑
𝑀∕𝑑⩽𝑚⩽(𝑀+𝑁)∕𝑑

𝜒′(𝑚)
||| + ∑

𝑑∣𝑞

𝑑>
√
𝑁

(
𝑁

𝑑
+ 1

)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 419

≪ 𝑁 exp
(
−
1

2

√
log𝑁

)∑
𝑑∣𝑞

1

𝑑
+

√
𝑁𝜏(𝑞)

≪ 𝑁 exp
(
−
(
1

2
+ 𝑜(1)

)√
log𝑁

)
,

and the result follows for large enough 𝑁. □

Lemma 10.2, which uses Lemma 10.1 as an input, allows us to improve on Proposition 8.5 for
smooth moduli. It provides good upper bounds for the frequency of large character sums (mod 𝑞)
over primes without any exceptional smooth 𝑞.

Lemma 10.2. Let 𝑞 ⩾ 𝑃 ⩾ 1 be integers with 𝑃+(𝑞) ⩽ 𝑃1∕10 000. Suppose also that 𝑃 > 𝑞1∕(log log 𝑞)0.9 .
Then for 1 ⩾ 𝛿 ⩾ exp(−(log 𝑃)0.49) and𝑉 ⩾ exp(−(log 𝑃)0.49) and for any complex numbers |𝑎𝑝| ⩽
1, we have

|||{𝜒 (mod 𝑞) ∶ ||| ∑
𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝𝜒(𝑝)
||| ⩾ 𝑉 𝛿𝑃log 𝑃}|||≪ (𝐶𝑉−1)6 log(𝑞𝑃)∕ log 𝑃, (70)

with the implied constant and 𝐶 > 1 being absolute.

Proof. We begin by noting that, under our assumptions, Lemma 10.1 implies∑
𝑛∈𝐼

𝜒(𝑛) ≪ 𝛿𝑃 exp
(
−
1

10

√
log 𝑃

)
(71)

whenever 𝜒 (mod 𝑞) is non-principal and 𝐼 is an interval of length |𝐼| ∈ [𝑃0.2, 𝑃].
Let 𝑅 be the quantity on the left-hand side of (70). For any 𝑘 ∈ ℕ we have by Chebyshev’s

inequality

𝑅 ≪

(
log 𝑃

𝛿𝑃

)2𝑘
𝑉−2𝑘

∑
𝜒 (mod 𝑞)

||| ∑
𝑃⩽𝑝⩽(1+𝛿)𝑃

𝑎𝑝𝜒(𝑝)
|||2𝑘

=

(
log 𝑃

𝛿𝑃

)2𝑘
𝑉−2𝑘

∑
𝑃⩽𝑝1,…,𝑝2𝑘⩽(1+𝛿)𝑃

𝑎𝑝1⋯𝑎𝑝𝑘𝑎𝑝𝑘+1⋯𝑎𝑝2𝑘
∑

𝜒 (mod 𝑞)

𝜒(𝑝1⋯𝑝𝑘)𝜒(𝑝𝑘+1⋯𝑝2𝑘)

⩽

(
log 𝑃

𝛿𝑃

)2𝑘
𝑉−2𝑘𝜑(𝑞)

∑
𝑃⩽𝑝1,…,𝑝2𝑘⩽(1+𝛿)𝑃
(𝑝1⋯𝑝2𝑘,𝑞)=1

1𝑝1⋯𝑝𝑘≡𝑝𝑘+1⋯𝑝2𝑘 (mod 𝑞).

We pick 𝑘 = ⌊ 3 log(𝑞𝑃)
log 𝑃

⌋, so that 3 ⩽ 𝑘 ≪ (log log 𝑞)0.9.
Let 𝜈(𝑛) be the sievemajorant coming from the linear sieve with sifting level𝐷 = 𝑃𝜌 and sifting

parameter 𝑧 = 𝑃𝜌2 , where 𝜌 > 0 is a small enough absolute constant (say 𝜌 = 1∕100). The sieve
weight takes the form

𝜈(𝑛) =
∑
𝑑∣𝑛
𝑑⩽𝑃𝜌

𝜆𝑑
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420 KLURMAN et al.

for some 𝜆𝑑 ∈ [−1, 1]. Then 𝑅 is bounded by

𝑅 ≪

(
log 𝑃

𝛿𝑃

)2𝑘
𝑉−2𝑘𝜑(𝑞)

∑
𝑃⩽𝑛1,…,𝑛2𝑘⩽(1+𝛿)𝑃
(𝑛1⋯𝑛2𝑘,𝑞)=1

𝜈(𝑛1)⋯ 𝜈(𝑛2𝑘)1𝑛1⋯𝑛𝑘≡𝑛𝑘+1⋯𝑛2𝑘 (mod 𝑞)

=

(
log 𝑃

𝛿𝑃

)2𝑘
𝑉−2𝑘

∑
𝜒 (mod 𝑞)

||| ∑
𝑃⩽𝑛⩽(1+𝛿)𝑃

𝜈(𝑛)𝜒(𝑛)
|||2𝑘. (72)

The contribution of the principal character to the 𝜒 sum is

⩽

( ∑
𝑃⩽𝑛⩽(1+𝛿)𝑃

𝜈(𝑛)

)2𝑘
≪

(
2𝜌−2𝛿𝑃

log 𝑃

)2𝑘
by the linear sieve, and this contribution is admissible by setting𝐶 = 2𝜌−2 in the lemma. Consider
next when 𝜒 is non-principal. Exchanging the order of summation and applying (71), we have the
upper bound∑

𝑃⩽𝑛⩽(1+𝛿)𝑃

𝜈(𝑛)𝜒(𝑛) =
∑
𝑑⩽𝑃𝜌

𝜆𝑑𝜒(𝑑)
∑

𝑃∕𝑑⩽𝑚⩽(1+𝛿)𝑃∕𝑑

𝜒(𝑚) ≪ 𝑃(log 𝑃) exp
(
−
1

10

√
log 𝑃

)
≪ 𝑃 exp

(
−
1

15

√
log 𝑃

)
.

Hence the contribution of the non-principal characters to the 𝜒 sum in (72) is bounded by

≪ 𝑃2 exp
(
−
2

15

√
log 𝑃

) ∑
𝜒 (mod 𝑞)

||| ∑
𝑃⩽𝑛⩽(1+𝛿)𝑃

𝜈(𝑛)𝜒(𝑛)
|||2(𝑘−1),

and expanding out the moment again, this is

≪ 𝑃2 exp

(
−

√
log 𝑃

15

)
𝜑(𝑞)

∑
𝑃⩽𝑛1,…,𝑛2(𝑘−1)⩽(1+𝛿)𝑃

(𝑛1⋯𝑛2(𝑘−1),𝑞)=1

× 𝜈(𝑛1)⋯ 𝜈(𝑛2(𝑘−1))1𝑛1⋯𝑛𝑘−1≡𝑛𝑘⋯𝑛2(𝑘−1) (mod 𝑞)

≪ 𝑃2 exp

(
−

√
log 𝑃

15

)
𝜑(𝑞)

∑
𝑃⩽𝑛1,…,𝑛2(𝑘−1)⩽(1+𝛿)𝑃

(𝑛1⋯𝑛2(𝑘−1),𝑞)=1

× 𝜏(𝑛1)⋯ 𝜏(𝑛2(𝑘−1))1𝑛1⋯𝑛𝑘−1≡𝑛𝑘⋯𝑛2(𝑘−1) (mod 𝑞).

Merging variables, this becomes

≪ 𝑃2 exp

(
−

√
log 𝑃

15

)
𝜑(𝑞)

∑
𝑚1,𝑚2⩽(2𝑃)

𝑘−1

𝑚1≡𝑚2 (mod 𝑞)
(𝑚1𝑚2,𝑞)=1

𝜏2(𝑘−1)(𝑚1)𝜏2(𝑘−1)(𝑚2)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 421

= 𝑃2 exp

(
−

√
log 𝑃

15

)
𝜑(𝑞)

∑
𝑚1⩽(2𝑃)

𝑘−1

(𝑚1,𝑞)=1

𝜏2(𝑘−1)(𝑚1)
∑

𝑚2⩽(2𝑃)
𝑘−1

𝑚2≡𝑚1 (mod 𝑞)

𝜏2(𝑘−1)(𝑚2).

Shiu’s bound [40] shows that the inner sum is≪ (2𝑃)𝑘−1

𝜑(𝑞)
(log(2𝑃)𝑘)2(𝑘−1)−1, as 𝑞 ⩽ (2𝑃)0.9(𝑘−1)

by our choice of 𝑘. Thus the whole expression above is

≪ 𝑃2𝑘 exp
(
−
1

20

√
log 𝑃

)
,

since (𝑘 log 𝑃)2𝑘 ≪ exp((log 𝑃)0.01). When we multiply this contribution by (log 𝑃∕(𝛿𝑃))2𝑘𝑉−2𝑘
and recall the assumptions 𝛿, 𝑉 ⩾ exp(−(log 𝑃)0.49) and the fact that 𝑘 ≪ log log 𝑃, we see that

𝑅 ≪ (𝐶𝑉−1)2𝑘 + (𝛿−1𝑉−1)2𝑘 exp
(
−
1

30

√
log 𝑃

)
≪ (𝐶𝑉−1)2𝑘 + 1,

which, recalling our choice of 𝑘, is what was to be shown. □

Our next lemma improves on Proposition 8.3 for smooth moduli (apart from the 𝑡-aspect).

Lemma 10.3. Let 𝑥 ⩾ 10, 𝜅 > 0 and 2 ⩽ 𝑃 < 𝑄 ⩽ 𝑥. Then for all 𝑞 ⩽ 𝑥 satisfying 𝑃+(𝑞) ⩽ 𝑞𝜅100 and
for any multiplicative function 𝑓∶ ℕ → 𝕌, if 𝜒1 (mod 𝑞) is defined as in Theorem 1.4 then

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup
𝑦∈[𝑥𝜅,𝑥]

|||1𝑦 ∑
𝑛⩽𝑦

(𝑛,[𝑃,𝑄])=1

𝑓(𝑛)𝜒(𝑛)
|||≪ 𝜅

(
log𝑄

log 𝑃

)
𝜑(𝑞)

𝑞
.

Proof. Wemay assume in what follows that 𝜅 > 0 is small enough (adjusting the implied constant
if necessary). We may also assume 𝑞𝜅100 ⩾ 2, so 𝜅 ≫ (log 𝑞)−0.01.
Note that 𝑛 ↦ 1(𝑛,[𝑃,𝑄])=1 is multiplicative, and that for any g1, g2 ∶ ℕ → 𝕌 and any 𝑦 ⩾ 2 we

have

𝔻𝑞(g11(⋅,[𝑃,𝑄])=1, g2; 𝑦)
2 ⩾ 𝔻𝑞(g1, g2; 𝑦)

2 −
∑
𝑃⩽𝑝⩽𝑄

1

𝑝
= 𝔻𝑞(g1, g2; 𝑦)

2 − log

(
log𝑄

log 𝑃

)
+ 𝑂(1).

Hence, following the beginning of the proof of Proposition 8.3 almost verbatim, we obtain the
result once we prove that

sup|𝑡|⩽(log 𝑞)0.02 𝔻𝑞(𝜉, 𝑛𝑖𝑡; 𝑥𝜅)2 ⩾ 5.5 log
1

𝜅
+ log 𝑓𝑟𝑎𝑐𝑞𝜑(𝑞) + 𝑂(1)

for all non-principal characters 𝜉 (mod 𝑞).
From Lemma 7.1, it follows that

𝔻(𝜉, 𝑛𝑖𝑡; 𝑥𝜅)2 ⩾ log log 𝑥𝜅 − log |𝐿(𝜎 + 𝑖𝑡, 𝜉)| − 𝑂(1),

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12546 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [25/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



422 KLURMAN et al.

where 𝜎 = 1 + 1∕(log 𝑥𝜅), so it suffices to show that

sup|𝑡|⩽(log 𝑞)0.02 |𝐿(𝜎 + 𝑖𝑡, 𝜉)|≪ 𝜅6.5 𝜑(𝑞)𝑞 log 𝑞

for all 𝑞 ⩽ 𝑥 satisfying 𝑃+(𝑞) ⩽ 𝑞𝜅100 . By partial summation and the Pólya–Vinogradov theorem,

𝐿(𝜎 + 𝑖𝑡, 𝜉) =
∑

𝑛⩽𝑞(|𝑡|+1)
𝜉(𝑛)

𝑛𝜎+𝑖𝑡
+ 𝑂(1).

Let 𝑞′ = 𝑞10 000𝜅100 . Then

|𝐿(𝜎 + 𝑖𝑡, 𝜉)|≪ 𝜑(𝑞)
𝑞
log 𝑞′ +

||| ∑
𝑞′⩽𝑛⩽𝑞(|𝑡|+1)

𝜉(𝑛)

𝑛𝜎+𝑖𝑡
||| + 1.

The first term on the right-hand side is acceptable. For the second term, we apply partial
summation to write it as

∑
𝑞′⩽𝑛⩽𝑞(|𝑡|+1)

𝜉(𝑛)

𝑛𝜎+𝑖𝑡
=
𝑆(𝑞′, 𝑞(|𝑡| + 1))
(𝑞(|𝑡| + 1))𝜎+𝑖𝑡 + (𝜎 + 𝑖𝑡)∫ 𝑞(|𝑡|+1)

𝑞′
𝑆(𝑞′, 𝑢)𝑢−1−𝜎−𝑖𝑡 𝑑𝑢, (73)

where

𝑆(𝑀,𝑁) ∶=
∑

𝑀⩽𝑛⩽𝑁

𝜉(𝑛).

We are now in a position to apply Lemma 10.1 (which is applicable, as 𝑃+(𝑞) ⩽ 𝑞𝜅100 ⩽
(𝑞′)0.0001). The triangle inequality and Lemma 10.1 imply that whenever 𝑞′ < 𝑢 ⩽ 2𝑞′ we have

|𝑆(𝑞′, 𝑢)| ⩽ |𝑆(𝑞′∕2, 𝑞′)| + |𝑆(𝑞′∕2, 𝑢)|≪ 𝑢 exp(−1
4

√
log(𝑞′∕2)

)
≪ 𝑢 exp

(
−
1

10

√
log 𝑢

)
,

a bound that continues to hold for all 𝑢 ⩾ 2𝑞′ directly from Lemma 10.1. Thus, we may bound the
right-hand side of (73) by

≪ 1 + (1 + |𝑡|)∫ ∞

𝑞′

1

𝑢 exp( 1
10

√
log 𝑢)

𝑑𝑢 ≪ 1 ≪ 𝜅10
𝜑(𝑞)

𝑞
log 𝑞,

since 𝜑(𝑞)∕𝑞 ≫ 1∕ log log 𝑞 and 𝜅 ⩾ (log 𝑞)−0.01. This concludes the proof. □

From the previous lemma, we derive the following variant of Corollary 8.4 for smooth moduli
𝑞, again without exceptions.

Corollary 10.4. Let 𝑥 ⩾ 𝑅 ⩾ 10, 𝜅 ∈ ((log 𝑥)−1∕100, 1), and 10 ⩽ 𝑃 ⩽ 𝑄∕2 ⩽ 𝑥. Let the twisted char-
acter sum 𝑅(𝜒, 𝑠), multiplicative function 𝑓∶ ℕ → 𝕌 and character 𝜒1 (mod 𝑞) be defined as in
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 423

Corollary 8.4. Then for 2 ⩽ 𝑞 ⩽ 𝑥 satisfying 𝑃+(𝑞) ⩽ 𝑞𝜅100 we have

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

sup
𝑅∈[𝑥1∕2,𝑥]

1

𝑅
|𝑅(𝜒, 0)|≪ 𝜅( log 𝑥

log 𝑃

)2 𝜑(𝑞)
𝑞
.

Proof. Applying the hyperbola method, we see that

|𝑅(𝜒, 0)|≪ ||| ∑
𝑚1⩽𝑅𝑥

−𝜅

𝑝∣𝑚1⟹𝑝∈[𝑃,𝑄]

𝑓(𝑚1)𝜒(𝑚1)

1 + 𝜔[𝑃,𝑄](𝑚1)

∑
𝑅∕𝑚1⩽𝑚2⩽2𝑅∕𝑚1
(𝑚2,[𝑃,𝑄])=1

𝑓(𝑚2)𝜒(𝑚2)
|||

+
∑
𝑚2⩽2𝑥

𝜅

(𝑚2,[𝑃,𝑄])=1
(𝑚2,𝑞)=1

∑
𝑅𝑥−𝜅<𝑚1⩽2𝑅∕𝑚2
𝑝∣𝑚1⟹𝑝∈[𝑃,𝑄]

1.
(74)

Since 𝑅∕𝑚1 ⩾ 𝑥𝜅 holds in the first sum on the right, we can apply Lemma 10.3 to bound this sum
by

≪ 𝜅
log𝑄

log 𝑃

𝜑(𝑞)

𝑞

⎛⎜⎜⎜⎝
∑
𝑚1⩽𝑥

𝑝∣𝑚1⟹𝑝∈[𝑃,𝑄]

𝑅

𝑚1

⎞⎟⎟⎟⎠≪ 𝜅
log𝑄

log 𝑃

𝜑(𝑞)

𝑞
𝑅

∏
𝑃⩽𝑝⩽𝑄

(
1 −
1

𝑝

)−1

≪ 𝜅
𝜑(𝑞)

𝑞

(
log𝑄

log 𝑃

)2
𝑅.

The second sum on the right of (74), in turn, is bounded using Selberg’s sieve by

⩽
∑
𝑚2⩽2𝑥

𝜅

(𝑚2,[𝑃,𝑄])=1
(𝑚2,𝑞)=1

∑
𝑚1⩽2𝑅∕𝑚2
𝑃−(𝑚1)>𝑃

1 ≪
∑
𝑚2⩽2𝑥

𝜅

(𝑚2,𝑞)=1

𝑅

𝑚2 log 𝑃
≪ 𝜅
log 𝑥

log 𝑃

𝜑(𝑞)

𝑞
𝑅,

using the fact that 𝑝|𝑞 ⇒ 𝑝 ⩽ 𝑞𝜅100 < 2𝑥𝜅 in the final step. □

Proof of Theorem 1.3.. Inspecting the proof of Theorem 1.5, the result of that theorem holds for
any modulus 𝑞 ⩽ 𝑥 satisfying, for𝐻 = ⌊𝜀−1⌋, the bounds

sup
𝑃∈[𝑥𝜀2 ,𝑥𝜀]

|||{𝜒 (mod 𝑞) ∶ ||| ∑
𝑃⩽𝑝⩽𝑃𝑒1∕𝐻

𝑓(𝑝)𝜒(𝑝)
||| ⩾ 𝜀2∕10 ⋅ 𝑃

𝐻 log 𝑃

}|||≪ 𝐾(𝜀), (75)

and for 𝑃 = 𝑥𝜀2 and 𝑄 = 𝑥𝜀,

sup
𝜒 (mod 𝑞)
𝜒≠𝜒1

||| 1𝑅 sup
𝑅∈[𝑥1∕2,𝑥]

∑
𝑅⩽𝑚⩽2𝑅

𝑓(𝑚)𝜒(𝑚)

1 + 𝜔[𝑃,𝑄](𝑚)

|||≪ 𝜀

𝐾(𝜀)1∕2
𝜑(𝑞)

𝑞
(76)
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424 KLURMAN et al.

for some function 𝐾(𝜀) ⩾ 1. Indeed, it is only the 𝐿 case of the proof of Theorem 1.4 where
we need to assume something about the modulus 𝑞, and the assumptions that we need there
are precisely a large values estimate of the form (75) together with a pointwise bound of the
type (76).
We then establish (75) and (76). Let 𝑃+(𝑞) ⩽ 𝑞𝜀′ with 𝜀′ = exp(−𝜀−3). Lemma 10.2 (where we

take𝑉 = 𝜀2∕10 and 𝛿 = 𝑒1∕𝐻 − 1) readily provides (75) with𝐾(𝜀) = 𝜀−100𝜀−2 (assuming as wemay
that 𝜀 > 0 is smaller than any fixed constant).
Corollary 10.4 in turn gives (76) (with the same 𝐾(𝜀) = 𝜀−100𝜀−2 as above) when we take 𝜅 =

𝜀5𝐾(𝜀)−1∕2 there, which we can do since 𝑃+(𝑞) ⩽ 𝑞𝜀′ ⩽ 𝑞𝜅100 . This completes the proof. □

11 ALLMODULI IN THE SQUARE-ROOT RANGE

11.1 Preliminary lemmas

For the proof of Theorem 1.2, we need a few estimates concerning smooth and rough numbers
to bound the error terms arising from exhibiting good factorizations for smooth numbers in
Lemmas 11.5 and 11.7.

Lemma 11.1. Let 𝑐 ∈ (0, 1). Let 1 ⩽ 𝑌 ⩽ 𝑋 and 1 ⩽ 𝑞 ⩽ 𝑋1−𝑐, and let 𝑋−𝑐∕2 ⩽ 𝛿 ⩽ 1. Then for any
reduced residue class 𝑎 modulo 𝑞,

∑
(1−𝛿)𝑋<𝑚⩽𝑋
𝑃−(𝑚)>𝑌
𝑚≡𝑎 (mod 𝑞)

1 ≪ 𝑐−1
𝛿𝑋

𝜑(𝑞) log𝑌
.

Proof. This follows immediately from Selberg’s sieve. □

Given 1 ⩽ 𝑞, 𝑌 ⩽ 𝑋, define the counting function of 𝑌-smooth numbers up to 𝑋 that are
coprime to 𝑞 as

Ψ𝑞(𝑋, 𝑌) ∶= |{𝑛 ⩽ 𝑋 ∶ 𝑃+(𝑛) ⩽ 𝑌, (𝑛, 𝑞) = 1}|. (77)

We have the following estimate for Ψ𝑞(𝑋, 𝑌) in short intervals.

Lemma 11.2. Let 10 ⩽ 𝑌 ⩽ 𝑋 and set 𝑢 ∶= log𝑋∕ log𝑌. Assume that 𝑌 ⩾ exp((log𝑋)0.99) and
exp(−(log𝑋)0.01) ⩽ 𝛿 ⩽ 1. Finally, let 1 ⩽ 𝑞 ⩽ 𝑒

√
𝑌 . Then

Ψ𝑞((1 + 𝛿)𝑋, 𝑌) − Ψ𝑞(𝑋, 𝑌) ≪ 𝜌(𝑢)
𝜑(𝑞)

𝑞
𝛿𝑋.

Proof. By the sieve of Eratosthenes, we have

Ψ𝑞((1 + 𝛿)𝑋, 𝑌) − Ψ𝑞(𝑋, 𝑌) =
∑
𝑑∣𝑞

𝑃+(𝑑)⩽𝑌

𝜇(𝑑)
∑

𝑋
𝑑
⩽𝑚⩽(1+𝛿) 𝑋

𝑑

𝑃+(𝑚)⩽𝑌

1.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 425

Let 𝑆1 and 𝑆2 be parts of the sum with 𝑑 ⩽ exp(10(log𝑋)1∕2) and 𝑑 > exp(10(log𝑋)1∕2), respec-
tively. For estimating 𝑆2, we crudely remove the smoothness condition from the 𝑚 and 𝑑 sums,
and estimate the remaining sum using 1∕𝑑 ⩽ exp(−5(log𝑋)1∕2)∕

√
𝑑 to obtain

𝑆2 ≪
∑
𝑑∣𝑞

𝑑>exp(10(log𝑋)1∕2)

𝛿𝑋

𝑑
≪ 𝛿𝑋 exp(−5(log𝑋)1∕2)

∏
𝑝∣𝑞

(
1 −

1√
𝑝

)−1

≪ 𝛿𝑋 exp(−5(log𝑋)1∕2) exp(3
√
𝜔(𝑞))

and using𝜔(𝑞) = 𝑜(log 𝑞) this is certainly≪ 𝛿𝑋𝜌(𝑢)𝜑(𝑞)
𝑞
exp(−1

2
(log𝑋)1∕2) by 𝑢 ⩽ (log𝑋)0.01 and

the well-known estimate 𝜌(𝑢) = 𝑢−(1+𝑜(1))𝑢.
For the 𝑆1 sum, we instead apply [20, Theorem 5.1] (noting that its hypothesis 𝛿𝑋∕𝑑 ⩾ 𝑋𝑌−5∕12

is satisfied) so that we obtain

𝑆1 =
∑
𝑑∣𝑞

𝑑⩽exp(10(log𝑋)1∕2)
𝑃+(𝑑)⩽𝑌

(
𝜇(𝑑)

𝛿𝑋

𝑑
𝜌

(
𝑢 −

log 𝑑

log𝑌

)(
1 + 𝑂

(
log(𝑢 + 1)

log𝑌

)))

=
∑
𝑑∣𝑞

𝑃+(𝑑)⩽𝑌

(
𝜇(𝑑)

𝛿𝑋

𝑑
𝜌(𝑢)

(
1 + 𝑂

(
log(𝑢 + 1)

log𝑌

)))

+ 𝑂

⎛⎜⎜⎜⎜⎜⎜⎝
𝛿𝑋 exp(3

√
𝜔(𝑞) − 5(log𝑋)1∕2) + 𝛿𝑋

∑
𝑑∣𝑞

𝑑⩽exp(10(log𝑋)1∕2)
𝑃+(𝑑)⩽𝑌

|𝜌(𝑢) − 𝜌(𝑢 − log 𝑑
log𝑌
)|

𝑑

⎞⎟⎟⎟⎟⎟⎟⎠
, (78)

where we used the same bound as in the 𝑆2 case to extend the 𝑑 sum to all 𝑑 ∣ 𝑞, 𝑃+(𝑑) ⩽ 𝑌.
As with 𝑆2, the first error term in (78) is≪ 𝛿𝑋𝜌(𝑢)𝜑(𝑞)

𝑞
exp(−1

2
(log𝑋)1∕2). To treat the second,

we apply the mean value theorem and the identity 𝑢𝜌′(𝑢) = −𝜌(𝑢 − 1), for 𝑑 ⩽ exp(10(log𝑋)1∕2)
to obtain

|𝜌(𝑢 − log 𝑑
log𝑌

) − 𝜌(𝑢)| ⩽ log 𝑑
log𝑌

max
𝑢−10(log𝑋)1∕2∕ log𝑌⩽𝑣⩽𝑢

𝜌(𝑣 − 1)

𝑣
≪ 𝜌(𝑢 − 2)

(log𝑋)1∕2

log𝑌
,

and therefore the expression for 𝑆1 simplifies to

𝑆1 = 𝛿𝜌(𝑢)𝑋

⎛⎜⎜⎜⎝
∏
𝑝∣𝑞
𝑝⩽𝑌

(
1 −
1

𝑝

)
+ 𝑂

(∑
𝑑∣𝑞

1

𝑑

(
log(𝑢 + 1)

log𝑌
+
𝜌(𝑢 − 2)

𝜌(𝑢)
(log𝑋)−0.3

))⎞⎟⎟⎟⎠.
Now the result follows by recalling that 𝑢 ⩽ (log𝑋)0.01 and noting that the product over 𝑝 ∣ 𝑞

is ≍ 𝜑(𝑞)
𝑞

as 𝑌 ⩾ log2 𝑞 and that 𝜌(𝑢 − 2) ≪ 𝑢3𝜌(𝑢) by [20, Formulas (2.8) and (2.4)]. □
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426 KLURMAN et al.

Corollary 11.3. Let 1 ⩽ 𝑌 ⩽ 𝑋1 < 𝑋2 ⩽ 𝑒
√
𝑌 and 1 ⩽ 𝑞 ⩽ 𝑋2, with 𝑌 ⩾ exp((log𝑋1)0.99). Then∑

𝑋1<𝑛⩽𝑋2
𝑃+(𝑛)⩽𝑌
(𝑛,𝑞)=1

1

𝑛
≪
𝜑(𝑞)

𝑞
𝜌(𝑢1) log

2𝑋2
𝑋1
,

where 𝑢1 ∶= (log𝑋1)∕ log𝑌.

Proof. Decompose the interval (𝑋1, 𝑋2] dyadically. Using Lemma 11.2, we find∑
𝑋1<𝑛⩽2𝑋2
𝑃+(𝑛)⩽𝑌
(𝑛,𝑞)=1

1

𝑛
≪

∑
𝑋1<2

𝑗⩽4𝑋2

2−𝑗
∑

2𝑗−1<𝑛⩽2𝑗

𝑃+(𝑛)⩽𝑌
(𝑛,𝑞)=1

1 ≪
𝜑(𝑞)

𝑞
𝜌(𝑢1)

∑
𝑋1<2

𝑗⩽4𝑋2

1 ≪
𝜑(𝑞)

𝑞
𝜌(𝑢1) log

2𝑋2
𝑋1
,

as claimed. □

11.2 Decoupling of variables

The proof of Theorem 1.2 is based on obtaining bilinear structure in the sum, coming from the
fact that the summation may be restricted to smooth numbers. Certainly any 𝑥𝜂-smooth number
𝑛 ∈ [𝑥1−𝜂, 𝑥] can bewritten as 𝑛 = 𝑑𝑚with 𝑑,𝑚 ∈ [𝑥1∕2−𝜂, 𝑥1∕2+𝜂], but a typical smooth number
has a lot of representations of the above form, and therefore it appears non-trivial to decouple the
𝑑 and 𝑚 variables just from this. The following simple lemma however provides a more specific
factorization that does allow the decoupling of our variables.

Lemma 11.4. Let 𝑥 ⩾ 4, and let 𝑛 ∈ [𝑥1∕2, 𝑥] be an integer. Then 𝑛 can be written uniquely as 𝑑𝑚
with 𝑑 ∈ [𝑥1∕2∕𝑃−(𝑚), 𝑥1∕2) and 𝑃+(𝑑) ⩽ 𝑃−(𝑚).

Proof. Let 𝑛 = 𝑝1𝑝2⋯𝑝𝑘, where 𝑝1 ⩽ 𝑝2 ⩽⋯ ⩽ 𝑝𝑘 are primes. Let 𝑟 ⩾ 1 be the smallest index for
which 𝑝1⋯𝑝𝑟 ⩾ 𝑥1∕2. Then 𝑑 = 𝑝1⋯𝑝𝑟−1,𝑚 = 𝑝𝑟⋯𝑝𝑘 works. We still need to show that this is
the only possible choice of 𝑑 and𝑚.
Let𝑑 and𝑚 be as in the lemma. Since𝑑𝑚 = 𝑝1⋯𝑝𝑘 and𝑃+(𝑑) ⩽ 𝑃−(𝑚), there exists 𝑟 ⩾ 1 such

that 𝑑 = 𝑝1⋯𝑝𝑟−1,𝑚 = 𝑝𝑟⋯𝑝𝑘, and by the condition on the size of 𝑑wemust have 𝑝1⋯𝑝𝑟−1 <
𝑥1∕2, 𝑝1⋯𝑝𝑟−1 ⩾ 𝑥1∕2∕𝑝𝑟. There is exactly one suitable 𝑟, namely the smallest 𝑟 with 𝑝1⋯𝑝𝑟 ⩾
𝑥1∕2. □

We need to be able to control the size of the 𝑃−(𝑚) variable, since if it is very small then so
is 𝑃+(𝑑), leading to character sums over very sparse sets. The next lemma says that for typi-
cal 𝑛 ⩽ 𝑥 the corresponding 𝑃−(𝑚) is reasonably large, even if 𝑛 is restricted to an arithmetic
progression.
In what follows, set

𝜃𝑗 ∶= 𝜂(1 − 𝜀
2)𝑗 for all 𝑗 ⩾ 0, (79)
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 427

and let

𝐽 ∶= ⌈𝜀−2 log log(1∕𝜀)⌉ (80)

so that for small 𝜀 > 0 we have

𝜃𝐽 ≍𝜂 1∕ log
1

𝜀
and 𝜌(1∕(3𝜃𝐽)) ≪ (3𝜃𝐽)

1∕(6𝜃𝐽) ≪ 𝜀100.

We have 𝐽 ⩽ 2𝜀−2 log log(1∕𝜀) as long as 𝜀 > 0 is small enough in terms of 𝜂.

Lemma 11.5 (Restricting to numbers with specific factorizations). Let 𝑥 ⩾ 10, 𝜂 ∈ (0, 1∕10) and
(log 𝑥)−1∕100 ⩽ 𝜀 ⩽ 1. Let 𝜃𝑗 be given by (79) and 𝐽 given by (80), and define

𝐽 ∶=
⋃
0⩽𝑗⩽𝐽

{𝑛 ⩽ 𝑥 ∶ 𝑛 = 𝑑𝑚, 𝑑 ∈ (𝑥1∕2−𝜃𝑗+1 , 𝑥1∕2), 𝑃+(𝑑) ⩽ 𝑥𝜃𝑗+1 , 𝑃−(𝑚) ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ]}.

Let 𝑞 ⩽ 𝑥1∕2−100𝜂 . Then for (𝑎, 𝑞) = 1 we have∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑃+(𝑛)⩽𝑥𝜂

(1 − 1𝐽 (𝑛)) ≪𝜂 𝜀
𝑥

𝑞
.

Proof. We may assume that 𝜀 is smaller than any fixed function of 𝜂. In what follows, let 𝑛 ⩽ 𝑥,
𝑃+(𝑛) ⩽ 𝑥𝜂 and 𝑛 ≡ 𝑎 (mod 𝑞) with (𝑎, 𝑞) = 1.
Owing to Lemma 11.4, we may write any 𝑛 as above uniquely in the form 𝑛 = 𝑑𝑚 with 𝑃+(𝑑) ⩽

𝑃−(𝑚) and 𝑑 ∈ [𝑥1∕2∕𝑃−(𝑚), 𝑥1∕2). Let us further denote by 𝑗 the set of 𝑛 as above for which
𝑃−(𝑚) ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ], so that every 𝑛 belongs to a unique set 𝑗 with 𝑗 ⩾ 0. We claim that 𝑛 ∈ 𝐽
unless one of the following holds:

(i) 𝑛 has a divisor 𝑑 ⩾ 𝑥1∕2−𝜂 with 𝑃+(𝑑) ⩽ 𝑥𝜃𝐽+1 and 𝑃−(𝑛∕𝑑) ⩾ 𝑃+(𝑑);
(ii) for some 0 ⩽ 𝑗 ⩽ 𝐽 there exist two (not necessarily distinct) primes 𝑝1, 𝑝2 > 𝑥

𝜃𝑗+1 with 𝑝1𝑝2 ∣
𝑛 and 1 ⩽ 𝑝1∕𝑝2 ⩽ 𝑥𝜀

2 ;
(iii) for some 0 ⩽ 𝑗 ⩽ 𝐽, we canwrite 𝑛 = 𝑚𝑑with 𝑑 ∈ [𝑥1∕2−𝜃𝑗 , 𝑥1∕2−𝜃𝑗+1],𝑃+(𝑑) ⩽ 𝑥𝜃𝑗 ,𝑃−(𝑚) ∈

(𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ].

Indeed, if 𝑛 ⩽ 𝑥, 𝑃+(𝑛) ⩽ 𝑥𝜂 and none of (i), (ii), (iii) holds, then letting 𝑗 be the index for which
𝑛 ∈ 𝑗 , we have 𝑗 ⩽ 𝐽 (by negation of (i)) and in the factorization 𝑛 = 𝑑𝑚 of 𝑛 we have the condi-
tions 𝑃−(𝑚) ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ], 𝑃+(𝑑) ⩽ 𝑥𝜃𝑗+1 (by negation of (ii) and the fact that 𝜃𝑗 − 𝜃𝑗+1 ⩽ 𝜀2), and
𝑑 ∈ (𝑥1∕2−𝜃𝑗+1 , 𝑥1∕2] (by negation of (iii)), so that 𝑛 ∈ 𝐽 .
Applying Lemma 11.1, the contribution of (i) is

≪
∑

𝑥1∕2−𝜂⩽𝑑⩽𝑥1∕2

𝑃+(𝑑)⩽𝑥𝜃𝐽+1

(𝑑,𝑞)=1

∑
𝑚⩽𝑥∕𝑑

𝑃−(𝑚)⩾𝑃+(𝑑)

𝑚≡𝑎𝑑−1 (mod 𝑞)

1 ≪ 𝜂−1
∑

𝑥1∕2−𝜂⩽𝑑⩽𝑥1∕2

𝑃+(𝑑)⩽𝑥𝜃𝐽+1

(𝑑,𝑞)=1

𝑥∕𝑑

𝜑(𝑞)(log 𝑃+(𝑑))

≪𝜂
∑

𝑘⩾log(1∕𝜃𝐽+1)−1

𝑒−𝑘
∑

𝑥1∕2−𝜂⩽𝑑⩽𝑥1∕2

𝑃+(𝑑)∈[𝑥𝑒
−𝑘−1

, 𝑥𝑒
−𝑘
]

(𝑑,𝑞)=1

1

𝑑 log 𝑥
⋅
𝑥

𝜑(𝑞)
.
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428 KLURMAN et al.

Set 𝑢0 ∶= (log 𝑥)0.01. The contribution of the terms with 𝑒𝑘 ⩽ 𝑢0 can be bounded using
Lemma 11.2, and 𝜌(𝑢) ≪ 𝑢−𝑢 (see [20, (2.6)]), yielding a contribution of

≪
∑

𝑘⩾log(1∕𝜃𝐽+1)−1

𝑒−𝑘𝜌(𝑒𝑘∕3)
𝑥

𝑞
≪

∑
𝑘⩾log(1∕𝜃𝐽+1)−1

𝑒−(𝑘−log 3)𝑒
−𝑘∕3 ≪ 𝜀100

𝑥

𝑞
,

since 𝜃𝐽+1 ≫𝜂 1∕ log(1∕𝜀). The remaining terms with 𝑒𝑘 > 𝑢0 can be estimated trivially using
Corollary 11.3, giving

≪ 𝜂−1
∑

𝑘⩾0.01 log log 𝑥

𝑒−𝑘𝜌(𝑢0∕3)
𝑥

𝑞
≪𝜂 𝜀

𝑥

𝑞
.

Denoting𝑀 = 𝜃𝐽+1𝜀−2 and applying the prime number theorem, the contribution of (ii) in turn
is bounded by

∑
𝑀⩽𝑘⩽𝜀−2

∑
𝑝1,𝑝2∈[𝑥

(𝑘−1)𝜀2 ,𝑥(𝑘+1)𝜀2 ]

∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑝1𝑝2∣𝑛

1 ≪
𝑥

𝑞

∑
𝑀⩽𝑘⩽𝜀−2

⎛⎜⎜⎝
∑

𝑝∈[𝑥(𝑘−1)𝜀2 ,𝑥(𝑘+1)𝜀2 ]

1

𝑝

⎞⎟⎟⎠
2

≪
𝑥

𝑞

∑
𝑀⩽𝑘⩽𝜀−2

(
log

(
𝑘 + 1

𝑘 − 1

)
+ (log 𝑥)−100

)2
≪
𝑥

𝑞

∑
𝑀⩽𝑘⩽𝜀−2

(
1

𝑘2
+ (log 𝑥)−100

)
≪
𝑥

𝑞𝑀
,

and by the definition of𝑀 and the fact that 𝜃𝐽+1 ≪𝜂 1∕ log(1∕𝜀), this is≪𝜂 𝜀
𝑥

𝑞
.

Lastly, by Lemma 11.1 and Corollary 11.3, for any fixed 0 ⩽ 𝑗 ⩽ 𝐽, the contribution of (iii) is∑
𝑥
1∕2−𝜃𝑗 ⩽𝑟⩽𝑥

1∕2−𝜃𝑗+1

𝑃+(𝑟)⩽𝑥
𝜃𝑗

(𝑟,𝑞)=1

∑
𝑠⩽𝑥∕𝑟

𝑃−(𝑠)∈[𝑥
𝜃𝑗+1 ,𝑥

𝜃𝑗 ]

𝑠≡𝑎𝑟−1 (mod 𝑞)

1 ⩽
∑

𝑥
1∕2−𝜃𝑗 ⩽𝑟⩽𝑥

1∕2−𝜃𝑗+1

𝑃+(𝑟)⩽𝑥
𝜃𝑗

(𝑟,𝑞)=1

∑
𝑝∈[𝑥

𝜃𝑗+1 ,𝑥
𝜃𝑗 ]

𝑝∤𝑞

∑
𝑠′⩽𝑥∕(𝑝𝑟)

𝑃−(𝑠′)⩾𝑥
𝜃𝑗+1

𝑠′≡𝑎(𝑝𝑟)−1 (mod 𝑞)

1

≪ 𝜂−1
∑

𝑥
1∕2−𝜃𝑗 ⩽𝑟⩽𝑥

1∕2−𝜃𝑗+1

𝑃+(𝑟)⩽𝑥
𝜃𝑗

(𝑟,𝑞)=1

∑
𝑝∈[𝑥

𝜃𝑗+1 ,𝑥
𝜃𝑗 ]

𝑥∕(𝑝𝑟)

𝜑(𝑞)𝜃𝑗+1(log 𝑥)

≪𝜂
∑

𝑥
1∕2−𝜃𝑗 ⩽𝑟⩽𝑥

1∕2−𝜃𝑗+1

𝑃+(𝑟)⩽𝑥
𝜃𝑗

(𝑟,𝑞)=1

𝑥

𝜑(𝑞)𝑟𝜃𝑗+1(log 𝑥)

(
log

𝜃𝑗

𝜃𝑗+1
+ (log 𝑥)−100

)

≪𝜂
𝜃𝑗 − 𝜃𝑗+1

𝜃𝑗+1
log

𝜃𝑗

𝜃𝑗+1
𝜌(1∕(3𝜃𝑗))

𝑥

𝑞
+

𝑥

𝑞(log 𝑥)99
.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 429

Here the second term is certainly small enough. Using 𝜌(𝑢) ≪ 𝑢−2, log(1 + 𝑣) ≪ 𝑣 and formulas
(79) and (80), the first term summed over 0 ⩽ 𝑗 ⩽ 𝐽 is crudely bounded by

≪𝜂
∑
0⩽𝑗⩽𝐽

(𝜃𝑗 − 𝜃𝑗+1)
2 𝑥

𝑞
≪𝜂 𝐽𝜀

4 𝑥

𝑞
≪𝜂 𝜀

1.9 𝑥

𝑞
.

Therefore we have proved the assertion of the lemma. □

We further wish to split the 𝑑 and 𝑚 variables into short intervals to dispose of the
cross-condition 𝑑𝑚 ⩽ 𝑥 on their product. This is achieved in the following lemma.

Lemma 11.6 (Separating variables). Let 𝑥 ⩾ 10, 𝜂 ∈ (0, 1∕10) and (log 𝑥)−1∕100 ⩽ 𝜀 ⩽ 1. Let𝐻 ∶=⌊𝜀−1.1⌋. For each 0 ⩽ 𝑗 ⩽ 𝐽 (with 𝐽 given by (80)) let 𝜃𝑗 be given by (79), and write
𝑗 ∶ = {𝑢 ∈ ℤ ∶ 𝐻𝜃𝑗+1 log 𝑥 ⩽ 𝑢 ⩽ 𝐻𝜃𝑗 log 𝑥 − 1},
𝑗 ∶ = {𝑣 ∈ ℤ ∶ (1∕2 − 𝜃𝑗+1)𝐻 log 𝑥 ⩽ 𝑣 ⩽ 12𝐻 log 𝑥 − 1}.

(81)

Define the set

 ′𝐽 ∶=
⋃
0⩽𝑗⩽𝐽

⋃
𝑢∈𝑗 ,𝑣∈𝑗

{𝑛 = 𝑝𝑑𝑚′, 𝑝 ∈ (𝑒𝑢∕𝐻, 𝑒(𝑢+1)∕𝐻], 𝑑 ∈ (𝑒𝑣∕𝐻, 𝑒(𝑣+1)∕𝐻], 𝑚′ ⩽ 𝑥𝑒−(𝑢+𝑣+2)∕𝐻,

𝑃+(𝑑) ⩽ 𝑥𝜃𝑗+1 , 𝑃−(𝑚′) > 𝑥𝜃𝑗 }.

Let 𝑞 ⩽ 𝑥1∕2−100𝜂 . Then for (𝑎, 𝑞) = 1 we have∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑃+(𝑛)⩽𝑥𝜂

(1 − 1′
𝐽
(𝑛)) ≪𝜂 𝜀

𝑥

𝑞
.

Proof. By Lemma 11.5, it suffices to prove the claimwith 1𝐽 (𝑛) − 1′𝐽 (𝑛) in place of 1 − 1′𝐽 (𝑛). We
have ′

𝐽
⊂ 𝐽 , since for𝑛 ∈ 𝐽 wehave a uniqueway towrite it, for some 0 ⩽ 𝑗 ⩽ 𝐽, as𝑛 = 𝑑𝑚with

𝑃+(𝑑) ⩽ 𝑥𝜃𝑗+1 , 𝑃−(𝑚) ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ], and we may further write 𝑚 = 𝑝𝑚′, so that 𝑝 ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ]
and 𝑃−(𝑚′) > 𝑝.
Now, if we define 𝑢(1)

𝑗
, 𝑢(2)
𝑗
as the endpoints of the discrete interval 𝑗 , and similarly 𝑣(1)𝑗 , 𝑣(2)𝑗 as

the endpoints of𝑗 , we see that 𝑛 ∈ 𝐽 belongs for unique 0 ⩽ 𝑗 ⩽ 𝐽, 𝑢 ∈ 𝑗 , 𝑣 ∈ 𝑗 to the set in
the definition of  ′

𝐽
, unless one of the following holds for the factorization 𝑛 = 𝑝𝑑𝑚′ of 𝑛:

(i) we have 𝑝 ∈ [𝑒(𝑢
(𝑖)
𝑗
−1)∕𝐻

, 𝑒
(𝑢
(𝑖)
𝑗
+1)∕𝐻

] or 𝑑 ∈ [𝑒(𝑣
(𝑖)
𝑗
−1)∕𝐻

, 𝑒
(𝑣
(𝑖)
𝑗
+1)∕𝐻

] for some 𝑖 ∈ {1, 2} and 0 ⩽
𝑗 ⩽ 𝐽;

(ii) we have 𝑝 ∈ [𝑒𝑢∕𝐻, 𝑒(𝑢+1)∕𝐻], 𝑑 ∈ [𝑒𝑣∕𝐻, 𝑒(𝑣+1)∕𝐻],𝑚′ ∈ [𝑥𝑒−(𝑢+𝑣+2)∕𝐻, 𝑥𝑒−(𝑢+𝑣)∕𝐻] for some
𝑢 ∈ 𝑗, 𝑣 ∈ 𝑗 and 0 ⩽ 𝑗 ⩽ 𝐽;

(iii) we have 𝑃−(𝑚′) ∈ (𝑥𝜃𝑗+1 , 𝑥𝜃𝑗 ].

Condition (iii) clearly leads to condition (ii) in the proof of Lemma 11.5 holding, so its contribution
is≪𝜂 𝜀𝑥∕𝑞.
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430 KLURMAN et al.

We are left with the contributions of (i) and (ii). They are bounded similarly, sowe only consider
(ii).
For given 𝑗, 𝑢, 𝑣, Lemmas 11.1 and 11.2 tell us that the contribution of (ii) is∑

𝑒𝑢∕𝐻⩽𝑝⩽𝑒(𝑢+1)∕𝐻

𝑝∤𝑞

∑
𝑒𝑣∕𝐻⩽𝑑⩽𝑒(𝑣+1)∕𝐻

𝑃+(𝑑)⩽𝑥
𝜃𝑗+1

(𝑑,𝑞)=1

∑
𝑥𝑒−(𝑢+𝑣+2)∕𝐻⩽𝑚′⩽𝑥𝑒−(𝑢+𝑣)∕𝐻

𝑃−(𝑚′)⩾𝑥
𝜃𝑗+1

𝑚′≡𝑎(𝑝𝑑)−1 (mod 𝑞)

1

≪
𝜂−1

𝐻

∑
𝑒𝑢∕𝐻<𝑝⩽𝑒(𝑢+1)∕𝐻

∑
𝑒𝑣∕𝐻<𝑑⩽𝑒(𝑣+1)∕𝐻

𝑃+(𝑑)⩽𝑥
𝜃𝑗+1

(𝑑,𝑞)=1

𝑥𝑒−(𝑢+𝑣)∕𝐻

𝜑(𝑞)𝜃𝑗+1 log 𝑥

≪𝜂
1

𝐻2𝜃𝑗+1
𝜌
(
1∕(3𝜃𝑗+1)

) 𝑥

𝑢𝑞 log 𝑥
,

where the second 1∕𝐻 factor arose from summation over 𝑑 and the 1∕𝑢 factor arose from the
summation over 𝑝. Summing this over 𝑢 ∈ 𝑗 , 𝑣 ∈ 𝑗 and 0 ⩽ 𝑗 ⩽ 𝐽 and recalling that |𝑗|≪
(𝜃𝑗 − 𝜃𝑗+1)𝐻(log 𝑥), |𝑗|≪ 𝜃𝑗+1𝐻 log 𝑥 and 𝜌(𝑦) ≪ 𝑦−2 yields a bound of

≪𝜂
∑
0⩽𝑗⩽𝐽

(𝜃𝑗 − 𝜃𝑗+1)𝜃𝑗+1(𝐻 log 𝑥)
2 ⋅
1

𝐻2
1

𝐻 log2 𝑥
⋅
𝑥

𝑞
≪𝜂
𝜀2𝐽

𝐻
⋅
𝑥

𝑞
≪𝜂 𝜀

𝑥

𝑞

by the definitions of𝐻 and 𝐽. □

Now that we have decoupled the variables, we may introduce Dirichlet characters and obtain
a trilinear sum. For 𝑢 ∈ 𝑗, 𝑣 ∈ 𝑗 and𝐻 = ⌊𝜀−1.1⌋, write

𝑃𝑢(𝜒) =
∑

𝑒𝑢∕𝐻<𝑝⩽𝑒(𝑢+1)∕𝐻

𝑓(𝑝)𝜒(𝑝)

𝐷𝑣(𝜒) =
∑

𝑒𝑣∕𝐻<𝑑⩽𝑒(𝑣+1)∕𝐻

𝑃+(𝑑)⩽𝑥
𝜃𝑗+1

𝑓(𝑑)𝜒(𝑑),

𝑀𝑢,𝑣(𝜒) =
∑

𝑚⩽𝑥∕𝑒(𝑢+𝑣+2)∕𝐻

𝑃−(𝑚)>𝑥
𝜃𝑗

𝑓(𝑚)𝜒(𝑚).

(82)

Then we have the following.

Lemma 11.7. Let 𝑥 ⩾ 10, 𝜂 ∈ (0, 1∕10), 𝜀 ∈ ((log 𝑥)−1∕200, 1), 𝑞 ⩽ 𝑥1∕2−100𝜂 , and let 𝑓∶ ℕ → 𝕌 be
a multiplicative function supported on 𝑥𝜂-smooth numbers. Letting 𝜒1 be as in Theorem 1.2, and
recall the definitions in (81). Then for (𝑎, 𝑞) = 1 we have

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||

⩽
1

𝜑(𝑞)

∑
𝜒≠𝜒1 (mod 𝑞)

∑
0⩽𝑗⩽𝐽

∑
𝑢∈𝑗

∑
𝑣∈𝑗

|𝑃𝑢(𝜒)||𝐷𝑣(𝜒)||𝑀𝑢,𝑣(𝜒)| + 𝑂𝜂( 𝜀𝑥𝑞
)
.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 431

Proof. Applying Lemma 11.6 to both 𝑓 and 𝑓𝜒1 and observing that the union of sets in the
definition of  ′

𝐽
is disjoint, we see that the left-hand side in the statement is

||| ∑
0⩽𝑗⩽𝐽

∑
𝑢∈𝑗
𝑣∈𝑗

∑
𝑒𝑢∕𝐻<𝑝⩽𝑒(𝑢+1)∕𝐻

∑
𝑒𝑣∕𝐻<𝑑⩽𝑒(𝑣+1)∕𝐻

𝑃+(𝑑)⩽𝑥
𝜃𝑗+1

∑
𝑚⩽𝑥𝑒−(𝑢+𝑣+2)∕𝐻

𝑃−(𝑚)>𝑥
𝜃𝑗

𝑓(𝑝)𝑓(𝑑)𝑓(𝑚)𝜉𝑞(𝑚𝑑𝑝)
|||

+ 𝑂𝜂

(
𝜀𝑥

𝑞

)
,

where

𝜉𝑞(𝑛) ∶= 1𝑛≡𝑎 (mod 𝑞) −
𝜒1(𝑎)

𝜑(𝑞)
𝜒1(𝑛).

Using the orthogonality of characters and then applying the triangle inequality, the main term
here is (omitting the summation ranges for brevity)

||| ∑
0⩽𝑗⩽𝐽

∑
𝑢∈𝑗
𝑣∈𝑗

∑
𝜒≠𝜒1 (mod 𝑞)

𝜒(𝑎)

𝜑(𝑞)

(∑
𝑝

𝑓(𝑝)𝜒(𝑝)

)⎛⎜⎜⎜⎜⎝
∑
𝑑

𝑃+(𝑑)⩽𝑥
𝜃𝑗+1

𝑓(𝑑)𝜒(𝑑)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

∑
𝑚

𝑃−(𝑚)>𝑥
𝜃𝑗

𝑓(𝑚)𝜒(𝑚)

⎞⎟⎟⎟⎠
|||

⩽
1

𝜑(𝑞)

∑
0⩽𝑗⩽𝐽

∑
𝑢∈𝑗

∑
𝑣∈𝑗

∑
𝜒≠𝜒1 (mod 𝑞)

|𝑃𝑢(𝜒)||𝐷𝑣(𝜒)||𝑀𝑢,𝑣(𝜒)|,
and the claim follows. □

11.3 The main proof

Let 𝜂 > 0. Suppose henceforth that the multiplicative function 𝑓∶ ℕ → 𝕌 is supported on
𝑥𝜂-smooth integers. Our task is to prove Theorem 1.2, that is, to obtain cancellation in the
deviation

max
𝑎∈ℤ×𝑞

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝑓(𝑛) −

𝜒1(𝑎)

𝜑(𝑞)

∑
𝑛⩽𝑥

𝑓(𝑛)𝜒1(𝑛)
|||.

In what follows, let (log 𝑥)−1∕200 ⩽ 𝜀 ⩽ 1, let 𝜃𝑗 and 𝐽 be given by (79) and (80), and recall the
notation of (81) and (82).
According to Lemma 11.7, we can restrict ourselves to bounding the product of character sums

present in that lemma. Taking the maximum over (𝑢, 𝑣) ∈ 𝑗 ×𝑗 there, it suffices to prove
that

∑
0⩽𝑗⩽𝐽

(𝜃𝑗 − 𝜃𝑗+1)𝜃𝑗+1𝐻
2(log 𝑥)2

𝜑(𝑞)

∑
𝜒≠𝜒1 (mod 𝑞)

|𝑃𝑢𝑗 (𝜒)||𝐷𝑣𝑗 (𝜒)||𝑀𝑢𝑗,𝑣𝑗 (𝜒)|≪𝜂 𝜀𝑥𝑞 , (83)
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432 KLURMAN et al.

where for each 0 ⩽ 𝑗 ⩽ 𝐽 the numbers 𝑢𝑗 ∈ 𝑗 , 𝑣𝑗 ∈ 𝑗 are chosen so that they give maximal con-
tribution.
In analogy with the proofs of Theorems 1.4 and 1.5, for each 𝑗 ⩽ 𝐽 we define† the sets  (𝑗) and

 (𝑗) by
 (𝑗) ∶= {𝜒 ≠ 𝜒1 (mod 𝑞) ∶ |𝑃𝑢𝑗 (𝜒)| ⩽ 𝜀3𝑒𝑢𝑗∕𝐻∕𝑢𝑗}
 (𝑗) ∶= {𝜒 ≠ 𝜒1 (mod 𝑞)}∖ (𝑗).

11.3.1 Case of  (𝑗)
For a given 0 ⩽ 𝑗 ⩽ 𝐽, consider the contribution from  (𝑗). Applying Cauchy–Schwarz, we have

1

𝜑(𝑞)

∑
𝜒∈ (𝑗)

|𝑃𝑢𝑗 (𝜒)||𝐷𝑣𝑗 (𝜒)||𝑀𝑢𝑗,𝑣𝑗 (𝜒)|
⩽

⎛⎜⎜⎝ 1𝜑(𝑞)
∑
𝜒∈ (𝑗)

|𝑀𝑢𝑗,𝑣𝑗 (𝜒)|2⎞⎟⎟⎠
1∕2⎛⎜⎜⎝ 1𝜑(𝑞)

∑
𝜒∈ (𝑗)

|𝑃𝑢𝑗 (𝜒)|2|𝐷𝑣𝑗 (𝜒)|2⎞⎟⎟⎠
1∕2

.

We begin by bounding the first bracketed sum.We do not use Lemma 6.1 directly for this, since
that would lose one factor of log 𝑥 that comes from the sparsity of the𝑚 variable in the definition
of 𝑀𝑢𝑗,𝑣𝑗 (𝜒). Instead, we expand the square and apply orthogonality, which shows that the first
bracketed sum is bounded by

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

𝑚1⩽𝑥𝑒
−(𝑢𝑗+𝑣𝑗)∕𝐻

𝑃−(𝑚1)⩾𝑥
𝜃𝑗

∑
𝑚2⩽𝑥𝑒

−(𝑢𝑗+𝑣𝑗)∕𝐻

𝑃−(𝑚2)⩾𝑥
𝜃𝑗

𝑚2≡𝑚1 (mod 𝑞)

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

1∕2

.

Taking the maximum over𝑚1, summing over𝑚2 conditioned to𝑚2 ≡ 𝑚1 (mod 𝑞), and applying
Lemma 11.1 (recalling that 𝑥𝑒−(𝑢𝑗+𝑣𝑗)∕𝐻∕𝑞 ≫ 𝑥𝜂), this is

≪
𝜂−1

𝜃𝑗𝜑(𝑞)
1∕2 log 𝑥

𝑥𝑒−(𝑢𝑗+𝑣𝑗)∕𝐻.

To treat the remaining bracketed expression, we use the pointwise bound from the definition
of  (𝑗), and then use Lemma 6.1 to bound 𝐷𝑣𝑗 (𝜒), giving

†We need only to split the 𝜒 spectrum into two sets here, as opposed to many sets in the proof of Theorem 1.4.
This is owing to the fact that 𝑃𝑢𝑗 (𝜒) already has length ≫ 𝑞

𝜀 , and thus our large values estimates for it are effective.
The reason we are allowed to take 𝑃𝑢𝑗 (𝜒) so long here (unlike in our previous proofs) is that we are assuming 𝑞 ⩽
𝑥1∕2−100𝜂 . If we only assumed that 𝑞 = 𝑜(𝑥1∕2), we would have to perform an iterative decomposition as in the preceding
sections.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 433

⎛⎜⎜⎝ 1𝜑(𝑞)
∑
𝜒∈ (𝑗)

|𝑃𝑢𝑗 (𝜒)|2|𝐷𝑣𝑗 (𝜒)|2⎞⎟⎟⎠
1∕2

≪
⎛⎜⎜⎝ 𝜀

6

𝜑(𝑞)
𝑒2𝑢𝑗∕𝐻∕𝑢2𝑗

∑
𝜒∈ (𝑗)

|𝐷𝑣𝑗 (𝜒)|2⎞⎟⎟⎠
1∕2

≪

(
𝜀6

𝜑(𝑞)
𝑒2𝑢𝑗∕𝐻∕𝑢2𝑗

(
𝜑(𝑞) +

𝜑(𝑞)

𝑞
𝑒𝑣𝑗∕𝐻

)(
Ψ𝑞(𝑒

(𝑣𝑗+1)∕𝐻, 𝑥𝜃𝑗+1) − Ψ𝑞(𝑒
𝑣𝑗∕𝐻, 𝑥𝜃𝑗+1)

))1∕2
. (84)

By Lemma 11.2,

Ψ𝑞(𝑒
(𝑣𝑗+1)∕𝐻, 𝑥𝜃𝑗+1) − Ψ𝑞(𝑒

𝑣𝑗∕𝐻, 𝑥𝜃𝑗+1) ≪ 𝜌(1∕(3𝜃𝑗+1))
𝜑(𝑞)

𝑞
𝑒𝑣𝑗∕𝐻∕𝐻.

Inserting this into (84), and using 𝑒𝑣𝑗∕𝐻∕𝑞 ⩾ 1 for any 𝑣𝑗 ∈ 𝑗 , results in the bound

≪ 𝜀3
(
𝜑(𝑞)

𝑞2
𝜌(1∕(3𝜃𝑗+1))𝐻

−1

)1∕2
𝑒(𝑢𝑗+𝑣𝑗)∕𝐻∕𝑢𝑗.

Combining this with the contribution from𝑀𝑢𝑗,𝑣𝑗 (𝜒) yields the upper bound

1

𝜑(𝑞)

∑
𝜒∈ (𝑗)

|𝑃𝑢𝑗 (𝜒)||𝐷𝑣𝑗 (𝜒)||𝑀𝑢𝑗,𝑣𝑗 (𝜒)|
≪𝜂 𝜀

3𝐻−1∕2
𝜌(1∕(3𝜃𝑗+1))

1∕2

𝜃𝑗+1

𝑥

𝑢𝑗(log 𝑥)𝑞
.

Recalling 𝐻 = ⌊𝜀−1.1⌋, 𝜌(𝑢) ≪ 𝑢−2 and 𝜃𝑗 − 𝜃𝑗+1 ≪ 𝜀2, when inserted into (83) this expression
yields

≪𝜂 𝜀
3(𝜃𝑗 − 𝜃𝑗+1)𝜃𝑗+1𝐻

2(log 𝑥)2 ⋅𝐻−1∕2𝜌(1∕(3𝜃𝑗+1))
1∕2 𝑥

𝐻𝜃𝑗+1(log 𝑥)
2𝑞
≪𝜂 𝜀

4.1 𝑥

𝑞
.

Finally summing this over 0 ⩽ 𝑗 ⩽ 𝐽, the bound we obtain is

≪𝜂 𝐽𝜀
4.1 𝑥

𝑞
≪𝜂 𝜀

2 𝑥

𝑞
,

which is good enough.

11.3.2 Case of (𝑗)

It remains to consider the contributions from  (𝑗). We restrict to 𝑞 ∈ 𝑥,𝜀9.5,𝜀−100 with the nota-
tion of Lemma 8.1. As in the proof of Theorem 1.4, that set satisfies the desired size bound|[1, 𝑄] ⧵𝑥,𝜀9.5,𝜀−100 |≪ 𝑄𝑥−𝜀200 (since 9.5 ⋅ 20 < 200), and for any set ′ ⊂ [1, 𝑥] of coprime
integers the set 𝑥,𝜀9.5,𝜀−100 intersects it in ≪ (log 𝑥)𝜀−200 points (and under GRH we have
𝑥,𝜀9.5,𝜀−100 = [1, 𝑥] ∩ ℤ). We also recall that in Theorem 1.2 the character 𝜒1 (mod 𝑞) is such that
inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒𝑗(𝑛)𝑛𝑖𝑡; 𝑥) is minimal.

 1460244x, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12546 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [25/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



434 KLURMAN et al.

By Proposition 8.5 (with 𝛿 ∶= 𝑒1∕𝐻 − 1 ≍ 1∕𝐻), for 𝑞 as above we have | (𝑗)|≪ 𝜀−6𝐻 ≪ 𝜀−7.1,
since 𝑃𝑢(𝜒) has length≫ 𝑥𝜃𝐽 and 𝜃𝐽 ≫𝜂 1∕(log

1

𝜀
).

Furthermore, applying Proposition 8.3 (and Remark 8.1) to 𝑓(𝑛)1
𝑃+(𝑛)⩽𝑥

𝜃𝑗 (and recalling 𝑞 ∈
𝑥,𝜀9.5,𝜀−100), we see that†

|𝐷𝑣𝑗 (𝜒)| = ||| ∑
𝑒
𝑣𝑗∕𝐻⩽𝑑⩽𝑒

(𝑣𝑗+1)∕𝐻

𝑓(𝑑)𝜒(𝑑)1
𝑃+(𝑑)⩽𝑥

𝜃𝑗+1

|||≪ 𝜀9.5 𝜑(𝑞)𝑞 𝑒𝑣𝑗∕𝐻 (85)

for all 𝜒 ∈  (𝑗), except possibly for the 𝜒 = 𝜒(𝑗) that minimizes the pretentious distance
inf |𝑡|⩽log 𝑥 𝔻𝑞(𝑓, 𝜒(𝑛)1𝑃+(𝑛)⩽𝑥𝜃𝑗+1 𝑛𝑖𝑡; 𝑥). We argue that 𝜒(𝑗) must be the character 𝜒1 of Theo-
rem 1.2, in which case 𝜒(𝑗) ∉  (𝑗) and we can ignore this character.
By applying Lemma 7.4, we see that either

inf|𝑡|⩽log 𝑥 𝔻2𝑞(𝑓, 𝜒(𝑗)(𝑛)1𝑃+(𝑛)⩽𝑥𝜃𝑗+1 𝑛𝑖𝑡; 𝑥) ⩽ 1.01 log 1𝜀9.5 + 𝑂(1)
or else (85) holds without any exceptional characters. We may assume we are in the former case,
and then by 𝜃𝑗+1 ⩾ 𝜃𝐽+1 ≫𝜂 1∕(log(1∕𝜀)) and trivial estimation we obtain

inf|𝑡|⩽log 𝑥 𝔻2𝑞(𝑓, 𝜒(𝑗)(𝑛)𝑛𝑖𝑡; 𝑥) ⩽ 1.1 log 1𝜀9.5 + 𝑂𝜂(1).
Butwe have the same for𝜒1 in place of𝜒(𝑗) by theminimality of𝜒1. Thus, assuming that𝜒(𝑗) ≠ 𝜒1
and applying the pretentious triangle inequality as in the proof of Proposition 8.3 (using also that
𝜀 > (log 𝑥)−1∕200), we obtain a contradiction. This means that we may assume from now on that
(85) holds for all 𝜒 ∈  (𝑗) and 0 ⩽ 𝑗 ⩽ 𝐽.
Now we take the maximum over 𝜒 ∈  (𝑗) in the sum that we are considering and apply the

Brun–Titchmarsh inequality to 𝑃𝑢𝑗 (𝜒) and Lemma 11.1 to𝑀𝑢𝑗,𝑣𝑗 (𝜒) to bound

1

𝜑(𝑞)

∑
𝜒∈ (𝑗)

|𝑃𝑢𝑗 (𝜒)||𝐷𝑣𝑗 (𝜒)||𝑀𝑢𝑗,𝑣𝑗 (𝜒)|
≪ 𝑒𝑢𝑗∕𝐻∕(𝑢𝑗∕𝐻) ⋅ | (𝑗)| max

𝜒∈ (𝑗) |𝐷𝑣𝑗 (𝜒)| ⋅ |𝑀𝑢𝑗,𝑣𝑗 (𝜒)|
≪ 𝑒𝑢𝑗∕𝐻∕(𝑢𝑗∕𝐻) ⋅ 𝜀

−7.1 ⋅
𝜀9.5𝑒𝑣𝑗∕𝐻

𝑞
⋅ 𝑥𝑒−(𝑢𝑗+𝑣𝑗)∕𝐻

𝜂−1

𝐻𝜃𝑗+1 log 𝑥

≪𝜂 𝜀
2.4 𝑥

𝑞𝜃2
𝑗+1
𝐻(log 𝑥)2

,

and this multiplied by (𝜃𝑗 − 𝜃𝑗+1)𝐻2(log 𝑥)2 and summed over 0 ⩽ 𝑗 ⩽ 𝐽 (recalling that 𝜃𝐽 ≫𝜂
1∕ log(1∕𝜀)) produces the bound

†Note that the saving of 𝜀9.5 is much better than the trivial saving (which we do not need to exploit here) that comes
from the fact that 𝑑 is supported on 𝑥𝜃𝑗 -smooth numbers. The trivial saving would only be better if 𝜃𝑗 is roughly of size
1∕ log(1∕𝜀) or smaller, but as we shall see the contribution of these large values of the index 𝑗 is small in any case by
trivial estimation.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 435

≪𝜂 𝜀
2.4

(
log
1

𝜀

)2
𝐻

∑
0⩽𝑗⩽𝐽

(𝜃𝑗 − 𝜃𝑗+1)
𝑥

𝑞
≪𝜂 𝜀

1.2 𝑥

𝑞
.

This completes the proof of Theorem 1.2.

12 A LINNIK-TYPE RESULT

In this section, we prove our Linnik-type theorems stated in Section 2. As in the proof of
Theorem 1.4, we employ the Matomäki–Radziwiłł method in arithmetic progressions.
Our main propositions in this section concern products of exactly three primes of the form

𝐸∗3 ∶= {𝑛 = 𝑝1𝑝2𝑝3 ∶ 𝑃
1−𝜀
𝑗
⩽ 𝑝𝑗 ⩽ 𝑃𝑗, 𝑗 ∈ {1, 2, 3}}, 𝑃1 = 𝑞

1000𝜀, 𝑃2 = 𝑃3 = 𝑞. (86)

Proposition 12.1 (𝐸∗
3
numbers in progressions to smooth moduli). For every small enough 𝜀 > 0

there exists 𝜂(𝜀) > 0 such that the following holds.
Let 𝑞 ⩾ 2with 𝑃+(𝑞) ⩽ 𝑞𝜂(𝜀). There exists a real character 𝜉 (mod 𝑞) such that for all 𝑎 coprime to

𝑞 we have

∑
𝑛∈𝐸∗

3
𝑛≡𝑎 (mod 𝑞)

1

𝑛
=
1 + 𝑂(𝜀)

𝜑(𝑞)

∑
𝑃1−𝜀
1
⩽𝑝1⩽𝑃1

∑
𝑃1−𝜀
2
⩽𝑝2⩽𝑃2

∑
𝑃1−𝜀
3
⩽𝑝3⩽𝑃3

1

𝑝1𝑝2𝑝3

+
𝜉(𝑎)

𝜑(𝑞)

∑
𝑃1−𝜀
1
⩽𝑝1⩽𝑃1

∑
𝑃1−𝜀
2
⩽𝑝2⩽𝑃2

∑
𝑃1−𝜀
3
⩽𝑝3⩽𝑃3

𝜉(𝑝1𝑝2𝑝3)

𝑝1𝑝2𝑝3

(87)

with 𝐸∗
3
, 𝑃1, 𝑃2, 𝑃3 as in (86).

Proposition 12.2 (𝐸∗
3
numbers in progressions to prime moduli). For every small enough 𝜀 > 0

there exists𝑀(𝜀) ⩾ 1 such that the following holds.
Let 𝑞 ⩾ 2. Suppose that the product

∏
𝜒 (mod 𝑞) 𝐿(𝑠, 𝜒) has the zero-free region Re(𝑠) ⩾ 1 −

𝑀(𝜀)

log 𝑞
,|Im(𝑠)| ⩽ (log 𝑞)3. Then for all 𝑎 coprime to 𝑞 we have

∑
𝑛∈𝐸∗

3
𝑛≡𝑎 (mod 𝑞)

1

𝑛
=
1 + 𝑂(𝜀)

𝜑(𝑞)

∑
𝑃1−𝜀
1
⩽𝑝1⩽𝑃1

∑
𝑃1−𝜀
2
⩽𝑝2⩽𝑃2

∑
𝑃1−𝜀
3
⩽𝑝3⩽𝑃3

1

𝑝1𝑝2𝑝3
(88)

with 𝐸∗
3
, 𝑃1, 𝑃2, 𝑃3 as in (86).

We shall deduce Theorem 2.1(i) and (ii) from these two propositions at the end of the section.

12.1 Auxiliary lemmas

In order to prove these propositions, we shall need a result of Chang [4, Theorem 10], giving an
improved zero-free region for 𝐿(𝑠, 𝜒) when the conductor of 𝜒 is smooth.
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436 KLURMAN et al.

Lemma 12.3 (Zero-free region for 𝐿-functions to smooth moduli). Suppose 𝑞 ⩾ 2 and 𝑃+(𝑞) ⩽
𝑞𝜅 with 𝐶∕(log log(10𝑞)) < 𝜅 < 0.001 for large enough 𝐶 > 0. Then the product

∏
𝜒 (mod 𝑞) 𝐿(𝑠, 𝜒)

obeys the zero-free region

Re(𝑠) ⩾ 1 − 𝑐𝜅
−1

log 𝑞
, |Im(𝑠)| ⩽ 𝑞

for some constant 𝑐 > 0, apart from possibly a single zero 𝛽. If 𝛽 exists, then it is real and simple and
corresponds to a unique real character (mod 𝑞).

Proof. This follows from work of Chang [4, Theorem 10] (improving on work of Iwaniec [27]).
Indeed, that theorem shows that, apart frompossibly one real, simple zero corresponding to a real,
non-principal character, there are constants 𝑐, 𝑐′ > 0 such that 𝐿(𝑠, 𝜒) has the zero-free region

Re(𝑠) > 1 − 𝑐min
⎧⎪⎨⎪⎩

1

log 𝑃+(𝑞)
,

log log 𝑑′

(log 𝑑′) log(2
log 𝑑

log 𝑑′
)
,

1

(log(𝑑𝑇))1−𝑐′

⎫⎪⎬⎪⎭, |Im(𝑠)| ⩽ 𝑇,
where 𝑑 is the conductor of 𝜒 and 𝑑′ =

∏
𝑝∣𝑑 𝑝. We take 𝑇 = 𝑞 and note that the middle term in

the minimum is≫ log log 𝑑

log 𝑑
⩾
log log 𝑞

log 𝑞
, and this produces the zero-free region of the lemma. □

We will also need the following mean value estimate for sums over small sets of characters.

Lemma 12.4 (Halász–Montgomery type estimate over primes). Let 𝑞 ⩾ 1 be an integer, and let Ξ
be a set of characters (mod 𝑞). Then for 𝑘 ∈ {2, 3}, 𝜂 > 0, 2 ⩽ 𝑅 <

√
𝑁, and for any complex numbers

𝑎𝑝, we have the estimate

∑
𝜒∈Ξ

||| ∑
𝑝⩽𝑁

𝑎𝑝𝜒(𝑝)
|||2 ≪𝑘,𝜂

(
𝑁

log 𝑅
+ 𝑁1−1∕𝑘𝑞(𝑘+1)∕4𝑘

2+𝜂|Ξ|𝑅2∕𝑘) ∑
𝑝⩽𝑁

|𝑎𝑝|2.
Proof. This is a result of Puchta [38, Theorem 3]. □

In the proof of Theorem 2.1(i) and (ii), we will need pointwise estimates for logarithmically
weighted character sums assuming only a narrow zero-free region. By a simple Perron’s formula
argument, we can obtain cancellation in

∑
𝑃⩽𝑝⩽𝑃1+𝜅

𝜒(𝑝)

𝑝

for 𝜒 ≠ 𝜒0 (mod 𝑞), 𝜅 > 0 fixed, and 𝑃 ∈ [𝑞𝜀, 𝑞] if we assume a zero-free region of the form
Re(𝑠) > 1 − 3 log log 𝑞

log 𝑃
, |Im(𝑠)| ⩽ 𝑞 for 𝐿(𝑠, 𝜒); the need for this zero-free region comes from point-

wise estimation of |𝐿′
𝐿
(𝑠, 𝜒)|≪ log2(𝑞(|𝑡| + 2))which costs us two logarithms (in the regionwhere

we are≫ 1

log(𝑞(|𝑡|+1)) away from any zeros). However, we must argue differently, since we are only

willing to assume a zero-free region of the form Re(𝑠) > 1 − 𝑀(𝜀)
log 𝑃

, |Im(𝑠)| ⩽ 𝑞 (which we know for
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 437

smooth moduli apart from Siegel zeros). To do so, we exploit the logarithmic weight 1∕𝑝 in the
sum over 𝑃 ⩽ 𝑝 ⩽ 𝑃1+𝜅, which allows us to insert a carefully chosen smoothing. A variant of such
an argument is known as a Rodosskii bound in the literature.

Lemma 12.5 (A Rodosskii-type bound). Let 𝑞 ⩾ 2, 𝜀 > 0, 𝜅 > 0, and let 𝜒 (mod 𝑞) be a non-
principal character. Suppose that𝐿(𝑠, 𝜒) ≠ 0 forRe(𝑠) > 1 − 𝜅−2

log 𝑞
, |Im(𝑠)| ⩽ (log 𝑞)3. Then, provided

that 𝑃 ⩾ 𝑞𝜅 ≫𝜅 1, we have

sup|𝑡|⩽(log 𝑞)3∕2
||| ∑
𝑃⩽𝑝⩽𝑃1+𝜀

𝜒(𝑝)

𝑝1+𝑖𝑡
||| ⩽ 𝐶0𝜅 (89)

with 𝐶0 > 0 an absolute constant.

Proof. This is a slight modification of results proved by Soundararajan [42, Lemma 4.2] and
by Harper [17, Rodosskii Bound 1]; in those bounds there is the non-negative function (1 −
Re(𝜒(𝑝)𝑝−𝑖𝑡))∕𝑝 in place of 𝜒(𝑝)∕𝑝1+𝑖𝑡 in (89), and consequently only lower bounds of the cor-
rect order of magnitude are needed in those results. We will choose a more elaborate smoothing
to obtain asymptotics (up to 𝑂(𝜅)) for (89). Also note that our range of |𝑡| is smaller than in the
works mentioned above, but correspondingly the zero-free region is assumed to a lower height.
We may assume without loss of generality that 𝜅 < 𝜀∕10 < 1∕10, since otherwise the trivial

Mertens bound for (89) is good enough. By splitting the interval [𝑃, 𝑃1+𝜀] into≪ 𝜀∕𝜅 intervals of
the form [𝑦, 𝑦1+𝜅] (and possibly one additional interval), it suffices to show that

sup|𝑡|⩽(log 𝑞)3∕2
||| ∑
𝑦⩽𝑝⩽𝑦1+𝜅

𝜒(𝑝) log 𝑝

𝑝1+𝑖𝑡
|||≪ 𝜅2 log 𝑦

uniformly for 𝑦 ∈ [𝑃, 𝑃2].
We introduce the continuous, non-negative weight function

g(𝑢) =

⎧⎪⎪⎨⎪⎪⎩

𝜅−2𝑢, 𝑢 ∈ [0, 𝜅2]

1, 𝑢 ∈ [𝜅2, 𝜅 − 𝜅2]

𝜅−2(𝜅 − 𝑢), 𝑢 ∈ [𝜅 − 𝜅2, 𝜅],

0, 𝑢 ∉ [0, 𝜅];

in other words, g is a trapezoid function. We further define the weight function

𝑊(𝑝) = 𝑊𝑦,𝜅(𝑝) = g
⎛⎜⎜⎝
log

𝑝

𝑦

log 𝑦

⎞⎟⎟⎠ log 𝑦.
Since𝑊(𝑝) = log 𝑦 for 𝑝 ∈ [𝑦1+𝜅2 , 𝑦1+𝜅−𝜅2], and 0 ⩽ 𝑊(𝑝) ⩽ log 𝑦 everywhere, by estimating the
contribution of 𝑝 ∈ [𝑦, 𝑦1+𝜅2] ∪ [𝑦1+𝜅−𝜅2 , 𝑦1+𝜅] trivially, it suffices to show that

sup|𝑡|⩽(log 𝑞)3∕2
|||∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
|||≪ 𝜅2 log2 𝑦. (90)
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438 KLURMAN et al.

Let 𝜒∗ be the primitive character that induces 𝜒. Since the contribution of 𝑝 ∣ 𝑞 to the sum in
(90) is negligible, and since we can replace log 𝑝 with the von Mangoldt function, from Perron’s
formula we see that

∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
= −

1

2𝜋𝑖 ∫
𝑖∞

−𝑖∞

𝐿′

𝐿
(1 + 𝑖𝑡 + 𝑠, 𝜒∗)𝑊(𝑠) 𝑑𝑠 + 𝑂(𝜅2 log 𝑦),

where

𝑊(𝑠) ∶= ∫
∞

0
𝑊(𝑥)𝑥𝑠−1 𝑑𝑥 = 𝜅−2

𝑦(1+𝜅)𝑠 − 𝑦(1+𝜅−𝜅
2)𝑠 − 𝑦(1+𝜅

2)𝑠 + 𝑦𝑠

𝑠2

is the Mellin transform of𝑊.
Shifting the contours to the left, and noting that𝑊(𝑠) is entire and |𝑊(𝑠)|≪ 𝜅−2|𝑠|2 for Re(𝑠) ⩽ 0,

we reach ∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
= −

∑
𝜌

𝑊(𝜌 − 1 − 𝑖𝑡) + 𝑂(𝜅2 log 𝑦), (91)

where the sum is taken over all non-trivial zeros of 𝐿(𝑠, 𝜒∗). Since |𝑡| ⩽ (log 𝑞)3
2

, we can truncate
the 𝜌 sum to end up with

∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
= −

∑
|Im(𝜌)|⩽(log 𝑞)3 𝑊(𝜌 − 1 − 𝑖𝑡) + 𝑂(𝜅

2 log 𝑦).

Let 𝐴 ∶= 𝜅−2. Thanks to our assumption on zero-free regions, we clearly have

|𝑊(𝜌 − 1 − 𝑖𝑡)|≪ 𝜅−2𝑦
− 𝐴
log 𝑞|𝜌 − 1 − 𝑖𝑡|2 ,

and consequently

|||∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
|||≪ 𝜅−2𝑦− 𝐴

log 𝑞
∑

|Im(𝜌)|⩽(log 𝑞)3
1|1 + 𝑖𝑡 − 𝜌|2 + 𝜅2 log 𝑦.

We now note that for any zero 𝜌 = 𝛽 + 𝑖𝛾, with |𝛾| ⩽ (log 𝑞)3 we must have 𝛽 ⩽ 1 − 𝐴

log 𝑞
, and

so

1|1 + 𝑖𝑡 − 𝜌|2 ≪ 1|1 + 1∕ log 𝑞 + 𝑖𝑡 − 𝜌|2 ≪ log 𝑞𝐴 Re
(

1

1 + 1∕ log 𝑞 + 𝑖𝑡 − 𝜌

)
.

Thus we can estimate

|||∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
|||≪ 𝜅−2𝑦− 𝐴

log 𝑞 ⋅
log 𝑞

𝐴

∑
𝜌

Re
(

1

1 + 1∕ log 𝑞 + 𝑖𝑡 − 𝜌

)
+ 𝜅2 log 𝑦.
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 439

Recall that 𝑦 ⩾ 𝑃 ⩾ 𝑞1∕
√
𝐴. We can use the Hadamard factorization theorem in the form given

in [5, Chapter 12] on the right-hand side of the above formula, and estimate |𝐿′
𝐿
(1 + 1∕ log 𝑞 +

𝑖𝑡, 𝜒)|≪ log 𝑞, to see that
|||∑
𝑝

𝜒(𝑝)𝑊(𝑝) log 𝑝

𝑝1+𝑖𝑡
|||≪ 𝜅−2𝑒−√𝐴𝐴(log 𝑦)2 + 𝜅2 log 𝑦 ≪ 𝜅2 log2 𝑦

by our choice of 𝐴. This finishes the proof of the lemma. □

12.2 Proof of Propositions 12.1 and 12.2

Proof of Proposition 12.1.. Wemay assume that 𝜀 > 0 is small enough and that 𝑞 is large enough in
terms of 𝜀, sincewemust have 𝑞𝜀′ ⩾ 2, andwe are free to choose the dependence of 𝜀′ on 𝜀.We shall
show that if 𝑞 is such that we have the zero-free region 𝐿(𝑠, 𝜒) ≠ 0 for Re(𝑠) ⩾ 1 − 𝜀−100∕ log 𝑞,|Im(𝑠)| ⩽ (log 𝑞)3 for all 𝜒 (mod 𝑞) apart from possibly one real character 𝜉, then (87) holds†. This
zero-free region is in particular satisfied for those 𝑞 that satisfy 𝑃+(𝑞) ⩽ 𝑞𝜂(𝜀) with small enough
𝜂(𝜀) > 0.
By the orthogonality of characters, we have

∑
𝑛∈𝐸∗

3
𝑛≡𝑎 (mod 𝑞)

1

𝑛
=

∑
𝜒∈{𝜒0,𝜉} (mod 𝑞)

𝜒(𝑎)

𝜑(𝑞)
𝑃1(𝜒)𝑃2(𝜒)𝑃3(𝜒) +

∑
𝜒 (mod 𝑞)
𝜒≠𝜒0,𝜉

𝜒(𝑎)

𝜑(𝑞)
𝑃1(𝜒)𝑃2(𝜒)𝑃3(𝜒),

where we have defined

𝑃𝑗(𝜒) ∶=
∑

𝑃1−𝜀
𝑗
⩽𝑝⩽𝑃𝑗

𝜒(𝑝)

𝑝
, 𝑗 ∈ {1, 2, 3}.

In the above expression, in the term corresponding to 𝜒0 we can replace 𝜒0 by 1 at the cost of
𝑂((log 𝑞)∕𝑞𝜀).
We employ the Matomäki–Radziwiłł method as in our other proofs. Let

 ∶ = {𝜒 (mod 𝑞) ∶ 𝜒 ∉ {𝜒0, 𝜉}, |𝑃1(𝜒)| ⩽ 𝑃−0.011 },

𝑆 ∶ = {𝜒 (mod 𝑞) ∶ 𝜒 ∉ {𝜒0, 𝜉}} ⧵  .
Unlike in the earlier sections, there is no𝐿 case to analyze, owing to the fact that for 𝜒 ∈ 𝑆 we
already have some cancellation in |𝑃1(𝜒)| by Lemma 12.5 and our assumption on 𝑞.
The case of  is handled similar to our other proofs. Indeed, by Cauchy–Schwarz, we have

∑
𝜒∈

|𝑃1(𝜒)||𝑃2(𝜒)||𝑃3(𝜒)|≪ 𝑃−0.011

(∑
𝜒∈

|𝑃2(𝜒)|2)1∕2(∑
𝜒∈

|𝑃3(𝜒)|2)1∕2.
† If this bad 𝜉 does not exist, let 𝜉 be any non-principal real character in what follows.
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440 KLURMAN et al.

By the mean value theorem for character sums (Lemma 6.1) and the fact that 𝑃1 = 𝑞1000𝜀, 𝑃2 =
𝑃3 = 𝑞, this is

≪ 𝑞−10𝜀𝜑(𝑞)
⎛⎜⎜⎝

∑
𝑃1−𝜀
2
⩽𝑝2⩽𝑃2

1

𝑝2
2

⎞⎟⎟⎠
1∕2⎛⎜⎜⎝

∑
𝑃1−𝜀
3
⩽𝑝3⩽𝑃3

1

𝑝2
3

⎞⎟⎟⎠
1∕2

≪ 𝑞−𝜀,

say, since 𝜑(𝑞)∕(𝑃2𝑃3)
1
2
(1−𝜀) ≪ 𝑞𝜀.

The remaining case to consider is that of𝑆 . Note that, combining the assumed zero-free region
for 𝐿(𝑠, 𝜒), 𝜒 ≠ 𝜉 (mod 𝑞) with Lemma 12.5, we see that |𝑃1(𝜒)|≪ 𝜀2 for all 𝜒 ∈ 𝑆 .
We first estimate |𝑆|. For each 𝜒 ∈ 𝑆 we decompose 𝑃1(𝜒) into dyadic segments [𝑦, 2𝑦]with

𝑦 = 2𝑗 ∈ [𝑃1−𝜀
1
∕2, 𝑃1] and use partial summation to obtain

|𝑃1(𝜒)|≪ (𝜀 log 𝑃1) max
𝑦∈[𝑃1−𝜀

1
∕2,𝑃1]

𝑦=2𝑗

1

𝑦

|||||
∑
𝑦⩽𝑝⩽2𝑦

𝜒(𝑝)
|||||.

FromLemma 6.5, which bounds the number of large values taken by a prime-supported character
sum, we have the size bound

|𝑆| ⩽ |{𝜒 (mod 𝑞) ∶ |𝑃1(𝜒)| > 𝑃−0.011 }|
⩽
|||||
{
𝜒 (mod 𝑞) ∶ max

𝑦∈[𝑃1−𝜀
1
,𝑃1]

𝑦=2𝑗

1

𝑦

|||||
∑
𝑦⩽𝑝⩽2𝑦

𝜒(𝑝)
||||| ⩾ 𝑃−0.011 (𝜀 log 𝑃1)

−1

}|||||
≪

∑
𝑃1−𝜀
1
∕2⩽𝑦⩽𝑃1

𝑦=2𝑗

|{𝜒 (mod 𝑞) ∶ | ∑
𝑦⩽𝑝⩽2𝑦

𝜒(𝑝)| ⩾ 𝑦1−0.02}|≪ 𝑞0.05,
recalling that 𝑃1 = 𝑞1000𝜀, and 𝑞 is sufficiently large in terms of 𝜀.
Introducing the dyadic sums

𝑃𝑗,𝑣(𝜒) ∶=
∑

𝑒𝑣⩽𝑝⩽𝑒𝑣+1

𝑃1−𝜀
𝑗
⩽𝑝⩽𝑃𝑗

𝜒(𝑝)

𝑝
, 𝑣 ∈ 𝐼𝑗 ∶= [(1 − 𝜀) log 𝑃𝑗, log 𝑃𝑗],

the upper bound on |𝑃1(𝜒)| above and Cauchy–Schwarz give∑
𝜒∈𝑆

|𝑃1(𝜒)||𝑃2(𝜒)||𝑃3(𝜒)|≪ 𝜀2 ∑
𝑣1,𝑣2∈𝐼2

∑
𝜒∈𝑆

|𝑃2,𝑣1(𝜒)||𝑃3,𝑣2(𝜒)|
≪ 𝜀2(𝜀 log 𝑞)2

( ∑
𝜒∈𝑆

|𝑃2,𝑣′
1
(𝜒)|2)1∕2( ∑

𝜒∈𝑆
|𝑃3,𝑣′

2
(𝜒)|2)1∕2
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 441

for some 𝑣′
1
, 𝑣′
2
∈ 𝐼2 (since as 𝑃2 = 𝑃3 we have 𝐼2 = 𝐼3). It remains to be shown that for any

𝑣 ∈ 𝐼𝑗 , ∑
𝜒∈𝑆

|𝑃𝑗,𝑣(𝜒)|2 ≪ 1

log2 𝑞

for 𝑗 ∈ {2, 3}, since then we get a bound of≪ 𝜀4 for the sum over 𝜒 ∈ 𝑆 , and this (multiplied by
the 1∕𝜑(𝑞) factor) can be included in the error term in (87).
For this purpose, we apply Lemma 12.4, which is a sharp inequality of Halász–Montgomery-

type for character sums over primes†. We take 𝑁 = 𝑒𝑣+1, |Ξ| = |𝑆|≪ 𝑞0.05, 𝑘 = 3, 𝑅 =
𝑁0.0001, 𝑎𝑝 =

1

𝑝
1𝑝∈[𝑒𝑣,𝑒𝑣+1]∩[𝑃1−𝜀

𝑗
,𝑃𝑗]

in that lemma. Since the term 𝑁2∕3𝑞1∕9|Ξ|𝑅2∕3 appearing in
Lemma 12.4 is smaller than the other term 𝑁

log𝑅
for our choice of parameters, we get a bound of

≪ 𝑒𝑣∕𝑣 ⋅ 1
𝑣𝑒𝑣
≪ 1

log2 𝑞
, as desired. This completes the analysis of the 𝑆 case, so Proposition 12.1

follows. □

Proof of Proposition 12.2. The proof of Proposition 12.2 is similar to that of Proposition 12.1, except
that there are no exceptional characters arising. The proof of (87) goes through for any 𝑞 for which
𝐿(𝑠, 𝜒) ≠ 0 whenever Re(𝑠) > 1 − 𝜀−100∕ log 𝑞, |Im(𝑠)| ⩽ (log 𝑞)3 and 𝜒 ≠ 𝜉 (mod 𝑞). Moreover,
since under the assumption of Proposition 12.2 the exceptional character 𝜉 does not exist (that is,
the above holds for all 𝜒 (mod 𝑞)), we can delete the term involving 𝜉 from (87), giving (88). This
gives Proposition 12.2. □

12.3 Deductions of Linnik-type theorems

Corollary 2.2 is a direct consequence of Theorem 2.1(i) (by fixing 𝜀 > 0 in its statement). Hence, it
suffices to prove Theorem 2.1(i) and (ii).

Proof of Theorem2.1(ii). It suffices to show that for all but≪𝜀 1primes 𝑞 ∈ [𝑄1∕2, 𝑄] the right-hand
side of (88) is > 0; indeed, then the smallest 𝑞-smooth 𝐸3 number in the progression 𝑎 (mod 𝑞) is
⩽ 𝑞2+1000𝜀 (and since 𝜀 > 0 is arbitrarily small, this is good enough).
In view of Proposition 12.2, it suffices to show that for all but ≪𝜀 1 primes 𝑞 ∈ [𝑄1∕2, 𝑄],∏
𝜒 (mod 𝑞) 𝐿(𝑠, 𝜒) obeys the zero-free region Re(𝑠) ⩾ 1 − 𝑀(𝜀)

log 𝑞
, |Im(𝑠)| ⩽ (log 𝑞)3 required by

that proposition.
Since 𝑞 is a prime, all the charactersmodulo 𝑞 apart from the principal one are primitive. More-

over, the zeros of the 𝐿-function corresponding to the principal character are the same as the zeros
of the Riemann zeta function, so we have the Vinogradov–Korobov zero-free region for this 𝐿-
function. It therefore suffices to consider the 𝐿-functions corresponding to primitive characters.
By the log-free zero-density estimate (Lemma 7.3), we immediately see that

∏∗
𝜒 (mod 𝑞) 𝐿(𝑠, 𝜒) has

the required zero-free region for all but≪ exp(100𝑀(𝜀)) prime moduli 𝑞 ∈ [𝑄1∕2, 𝑄], so we have
the claimed result. □

† For this estimate to work, it is crucial that the character sums 𝑃𝑗,𝑣(𝜒) are long enough in terms of 𝑞; in particular, we
need them to have length≫ 𝑞1∕3+𝜀 .
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442 KLURMAN et al.

Proof of Theorem 2.1(i). Fixing 𝛿 > 0, we will show that if 𝑃+(𝑞) ⩽ 𝑞𝜀′ with 𝜀′ very small in terms
of 𝛿, then the least product of exactly three primes in every reduced residue class 𝑎 (mod 𝑞) is
≪ 𝑞2+𝛿.
Let 𝜀 > 0 be very small in terms of 𝛿. By Lemma 12.3, we have the zero-free region required by

Proposition 12.2 whenever 𝑃+(𝑞) ⩽ 𝑞𝜂(𝜀) with 𝜂(𝜀) > 0 small enough, apart from possibly a single
zero 𝛽, which is real and simple and corresponds to a single real character (mod 𝑞).
If this exceptional zero 𝛽 does not exist, then from Proposition 12.2 we obtain a positive

lower bound for the left-hand side of (87). Therefore, we can assume that 𝛽 exists. This is a
real zero of an 𝐿-function (mod 𝑞), and we write the zero as 𝛽 = 1 − 𝑐

log 𝑞
with 𝑐 > 0. By a

result of Heath-Brown [19, Corollary 2] on Linnik’s theorem and Siegel zeros, if 𝑐 ⩽ 𝑐0(𝛿) for
a suitably small function 𝑐0(𝛿), then the least prime in any arithmetic progression 𝑎 (mod 𝑞)
with (𝑎, 𝑞) = 1 is ≪ 𝑞2+𝛿∕2, and thus also the least 𝑛 ≡ 𝑎 (mod 𝑞) with exactly three prime fac-
tors obeys the same bound (indeed, if 𝑝1, 𝑝2 ≪ log2 𝑞 are chosen to be primes not dividing 𝑞
and 𝑝 ≪ 𝑞2+𝛿∕2 is a prime ≡ 𝑎(𝑝1𝑝2)−1 (mod 𝑞), then 𝑝1𝑝2𝑝 ≪ 𝑞2+𝛿 and 𝑝1𝑝2𝑝 ≡ 𝑎 (mod 𝑞)).
Thus we have proved the theorem if 𝛽 ⩾ 1 − 𝑐0(𝛿)

log 𝑞
, so henceforth we will assume we are in the

opposite case.
According to Proposition 12.1, it suffices to show that

||| ∑
𝑃1−𝜀
3
⩽𝑝⩽𝑃3

𝜉(𝑝)

𝑝
||| ⩽ (1 −√

𝜀)
∑

𝑃1−𝜀
3
⩽𝑝⩽𝑃3

1

𝑝
,

since then the left-hand side of (87) is > 0 for 𝜀 > 0 small enough.
Following the exact same argument as in the proof of Lemma 12.5, and introducing the same

weight function𝑊 = 𝑊𝑦,𝜅 with 𝑦 ∈ [𝑃1−𝜀3 , 𝑃3] and 𝜅 = 𝜀
10 (and using (91)), it is enough to show

that

|||∑
𝜌

𝑊(𝜌 − 1)
||| ⩽ (1 − 10√𝜀)(log2 𝑦) ∑

𝑦1−𝜅⩽𝑝⩽𝑦

1

𝑝
,

where the sum is over the non-trivial zeros 𝜌 of 𝐿(𝑠, 𝜉). Just as in the proof of Lemma 12.5, the
contribution of all the zeros 𝜌 ≠ 𝛽 is≪ 𝜀(log2 𝑦)∑𝑦1−𝜅⩽𝑝⩽𝑦 1𝑝 as long as 𝑃+(𝑞) ⩽ 𝑞𝜂1(𝜀) with 𝜂1(𝜀)
small enough. It suffices to show, then, that

|𝑊(𝛽 − 1)| ⩽ (1 − 11√𝜀)(log2 𝑦) ∑
𝑦1−𝜅⩽𝑝⩽𝑦

1

𝑝
. (92)

We recall that 𝛽 ⩽ 1 − 𝑐0(𝛿)

2 log 𝑦
, and denote

𝐹(𝑢) ∶= 𝑊

(
−
𝑢

log 𝑦

)
= 𝜅−2

𝑒−𝑎𝑢 − 𝑒−𝑏𝑢 − 𝑒−𝑐𝑢 + 𝑒−𝑢

𝑢2
log2 𝑦,

where 𝑎 = 1 + 𝜅, 𝑏 = 1 + 𝜅 − 𝜅2, 𝑐 = 1 + 𝜅2 and the value at 𝑢 = 0 is interpreted as the limit as
𝑢 → 0. We compute using L’Hôpital’s rule that𝑊(0) = 𝐹(0) = 𝜅(1 − 𝜅) log2 𝑦, and differentiation
shows that𝐹 is decreasing, so𝑊 is increasing.Moreover,𝐹′ is increasing and𝐹′(𝑢) = (𝜅∕2 ⋅ (−2 +
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MULTIPLICATIVE FUNCTIONS IN SHORT ARITHMETIC PROGRESSIONS 443

𝜅 + 𝜅2) + 𝑂(𝜅𝑢)) log2 𝑦 for |𝑢| ⩽ 1. Thus, by the mean value theorem applied to 𝐹 we have

𝑊(𝛽 − 1) ⩽ 𝑊

(
−
𝑐0(𝛿)

2 log 𝑦

)
= 𝐹

(
𝑐0(𝛿)

2

)
⩽ 𝐹(0) +

𝑐0(𝛿)

2
𝐹′

(
𝑐0(𝛿)

2

)
⩽ 𝜅

(
1 − 𝜅 −

𝑐0(𝛿)

4

)
log2 𝑦,

since 𝛿 > 0 is small. We further have 1 − 𝜅 − 𝑐0(𝛿)∕4 ⩽ 1 − 100
√
𝜀 if 𝜀 > 0 (and hence 𝜅) is small

enough in terms of 𝛿, so that (92) holds by Mertens’ bound. This completes the proof. □

Proof of Proposition 2.3. The proof of Proposition 2.3 follows along similar lines as those above,
so we merely sketch it, indicating the required modifications. We outline the lower bound for 𝑛
with 𝜇(𝑛) = −1; the corresponding estimate for 𝜇(𝑛) = +1 is proved in the analogous way.
When considering numbers 𝑛 with 𝜇(𝑛) = −1, we restrict to those 𝑛 that belong to the set

 ∶= {𝑛 ∈ ℕ ∶ Ω[𝑃𝑗,𝑄𝑗](𝑛) = 1, 𝑗 ∈ {1, 2}}
with𝑃1 = 𝑥𝜀∕10,𝑄1 = 𝑥𝜀∕5,𝑃2 = 𝑥1∕2−𝜀,𝑄2 = 𝑥1∕2−𝜀∕2; this introduces essentially the same factor-
ization patterns for our 𝑛 as in the case of products of exactly three primes. By writing 1𝜇(𝑛)=−1 =
1

2
(𝜇2(𝑛) − 𝜇(𝑛)), it suffices to bound

∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝜇2(𝑛)1 (𝑛) ≫ 𝜀𝑥𝑞 ,

||| ∑
𝑛⩽𝑥

𝑛≡𝑎 (mod 𝑞)
𝜇(𝑛)1 (𝑛)|||≪ 𝜀2 𝑥𝑞 .

We concentrate on the latter bound (the former is similar but easier). Write 𝑛 = 𝑝1𝑝2𝑚 with
𝑝𝑗 ∈ [𝑃𝑗, 𝑄𝑗] for 𝑗 = 1, 2,𝑚 ⩽

𝑥

𝑝1𝑝2
. As in the previous sections, we can easily get rid of the cross

condition on the variables by splitting into short intervals, so applying orthogonality of characters
it suffices to show that

1

𝜑(𝑞)

∑
𝜒 (mod 𝑞)
𝜒≠𝜒0

|||𝑄𝑣1,𝐻(𝜒)𝑄𝑣2,𝐻(𝜒)𝑅𝑣1+𝑣2,𝐻(𝜒)|||≪ 𝜀2𝑥

𝐻3(log𝑄1)(log𝑄2)𝑞
,

uniformly for 𝑣𝑖 ∈ 𝐼𝑖 , where we have defined

𝑄𝑣,𝐻(𝜒) ∶=
∑

𝑒𝑣∕𝐻⩽𝑝<𝑒(𝑣+1)∕𝐻

𝜒(𝑝), 𝑅𝑣,𝐻(𝜒) ∶=
∑

𝑚⩽𝑥∕𝑒𝑣∕𝐻

𝜇(𝑚)𝜒(𝑚)1 (𝑚),

𝐼𝑖 = [𝐻 log 𝑃𝑖, 𝐻 log𝑄𝑖], 𝐻 = ⌊𝜀−3⌋,
and  is the set of numbers coprime to all the primes in [𝑃𝑗, 𝑄𝑗] for 𝑗 ∈ {1, 2}. We consider the
cases

 ∶ = {𝜒 (mod 𝑞) ∶ |𝑄𝑣1,𝐻(𝜒)| ⩽ 𝑒0.99𝑣1∕𝐻} ⧵ {𝜒0}
𝑆 ∶ = {𝜒 (mod 𝑞) ∶ |𝑄𝑣1,𝐻(𝜒)| ⩽ 𝜀20𝑒𝑣1∕𝐻∕𝑣1} ⧵ ( ∪ {𝜒0})
𝐿 ∶ = {𝜒 (mod 𝑞)} ⧵ ( ∪𝑆 ∪ {𝜒0}).
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444 KLURMAN et al.

The case of  is easy and is handled just as in the proof of Proposition 12.1. The case of 𝑆
is also handled similarly as in that proposition, except that we also need a Halász–Montgomery
estimate for

∑
𝜒∈𝑆 |𝑅𝑣1+𝑣2,𝐻(𝜒)|2. This bound takes the same form as Lemma 12.4, but is proved

simply by applying duality and the Burgess bound (since 𝑅𝑣1+𝑣2,𝐻(𝜒) is a sum over the integers
rather than over the primes).
Finally, the𝐿 set is small in the sense that |𝐿|≪ 𝜀−43 by Proposition 8.5 whenever we have

the zero-free region

∏
𝜒 (mod 𝑞)

𝐿(𝑠, 𝜒) ≠ 0 for Re(𝑠) > 1 − 𝑀(𝜀)
log 𝑞

, |Im(𝑠)| ⩽ 3𝑞 (93)

with𝑀(𝜀) large enough. It thus suffices to prove that

sup
𝜒≠𝜒0 (mod 𝑞)

|𝑅𝑣1+𝑣2,𝐻(𝜒)|≪ 𝜀60 𝜑(𝑞)𝑞 𝑥𝑒−(𝑣1+𝑣2)∕𝐻,
and by Lemma 7.4 this reduces to the bound

sup
𝜒 (mod 𝑞)
𝜒≠𝜒0

inf|𝑡|⩽(log 𝑞)3∕2
∑
𝑝⩽𝑥
𝑝∤𝑞

1 + Re(𝜒(𝑝)𝑝−𝑖𝑡)
𝑝

⩾ 61 log
1

𝜀
+ 𝑂(1). (94)

At first, a direct application of Lemma 7.4 reduces to proving (94) with 𝜒(𝑝)𝑝−𝑖𝑡1 (𝑝) in place of
𝜒(𝑝)𝑝−𝑖𝑡, but since log𝑄𝑗∕ log 𝑃𝑗 ≪ 1 by our choices, the contribution of those 𝑝 with 1 (𝑝) ≠ 1
is negligible in (94).
Restricting the sum in (94) to 𝑝 ∈ [𝑥𝜅, 𝑥]with 𝜅 = 𝜀61, we indeed obtain (94) from Lemma 12.5

upon splitting [𝑥𝜅, 𝑥] into segments

[𝑥𝜅𝑗 , 𝑥𝜅𝑗+1], where 𝜅𝑗 = 𝜅(1 + 𝜀)𝑗 and 0 ⩽ 𝑗 ⩽ ⌈log(1∕𝜅)∕ log(1∕𝜀)⌉≪ 1,
as long as we have the zero-free region (93). This zero-free region is indeed available by Lemma 7.3
for all but≪𝜀 1 primes 𝑞 ∈ [𝑄1∕2, 𝑄], as in the proof of Theorem 2.1(ii). □
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