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ABSTRACT
We consider a system with 𝑛 unit-rate servers where jobs arrive

according a Poisson process with rate 𝑛𝜆 (𝜆 < 1). In the standard

Power-of-two or Po2 scheme, for each incoming job, a job dispatcher

samples two servers uniformly at random and sends the incoming

job to the least loaded of the two sampled servers. However, in prac-

tice, the load information may not be accurate at the job dispatcher.

In this paper, we analyze the effects of erroneous load comparisons

on the performance of the Po2 scheme. Specifically, we consider

load-dependent and load-independent errors. In the load-dependent

error model, an incoming job is sent to the server with the larger

queue length among the two sampled servers with an error proba-

bility 𝜖 if the difference in the queue lengths of the two sampled

servers is less than or equal to a constant 𝑔; no error is made if the

queue-length difference is higher than 𝑔. For this type of errors, we

show that, in the large system limit, the benefits of the Po2 scheme

are retained for all values of 𝑔 and 𝜖 as long as the system is heavily

loaded, i.e., 𝜆 is close to 1. In the load-independent error model,

the incoming job is sent to the sampled server with the maximum
load with an error probability of 𝜖 independent of the loads of the

sampled servers. For this model, we show that the performance

benefits of the Po2 scheme are retained only if 𝜖 ≤ 1/2; for 𝜖 > 1/2

we show that the stability region of the system reduces and the

system performs poorly in comparison to the random scheme. To
prove our stability results, we develop a generic approach to bound

the drifts of Lyapunov functions for any state-dependent load bal-

ancing scheme. Furthermore, the mean-field analysis in our paper

uses a new approach to characterise fixed points which do not

admit a recursion.
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1 INTRODUCTION
Modern data centres consist of large numbers of parallel servers.

Balancing the load across these servers is crucial to ensure better

resource utilization and satisfactory quality of service. To distribute

the load across the servers uniformly, each incoming job needs

to be assigned to an appropriate server in the system. Assigning

an incoming job to one of the servers is done by a job dispatcher

using a load balancing scheme. For homogeneous systems, it is

well known that the Join-the-Shortest-Queue (JSQ) load balancing

scheme [1, 2], where an incoming job is assigned to the server

having smallest number of ongoing jobs, is optimal in terms of

minimizing the average response time of jobs. For heterogeneous

systems, variants of the JSQ scheme are known to be asymptotically

optimal [3, 4]. However, implementing JSQ-type schemes is often

difficult in practice as dispatchers only have local views of the sys-

tem and therefore can access the load information of only a subset

of servers [5, 6]. A popular alternative to the JSQ scheme, called

the Join-the-Idle-Queue scheme [7, 8], requires only the knowledge

of the idle servers. However, even this scheme suffers from similar

implementation issues as the dispatcher needs to store the idle

tokens of a large number of servers.

Due to the challenges mentioned above, randomised schemes,

such as the celebrated Power-of-𝑑 choices or the Pod scheme [9, 10],

are widely used in practice [11, 12]. In the Pod scheme, an arrival

is sent to the server with the shortest queue length among a set

of 𝑑 servers sampled uniformly at random. For 𝑑 = 1, the Pod

scheme reduces to the random scheme. For 𝑑 = 2, it is well-known

that an exponential improvement in the average response time is

achieved in comparison to the random scheme. However, this result

requires that the server with the least queue length among the

two sampled servers is always correctly identified. In a real system,

the queue lengths stored at a dispatcher may get outdated due to

infrequent updates from the servers [13, 14]. This could result in

misidentifying the server currently having the smaller queue length.

Another scenario where an error can occur, is when an adversary

tries to carry out an attack by misreporting the queue-lengths sent

from the servers to the dispatcher [15]. The attacker can manipulate

the queue lengths in a way that the dispatcher assigns the job to

the server with the maximum load among the two sampled servers.

Such erroneous assignments can significantly increase average

response time of jobs and may even cause the system to become

unstable. The importance of studying the effect of inaccurate load

comparisons on load balancing was highlighted as early as 2001 in a

survey paper by Mitzenmacher, Richa and Sitaraman [16]. However,

except from the static setting [17, 18], where there is a finite pool

of jobs, this problem has not been studied.
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Our Contributions: This motivates us to consider the effects

that comparison errors can have on the performance of the Po2

scheme in the dynamic setting. We consider two types of compari-

son errors, referred to as the load-dependent and load-independent
errors. In the load-dependent error model, an “error” is made with

probability 𝜖 ∈ [0, 1] if the difference in the queue lengths of the

sampled servers is sufficiently small (less or equal to a constant

𝑔 ≥ 0); if this is not the case (i.e., if the queue-length difference is

higher than 𝑔), then no error occurs. An error, in this context, refers

to the event where the job is sent to the server having the larger

queue length among the two sampled servers. Hence, in this model,

the dispatcher makes an error only when the current queue lengths

of the sampled servers are close to each other; this is natural to

expect when errors occur primarily due to outdated queue lengths

at the dispatcher as servers having close queue lengths are likely to

be more affected by this type of errors. To model errors due to ad-

versarial attacks, we consider the load-independent error model in

which an error occurs with probability 𝜖 independent of the current
loads of the sampled servers. Clearly, this model of error can have

a more drastic impact on the system’s performance than the load-

dependent error model. Our goal is to characterise the performance

of the Po2 scheme under these two error models for a system where

there are 𝑛 unit-rate servers and jobs with exponentially distributed

sizes arrive according to a Poisson process with rate 𝑛𝜆 (𝜆 < 1).

It is natural to expect that as 𝑔 and 𝜖 increases (i.e., as the error

rate becomes higher), the performance of the Po2 scheme under the

load-dependent error model would deteriorate, eventually resulting

in a performance poorer than the random scheme. While this is

true for light traffic (small values of 𝜆), we show that, in the heavy

traffic limit (𝜆 → 1) and large system sizes, the performance of the

system remains exponentially better than that under the random

scheme for all values of 𝑔 and 𝜖 . This implies that the benefits of

sampling one additional server in the Po2 scheme outweighs the

negative impact of comparison errors when the system operates

at its maximum capacity. This result can be explained though the

dynamics of the system in the mean-field regime. Specifically, we

show the fixed point of the mean-field has a super-exponential

decay of tail probabilities for all values of 𝑔 and 𝜖 . While this decay

rate is slower than that under the standard Po2 scheme, it is still

super-exponential and therefore its benefits in comparison to the

exponential decay rate under the random scheme become more

prominent in the heavy traffic regime.

For the load-independent error model, we show that the benefits

of the Po2 scheme are retained only if the error probability 𝜖 satisfies

𝜖 ≤ 1/2. For 𝜖 > 1/2, we show that system becomes unstable

for arrival rates larger than 1/2𝜖 and the performance becomes

worse than that under the random scheme. This can be intuitively

explained by the fact that for 𝜖 > 1/2 the Po2 scheme chooses the

server with the larger queue length more often than the server with

the smaller queue length.

From a technical point of view, we make a number of important

contributions. First, we derive the stability region of the system

for both error models and establish uniform (in the system size 𝑛)

bounds on the stationary expected queue length per server. These

bounds are essential to establish tightness of the stationary mea-

sures and interchange of limits in the mean-field regime. The exist-

ing results of [19] on JSQ-type load balancing schemes do not apply

to our schemes since a job is not always sent to the server with the

minimum queue length among the sampled servers. Although the

fluid limit results of [20] can be applied to derive stability condi-

tions, they do not yield the uniform bounds essential to establish

tightness of the stationary distributions. To obtain both stability

conditions and the uniform bounds, we use drifts of suitable Lya-

punov functions. However, bounding the drifts of these Lyapunov

functions is difficult for our schemes as the schemes compare only

a subset of queues at each arrival and do not always choose the

shortest queue as the final destination. We develop a generic ap-

proach through which the drift can be bounded for any scheme

where queue lengths of multiple servers are compared to dispatch

each job.

The second important technical contribution is the mean-field

analysis of the Po2 scheme under the load-dependent error model.

This analysis differs significantly from conventional analysis in that

the fixed point of the mean-field in this case does not satisfy any

recursion. For such a system, even the existence of the fixed point

is not evident. Proving global stability is also more complicated as

it relies on induction on the component index. To prove the desired

results, we use a new approach that employs bounds on the decay

rate of the mean-field process and its monotonicity. We believe that

this approach is more broadly applicable to other models where a

fixed point does not admit a recursive relationship.

1.1 Related Works
In the last two decades, the Pod scheme has emerged as a widely

used load balancing scheme due to its promising gains and minimal

overhead. It has been studied extensively under various scaling

limits and traffic conditions. The mean-field scaling limit for this

scheme was first studied for exponential service time distributions

in the seminal works [9, 10]. Their results were later generalised

to general service time distributions in [21, 22]. The heavy traffic

optimality of the Pod scheme has been established in [23, 24]. In [25],

the analysis of the Pod scheme has been carried out for the case

where the number of choices, 𝑑 , is allowed to depend on the system

size 𝑛 and 𝑑 (𝑛) = 𝜔 (1). In this work, both the mean-field and

Halfin-Whitt regimes are considered. In the mean-field limit, the

Pod scheme has been shown to reach the same performance as

the JSQ scheme. Recently, the Pod scheme has been analysed for

different graph topologies. For example, in [26], the Pod scheme

is analyzed for non-bipartite graphs and sufficient conditions on

the graph sequence is obtained to match the result on complete

graphs in the mean-field limit. For the bipartite graphs, the Pod

scheme and its variants have been analysed in [27, 28]. In all cases,

results similar to the complete graph setting have been obtained. For

heterogeneous systems, the Pod scheme has been studied in [29, 30]

where speed-aware versions of the Pod scheme have been shown

to yield similar performance benefits.

The above mentioned results for the Pod scheme assume that on

each arrival the dispatcher has the accurate knowledge of the queue

lengths of the𝑑 sampled servers. However, this assumption may not

be true in practice due to the issues discussed in the introduction.

Recently, in [17], the balls and bins problem was studied under

various noisy load comparison models. Here, 𝑛 balls are placed into

𝑛 bins sequentially and at each step a ball is placed into a bin from
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a subset of 𝑑 bins chosen at random. For the load-dependent error

model discussed above, it has been shown that gap between the

maximum and the average load is 𝑂 ( 𝑔

log(𝑔) log log(𝑛)). This result
motivates us to consider the effects of noisy load comparisons on

the performance of the Po2 scheme in the dynamic setting where

jobs are allowed to leave the system after being served. To the best

of our knowledge, this is the first work that studies the Po2 scheme

under the erroneous load comparison model in the dynamic setting.

2 SYSTEM MODEL
We consider a system consisting of 𝑛 parallel servers, each with its

own queue of infinite buffer size. Each server is able to process jobs

at unit rate. Jobs arrive according to a Poisson process with a rate𝑛𝜆

(𝜆 < 1). Each job requires a random amount of work, independent

and exponentially distributed with unit mean. The inter-arrival and

job lengths are assumed to be independent of each other. A job

dispatcher assigns each incoming job to a queue of a server where

jobs are served according to the First-Come-First-Server (FCFS)

scheduling discipline.

The job dispatcher uses the Po2 scheme to assign jobs to the

servers
1
. Under the classical Po2 scheme, a job is sent to the server

with the minimum queue length among two servers, chosen uni-

formly at random. However, in practice, the server with the smaller

queue length may not be always be correctly identified either due

to outdated queue-length information at the dispatcher or due to an

attacker misreporting the queue lengths sent from the servers to the

dispatcher. Motivated by these scenarios, in this paper, we consider

the following versions of the Po2 scheme where load comparisons

are not always accurate. In the following, an error refers to the

event where an arrival is sent to the server with the larger queue

length among the two sampled servers.

2.1 Load-Dependent Error Model
In this model, an error occurs with probability 𝜖 ∈ [0, 1] only when
the difference in queue lengths of the sampled servers is in the

range (0, 𝑔] for some constant 𝑔 ≥ 0. If the queue-length difference

is strictly above 𝑔, then we assume that no error is made, i.e., the

job is sent to the server with the smaller queue length. In case of a

tie, we assume that an arbitrary tie breaking rule based on server

indices is used. Without loss of generality (WLOG), we assume that

servers are indexed from the index set [𝑛] = {1, 2, . . . , 𝑛}, and, in
case of a tie, the job is sent to the server with the smaller index

among the two sampled servers. We refer to the Po2 scheme under

this model of error as the Po2-(𝑔, 𝜖) scheme.

2.2 Load-Independent Error Model
In this model, an error occurs with probability 𝜖 ∈ [0, 1] indepen-
dent of the current queue lengths of the sampled servers. More

precisely, the incoming job is sent to the server having the higher

queue length among the sampled servers with probability 𝜖 and

with probability 1− 𝜖 it is sent to the server with the smaller queue

length. Ties are broken in the same way as discussed before. For

simplicity, we refer to the Po2 scheme under this model of error as

the Po2-𝜖 scheme.

1
We use Po2 scheme instead of the Po𝑑 scheme with 𝑑 ≥ 3 since the gain for 𝑑 ≥ 3 is

marginal with respect to that for 𝑑 = 2.

2.3 System State and Notations
To analyze the system under the schemes discussed above, we

first introduce Markovian state descriptors of the system. We use

two Markovian state descriptors. First, we define the queue-length

vector at time 𝑡 ≥ 0 asQ(𝑛) (𝑡) = (𝑄 (𝑛)
𝑘

(𝑡), 𝑘 ∈ [𝑛]),where𝑄 (𝑛)
𝑘

(𝑡)
denotes the queue length of the 𝑘th server. Second, we define the tail

measure on the queue lengths at time 𝑡 as x(𝑛) (𝑡) = (𝑥 (𝑛)
𝑖

(𝑡), 𝑖 ≥ 1),
where 𝑥

(𝑛)
𝑖

(𝑡) denotes the fraction of servers with at least 𝑖 jobs at

time 𝑡 . For completeness, we set 𝑥
(𝑛)
𝑖

(𝑡) = 1 for all 𝑖 ≤ 0 and all 𝑡 ≥
0. From the Poisson arrival and the exponential job size assumption

it is clear that bothQ(𝑛) = (Q(𝑛) (𝑡), 𝑡 ≥ 0) and x(𝑛) = (x(𝑛) (𝑡), 𝑡 ≥
0) are Markov processes. When the system is stable, we denote

by 𝜋𝑛 the unique invariant measure of the process x(𝑛) and we

use x(𝑛) (∞) and Q(𝑛) (∞) to denote the steady-state values of the

processes x(𝑛) andQ(𝑛)
, respectively. As the load balancing scheme

does not distinguish between servers, we have P(𝑄 (𝑛)
𝑖

(𝑡) ≥ 𝑘) =
E[1

(
𝑄

(𝑛)
𝑖

(𝑡) ≥ 𝑘

)
] = (1/𝑛)∑𝑖∈[𝑛] E[1

(
𝑄

(𝑛)
𝑖

(𝑡) ≥ 𝑘

)
] = E[𝑥 (𝑛)

𝑘
]

for each 𝑖 ∈ [𝑛] and each 𝑡 ∈ [0,∞].
To define the state space of the process x(𝑛) , we first define

the space 𝑆 as 𝑆 ≜ {s = (𝑠𝑖 ) : 𝑠0 = 1, 1 ≥ 𝑠𝑖 ≥ 𝑠𝑖+1 ≥ 0,∀𝑖 ≥
1}. Note that the space 𝑆 is compact under the norm defined as

∥s∥ = sup𝑖∈Z+
|𝑠𝑖 |
𝑖+1

for s ∈ 𝑆 . The process Q(𝑛)
takes values in

Z𝑛+ and the process x(𝑛) takes values in the space 𝑆 (𝑛) defined as

𝑆 (𝑛) ≜ {s ∈ 𝑆 : 𝑛𝑠𝑖 ∈ Z+ ∀𝑖 ≥ 1}. We further define the space 𝑆 as

follows 𝑆 ≜ {s ∈ 𝑆 : ∥s∥
1
< ∞}, where the ℓ1-norm, denoted by

∥·∥
1
, is defined as ∥s∥

1
≜
∑
𝑖≥1

|𝑠𝑖 | for any s ∈ 𝑆 .

3 MAIN RESULTS AND INSIGHTS
In this section, we summarise our main results and discuss their

consequences.

In the following theorem, we characterise the stability region

for each of the two schemes discussed above.

Theorem 1 (Stability). (i) For any 𝑔 ≥ 0, 𝜖 ∈ [0, 1], and 𝑛 ≥ 2

the system under the Po2-(𝑔, 𝜖) scheme is stable (i.e., the process x(𝑛)

is positive recurrent) if and only if 𝜆 < 1. Furthermore, for 𝜆 < 1, the
steady-state average queue length per server is bounded above as

E𝜋𝑛 [𝑄
(𝑛)
𝑖

(∞)] = E𝜋𝑛

[∑︁
𝑖≥1

𝑥𝑛𝑖 (∞)
]
≤ (1 + 𝑔1(𝜖 > 1/2))𝜆

1 − 𝜆
. (1)

(ii) For any 𝜖 ∈ [0, 1] and 𝑛 ≥ 2, the system under the Po2-𝜖
scheme is stable, if and only if 𝜆 < min

(
1, 1

2𝜖

)
. Furthermore, for

𝜆 < min(1, 1/2𝜖), the steady state average queue length per server is
bounded above as

E𝜋𝑛 [𝑄
(𝑛)
𝑖

(∞)] = E𝜋𝑛

[∑︁
𝑖≥1

𝑥𝑛𝑖 (∞)
]
≤ 𝜆

1 − max(1, 2𝜖)𝜆 . (2)

In addition to the stability regions, the above theorem gives

uniform (in the system size 𝑛) bounds on the steady-state mean

queue length per server for each scheme. These uniform bounds

are crucial in establishing the tightness of stationary measures and

justifying interchange of the limits in lim𝑛→∞ lim𝑡→∞ x(𝑛) (𝑡) =
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lim𝑡→∞ lim𝑛→∞ x(𝑛) (𝑡), which shows that the mean-field approx-

imation of the steady-state behaviour of the finite system is asymp-

totically exact.

The bounds in (1) and (2) also help us to compare the perfor-

mance of the Po2-(𝑔, 𝜖) and the Po2-𝜖 schemes to that of the random

scheme. For example, when 𝜖 ≤ 1/2, both the upper bounds reduce

to 𝜆/(1 − 𝜆) which is the steady-state average queue length per

server under the random scheme. This implies that, under both

models of error, the Po2 scheme performs better than the random

scheme when the error probability 𝜖 ≤ 1/2. This is intuitive, as,

for 𝜖 ≤ 1/2, an incoming job under the Po2 scheme is sent to the

server with the smaller queue length more often than to the server

with the larger queue length. For 𝜖 > 1/2, however, the schemes

may perform poorly in comparison to the random scheme (as both

bounds become higher than 𝜆/(1 − 𝜆)).

Figure 1: Mean response time of jobs under the Po2-(𝑔, 𝜖)
scheme as a function of arrival rate 𝜆 for 𝜖 = 0.4, 𝑔 = 100.

Figure 2: Mean response time of jobs under the Po2-(𝑔, 𝜖)
scheme and the random scheme as a function of arrival rate
𝜆 for 𝜖 = 0.8, 𝑔 = 100.

This is numerically verified in Figure 1 and Figure 2 for the Po2-

(𝑔, 𝜖) scheme and in Figure 3 for the Po2-𝜖 scheme. In each of these

figures, we plot the steady-state mean response time of jobs as a

function of the normalized arrival rate 𝜆. From Figures 1 and 3,

we observe that both the schemes outperform the random scheme

when 𝜖 ≤ 1/2. For 𝜖 > 1/2, however, the Po2-𝜖 scheme becomes

unstable for 𝜆 ≥ 1/2𝜖 and its performance becomes poorer than

that of the random scheme for all 𝜆 < 1. For the Po2-(𝑔, 𝜖) scheme,

we observe from Figure 2 that the system is stable for all 𝜆 < 1

even when 𝜖 > 1/2. However, in this case, the performance of the

Po2-(𝑔, 𝜖) scheme is poorer than that of the random scheme for

small values of 𝜆.

The usual approach of proving results similar to the ones stated in

Theorem 1 consists of coupling and stochastic comparison with the

Figure 3: Comparison of the Po2-𝜖 scheme for 𝜖 ∈
{0.2, 0.4, 0.6, 0.8} with the random scheme. We set 𝑛 = 200.

random scheme. However, this approach does not work here since

the random scheme can outperform each of the two schemes when

𝜖 > 1/2. Instead, we use drifts of suitable Lyapunov functions to

prove Theorem 1 which holds for all 𝜖 ∈ [0, 1]. Establishing bounds
on the drifts of Lyapunov functions is difficult for our schemes as

only a subset of servers is compared at each arrival instant. We

develop a generic approach through which the required bounds

can be obtained for any scheme where queue lengths of multiple

servers are compared to dispatch the incoming jobs.

The asymptotic (in 𝑛) results for the Po2-(𝑔, 𝜖) scheme are de-

scribed in the following theorem.

Theorem 2. Po2-(𝑔, 𝜖)
(i) (Mean-Field Limit): Let 𝑔 ≥ 0, 𝜖 ∈ [0, 1] and assume x(𝑛) (0) ∈

𝑆 (𝑛) for each 𝑛 and x(𝑛) (0) 𝑎.𝑠→ u ∈ 𝑆 under ℓ1 as 𝑛 → ∞. Then,
for each 𝑇 ≥ 0, we have sup𝑡 ∈[0,𝑇 ] ∥x𝑛 (𝑡) − x(𝑡)∥

1

𝑎.𝑠→ 0 where
x = (x(𝑡) = (𝑥𝑖 (𝑡), 𝑖 ≥ 1), 𝑡 ≥ 0) satisfies x(0) = u and for 𝑡 ≥ 0

and 𝑖 ≥ 1

¤𝑥𝑖 (𝑡) = 𝐺𝑖 (x(𝑡)) ≜ 𝜆𝑝𝑖−1 (x(𝑡)) − (𝑥𝑖 (𝑡) − 𝑥𝑖+1 (𝑡)) . (3)

Here for each 𝑖 ≥ 1, 𝐺𝑖 is the 𝑖th component of the function G =

(𝐺𝑖 , 𝑖 ≥ 1) : 𝑆 → R∞ and, for s ∈ 𝑆 , 𝑝𝑖−1 (s) is defined as
𝑝𝑖−1 (s) = (𝑠𝑖−1−𝑠𝑖 )

[
2𝜖 (𝑠𝑖+𝑔 + 𝑠𝑖−1−𝑔) + (1 − 2𝜖) (𝑠𝑖 + 𝑠𝑖−1)

]
. (4)

(ii) (Mean-Field Steady State Behaviour): For 𝑔 ≥ 0, 𝜖 ∈ [0, 1], and
𝜆 < 1, there exists a unique x∗ ∈ 𝑆 such that, G(x∗) = 0. In addition,
x∗ satisfies

𝑥∗
1
= 𝜆, (5)

𝑥∗
𝑘
= 𝜆

[
2𝜖

(
𝑥∗
𝑘−1

𝑥∗
𝑘−1−𝑔 −

𝑘+𝑔−1∑︁
𝑖=𝑘

𝑥∗𝑖 (𝑥
∗
𝑖−1−𝑔 − 𝑥∗𝑖−𝑔)

)
+ (1 − 2𝜖) (𝑥∗

𝑘−1
)2

]
, for 𝑘 ≥ 2. (6)

Moreover, any solution x(𝑡) of (3) with x(0) ∈ 𝑆 converges to x∗ in
ℓ1 as 𝑡 → ∞. Therefore, the sequence (𝜋𝑛)𝑛≥1 converges weakly to
the Dirac measure 𝛿x∗ concentrated on x∗ as 𝑛 → ∞.

(iii) (Heavy-Traffic Limit): Furthermore, in the heavy traffic as
𝜆 → 1, we have

lim sup𝜆→1
−

𝑇
𝑔,𝜖

2
(𝜆)

log(𝑇1 (𝜆))
≤ 𝑔 + 1

log(2) , (7)

where 𝑇𝑔,𝜖

2
(𝜆) = (1/𝜆)∑𝑖≥1

𝑥∗
𝑖
is the steady state limiting (as 𝑛 →

∞) average response time of jobs under the Po2-(𝑔, 𝜖) scheme and
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𝑇1 (𝜆) = 1/(1 − 𝜆) is the steady state average response time of jobs
under the random scheme.

Hence, the process x, defined in Theorem 2.(i), characterises the

dynamics of the system in the limit as 𝑛 → ∞. This will be referred

to as the mean-field limit of the system or the mean-field process.
The evolution of x, described in (3), can be explained as follows.

For the 𝑛th system, the component 𝑥𝑛
𝑖
(𝑡) increases by 1/𝑛 when

a job joins a server with queue length exactly 𝑖 − 1. The rate at

which this happens is 𝑛𝜆𝑝𝑖−1 (x), where 𝑝𝑖−1 (s), for s ∈ 𝑆 , is the

probability that an arrival joins a server with queue-length 𝑖 − 1

when the system is in state s. The expression of 𝑝𝑖−1 (s) in (4) can

be obtained as follows. Under the Po2-(𝑔, 𝜖) scheme, a job joins a

server with queue length 𝑖 − 1 under the following scenarios: (1)

One of the two sampled servers is of queue length exactly 𝑖 − 1 and

the other sampled server is of queue length is at least 𝑖 + 𝑔. This

occurs with probability 2(𝑠𝑖−1 − 𝑠𝑖 )𝑠𝑖+𝑔 and, in this case, the job

joins the server queue length 𝑖 − 1 with probability 1. (2) One of

the sampled server is of queue length 𝑖 − 1 and the other sampled

server’s queue length lies in the range {𝑖 − 1 − 𝑔, . . . , 𝑖 − 2}. This
occurs with probability 2(𝑠𝑖−1 − 𝑠𝑖 ) (𝑠𝑖−1−𝑔 − 𝑠𝑖−1), and, in this case

the server with queue length 𝑖 − 1 is selected with probability 𝜖 . (3)

One of the sampled server is of queue length 𝑖 − 1 and the other

sampled server’s queue length lies in the range {𝑖 + 1, . . . , 𝑖 − 1 + 𝑔}.
This occurs with probability 2(𝑠𝑖−1 − 𝑠𝑖 ) (𝑠𝑖 − 𝑠𝑖+𝑔) and, in this case,

the server with queue length 𝑖−1 is selected with probability (1−𝜖).
4) Finally, both the sampled servers can have the same queue length

𝑖 − 1 with probability (𝑠𝑖−1 − 𝑠𝑖 )2
, and, in this case, the job joins a

server with queue length 𝑖 − 1 with probability 1. Combining the

above probabilities, we obtain the expression for 𝑝𝑖−1 (𝑠). Similarly,

the component 𝑥𝑛
𝑖
(𝑡) decreases by 1/𝑛 when a job leaves a server

with queue length 𝑖 and this occurs with rate 𝑛(𝑥𝑖 − 𝑥𝑖+1). Hence,
the total expected rate of change (drift) in the component 𝑥𝑛

𝑖
(𝑡) is

given by 𝐺𝑖 (x𝑛 (𝑡)) = 𝑝𝑖−1 (x(𝑛) (𝑡)) − (𝑥 (𝑛)
𝑖

(𝑡) − 𝑥
(𝑛)
𝑖+1

(𝑡)). In the

limit as 𝑛 → ∞, this becomes the rate of change of 𝑥𝑖 (𝑡).
In part (ii) of Theorem 2, we show that, as 𝑡 → ∞, the mean-field

process x converges in ℓ1 to the unique point x∗ ∈ 𝑆 at which

G(x∗) = 0. This point x∗ is referred to as the fixed point of the
mean-field since starting at this point the mean-field remains at

this point at all times. Since by part (i) we have x𝑛 (𝑡) → x(𝑡)
almost surely for each 𝑡 ≥ 0, the convergence to the fixed point im-

plies lim𝑡→∞ lim𝑛→∞ x𝑛 (𝑡) = lim𝑛→∞ lim𝑡→∞ x𝑛 (𝑡) = x∗, which,
in turn, means that the fixed point x∗ characterises the steady-

state behaviour of the system in the limit as 𝑛 → ∞. In particular,

lim𝑛→∞ P(𝑄 (𝑛)
𝑖

(∞) ≥ 𝑘) = 𝑥∗
𝑘
.

In Theorem 2.(iii) we compare the steady-state mean response

time of jobs under the Po2-(𝑔, 𝜖) scheme to that under the random

scheme when the traffic is high (i.e., 𝜆 → 1). Note that (7) implies

that𝑇
𝑔,𝜖

2
(𝜆) = 𝑂 (log𝑇1 (𝜆)) as 𝜆 → 1. Furthermore, by the previous

part of the theorem, the steady-state mean response time of the jobs

under the Po2-(𝑔, 𝜖) scheme converges as 𝑛 → ∞ to𝑇
𝑔,𝜖

2
(𝜆). Hence,

this result shows that, when the system is heavily loaded, the mean

response time of jobs under the Po2-(𝑔, 𝜖) scheme is exponentially

smaller than that under the random scheme. This is also verified

in Figure 2 for 𝜖 = 0.8 and 𝑔 = 100. Note that for such high error

rates, the mean response time of jobs under the Po2-(𝑔, 𝜖) policy
can be larger than that underthe random scheme for low values of

𝜆. However, when 𝜆 is close to its maximum value 1, the Po2-(𝑔, 𝜖)
scheme performs exponentially better than the random scheme for

all values of 𝑔 and 𝜖 . This implies that the advantage of having an

additional choice in the Po2 scheme outweighs the negative impact

the comparison errors when the traffic is high.

The main difficulty in proving Theorem 2 is that the fixed point

x∗ cannot be found in closed form. This is because each component

𝑥∗
𝑘
in (6) depends not only on the previous components but also on

the next 𝑔 components. This makes it hard to characterise the fixed

point; indeed, even the existence of such x∗ in 𝑆 is not evident. This

also makes proving the global stability difficult as it uses induction

on the component index 𝑘 . To overcome these difficulties, we use

the monotonicity of the mean-field and uniform bounds on its tails.

We believe that this new approach is generally applicable to similar

systems where the fixed point cannot be found in closed form.

We now present the asymptotic results for the Po2-𝜖 scheme in

the following theorem.

Theorem 3. Po2-𝜖
(i) (Mean-Field Limit): Let 𝜖 ∈ [0, 1] and assume x(𝑛) (0) ∈ 𝑆 (𝑛)

for each 𝑛 and x(𝑛) (0) 𝑎.𝑠→ u ∈ 𝑆 under ℓ1 as 𝑛 → ∞. Then, for each
𝑇 ≥ 0, we have sup𝑡 ∈[0,𝑇 ] ∥x𝑛 (𝑡) − x(𝑡)∥

1

𝑎.𝑠→ 0 where x = (x(𝑡) =
(𝑥𝑖 (𝑡), 𝑖 ≥ 1), 𝑡 ≥ 0) satisfies x(0) = u and for 𝑡 ≥ 0 and 𝑖 ≥ 1

¤𝑥𝑖 (𝑡) = 𝜆𝑝𝑖−1 (x(𝑡)) − (𝑥𝑖 (𝑡) − 𝑥𝑖+1 (𝑡)), (8)

where

𝑝𝑖−1 (s) = (1− 𝜖) (𝑠2

𝑖−1
− 𝑠2

𝑖 ) + 𝜖 ((1− 𝑠𝑖 )2 − (1− 𝑠𝑖−1)2), s ∈ 𝑆. (9)

We refer to the process x as the mean-field limit of the sequence
(x(𝑛) )𝑛≥1.

(ii) (Mean-Field Steady State Behaviour): For 𝜖 ≤ 1/2 and 𝜆 < 1,
there exits x∗ ∈ 𝑆 such that, if x(0) = x∗, then x(𝑡) = x∗ for all 𝑡 ≥ 0.
Furthermore, x∗ satisfies the following recursion

𝑥∗
1
= 𝜆, 𝑥∗𝑖 = 𝜆

[
(1 − 2𝜖) (𝑥∗𝑖−1

)2 + 2𝜖𝑥∗𝑖−1

]
∀ 𝑖 ≥ 2. (10)

Moreover, any solution x(𝑡) of (8) with x(0) ∈ 𝑆 converges to x∗

in ℓ1, i.e., ∥x(𝑡) − x∗∥
1
→ 0 as 𝑡 → ∞. The above results imply that

the sequence (𝜋𝑛)𝑛 converges weakly to the Dirac measure 𝜋∗ = 𝛿x∗

concentrated on x∗ as 𝑛 → ∞.
(iii) (Heavy-Traffic Limit): For 𝜖 ≤ 1/2 and 𝜆 < 1, we have

lim

𝜆→1
−

𝑇 𝜖
2
(𝜆)

log(𝑇1 (𝜆))
=

1

log(2 − 2𝜖) , (11)

where 𝑇 𝜖
2
(𝜆) =

∑∞
𝑘=1

𝑥∗
𝑘

𝜆
is the limiting (as 𝑛 → ∞) steady state

average response time of jobs under the Po2-𝜖 scheme.

In parts (i) and (ii) of Theorem 3, we characterize the mean-field

limit x and its fixed point x∗ under the Po2-𝜖 scheme. As before,

we show that the fixed point is unique and globally asymptotically

stable. In the last part (part iii) of Theorem 3, we compare the mean

response time of jobs under the Po2-𝜖 scheme to that under the ran-

dom scheme in the limit as 𝑛 → ∞. Our result indicates that when

𝑛 is large and 𝜆 is close to 1, the steady state mean response time of

jobs under the Po2-𝜖 scheme satisfies 𝑇 𝜖
2
(𝜆) ≈ 𝑐𝜖 log(𝑇1 (𝜆), where

𝑐𝜖 = 1/(log(2 − 2𝜖)). This means that an exponential reduction in

the steady state mean response time is achieved as long as 𝜖 ≤ 1/2.

Hence, the Po2-𝜖 scheme retains the benefits of the Po2 scheme as

long as 𝜖 ≤ 1/2.
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The proof of Theorem 3 is much simpler than that of Theorem 2

as, for the Po2-𝜖 scheme, a recursive relationship among the com-

ponents 𝑥∗
𝑘
exists (as given by (10)). Hence, the proofs for the Po2-𝜖

scheme follow standard techniques. We omit them to conserve

space. Interested readers can follow the extended version [31] of

this paper where the proofs can be found.

4 STABILITY AND UNIFORM BOUNDS
In this section, we find the stability regions for the Po2-(𝑔, 𝜖) and the
Po2-𝜖 schemes and derive uniform bounds on the steady-state queue

length per server (Theorem 1) using drifts of appropriate Lyapunov

functions. We first develop a general framework to analyse any

load balancing scheme that compares the queue lengths of two

uniformly sampled servers to dispatch every job. Note that it is

easy to generalise this framework further to cases where more

than two servers are sampled and the sampling is not necessarily

uniform.

For any function 𝑉 : Z𝑛+ → [0,∞), the drift of 𝐷Q𝑛𝑉 is defined

as the expected rate of change in the value of the function along the

trajectory of the process Q𝑛
given the current state. More precisely,

𝐷Q(𝑛)𝑉 (Q) = lim

ℎ→0

1

ℎ
E[𝑉 (Q(𝑛) (𝑡 + ℎ)) −𝑉 (Q(𝑛) (𝑡)) |Q𝑛 (𝑡) = Q]

=

𝑛∑︁
𝑖=1

[𝑟+,𝑛
𝑖

(Q) (𝑉 (Q + e(𝑛)
𝑖

) −𝑉 (Q))

+ 𝑟−,𝑛
𝑖

(Q) (𝑉 (Q − e(𝑛)
𝑖

) −𝑉 (Q))], (12)

where e(𝑛)
𝑖

denotes the 𝑛-dimensional unit vector with one in the

𝑖th position; 𝑟
±,𝑛
𝑖

(Q) are the transition rates from the state Q to

the states Q ± e(𝑛)
𝑖

. According to the Foster-Lyapunov theorem

(Proposition D.3 of [32]), to prove the stability or positive recurrence

of the process Q(𝑛)
, it is sufficient to show the existence of at

least one function 𝑉 : Z𝑛+ → [0,∞) such that 𝑉 (Q) → ∞ when

∥Q∥
1
→ ∞ and 𝐷Q𝑛𝑉 (Q) < 0 for all states Q lying outside a

compact subset of the state-space. To further obtain uniform bounds

on the stationary queue lengths, we use the fact (Proposition 1

of [33]) that E𝜋𝑛 [𝐷Q(𝑛)𝑉 (Q(∞))] ≥ 0 if 𝐷Q(𝑛)𝑉 (Q) is uniformly

bounded for all states Q ∈ Z𝑛+.
The rate of departure from the 𝑖th server is given by 𝑟

−,𝑛
𝑖

(Q) =
1(𝑄𝑖 > 0).

For any scheme which compares the states of two servers to

dispatch the job to one of the servers, we define the class of an

arrival as the (unordered) pair (𝑖, 𝑗) of servers sampled at the arrival

instant. Let C denote the collection of all such classes. Since |C| =(𝑛
2

)
and a job is equally likely to belong to one of these classes, the

arrival rate of any class (𝑖, 𝑗) ∈ C is 𝑛𝜆/
(𝑛
2

)
= 2𝜆/(𝑛 − 1). Hence,

we can write the rate of arrival to the 𝑖th server as

𝑟
+,𝑛
𝑖

(Q) = 2𝜆

𝑛 − 1

∑︁
𝑗∈[𝑛], 𝑗≠𝑖

𝑝 (𝑄𝑖 , 𝑄 𝑗 ), (13)

where 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) is the probability that a class (𝑖, 𝑗) job joins the

server 𝑖 when the queue lengths of servers 𝑖 and 𝑗 are 𝑄𝑖 and 𝑄 𝑗 ,

respectively. Note that the probability 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) depends on the

load balancing scheme used by the dispatcher. The exact expression

of 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) for each scheme is given later, but it is important to

note that 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) + 𝑝 (𝑄 𝑗 , 𝑄𝑖 ) = 1 since a class (𝑖, 𝑗) job joins

either server 𝑖 or server 𝑗 with probability 1.

Now, for the Lyapunov function 𝑉 : Z𝑛+ → [0,∞) defined as

𝑉 (Q) = ∑𝑛
𝑖=1

𝑄2

𝑖
, the drift given in (12) simplifies to

𝐷Q(𝑛)𝑉 (Q) =
𝑛∑︁
𝑖=1

{
2[𝑟+,𝑛

𝑖
(Q) − 𝑟

−,𝑛
𝑘

(Q)]𝑄𝑖 + [𝑟+,𝑛
𝑖

(Q) + 𝑟−,𝑛
𝑖

(Q)]
}
,

which upon further simplification gives

𝐷Q(𝑛)𝑉 (Q) = 2

𝑛∑︁
𝑖=1

𝑟
+,𝑛
𝑖

(Q)𝑄𝑖 − 2

∑︁
𝑖∈[𝑛]

𝑄𝑖 + 𝑛𝜆 + 𝐵(Q), (14)

where 𝐵(Q) =
∑
𝑖∈[𝑛] 1(𝑄𝑖 > 0) represents the number of busy

servers when system is in state Q. In the above, we have used the

facts 𝑟
−,𝑛
𝑖

(Q) = 1(𝑄𝑖 > 0) and ∑
𝑖∈[𝑛] 𝑟

+,𝑛
𝑖

(Q) = 𝑛𝜆. Moreover,

using (13), the first term in the exresssion of the drift can be written

as

𝑛∑︁
𝑖=1

𝑟
+,𝑛
𝑖

(Q)𝑄𝑖 =
2𝜆

(𝑛 − 1)
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑛], 𝑗≠𝑖

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 )

=
2𝜆

(𝑛 − 1)
∑︁

(𝑖, 𝑗 ) ∈C
(𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 )) . (15)

Thus, to obtain the stability region and the uniform bound on

steady-state queue length, we need to obtain upper bounds on

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) for each scheme.

4.1 Po2-(𝑔, 𝜖) Scheme
For the Po2-(𝑔, 𝜖) scheme, the probability 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) for any class

(𝑖, 𝑗) ∈ C is given by

𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = 1
(
𝑄 𝑗 −𝑄𝑖 ≥ 𝑔 + 1

)
+ (1 − 𝜖)1

(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
+ 𝜖1

(
𝑄𝑖 −𝑄 𝑗 ∈ (0, 𝑔]

)
+ 1

(
𝑄𝑖 = 𝑄 𝑗 , 𝑖 < 𝑗

)
. (16)

Using the above expression, we obtain the following bound for

Po2-(𝑔, 𝜖) scheme.

Lemma 4. For 𝑔 ≥ 0, 𝜖 ∈ [0, 1], and for any class (𝑖, 𝑗) ∈ C, under
the Po2-(𝑔, 𝜖), scheme we have

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) ≤
𝑄𝑖 +𝑄 𝑗

2

+ 𝑔1(𝜖 > 1/2) . (17)

Proof. To prove the lemma, we first observe that for any 𝑎 ≤ 𝑏,

and𝑤1 = 1 −𝑤2 ∈ [1/2, 1] we have

𝑤1𝑎 +𝑤2𝑏 ≤ 𝑎 + 𝑏
2

. (18)

The result of the lemma is direct when 𝑄𝑖 = 𝑄 𝑗 . So, we consider

the case 𝑄𝑖 < 𝑄 𝑗 . Note that the proof for 𝑄𝑖 > 𝑄 𝑗 is exactly

the same with 𝑄𝑖 and 𝑄 𝑗 interchanged. For 𝜖 ≤ 1/2, using (16)

and 𝑄𝑖 < 𝑄 𝑗 , we have 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = 1
(
𝑄 𝑗 −𝑄𝑖 ≥ 𝑔 + 1

)
+ (1 −

𝜖)1
(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
∈ [1/2, 1]. Since 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = 1 − 𝑝 (𝑄 𝑗 , 𝑄𝑖 ),

using (18), we have𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) ≤ (𝑄𝑖 +𝑄 𝑗 )/2. Next,

we note from (16) and 𝑄𝑖 < 𝑄 𝑗 that

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = 𝑄𝑖

(
1
(
𝑄 𝑗 −𝑄𝑖 ≥ 𝑔 + 1

)
+ (1 − 𝜖)1

(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

) )
= 𝑄𝑖

(
(1 − 𝜖) + 𝜖1

(
𝑄 𝑗 −𝑄𝑖 ≥ 𝑔 + 1

) )
,

126



The Power of Two Choices with Load Comparison Errors MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

which gives

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 )+𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) = 𝑄𝑖

(
(1 − 𝜖) + 𝜖1

(
𝑄 𝑗 −𝑄𝑖 ≥ 𝑔 + 1

) )
+𝑄 𝑗𝜖1

(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
.

Therefore, using𝑄 𝑗1
(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
≤ (𝑔+𝑄𝑖 )1

(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
≤

(𝑔 + (𝑄𝑖 +𝑄 𝑗 )/2)1
(
𝑄 𝑗 −𝑄𝑖 ∈ (0, 𝑔]

)
and 𝑄𝑖 < (𝑄𝑖 +𝑄 𝑗 )/2 + 𝑔 in

the above, we obtain

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) ≤ 𝑔 +
𝑄𝑖 +𝑄 𝑗

2

.

This completes the proof. □

Proof of Theorem 1.(i): Using the bound of Lemma 4, the RHS

of (15) can be bounded as

𝑛∑︁
𝑖=1

𝑟
+,𝑛
𝑖

(Q)𝑄𝑖 ≤
2𝜆

(𝑛 − 1)
∑︁

(𝑖, 𝑗 ) ∈C

{
𝑄𝑖 +𝑄 𝑗

2

+ 𝑔1(𝜖 > 1/2)
}

=
2𝜆

(𝑛 − 1)
©­« (𝑛 − 1)

2

∑︁
𝑖∈[𝑛]

𝑄𝑖 + 𝑔1(𝜖 > 1/2)
(
𝑛

2

)ª®¬
= 𝜆

∑︁
𝑖∈[𝑛]

𝑄𝑖 + 𝑛𝜆𝑔1(𝜖 > 1/2) (19)

Therefore, using (19) in (14), we can upper bound the drift𝐷Q(𝑛)𝑉 (Q)
for the Po2-(𝑔, 𝜖) scheme as

𝐷Q(𝑛)𝑉 (Q) ≤ 2(𝜆 − 1)
𝑛∑︁
𝑖=1

𝑄𝑖 + 2𝑛𝜆𝑔1

(
𝜖 >

1

2

)
+ 𝑛𝜆 + 𝐵(Q) .

(20)

Now, since 𝐵(Q) ≤ 𝑛 and 𝜆 < 1, the drift 𝐷Q(𝑛)𝑉 (Q) is strictly
negative whenever

∑
𝑖∈[𝑛] 𝑄𝑖 > 𝑛(𝜆(2𝑔1(𝜖 > 1/2)+1)+1)/2(1−𝜆),

and is bounded above by𝑛(𝜆(2𝑔1(𝜖 > 1/2)+1)+1), otherwise. This
shows that the system under the Po2-(𝑔, 𝜖) scheme is stable for all

𝜆 < 1. The necessity of this condition for stability can be established

easily by showing that the drift of the Lyapunov function 𝑉1 (Q) =∑
𝑖∈[𝑛] 𝑄𝑖 is always non-negative when 𝜆 ≥ 1.

To prove (1), recall from the previous paragraph that 𝐷Q(𝑛)𝑉 (Q)
is uniformly bounded by 𝑛(𝜆(2𝑔1(𝜖 > 1/2) + 1) + 1) for all Q ∈ Z𝑛+.
This implies that E𝜋𝑛

[
𝐷Q(𝑛)𝑉 (Q(𝑛) (∞))

]
≥ 0. Therefore, tak-

ing expectation of (20) and using the rate conservation equation

E𝜋𝑛 [𝐵(Q)] = 𝑛𝜆 (which holds in steady-state), we obtain

𝑛𝜆(1 + 𝑔1(𝜖 > 1/2))
(1 − 𝜆) ≥ E𝜋𝑛


∑︁
𝑖∈[𝑛]

𝑄
(𝑛)
𝑖

(∞)
 = 𝑛E𝜋𝑛

[
𝑄

(𝑛)
𝑖

(∞)
]
,

where last equality follows due to the exchangeability of 𝜋𝑛 . □

4.2 Po2-𝜖 Scheme
For the Po2-𝜖 scheme, 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) for any class (𝑖, 𝑗) ∈ C is given by

𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = (1−𝜖)1
(
𝑄𝑖 < 𝑄 𝑗

)
+𝜖1

(
𝑄𝑖 > 𝑄 𝑗

)
+1

(
𝑄𝑖 = 𝑄 𝑗 , 𝑖 < 𝑗

)
.

(21)

Using the expression above, we obtain the following bound.

Lemma 5. For 𝜖 ∈ [0, 1] and for any class (𝑖, 𝑗) ∈ C, under the
Po2-𝜖 , scheme we have

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) ≤ (𝑄𝑖 +𝑄 𝑗 ) max(1/2, 𝜖) . (22)

Proof. For 𝑄𝑖 = 𝑄 𝑗 the above inequality follows directly. Simi-

lar to the proof of Lemma 4, it is sufficient to consider the case𝑄𝑖 <

𝑄 𝑗 . For 𝜖 ≤ 1/2, using (21) we have 𝑝 (𝑄𝑖 , 𝑄 𝑗 ) = (1 − 𝜖) ∈ [1/2, 1].
Therefore, from (18), it follows that 𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) ≤
(𝑄𝑖 +𝑄 𝑗 )/2. When 𝜖 > 1/2, for 𝑄𝑖 < 𝑄 𝑗 , we can write

𝑄𝑖𝑝 (𝑄𝑖 , 𝑄 𝑗 ) +𝑄 𝑗𝑝 (𝑄 𝑗 , 𝑄𝑖 ) = 𝑄𝑖 (1 − 𝜖) +𝑄 𝑗𝜖 ≤ 𝜖 (𝑄𝑖 +𝑄 𝑗 ) .

Hence, the proof is complete. □

Proof of Theorem 1.(ii): Using the bound of Lemma 5, the RHS

of (15) can be bounded as

𝑛∑︁
𝑖=1

𝑟
+,𝑛
𝑖

(Q)𝑄𝑖 ≤
2𝜆

(𝑛 − 1)
∑︁

(𝑖, 𝑗 ) ∈C
(𝑄𝑖 +𝑄 𝑗 ) max(1/2, 𝜖),

= 𝜆 max(1, 2𝜖)
∑︁
𝑖∈[𝑛]

𝑄𝑖 . (23)

Therefore, using (23) in (14), we upper-bound the drift 𝐷Q(𝑛)𝑉 (Q)
for the Po2-𝜖 scheme as

𝐷Q(𝑛)𝑉 (Q) ≤ 2(𝜆 max(1, 2𝜖) − 1)
∑︁
𝑖∈[𝑛]

𝑄𝑖 + 𝑛𝜆 + 𝐵(Q) . (24)

Since 𝐵(Q) ≤ 𝑛, the above implies that, for 𝜆 < min(1, 1/2𝜖),
the drift is strictly negative whenever

∑
𝑖∈[𝑛] 𝑄𝑖 > 𝑛(𝜆 + 1)/(1 −

𝜆 max(1, 2𝜖)). This shows that the system under Po2-𝜖 scheme is sta-

ble for all 𝜆 < min(1, 1/2𝜖). Furthermore, since supQ∈Z𝑛+ 𝐷Q(𝑛)𝑉 (Q) ≤
𝑛(𝜆 + 1), using E𝜋𝑛

[
𝐷Q(𝑛)𝑉 (Q(𝑛) (∞))

]
≥ 0, we obtain

𝑛𝜆

(1 − 𝜆 max(1, 2𝜖)) ≥ E𝜋𝑛

∑︁
𝑖∈[𝑛]

𝑄
(𝑛)
𝑖

(∞)
 = 𝑛E𝜋𝑛

[
𝑄

(𝑛)
𝑖

(∞)
]
,

which proves (2).

Next we prove that for 𝜆 ≥ min(1, 1

2𝜖 ) the system is unsta-

ble. For 𝜖 ≤ 1/2 and 𝜆 ≥ 1, the process Q(𝑛)
is not positive

recurrent. This follows using the same argument as used in the

stability proof of the Po2-(𝑔, 𝜖) scheme. Now, for 𝜖 > 1/2 and

2𝜆𝜖 > 1, we consider the Lyapunov function 𝑉2 (Q) = 𝑄𝑖∗ (Q) ,
where 𝑖∗ (Q) = arg max𝑖∈[𝑛] 𝑄𝑖 and 𝑖∗ (Q) is the minimum such

index. Using (12), the drift of the function 𝑉2 (Q) can be written as

𝐷Q(𝑛)𝑉2 (Q) =
(
𝑟
+,𝑛
𝑖∗ (Q) (Q) − 1

(
𝑄𝑖∗ (Q) > 0

))
≥

(
𝑟
+,𝑛
𝑖∗ (Q) (Q) − 1

)
.

From (13), we have

𝑟
+,𝑛
𝑖∗ (Q) (Q) =

2𝜆

𝑛 − 1

∑︁
𝑗≠𝑖∗ (Q)

𝑝 (𝑄𝑖 , 𝑄 𝑗 ) ≥
2𝜆

𝑛 − 1

∑︁
𝑗≠𝑖∗ (Q)

𝜖 = 2𝜖𝜆.

where the inequality follows from (21) since 𝑄𝑖∗ (Q) ≥ 𝑄 𝑗 for any

𝑗 ∈ [𝑛] and 𝑖∗ (Q) is theminimum such index. Hence,𝐷Q(𝑛)𝑉2 (Q) ≥
2𝜖𝜆 − 1 ≥ 0 for all Q ∈ Z𝑛+. Furthermore, since 𝐷Q(𝑛)𝑉2 (Q) ≤ 𝑛𝜆,

the result follows from the Foster-Lyapunov criterion for transience

and null recurrence (Theorem 3.3.10 of [34]). □

5 MEAN-FIELD ANALYSIS OF THE PO2-(𝑔, 𝜖)
SCHEME

In this section, we prove the main results for the Po2-(𝑔, 𝜖) scheme

stated in Theorem 2.
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5.1 Mean-Field Limit of the Po2-(𝑔, 𝜖) Scheme
First, we establish the mean-field limit of the Po2-(𝑔, 𝜖) scheme

(Theorem 2.(i)) for any 𝑔 ≥ 0 and 𝜖 ∈ [0, 1]. Note that under the
Po2-(𝑔, 𝜖) scheme, the rate of transition of the process x(𝑛) from
state x ∈ 𝑆 (𝑛) to state y ∈ 𝑆 (𝑛) is given by

𝑟
(𝑛)
x,y =

{
𝑛𝜆𝑝𝑖−1 (x), if y = x + e𝑖/𝑛
𝑛(𝑥𝑖 − 𝑥𝑖+1), if y = x − e𝑖/𝑛

, ∀𝑖 ≥ 1, (25)

where 𝑝𝑖−1 (x) is as defined in (4) and e𝑖 is the 𝑖th unit vector in

R∞. Clearly, the above rates satisfy the transition structure for a

density-dependent jump Markov chain [9, 35]. Furthermore, it is easy

to verify that

∑
𝑦∈𝑆 𝑟

(𝑛)
x,y < 𝑛(𝜆 + 1) for all 𝑥 ∈ 𝑆 and the function

G : 𝑆 → R∞ is Lipschitz under the ℓ1-norm with a Lipschitz

constant of 𝐿𝜖
𝜆
= 𝜆(16𝜖 + 4) + 2. Hence, using the Kurtz’s theorem

for density-dependent jump Markov processes [[36], Chapter 8],

we obtain the desired result.

5.2 Mean-Field Steady State Behaviour for the
Po2-(𝑔, 𝜖) Scheme

We now turn to the proof of Theorem 2.(ii) which shows that the

mean-field process x given by (3) has a unique fixed point x∗ which
satisfies (5) and (6). Moreover, we show that the fixed point x∗

is globally stable, i.e., all trajectories of the mean-field process x
starting in 𝑆 converges to x∗.

For any u ∈ 𝑆 , let x(𝑡, u) denote the trajectory of the mean-field

process starting at state u. Further, define 𝑣𝑘 (𝑡, u) =
∑
𝑖≥𝑘 𝑥𝑖 (𝑡, u)

and 𝑣𝑘 (u) =
∑
𝑖≥𝑘 𝑢𝑖 for each 𝑘 ≥ 1. When the context is clear, we

shall drop the dependence of the trajectory on the initial state u
and on the time 𝑡 .

Lemma 6. Let 𝑔 ≥ 0, 𝜖 ∈ [0, 1]. The following statements hold for
the process x defined in Theorem 2.

(1) If u ∈ 𝑆 , then, for any 𝑡 ≥ 0, we have x(𝑡, u) ∈ 𝑆 .
(2) For any u, u′ ∈ 𝑆 satisfying u ≤ u′ we have x(𝑡, u) ≤ x(𝑡, u′)

for all 𝑡 ≥ 0, where the inequality ≤ is component-wise.

Proof. We first note from (3) and (4) that

¤𝑥𝑖 ≤ 𝜆𝑝𝑖−1 (x) ≤ 𝜆[2𝜖 (𝑥2

𝑖−1−𝑔 − 𝑥2

𝑖 ) + (1 − 2𝜖) (𝑥2

𝑖−1
− 𝑥2

𝑖 )]

≤ 𝜆 max(1, 2𝜖)𝑥2

𝑖−1−𝑔 ≤ 𝑀𝜆,𝜖𝑥𝑖−1−𝑔,

where𝑀𝜆,𝜖 = max(1, 2𝜖). This implies that for each 𝑖 ≥ 1 we have

𝑥𝑖 (𝑡) ≤ 𝑥𝑖 (0) +𝑀𝜆,𝜖

∫ 𝑡

0

𝑥𝑖−1−𝑔 (𝑠)𝑑𝑠.

Using the above recursively for each 𝑖 ≥ 1, we obtain

𝑥𝑖 (𝑡) ≤ 𝑥𝑖 (0) +
𝑖−𝑔−1∑︁
𝑘=0

𝑥𝑘 (0)
(𝑀𝜆,𝜖𝑡)𝑖−𝑔−𝑘

(𝑖 − 𝑔 − 𝑘)! .

Summing the above for all 𝑖 ≥ 1 we obtain

𝑣1 (x(𝑡)) ≤ (𝑔 + 1 + 𝑣1 (x(0))) exp(𝑀𝜆,𝜖𝑡).
This shows that if 𝑣1 (x(0)) < ∞, then 𝑣1 (x(𝑡)) < ∞ for all 𝑡 , thus

establishing the first part of the lemma.

For the second part, from (3) and (4) we note that

𝜕𝐺𝑖 (x)
𝜕𝑥𝑖−1

= 𝜆
[
2((1 − 𝜖)𝑥𝑖−1 + 𝑥𝑖+𝑔) + 2𝜖 (𝑥𝑖−1−𝑔 − 𝑥𝑖−1)

]
≥ 0.

It is also clear that
𝜕𝐺𝑖 (x)
𝜕𝑥𝑖+𝑔

and
𝜕𝐺𝑖 (x)
𝜕𝑥𝑖−𝑔−1

and
𝜕𝐺𝑖 (x)
𝜕𝑥𝑖+1

are non-negative.

Hence, we have for each 𝑖 ≥ 1, 𝐺𝑖 (x) = 𝜆𝑝𝑖−1 (x) − (𝑥𝑖 − 𝑥𝑖+1) is
non-decreasing with respect to all 𝑥𝑘 , 𝑘 ≠ 𝑖 . Now the result follows

from Theorem 5.3 of [37]. □

The second property stated in Lemma 6 is called the quasi-
monotonicity of the process x. This property ensures that if the

mean-field process starts from the idle initial state, i.e., if x(0) =
e0 = (1, 0, 0, . . . ), then it is monotonically non-decreasing in time,

i.e.,

x(𝑡1, e0) ≤ x(𝑡2, e0), 0 ≤ 𝑡1 ≤ 𝑡2 < ∞. (26)

This follows because the state e0 is dominated by any other state in

𝑆 . In particular, e0 ≤ x(𝑡2 − 𝑡1, e0). Hence, by quasi-monotonicity,

we have x(𝑡1, e0) ≤ x(𝑡1, x(𝑡2 − 𝑡1, e0)) = x(𝑡2, e0).
Furthermore, Lemma 6 guarantees that if x(0) ∈ 𝑆 then x(𝑡) ∈ 𝑆

for all 𝑡 ≥ 0. Hence, by adding (3) for all 𝑖 ≥ 𝑘 and using the fact

that ∥𝑥 (𝑡)∥
1
< ∞ gives

¤𝑣𝑘 (𝑡) = 𝜆

[
2𝜖

{
𝑥𝑘−1

(𝑡)𝑥𝑘−1−𝑔 (𝑡) −
𝑘+𝑔−1∑︁
𝑖=𝑘

𝑥𝑖 (𝑡)
(
𝑥𝑖−1−𝑔 (𝑡)

− 𝑥𝑖−𝑔 (𝑡)
)}

+ (1 − 2𝜖) (𝑥𝑘−1
(𝑡))2

]
− 𝑥𝑘 (𝑡). (27)

Since 𝑥𝑖−1−𝑔 (𝑡) ≥ 𝑥𝑖−𝑔 (𝑡) we have from the above

¤𝑣𝑘 ≤ 𝜆

[
2𝜖𝑥𝑘−1

𝑥𝑘−1−𝑔 + (1 − 2𝜖) (𝑥𝑘−1
)2

]
− 𝑥𝑘

= 𝜆

[
𝜖𝑥2

𝑘−1−𝑔 + (1 − 𝜖)𝑥2

𝑘−1
− 𝜖 (𝑥𝑘−1−𝑔 − 𝑥𝑘−1

)2

]
− 𝑥𝑘

≤ 𝜆

[
𝜖𝑥2

𝑘−1−𝑔 + (1 − 𝜖)𝑥2

𝑘−1

]
− 𝑥𝑘

≤ 𝜆𝑥2

𝑘−1−𝑔 − 𝑥𝑘 , (28)

where the last inequality follows by using 𝑥𝑘−1−𝑔 ≥ 𝑥𝑘−1
.

Existence of the Fixed Point x∗: To prove the existence of the

fixed point x∗ satisfying (5) and (6), we first show that ∥𝑥𝑖 (𝑡, e0)∥1

remains uniformly bounded for all 𝑡 ≥ 0. Note that this is a stronger

result than ∥𝑥𝑖 (𝑡, e0)∥1
< ∞ for each 𝑡 ≥ 0 which has already been

established in Lemma 6.

Proposition 7. For 𝑔 ≥ 0, 𝜆 < 1, let z∗ ∈ 𝑆 be defined as 𝑧∗
𝑖
= 1

for all 𝑖 ≤ 0 and 𝑧∗
𝑖
= 𝜆(𝑧∗

𝑖−1−𝑔)
2 for all 𝑖 ≥ 1. Then, we have

x(𝑡, e0) ≤ z∗ for all 𝑡 ≥ 0 which implies that

∥x(𝑡, e0)∥1
≤


z∗



1
= (𝑔 + 1)

∑︁
𝑖≥1

𝜆2
𝑖−1, ∀𝑡 ≥ 0. (29)

Proof. Let x(0) = e0 ≤ z∗. Then, from (26) we have ¤𝑥𝑘 (𝑡) ≥ 0

for all 𝑘 ≥ 1 and for all 𝑡 ≥ 0. This further implies that ¤𝑣𝑘 (𝑡) =∑
𝑖≥𝑘 ¤𝑥𝑖 (𝑡) ≥ 0,∀𝑘 ≥ 1,∀𝑡 ≥ 0. Since x(0) ≤ z∗, for x(𝑡) > z∗ for

some 𝑡 there must exist 𝑡∗ < 𝑡 such that 𝑥𝑙 (𝑡∗) = 𝑧∗
𝑙
and ¤𝑥𝑙 (𝑡∗) > 0

for some 𝑙 ≥ 1. Let𝑚 be the smallest component where the above

two conditions are satisfied. Then, substituting 𝑘 =𝑚 in (28), we

obtain

¤𝑣𝑚 (𝑡∗) ≤ 𝜆𝑥2

𝑚−1−𝑔 (𝑡∗) − 𝑥𝑚 (𝑡∗) = 𝜆𝑥2

𝑚−1−𝑔 (𝑡∗) − 𝑧∗𝑚

= 𝜆(𝑥2

𝑚−1−𝑔 (𝑡∗) − (𝑧∗𝑚−1−𝑔)
2) ≤ 0,

where the last inequality follows from the definition of𝑚. Since

we already know that ¤𝑣𝑚 (𝑡∗) ≥ 0, the above inequality implies
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¤𝑣𝑚 (𝑡∗) = 0. Hence, ¤𝑥𝑚 (𝑡∗) = ¤𝑣𝑚 (𝑡∗) − ¤𝑣𝑚+1 (𝑡∗) = −¤𝑣𝑚+1 (𝑡∗) ≤ 0

which contradicts the fact that ¤𝑥𝑚 (𝑡∗) > 0. □

Lemma 8. Given 𝑔 ≥ 0, 𝜆 < 1, there exists x∗ ∈ 𝑆 such that

x(𝑡, e0) − x∗




1
→ 0, 𝑡 → ∞, (30)

and G(x∗) = 0. Furthermore, x∗ satisfies (5) and (6).

Proof. Since 𝑥𝑖 (𝑡, e0) ∈ [0, 1] for each 𝑖 and all 𝑡 ≥ 0 and

𝑥𝑖 (𝑡, e0) is monotonically non-decreasing in time we must have

𝑥𝑖 (𝑡) → 𝑥∗
𝑖
as 𝑡 → ∞ for each 𝑖 ≥ 1 for some x∗ = (𝑥∗

𝑖
) ∈ 𝑆 .

We first show that the component-wise limit 𝑥∗ defined above

is also the ℓ1 limit of x(𝑡, e0) which will also imply that x∗ ∈ 𝑆 . To

show this, we note from Proposition 7 that the uniform bound on∑
𝑖≥1

𝑥𝑖 (𝑡, e0) in (29) implies by dominated convergence theorem

that

lim

𝑡→∞
∥x(𝑡)∥

1
=
∑︁
𝑖≥1

lim

𝑡→∞
𝑥𝑖 (𝑡) =

∑︁
𝑖≥1

𝑥∗𝑖 =


x∗



1
≤ (𝑔 + 1)

∑︁
𝑖≥

𝜆2
𝑖−1 .

This shows that ∥x(𝑡, e0) − x∗∥
1
→ 0 as 𝑡 → ∞, and x∗ ∈ 𝑆 .

It now remains to show that G(x∗) = 0. Note that the conver-

gence of x(𝑡) → x∗ in ℓ1 as 𝑡 → ∞, and the monotonicity of x(𝑡)
imply that for any 𝛿 > 0 there exists a 𝑡𝛿 > 0 such that for all 𝑡 ≥ 𝑡𝛿
we have

𝛿 ≥ ∥x(𝑡 + ℎ) − x(𝑡)∥
1
≥ 𝑥𝑖 (𝑡 + ℎ) − 𝑥𝑖 (𝑡) =

∫ 𝑡+ℎ

𝑡

𝐺𝑖 (x(𝑠))𝑑𝑠

≥ ℎ𝐺𝑖 (x(𝑡∗ℎ)),∀𝑖 ≥ 1,∀ℎ ≥ 0,

where 𝑡∗
ℎ
∈ [𝑡, 𝑡 + ℎ] is the time at which the continuous function

𝐺𝑖 (x(𝑠)) attains its minimum value in the compact interval [𝑡, 𝑡 +ℎ].
Therefore, we have

𝐺𝑖 (x(𝑡∗ℎ)) ≤
𝛿

ℎ
, 𝑖 ≥ 1. (31)

Now we can write

𝐺𝑖 (x∗) = 𝐺𝑖 (x∗) −𝐺𝑖 (x(𝑡∗ℎ)) +𝐺𝑖 (x(𝑡∗ℎ))

≤


G(x∗) − G(x(𝑡∗

ℎ
))




1
+𝐺𝑖 (x(𝑡∗ℎ)) ≤ 𝐿𝜖

𝜆
𝛿 + 𝛿

ℎ
, (32)

where for the second inequality we use and the fact that the func-

tion G is Lipschitz with constant 𝐿𝜖
𝜆
and (31). Note that the above

inequality is true for any 𝛿 > 0. Therefore, by fixing ℎ > 0 and

letting 𝛿 → 0 we have 𝐺𝑖 (x∗) = 0 for all 𝑖 ≥ 1. Hence, G(x∗) = 0.

Finally, we obtain (5) by using

∑
𝑖≥1

𝐺𝑖 (x∗) = 0 and (6) by using∑
𝑖≥𝑘 𝐺𝑖 (x∗) = 0. □

Global Stability and Uniqueness of the Fixed Point x∗: Now
we prove that for any u ∈ 𝑆 , x(𝑡, u) converges to x∗ as 𝑡 → ∞
in ℓ1, where 𝑥

∗
is the limit of x(𝑡, e0) as defined in Lemma 8. By

Proposition 7 and the dominated convergence theorem, it suffices

to establish this convergence component-wise. Furthermore, it is

sufficient to consider initial points u ≤ x∗ and u ≥ 𝑥∗ since, by
the quasi-monotonicity of x, we have x(𝑡,min(u, x∗)) ≤ x(𝑡, u) ≤
x(𝑡,max(u, x∗)), where the min and the max are taken component-

wise.

Consider the case when x(0) = u ≤ x∗. Since u ≥ e0, by the

quasi-monotonicity of x, we have x(𝑡, e0) ≤ x(𝑡, u) ≤ x∗,∀𝑡 ≥ 0.

Hence, by Lemma 8, we have x(𝑡, u) → x∗ since x(𝑡, e0) → x∗.
Next we consider the case where x(0) = u ≥ x∗. We first show

that 𝑣𝑘 (𝑡, u) remains uniformly bounded for all 𝑡 ≥ 0 and for all

𝑘 ≥ 1. From quasi-monotonicity of x it follows that x(𝑡, u) ≥ x∗ for
all 𝑡 ≥ 0. This implies, in particular, that 𝑥1 (𝑡, u) ≥ 𝑥∗

1
= 𝜆. Hence,

from (27) for 𝑘 = 1, we have ¤𝑣1 (𝑡, x(0)) = 𝜆 − 𝑥1 (𝑡, u) ≤ 0. This

implies that 0 ≤ 𝑣𝑘 (𝑡, u) ≤ 𝑣1 (𝑡, u) ≤ 𝑣1 (u) for all 𝑡 ≥ 0 and all

𝑘 ≥ 1.

We shall now establish the convergence 𝑥𝑖 (𝑡, u) → 𝑥∗
𝑖
for all

𝑖 ≥ 1 by showing ∫ ∞

0

(𝑥𝑖 (𝑡, u) − 𝑥∗𝑖 )𝑑𝑡 < 𝐶𝑖 , (33)

where 𝐶𝑖 > 0 is a finite constant for each 𝑖 ≥ 1. To prove (33), we

use induction on 𝑖 . For 𝑖 = 1, using (5) we have∫ 𝜏

0

(𝑥1 (𝑡, u) − 𝑥∗
1
)𝑑𝑡 =

∫ 𝜏

0

(𝑥1 (𝑡, u) − 𝜆) = 𝑣1 (u) − 𝑣1 (𝜏, u) ≤ 𝑣1 (u),

where the second equality follows from (27) for 𝑘 = 1 and the

inequality follows as 𝑣1 (𝑡, u) is uniformly bounded in 𝑡 . Since the

RHS is independent of 𝜏 , the integral on the left hand side must

be by bounded 𝑣1 (u) as 𝜏 → ∞. This shows the base case of the

induction.

Now assume that (33) is true for all 𝑖 ≤ 𝐿−1. For 𝑖 = 𝐿, using (27)

and (6), we have∫ 𝜏

0

(𝑥𝐿 (𝑡)−𝑥∗𝐿)𝑑𝑡 ≤ 𝑣𝐿 (u)+𝜆(1−2𝜖)
∫ 𝜏

0

(𝑥2

𝐿−1
(𝑡)−(𝑥∗𝐿−1

)2)𝑑𝑡

+ 𝜆2𝜖

∫ 𝜏

0

(𝑥𝐿−1 (𝑡)𝑥𝐿−1−𝑔 (𝑡) − 𝑥∗𝐿−1
𝑥∗𝐿−1−𝑔)𝑑𝑡 − 2𝜖𝜆

×
∫ 𝜏

0

𝐿+𝑔−1∑︁
𝑖=𝐿

[
𝑥𝑖 (𝑡) (𝑥𝑖−1−𝑔 (𝑡) − 𝑥𝑖−𝑔 (𝑡)) − 𝑥∗𝑖 (𝑥

∗
𝑖−1−𝑔 − 𝑥∗𝑖−𝑔)

]
𝑑𝑡,

where the inequality follows from the uniform boundedness of

𝑣1 (𝑡, u) in 𝑡 . To complete the proof, we shall now bound each inte-

gral term appearing on the RHS. By using the induction hypothesis

and the inequalities 𝑎2−𝑏2 ≤ 2(𝑎−𝑏) and 𝑎𝑏−𝑐𝑑 ≤ (𝑎−𝑐) + (𝑏−𝑑)
for 1 ≥ 𝑎 ≥ 𝑐 ≥ 0 and 1 ≥ 𝑏 ≥ 𝑑 ≥ 0, the integrals in the second

and the third terms on the RHS can be easily bounded by 2𝐶𝐿−1

and 𝐶𝐿−1 +𝐶𝐿−1−𝑔 , respectively.
It now remains to bound the integral in the last term. Note that

the third term contains 𝑥𝑖 (𝑡) for 𝑖 ∈ {𝐿, 𝐿+1, . . . , 𝐿+𝑔−1} for which
the induction hypothesis does not apply. Hence, to bound the inte-

gral we need to bound these terms. We note that by monotonicity

we have 𝑥𝑖 (𝑡) ≥ 𝑥∗
𝑖
for all 𝑖 ≥ 1. Hence, 𝑥𝑖 (𝑡) (𝑥𝑖−1−𝑔 (𝑡)−𝑥𝑖−𝑔 (𝑡))−

𝑥∗
𝑖
(𝑥∗

𝑖−1−𝑔 − 𝑥∗
𝑖−𝑔) ≥ 𝑥∗

𝑖
[(𝑥𝑖−1−𝑔 (𝑡) − 𝑥∗

𝑖−1−𝑔) − (𝑥𝑖−𝑔 (𝑡) − 𝑥∗
𝑖−𝑔)].

Hence, the last term can be bounded above by

− 𝜆2𝜖

𝐿+𝑔−1∑︁
𝑖=𝐿

𝑥∗𝑖

[∫ 𝜏

0

(𝑥𝑖−1−𝑔 (𝑡) − 𝑥∗𝑖−1−𝑔)𝑑𝑡

−
∫ 𝜏

0

(𝑥𝑖−𝑔 (𝑡) − 𝑥∗𝑖−𝑔)𝑑𝑡
]
.

Using the induction hypothesis, we can further bound this by

2𝜖𝜆
∑𝐿+𝑔−1

𝑖=𝐿
(𝐶𝑖−1−𝑔 + 𝐶𝑖−𝑔). This completes the proof of global

stability of x∗. Since all the trajectories converge to x∗, it must

be the unique solution of G(s) = 0 since starting from any other

y ≠ x∗, satisfying G(y) = 0, the trajectory remains at y which

contradicts the global stability of x∗.
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Limit Interchange: Note that Theorem 1.(i), implies that𝜋𝑛 (𝑆) =
1,∀𝑛. Therefore, we have 𝜋𝑛 (𝑆) = 1 for all 𝑛. Since, the space 𝑆 is

compact, by Prohorov’s theorem the sequence (𝜋𝑛)𝑛 must converge

weakly to the limit 𝜋∗ with 𝜋∗ (𝑆) = 1. Furthermore, since by (1),

E𝜋𝑛

[∑
𝑖≥1

𝑥
(𝑛)
𝑖

(∞)
]
is uniformly bounded in 𝑛, we have 𝜋∗ (𝑆) = 1.

Now we prove that the measure 𝜋∗ is the stationary measure of the

mean-field process x defined in (3). We know that (𝜋𝑛)𝑛 ⇒ 𝜋∗ and
the space 𝑆 is separable. Therefore, the Skorokhod’s Representation

Theorem implies that x(𝑛) (0) 𝑎.𝑠→ x(0). Moreover, if we start the

process x(𝑛) (0) ∼ 𝜋𝑛 , then x(𝑛) (𝑡) ∼ 𝜋𝑛 for all 𝑡 ≥ 0. Hence, from

Theorem 2.(i) it follows that x(𝑡) ∼ 𝜋∗ for all 𝑡 ≥ 0. This proves

that 𝜋∗ is indeed the stationary measure for the mean-field process

x. Now from the global stability of the fixed point x∗, it follows
immediately that the stationary measure 𝜋∗ is unique and is equal

to 𝛿x∗ . This completes the proof of limit interchange.

5.3 Heavy Traffic Limit for the Po2-(𝑔, 𝜖) scheme
In last we prove Theorem 2.(iii). Note that from Lemma 8, we know

x(𝑡, e0) converges to x∗ as 𝑡 → ∞ in ℓ1 and from Proposition 7 we

have ∥x(𝑡, e0)∥1
≤ (𝑔 + 1)∑𝑖≥1

𝜆2
𝑖−1

for all 𝑡 ≥ 0. Therefore, we

can write ∥x∗∥
1
≤ (𝑔 + 1)∑𝑖≥1

𝜆2
𝑖−1

. Hence, dividing the above

inequality both side with − log(1 − 𝜆), taking limit 𝜆 → 1
−
, we

obtain the bound given in (7).

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we analyzed the effects of load comparison errors on

the performance of the Po2 scheme. We considered two models of

error. For the load-dependent error model, we showed that the Po2

scheme retains its benefits over the random scheme in the heavy

traffic limit 𝜆 → 1 for all values of𝑔 and 𝜖 . For the load-independent

error model, we have shown that the Po2 scheme retains its benefits

over the random scheme only if the probability of error 𝜖 ≤ 1/2.

We introduce a general framework using Lyapunov functions to

prove stability of our schemes. We also use a new approach to

establish the mean-field limit results as the fixed point does not

admit a recursive solution.

There are many interesting directions for further research. We

have analyzed the performance of the Po2-(𝑔, 𝜖) scheme assuming

𝑔 to be constant independent of 𝑛. It will be interesting to see the

effect of varying 𝑔 as a function of 𝑛. Another direction is to study

the effects of delay in receiving the queue length information at

the dispatcher. A more explicit delay dependent error model can be

considered. Here, the challenge will be to analyze the effect of the

delay on the performance of the Po2 scheme.
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