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1 Introduction

Parton showers are a cornerstone of computer simulations for high-energy collider physics [1,
2]. They implement the evolution of QCD from the hard scales to be probed by experiments,
to the low scale of hadronization, where the transition of quasi-free partons (the quarks
and gluons of perturbative QCD) to observable hadrons occurs. In this process, a number
of additional partons are generated according to evolution equations that are based on
the factorization properties of QCD amplitudes in the soft and collinear limits. The most
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commonly used parton showers can be thought of as numerical implementations of the
DGLAP equations [3–6], but various other approaches exist [7–9].

The first generation of parton shower programs [10–14] was developed four decades
ago. Implementations differed in the way in which the ordering inherent to the evolution
equations was realized in the simulation, and how the kinematics of the emissions were
set up. Color coherence, manifesting itself through angular ordering [15–20] became a
guiding principle for the construction of parton showers [21, 22]. Some of these parton
showers were also improved using spin correlation algorithms [23–26]. Increasing precision
requirements, especially in preparation for the Large Hadron Collider (LHC), mandated
more precise Monte-Carlo simulations. The matching of parton showers to next-to-leading
order calculations [27–33] and the merging of calculations for varying jet multiplicity [34–
44] became focus points of event generator development. The correspondence between
fixed-order infrared subtraction schemes and parton showers was identified as central to a
correct matching procedure, leading to the construction of algorithms with a dipole-local
momentum mapping and ordering in transverse momentum [45–52].

These newly developed algorithms were found to have significant drawbacks in terms
of their logarithmic accuracy [53]. The resummation of observables at leading logarithmic
(LL) accuracy is relatively straightforward to achieve using a parton-shower algorithm.
The resummation at next-to-leading logarithmic (NLL) precision however poses a number
of challenges. The first generic technique to quantify the logarithmic accuracy of parton
showers was presented in [53, 54] and consists of a set of fixed-order and all-order criteria,
which can broadly be classified as tests related to kinematic recoil effects, and tests of
color coherence. In the present manuscript, we will discuss only kinematic effects. A
discussion of sub-leading color effects can be found for example in [55–67]. One of the main
results of [53] was that the kinematics mapping in the transition from an n-particle to an
n+1-particle final state should not alter the existing momentum configuration in a way that
distorts the effects of the pre-existing emissions on observables. This criterion is formulated
such that only the effects relevant at NLL precision can be extracted, by taking the limit
αs → 0 at fixed λ = αs ln v, where v is the observable to be resummed. The algorithms
in [47, 50, 52] do not satisfy the criteria for NLL precision, because their momentum
mappings can generate recoil whose effect on existing emissions at commensurate scales
does not vanish in the αs → 0 limit. It is important to note that these failures to agree
with known NLL resummation are not related to the effects of momentum and probability
conservation discussed in [68]. In order to remedy the problem with NLL accuracy, new
kinematics mapping schemes were developed in [54, 69–71]. The main difference of the
new dipole schemes in [54, 71] compared to existing algorithms is that recoil is assigned
according to the rapidity of the emission in the frame of the hard process, rather than the
dipole frame, and that initial-state radiation is treated such that the interpretation of the
hard system is unchanged for subsequent emissions.

We will approach the same problem from a different perspective. Recalling that color–-
coherent parton evolution is a consequence of the angular dependence of the soft eikonal, we
will reformulate the radiator functions of [21] using a partial fractioning approach similar
to the identified particle subtraction scheme in [72]. In addition, we note that in dipole
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and antenna showers the anti-collinear direction is inextricably linked to the direction of
the color spectator. By lifting this restriction, we are able to construct an algorithm which
allows the entire QCD multipole to absorb the recoil from parton branching, independent
of the number of pre-existing emissions, and independent of their kinematics. The price
for such a generic scheme is a dependence of the parton shower splitting functions on the
azimuthal angle between the decay plane and the plane defined by the emitting parton
and its color spectator. Our new formulation presents a major extension of existing parton
shower formalisms in this regard, and it introduces the most generic form of a spin-averaged
splitting function in four dimensions, with a dependence on all three phase-space variables
of the radiated parton. Based on previous analyses [73, 74], it seems plausible that this
scheme will considerably simplify the inclusion of higher-order corrections to the splitting
kernels. We provide a first implementation of the new algorithm in the numerical code
Alaric,1 which will be made available as part of the event generator Sherpa [75–77].

This manuscript is organized as follows: In section 2 we revisit the soft singularity
structure of QCD amplitudes and introduce our new decomposition of the soft eikonal. In
section 3 we discuss the novel phase-space mapping and the corresponding phase-space
factorization. In section 4 we detail how soft and collinear emissions are generated in a
probabilistic picture. Section 5 is dedicated to the analytic proof of logarithmic accuracy,
and the numerical validation in the αs → 0 limit. Section 6 presents first numerical results
for the process e+e− → hadrons, and section 7 contains an outlook.

2 The matching of soft to collinear radiators

We start the discussion by recalling the singularity structure of n-parton QCD amplitudes
in the infrared limits.

If two partons, i and j, become collinear, the squared amplitude factorizes as

n〈1, . . . ,n|1, . . . ,n〉n

=
∑

λ,λ′=±
n−1

〈
1, . . . , i\(ij), . . . , j\, . . . ,n

∣∣∣8παs2pipj
P λλ

′

(ij)i(z)
∣∣∣1, . . . , i\(ij), . . . , j\, . . . ,n〉

n−1
, (2.1)

where the notation i\ indicates that parton i is removed from the original amplitude,
and where (ij) is the progenitor of partons i and j. The functions P λλ′ab (z) are the spin-
dependent DGLAP splitting functions. They depend on the momentum fraction z of parton
i with respect to the mother parton, (ij), and on the helicities λ [3–6]. In the collinear
limit, the momentum fraction is equal to an energy or light-cone momentum fraction. In
this manuscript we will consider only spin-averaged splitting functions; algorithms for
spin-dependent evolution are discussed in [23–26, 78].

In the limit that gluon j becomes soft, the squared amplitude factorizes as [79]

n〈1, . . . , n|1, . . . , n〉n = −8παs
∑
i,k 6=j

n−1
〈
1, . . . , j\, . . . , n

∣∣TiTk wik,j
∣∣1, . . . , j\, . . . , n〉

n−1 ,

(2.2)
1Alaric is an acronym for A Logarithmically Accurate Resummation In C++.
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where Ti and Tk are the color insertion operators defined in [72]. In the remainder of
this section we will discuss the case of massless radiators only and focus on the eikonal
factor, wik,j , and how it can be rewritten in a suitable form to match the spin-averaged
splitting functions Pab(z) in the soft-collinear limit. Since our analysis concerns only the
denominator of wik,j , it will apply to spin-correlated evolution as well. The eikonal factor
is given by

wik,j = pipk
(pipj)(pjpk)

, (2.3)

and it can be written in terms of (frame-dependent) energies and angles as

wik,j = Wik,j

E2
j

, where Wik,j = 1− cos θik
(1− cos θij)(1− cos θjk)

. (2.4)

We note that eq. (2.4) is symmetric in i and k, and that it encapsulates the complete soft
singularity structure of the hard matrix element [79]. If we were to implement eq. (2.4)
for each of the radiators i and k in the collinear limit, we would therefore double-count
the most singular component of the emission probability [80]. This is known as the soft
double-counting problem, which can be solved by following the technique of [21]. In this
approach, Wik,j is written as a sum of two terms, which are enhanced only in either the ij-
or kj-collinear limit:

Wik,j = W̃ i
ik,j + W̃ k

ki,j ,

where W̃ i
ik,j = 1

2

(
1− cos θik

(1− cos θij)(1− cos θjk)
+ 1

1− cos θij
− 1

1− cos θjk

)
. (2.5)

It is customary to define the z-axis to be aligned with the momentum pi, such that we can
write cos θjk in terms of polar angles, θ ij , θ ik with respect to the axis defined by pi, and the
azimuthal angle φ ijk in the same frame. Note in particular that θ il = θli, for any l.

cos θjk = cos θ ij cos θ ik + sin θ ij sin θ ik cosφ ijk . (2.6)

When performing the azimuthal averaging, we find the simple result [21]

1
2π

∫ 2π

0
dφijkW̃ i

ik,j =
Ĩiik,j

1− cos θ ij
, where Ĩiik,j =

 1 if θ ij < θ ik

0 else
. (2.7)

The behavior of Ĩiik,j as a function of the polar angles is known as angular ordering, which
means that the total probability for soft radiation averages to zero outside of a cone defined
by the cusp angle θ ik of the radiating color dipole. This is the origin of the coherent
branching formalism and the basis for angular ordered parton showers. It is instructive to
investigate this radiation pattern in more detail. Figures 1(a) and 1(b) display the positive
and negative contribution to the azimuthal integral, normalized to 2π, as a function of the
polar angles. The partial radiator function W̃ i

ik,j has a root at

cosφ i(0)
jk = −

√√√√1 + cos θ ij
1− cos θ ij

1− cos θ ik
1 + cos θ ik

(2.8)
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Figure 1. Azimuthally integrated radiator functions. Figures (a) and (b) show the positive and
negative contributions to Ĩi

ik,j arising from the additive matching in eq. (2.5), figure (c) displays
Īi

ik,j from the multiplicative matching in eq. (2.9).

which falls inside the integration domain if θ ij > θ ik. In this case, the negative contribution
to the azimuthal integral is equal in magnitude to the positive contribution, such that the
average radiation probability vanishes identically. However, there is a strong modulation of
this probability as a function of the azimuthal angle. If this modulation is not included in a
parton-shower simulation, wide-angle soft radiation effects will only be captured correctly
for observables that are sufficiently insensitive to the precise distribution of radiation in
phase space.

A naive attempt to solving this problem would be to include the full azimuthal
dependence of the radiator function in the Monte-Carlo simulation. Such an approach is
bound to fail, because in the region θ ij > θ ik one would need to sample the same amount of
negative and positive weighted Monte-Carlo events, leading to an efficiency of exactly zero.
We therefore adopt a different strategy, pioneered in [72], where the radiator function is
partial fractioned such that it maintains strict positivity

Wik,j = W̄ i
ik,j + W̄ k

ki,j , where W̄ i
ik,j = 1− cos θik

(1− cos θij)(2− cos θij − cos θjk)
. (2.9)

Azimuthal averaging again leads to eq. (2.7), except that Ĩiik,j is replaced by

Īiik,j = 1√
(Ā i

ij,k)2 − (B̄ i
ij,k)2

, (2.10)

where

Ā i
ij,k =

2− cos θ ij (1 + cos θ ik)
1− cos θ ik

and B̄ i
ij,k =

√
(1− cos2 θ ij )(1− cos2 θ ik)

1− cos θ ik
. (2.11)

This function is shown in figure 1(c). As required, it approaches unity in the limit θ ij → 0,
independent of the value of θ ik, and also for the special case of a back-to-back configuration,
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θ ik → π. While the Monte-Carlo efficiency of an algorithm using this technology will be
reduced compared to plain angular ordered evolution, the obvious benefit is that eq. (2.9)
allows to capture all angular correlations associated with the spin-summed soft eikonal,
eq. (2.4). In contrast, traditional angular ordered evolution, which is based on eq. (2.7),
does not populate the complete emission phase space, necessitating intricate matrix-element
corrections and creating complications in higher-order matching [27]. We note again that
the energy Ej in eq. (2.4) is frame dependent. This effect will be discussed in more detail
in section 4.1.

In the limit where partons i and j are collinear, we can write the eikonal factor in
eq. (2.3) as

wik,j
i||j−→ w

(coll)
ik,j (z) = 1

2pipj
2z

1− z , where z
i||j−→ Ei

Ei + Ej
. (2.12)

This can be identified with the leading term (in 1− z) of the DGLAP splitting functions
Paa(z), where2

Pqq(z) = CF

( 2z
1− z + (1− z)

)
,

Pgg(z) = CA

( 2z
1− z + z(1− z)

)
,

Pgq(z) = TR (1− 2z(1− z)) .

(2.13)

To match the soft to the collinear splitting functions, we therefore replace

1
2pipj

P(ij)i(z)→ 1
2pipj

P(ij)i(z) + δ(ij)i T2
i

[
W̄ i
ik,j

E2
j

− w(coll)
ik,j (z)

]
, (2.14)

where the two contributions to the gluon splitting function are treated as two different
radiators [50]. This substitution introduces a dependence on a color spectator, k, whose
momentum defines a direction independent of the direction of the collinear splitting. In
general, this implies that splitting functions which were formerly dependent only on a
momentum fraction along this direction, now acquire a dependence on the remaining two
phase-space variables of the new parton. This is the most general form of a splitting kernel
for spin-averaged parton evolution, which we will use in the following. In particular, the
dependence on the azimuthal angle allows to define the recoil momentum such that NLL
precision is maintained for any hard process, as discussed in more detail in section 5.

3 Momentum mapping and phase-space factorization

The mapping of Born momenta to a kinematic configuration after emission of additional
partons is a key component of any parton shower algorithm. It is closely tied to the
factorization of the Lorentz-invariant differential phase space element for a multi-parton
configuration. Suitable momentum mappings will preserve the key features of previously

2Note that in contrast to standard DGLAP notation, we separate the gluon splitting function into two
parts, associated with the soft singularities at z → 0 and z → 1.
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K̃ p̃i

p̃k

φ

n pi

pk~kT pj

K−~kT

Figure 2. Sketch of the momentum mapping for final-state evolution. See the main text for details.
Note that pk does not participate in the shift, eq. (3.3), and only acts as a reference for the azimuthal
angle φ.

simulated radiation, while an unsuitable mapping could skew the QCD radiation pattern
up to a point where it becomes not only theoretically incorrect, but the differences become
visible experimentally. A prime, although academic, example for the latter problem is
a collinear unsafe mapping algorithm, in which the parton shower does not reflect the
features of the collinear limit of the QCD matrix elements, eq. (2.3) and therefore introduces
an error at leading logarithmic accuracy. A key requirement for the construction of any
momentum mapping therefore is collinear safety, and all known parton-shower algorithms
satisfy this constraint. An example for a problem which may only be seen in dedicated
measurements was identified in [53]. It originates in a modification of existing soft momenta
in subsequent emissions, that introduces an error in the simulated QCD radiation pattern at
next-to-leading logarithmic accuracy. In the following, we will construct a generic, collinear
and NLL safe momentum mapping for both final-state and initial-state radiation, which is
inspired by the identified–particle dipole subtraction algorithm in [72]. We will provide the
analytic proof of NLL safety in section 5.1 and sketch the additional steps that are required
to match the parton shower to NLO calculations in appendix C.

We begin by describing the logic underpinning our new kinematics mapping, {p̃l} → {pl}.
We identify the splitter momentum, p̃i, and define a recoil momentum, K̃, as the negative
sum of all momenta in the radiating QCD multipole, including the momentum of the splitter
(see also appendix A).3 Together, the momenta K̃ and p̃i define the reference frame of the
splitting, as shown schematically in figure 2 (left). The momentum of the color spectator,
p̃k, defines an additional direction, which provides the reference for the azimuthal angle,
φ. In the first step of the mapping, the emitter momentum is scaled by a factor z, and
the emitted momentum, pj , is constructed with transverse momentum component ~kT and
suitable light-cone momenta. The color spectator remains unchanged, pk = p̃k. The recoil
is absorbed by the overall multipole, such that after the emission we have K 6= K̃, while
K2 = K̃2. In particular, the multipole after the emission acquires a transverse momentum
with respect to K̃. This is shown schematically in figure 2 (right). To compensate for both
the transverse and the longitudinal recoil, the overall multipole is boosted to its original
frame of reference. This changes all momenta and effectively distributes the recoil among
them, generating changes of the order of kT /

√
K2, which vanish in the infrared limits. We

will make use of this fact in section 5.1.

3This construction differs from the traditional choice in parton and dipole showers, where the splitter
and recoil partner are disjoint.
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A collinear safe momentum mapping requires that for any two massless collinear partons,
i and j, the momenta behave as

pi
i||j−→ z p̃i , pj

i||j−→ (1− z) p̃i . (3.1)

In the exact limit, cos θij = 0, the splitting variable z is uniquely defined and given by

z = pin

(pi + pj)n
, (3.2)

where n is an arbitrary auxiliary vector that satisfies p̃in 6= 0. Note that n can be either
light-like, time-like or space-like, as long as p̃in 6= 0. In order to construct a collinear-safe
momentum mapping for arbitrary values of the two-particle virtuality pipj , we can simply
use the first part of eq. (3.1) away from this limit. This implies in particular that pi retains
its direction, and that all angular radiator functions involving pi remain unchanged.

A second important constraint for the mapping is overall four-momentum conser-
vation. We satisfy this by defining a vector K̃ to be a combination of the momenta
{p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n}, and by using the shift

pi = z p̃i , n = K̃ + (1− z) p̃i , (3.3)

which implies pi + n = p̃i + K̃. The remaining task is to construct two new vectors, K and
pj , such that K2 = K̃2, and such that pj satisfies the collinear safety constraint, eq. (3.1).
The momenta in K̃ are mapped to new momenta by a Lorentz transformation that is
defined in terms of K̃ and K. The simplest way to obtain the new momenta is by means of
a light-cone parametrization [81]. With the help of the light-like vector

n̄ = n− n2

2p̃in
p̃i = K̃ − κ p̃i , where κ = K̃2

2p̃iK̃
, (3.4)

we can write

pj = v n̄+ 1
v

k2
⊥

2p̃iK̃
p̃i − k⊥ , where v = pipj

piK̃

K = (1− v) n̄+ 1
1− v

k2
⊥ + K̃2

2p̃iK̃
p̃i + k⊥ .

(3.5)

Equation (3.5) makes it manifest that K̃ absorbs the newly generated transverse and
anti-collinear momentum when parton (ij) is put off-shell, such that overall momentum
conservation is satisfied. This leads to the identity4

k2
⊥ = v(1− v) 2pjK − v2K2 = v(1− v)(1− z) 2p̃iK̃ − v2K̃2 . (3.6)

Note that k2
⊥ is proportional to v and therefore tends to zero in the collinear limit cos θ ij → 0.

Inserting this relation into eq. (3.5) makes both collinear safety and overall four-momentum
conservation of the kinematics mapping manifest.

pj = (1− z) p̃i + v
(
K̃ − (1− z + 2κ) p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ − (1− z + 2κ) p̃i

)
− k⊥ .

(3.7)

4In eq. (3.6), the variable v takes the place of the splitting variable z in a standard collinear parametriza-
tion.
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In order to determine a reference direction for the azimuthal angle φ = arctan(ky/kx), we
note that the soft radiation pattern of eq. (2.9) must be correctly generated. To achieve
this we decompose the transverse momentum as

kµ⊥ = k⊥

(
cosφ nµ⊥

|n⊥|
+ sinφ l µ⊥

|l⊥|

)
, (3.8)

where the reference axes n⊥ and l⊥ are given by the transverse projections5

nµ⊥ = pµk −
pkn̄

p̃iK̃
p̃µi −

pkp̃i

p̃iK̃
n̄µ , and l µ⊥ = εµνρσ p̃

ν
i n̄

ρ nσ⊥ . (3.9)

Because the differential emission phase-space element, eq. (3.14), is a Lorentz-invariant
quantity, the azimuthal angle φ is Lorentz invariant. It can be expressed as

φ = arccos (pipj)(pkn̄) + (pipk)(pjn̄)− (pin̄)(pjpk)√
2(pipj)(pjn̄)

√
2(pipk)(pkn̄)

. (3.10)

This allows us to write the emission phase space in a frame-independent way. After the
momenta pi, pj and K are constructed, the momenta {pl} used to define K̃ are subjected
to a Lorentz transformation, which can be written as [72]

pµl → Λµν(K̃,K) pνl , where Λµν(K̃,K) = gµν −
2(K + K̃)µ(K + K̃)ν

(K + K̃)2 + 2KµK̃ν

K̃2 .

(3.11)
If needed, the event is restored to the lab frame, as described in appendix A. We list
the precise algorithm for the construction of final-state splittings in section A.1, and give
the algorithm for the construction of initial-state splittings in section A.2. The initial-
state kinematics are obtained by the simple replacement z → x = 1/z, as indicated by
crossing relations.

The last remaining task is to determine the differential emission phase space element.
We will outline how to do this for pure final-state evolution, where the recoil partner K̃
corresponds to the sum of the initial state momenta. This covers the important case of the
decay of a color-neutral, massive particle, such as a Z-boson at LEP. Since K, K̃ and n
are treated as outgoing, they appear with negative energy component, which requires the
explicit compensation of a number of minus signs that do not appear in the case where K̃
corresponds to a part of the final state. The general discussion can be found in appendix B.

The differential phase-space element for (n−1) hard momenta, {p1, . . . ,pj−1,pj+1, . . . ,pn},
and one soft momentum, pj , is defined as

dΦn(pa, pb; p1, . . . , pn) =
[
n∏
i=1

1
(2π)3

d3pi
2p0
i

]
(2π)4δ(4)

(
pa + pb −

∑
pi
)
. (3.12)

5In kinematical configurations where pµk is a linear combination of pµi and n̄µ, n⊥ in the definition of
eq. (3.8) vanishes. It can then be computed using n⊥ = εµjνρ p

ν
i n̄

ρ, where j ∈ {1, 2, 3} may be any index
that yields a nonzero result. Note that in this case the matrix element cannot depend on the azimuthal angle.
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It can be written in terms of the differential phase-space element for the momenta
{p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n} before the mapping

dΦn−1(p̃a, p̃b; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n) =
[

n∏
i=1
i 6=j

1
(2π)3

d3p̃i
2p̃0
i

]
(2π)4δ(4)

p̃a + p̃b −
∑
i 6=j

p̃i

 ,

(3.13)

and the ratio of differential phase-space elements after and before the mapping

dΦ+1(p̃a, p̃b; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) = dΦn(pa, pb; p1, . . . , pn)
dΦn−1(p̃a, p̃b; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n) .

(3.14)
Eq. (3.14) denotes the single-emission phase space. It can be computed using the lowest
possible multiplicity, i.e. n = 2 We start from the factorization formula6

dΦ3(−K; pi, pj , Q) = dΦ2(−K; pj ,−n) dn2

2π dΦ2(−n; pi, Q) , (3.15)

where Q =
∑
k 6=i,j pk. The two-particle phase space in the frame of a time-like momentum

P can be written as

dΦ2(p1 + p2; p1, p2) = 1
16π2

√
(p1P )2 − p2

1P
2

3

((p1P )(p1p2)− p2
1(p2P ))P 2 d cos θ(P )

1 dφ(P )
1 . (3.16)

We perform all transformations in the rest frame of n, where we have the simple relations

Ei = z
−p̃iK̃√
n2

, Ej = (1− z) −p̃iK̃√
n2

,

EK = (1− z + 2κ) −p̃iK̃√
n2

, and n2 = −2p̃iK̃ (1− z + κ) .
(3.17)

Using the following identity for the polar angle θj of the emission,

1− cos θ ij = 2v 1− z + κ

1− z , (3.18)

we find the first two-particle decay phase space in eq. (3.15) to be

dΦ2(−K; pj , n) = 1
16π2 dv dφ(n)

j . (3.19)

Note that this implies that φ(n)
j is a Lorentz invariant quantity, which is in fact given by

eq. (3.10). We also have
dn2 = −2p̃iK̃ dz . (3.20)

Finally, we rewrite the second two-particle decay phase space as

dΦ2(−n; pi, Q) = 1
16π2

z

2(1− z + κ) d cos θ(n)
i dφ(n)

i . (3.21)

6Note that the n-particle differential phase-space element does not depend on the initial-state momenta
individually, hence the notation dΦn(pa, pb; . . .) is equivalent to dΦn(pa + pb; . . .).
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In order to obtain a factorization formula, this must be mapped to the Born phase space,
which is given by dΦ2(−K̃; p̃i, Q̃). The angular integrals in eq. (3.21) are identical when
working in the rest frame of the momentum n, which leads to the relation

dΦ2(−n; pi, Q) = z dΦ2(−K̃; p̃i, Q̃) . (3.22)

Combining all of the above, we find the single-emission phase space element

dΦ(FI)
+1 (−K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) = −2p̃iK̃

16π2 dv dz z dφ
2π . (3.23)

We derive the analogous factorization formulae for recoilers in the final state and for
initial-state emitters in appendix B.

4 Details of the algorithm

This section introduces the details needed to implement our new parton-shower algorithm.
The procedure rests on the fact that the angular radiator function (1− cos θ ij )W̄ i

ik,j , with
W̄ i
ik,j given in eq. (2.9), has a fairly mild dependence on the azimuthal angle. In particular,

it is finite in the physical domain 0 < θ ij , θ
i
k < π. We can therefore generate the azimuthal

angle using a flat prior distribution, and work with standard algorithms for the remainder
of the parton shower. In the following, we will assume some familiarity of the reader with
these algorithms. Details can be found in the many excellent reviews in the literature, for
example [80, 82].

4.1 Soft evolution

We determine energies and angles in a global frame, which is defined by n. In the soft
limit, pj → 0, this frame coincides with the event frame, defined by K. The energies of
particles i and j are given by eq. (3.17). The polar angle θ ij of the emission is determined
by eq. (3.18).7 We define partial radiator functions, w̄iik,j , analogous to eq. (2.9), such that
wik,j = w̄iik,j + w̄kki,j . This leads to

w̄iik,j =
W̄ i
ik,j

E2
j

= W̄ik,j

pipj
, where W̄ik,j = z

1− z (1− cos θ ij ) W̄ i
ik,j . (4.1)

The function W̄ik,j describes the frame-dependent azimuthal modulation of the radiation
pattern. We implement it in the numerically more convenient form (see also appendix C)

W̄ik,j = likpi
likpj

, where lµik = pµi
pin

+ pµk
pkn

. (4.2)

The function (1− cos θ ij )W̄ i
ik,j assumes its maximum for φ ijk = 0. It is bounded from above

by 2. The eikonal part of the splitting function can therefore be overestimated by

w̄iik,j ≤ 2w(coll)
ik,j (z) = 1

2pipj
4z

1− z . (4.3)

7Note that for the first emission off a two-parton final state, κ = −1, such that 1− cos θ ij = 2v z/(1− z),
which is the same result as in the coherent branching formalism [83].
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We define the evolution variable of the parton shower as

t = 2E2
j (1− cos θ ij ) = v (1− z) 2p̃iK̃ . (4.4)

Note that 1− cos θ ij = 2 sin2(θ ij /2), such that t corresponds to a transverse momentum. In
the generalized rescaling limit ρ→ 0 of [84] (see eq. (5.8) and section 5.1 for details), it can
be identified with the transverse momentum squared in the Lund plane, hence our parton
shower algorithm corresponds to the case βPS = 0 in [54]. The kinematical variable v is
given as a function of t by

v = τ

1− z , where τ = t

2p̃iK̃
. (4.5)

There is no Jacobian factor for the transformation ln v → ln t. The differential branch-
ing probability for soft radiation is eventually given by the manifestly Lorentz invariant
expression

dP i (soft)
ik,j (t, z, φ) = dΦ+1({p̃}, pj) 8παsCi w̄iik,j = dt dz dφ

2π
αs

2π t 2Ci W̄ik,j . (4.6)

For any |τ | > τ0 = t0/2p̃iK̃, with t0 the infrared cutoff of the parton shower, eq. (4.4)
defines a boundary on z that is given by z+ = 1/(1 + τ0). This regularizes the integral of
the overestimate of the splitting function in eq. (4.3). We also introduce a lower bound
on z, given by z2

− = t0/K̃
2, to render the upper bound of the t integration finite. This is

analogous to the determination of the upper photon energy bound in [85]. The splitting
variable z can therefore be generated using standard Monte-Carlo techniques.

4.2 Collinear evolution

We are now left with the task to define the parton-shower algorithm to resum purely
collinear logarithms. The corresponding splitting functions can be derived by subtracting
the collinear limit of the soft eikonal factor, eq. (2.3), from the leading-order DGLAP
splitting functions, eq. (2.13). The differential branching probability for collinear radiation
is then given by (see eq. (2.14))

dP i (coll)
ik,j (t, z, φ) = dΦ+1({p̃}, pj)

αs
2π

(
Pı̃i(z)
2pipj

− δı̃i 2Ciw(coll)
ik,j (z)

)

= dt dz dφ
2π

αs
2π t

(
Pı̃i(z)− δı̃iCi

2z
1− z

)
= dt dz dφ

2π
αs

2π t Cı̃i .

(4.7)

Here we have defined the purely collinear remainder functions

Cqq = CF (1− z) ,
Cgg = CA z(1− z) ,
Cgq = TR (1− 2z(1− z)) .

(4.8)

While we use the same ordering parameter as in soft evolution, eq. (4.4), an ordering in
virtuality or other variables is possible without affecting the logarithmic precision.
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5 Analysis of logarithmic structure

In this section we will analyze the logarithmic structure of the new parton-shower algorithm.
We first provide an analytic proof that the recoil effects from new emissions on pre-existing
ones vanish in the ρ→ 0 limit [84]. This limit corresponds to a similarity transformation
in the Lund plane such that all emissions can be considered as soft or collinear. The
technique was introduced to eliminate corrections from kinematic effects which would
generate terms beyond NLL accuracy. Parton showers that create non-vanishing recoil
effects in this limit are not NLL accurate [53]. Here we focus solely on the question whether
the generalized scaling of emissions introduced in [84] is maintained in our parton shower
when additional splittings are generated at lower or commensurate scales. In addition, we
perform a numerical test of NLL accuracy, following the proposal in [54], which provides an
additional strong check of our new algorithm.

5.1 Recoil effects in the infrared limit

We will first show that the new kinematics mapping satisfies the fixed-order criteria for NLL
accuracy laid out in [53, 54] to all orders. Proofs for other parton-shower algorithms have
been provided in numerical form [54], or based on approximations of the parton-shower
branching probability, combined with analytical integration for specific observables [70, 86].
Here we will follow a different approach. We describe the case of pure final-state evolution
(for example in e+e− →hadrons), similar arguments apply to initial-state evolution as well.

We follow [84] and denote the momenta of the hard partons as p1, . . . , pn. Additional
soft emissions are denoted by k, and the observable we wish to compute by v. In general, the
observable will be a function of both the hard and the soft momenta, v = V ({p}, {k}), while
in the soft approximation it reduces to a function of the soft momenta alone, v = V ({k}).
In the rest frame of two hard legs, i and j, one may parametrize the momentum of a single
emission as

k = zi,jpi + zj,ipj + kT,ij , where k2
T,ij = 2pipj zi,j zj,i . (5.1)

The rapidity of the emission in this frame can be parametrized as ηij = 1/2 ln(zi,j/zj,i).
The observable, computed as a function of the momentum k, radiated collinear to the hard
parton, l, can then be expressed as

V (k) =
(
kT,l
Q

)a
e−blηl , (5.2)

where, in the collinear limit, we have kT,l = kT,lj and ηl = ηlj for any j ∦ l.
The cumulative cross section for an arbitrary observable, v, is defined as

Σ (v) := 1
σ

∫ v

dv̄
dσ

dv̄
. (5.3)

It is typically decomposed into a Sudakov factor, e−R(v), and a remainder function, F(v),

Σ(v) = e−R(v)F(v) . (5.4)
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The remainder function contains no leading logarithms, and the Sudakov radiator is a sum
over all partons in the hard process, R =

∑
lRl. The function F(v) is extracted from the

all-orders resummed result, eq. (2.34) of [84], which reads

Σ(v) =
∫

d3k1|M(k1)|2 exp
{
−
∫
εv1

d3k|M(k)|2
}

×
∞∑
m=0

1
m!

(m+1∏
i=2

∫ v1

εv1
d3ki|M(ki)|2

)
Θ
(
v − V ({p}, k1, . . . , kn)

)
.

(5.5)

A Taylor expansion in the virtual corrections up to first order in the derivative of the
Sudakov radiator, using a cutoff parameter, ε, leads to

exp
{
−
∫
εv1

d3k|M(k)|2
}

= e−R(v) e
−R′ ln v

εv1
+O(R′′)

, where R′ = dR
d ln 1/v . (5.6)

The function M(k) is the single-emission matrix element in the infrared limit. This leads
to the convenient form (cf. eq. (2.37) in [84])

F(v) =
∫

d3k1|M(k1)|2 e−R
′ ln v

εv1

∞∑
m=0

1
m!

(m+1∏
i=2

∫ v1

εv1
d3ki|M(ki)|2

)
Θ
(
v−V ({p}, k1, . . . , kn)

)
.

(5.7)
Here, v1 is the value of the observable in the leading (in v) emission, and k1 is the
corresponding momentum. The expressions to the left of the sum can be interpreted as
the differential radiation probability for the first emission, and the corresponding Sudakov
suppression factor, assuming that further radiation is resolved down to a scale of εv1. The
sum then implements the corresponding real radiative corrections to all orders, while the Θ
function accounts for the constraint from the observable, v. This makes it clear that the F
function is due to multiple emission effects.

In order to cleanly extract the NLL expression for F(v), the limit ε→ 0 must be taken,
and the sum over emissions must be computed to all orders. This corresponds to the limit
αs → 0 or v → 0, while αs ln 1/v remains constant. The case v → 0 can be understood
as the limit of infinite center-of-mass energy. In this limit, kinematic edge effects can be
neglected. However, it must be guaranteed that the event topology in the limit remains
the same as in a situation with finite v, which implies that the observable must satisfy the
recursive IRC safety conditions laid out in section 2.2.3 of [84]. If it does, one will be able
to take the limit and compute F(v) by performing a similarity transformation in the Lund
plane, which is given in terms of a scaling parameter, ρ, by eq. (2.39) of [84]

kt,l → k′t,l = kt,lρ
(1−ξl)/a+ξl/(a+b) , ηl → η′l = η − ξl

ln ρ
a+ b

, where ξ = η

ηmax
.

(5.8)
This transformation is sketched in figure 3 of [84]. The aim of our proof is to show that
the recoil arising from the inverse of the Lorentz transformation in eq. (3.11) does not
lead to an appreciable alteration of the momenta of pre-existing emissions in the limit
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where the scaling parameter vanishes, ρ → 0.8 In order to analyze the behavior of the
Lorentz transformation, we switch back to our original notation and use eq. (3.7) to split
Kµ into its components along the recoil momentum, K̃µ, the emitter momentum, p̃µi , and
the emission, pµj ,

Kµ = K̃µ −Xµ , where Xµ = pµj − (1− z) p̃µi . (5.9)

The vector Xµ will tend to zero in both the soft and the collinear limit, because it has no
component along the direction of the emitter momentum, p̃i. This implies in particular that
for emissions off the original hard partons, Xµ will tend to zero, even in the hard collinear
region, such that the Lorentz transformation vanishes. In terms of K̃µ and Xµ, eq. (3.11)
takes the form

Λµν(K, K̃) = gµν + K̃µAν +XµBν , (5.10)

where

Aν = 2
[ (K̃ −X)ν

(K̃ −X)2 −
(K̃ −X/2)ν

(K̃ −X/2)2

]
, and Bν = (K̃ −X/2)ν

(K̃ −X/2)2 . (5.11)

Following section 2.2.3 of [84], we now analyze the behavior of this change under the
generalized rescaling of all emissions, pl, according to eq. (5.8). Note that the transverse
momentum kt in this analysis is not the same as k⊥ in eq. (3.7). It is instead given in terms
of Lund plane coordinates, see section 2 of [84] for details of these definitions. We can
choose to use the initial momenta of the hard quark and anti-quark (which are not subject
to the rescaling) as reference directions to define the Lund plane transverse momentum
and rapidity, and work in their rest frame with the quark (antiquark) momentum pointing
along the positive (negative) z direction. In this frame, the longitudinal components
of the momenta pl scale as p̃0,3

l ∼ ρ(1−ξl)/a, while the transverse components behave as
p̃1,2
l ∼ ρ(1−ξl)/a+ξl/(a+b).

From eq. (5.9) we deduce that all components of Xµ scale as the soft momenta p̃l in
eq. (5.8), because the component of pj along the emitter momentum p̃i has been subtracted.
This is a very important feature of our kinematics mapping. We will now show that this
mapping maintains the scaling properties, eq. (5.8), of an arbitrary set of pre-existing
emissions in the ρ→ 0 limit.

First we take the ρ→ 0 limit of the coefficients in eq. (5.10). The leading contributions
are given by

Aν
ρ→0−→ 2 K̃X

K̃2
K̃ν

K̃2 −
Xν

K̃2 , and Bν ρ→0−→ K̃ν

K̃2 . (5.12)

The momentum shift of particle l under the Lorentz transformation is then given by

∆pµl = 2 K̃X
K̃2

p̃lK̃

K̃2 K̃µ − p̃lX

K̃2 K̃µ + p̃lK̃

K̃2 Xµ . (5.13)

8In the case of e+e− →hadrons, eq. (3.11) is applied to move the initial-state momenta of the e+e−

collision to a new frame. Afterwards, eq. (A.6) is applied to restore the complete event to the lab frame. As
eq. (A.6) in this case is the inverse of eq. (3.11), this corresponds to applying the inverse of eq. (3.11) to
the complete final state directly. All other scenarios can be treated in the same fashion for the purpose of
this proof.
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For color singlet decay or production processes we can work in the multipole center-of-mass
frame. K̃ then only has an energy component, which is not rescaled as ρ→ 0. Let us first
assume that the emitter momentum, p̃i, is one of the soft momenta.

The scaling of the scalar products in eq. (5.13) is then given by9

p̃lK̃ ∼ ρ(1−ξl)/a ,

p̃lX ∼ ρ(2−ξl−max(ξi,ξj))/a .
(5.14)

The denominators in Aν and Bν do not scale with ρ. With that we can derive the scaling of
the change in each component of pl and compare it to the scaling of the original components
in p̃l.

p̃0
l ∼ ρ(1−ξl)/a

∆p0
l ∼ ρ(1−ξl)/aX0 + ρ(2−ξl−max(ξi,ξj))/aK̃0 + ρ(1−ξl)/aX0 ∼ ρ(2−ξl−max(ξi,ξj))/a ,

p̃3
l ∼ ρ(1−ξl)/a

∆p3
l ∼ ρ(1−ξl)/aX3 ∼ ρ(2−ξl−max(ξi,ξj))/a ,

p̃1,2
l ∼ ρ

(1−b/(a+b)ξl)/a

∆p1,2
l ∼ ρ

(1−ξl)/aX1,2 ∼ ρ(2−ξl−b/(a+b) max(ξi,ξj))/a .

(5.15)

The relative momentum shifts are

∆p0,3
l

p0,3
l

∼ ρ(1−max(ξi,ξj))/a ,

∆p1,2
l

p1,2
l

∼ ρ(1−ξl−b/(a+b)(max(ξi,ξj)−ξl))/a < ρ(1−b/(a+b))(1−ξl)/a .

(5.16)

If ξl < 1 and max(ξi, ξj) < 1, these changes vanish in the ρ→ 0 limit. The case of ξl = 1
and/or max(ξi, ξj) = 1 corresponds to a phase-space region of measure zero and does
therefore not need to be considered.

In the case where p̃i is one of the hard momenta, the leading terms in eq. (5.9) cancel
exactly, and the remaining components of Xµ are transverse or anti-collinear, leading to a
scaling with ρ1/a and ρ2/a, respectively, in eq. (5.15). This leads to the same conclusions as
the case ξi = ξj = 0.

5.2 Numerical tests of kinematics mapping

In this section we present numerical tests of our new algorithm.10 We follow the procedure
outlined in [54] and perform a scaling of the strong coupling, while keeping the variable λ =
αs ln v fixed, where v is an observable whose single-emission contribution to a measurement

9Note that p̃lX has two contributions, one proportional to ρ(2−(ξl+max(ξi,ξj )))/a, and one proportional
to ρ(2−b/(a+b)(ξl+max(ξi,ξj )))/a. The first one dominates in all cases, because b/(a+ b) < 1. While b can be
negative, infrared and collinear safety requires b > −a, a > 0.

10The PyPy code for these tests can be found at https://gitlab.com/shoeche/pyalaric.
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Figure 3. NLL test for ∆ψ12.

can be parametrized in the form v(k) = (kt/Q)ae−b|ηk|, see eq. (5.2). In particular we
analyze the event shape observables thrust, T [87], jet broadening, BT [88], heavy jet
mass, MH , and the fractional energy correlators FC1−β [84] for β = 0 and 1/2. We also
analyze the leading Lund plane declustering scale in the Cambridge algorithm, y23, and the
azimuthal angle between the two leading Lund plane declusterings, ∆ψ12 [54].

Since the running of the strong coupling will not affect the kinematics reconstruction,
we keep αs constant in this numerical test. In addition, we do not use the CMW scheme,
and we work in the strict leading color approximation, 2CF = CA = 3. We find that this is
sufficient to reproduce the dominant features of the Dire dipole shower algorithm that were
observed to break NLL precision in [53, 54]. Figure 3 shows the azimuthal angle separation
∆ψ12. The predictions from Dire exhibit the same features as already shown in [54], and it
can be seen that the deviation from a flat ∆ψ12 distribution does not vanish as αs → 0. In
contrast, for the Alaric algorithm we observe increasingly smaller deviations from a flat
∆ψ12 dependence, in agreement with NLL resummation.

Figure 4 displays the event shape observables and the leading Lund declustering scale
for varying αs. In order to test for a variety of possible effects of NLL violation, we have
chosen observables with different NLL contributions. In addition, we test observables with
b = 0 (√y23, BT and FC1), observables with b = 1/2 (FC1/2) and observables with b = 1
(1− T , MH). In each case we find that the deviation of the Alaric prediction from the
NLL target result (modified to account for constant αs, no CMW rescaling and leading
color) decreases in size proportional to the scaling in αs, as αs → 0. At the same time, we
observe large deviations of the Dire predictions from the target NLL result. It is notable
that the predictions from Alaric are flat with respect to the NLL result starting at fairly
small values of −λ for most observables. For each prediction we have performed a fit to a
linear function of αs in order to extract the limit for αs → 0. There are two noteworthy
artefacts of this extrapolation: Firstly, there are bumps in the extrapolated result at large
values of λ, which would not be present in the true ratio at any αs < 0.0025. Second, the
extrapolated result is smoother than the individual inputs, since the predictions at smaller
αs are less constraining due to their larger uncertainties. This concludes our tests of the
kinematics mapping.
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Figure 4. NLL test for various event shape observables. See the main text for details.
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6 Comparison to experimental data

In this section we present first numerical results obtained with the Alaric final-state
parton shower, as implemented in the event generation framework Sherpa [75–77]. We do
not perform NLO matching or multi-jet merging, and we set CF = (N2

c − 1)/(2Nc) = 4/3
and CA = 3. All quarks are considered massless, and we implement flavor thresholds at
mc = 1.42GeV and mb = 4.92GeV. The running coupling is evaluated at two loop accuracy,
and we set αs(mz) = 0.118. Following standard practice to improve the logarithmic
accuracy of the parton shower, we employ the CMW scheme [91], i.e. the soft eikonal
contribution to the flavor conserving splitting functions is rescaled by 1+αs(t)/(2π)K, where
K = (67/18− π2/6)CA − 10/9TR nf . Our results include the simulation of hadronization
using the Lund string fragmentation implemented in Pythia 6.4 [82].11 We use the default
hadronization parameters, apart from the following values: PARJ(21)=0.3, PARJ(41)=0.4,
PARJ(42)=0.36 for Alaric, and PARJ(21)=0.3, PARJ(41)=0.4, PARJ(42)=0.45 for Dire.
All analyses are performed with Rivet [93].

Figure 5 shows predictions from the Alaric parton shower for differential jet rates
in the Durham scheme compared to experimental results from the JADE and OPAL
collaborations [89]. The perturbative region is to the right of the plot, and y ∼ 2.8 · 10−3

corresponds to the b-quark mass. The simulation of nonperturbative effects dominates the
predictions below ∼ 10−4. We observe fairly good agreement with the experimental data,
however, we note that at moderate values of y the prediction will be altered when a proper
evolution of massive quark final states is included.

Figure 6 shows a comparison for event shapes measured by the ALEPH collaboration [90].
The perturbative region is to the right of the plot, except for the thrust distribution, where
it is to the left. We notice some deviation in the predictions for the total jet broadening
and for the aplanarity. They are mostly within the 2σ uncertainty of the experimental
measurements. It can be expected that the simulations will improve upon including matrix-
element corrections or when merging the Alaric parton shower with higher-multiplicity
calculations. Deviations in the hadronization region may be associated with the treatment
of b-quarks and c-quarks as massless partons.

7 Conclusions

We have presented a new parton-shower algorithm, which is closely modeled on the fixed-
order subtraction formalism for identified particles by Catani and Seymour. This technique
allows, for the first time in a dipole-like parton shower, to disentangle color and kinematics,
at the price of introducing an azimuthal angle dependence in the splitting functions. Partial
fractioning the angular radiator function and matching to the collinear limit maintains strict
positivity of the evolution kernels, thus allowing a straightforward implementation without
the need for explicit angular ordering. Through a suitable assignment of recoil, which

11Hadronization using the Sherpa cluster fragmentation [92] will require an implementation of massive
splitting functions in Alaric, in order to simulate the QCD evolution of partonic hadron decays. We
postpone this to a future publication.
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Figure 5. Alaric and Dire predictions in comparison to LEP data from [89].
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Figure 6. Alaric and Dire predictions in comparison to LEP data from [90].
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is absorbed by the entire QCD multipole, we are able to show that the local kinematics
mapping satisfies the criteria for NLL precision.

Several extensions of this algorithm are required: Firstly, it should be modified to
include spin correlations [23–26] and dominant sub-leading color effects [67, 74, 94]. A
number of formally less relevant, but practically important considerations need to be
addressed as well. They include the evolution for massive partons, in order to properly
describe bottom and charm jet production and b- and c-quark fragmentation functions.
Another open question is the extension to processes with non-trivial color dependence
at Born level, such as top-quark pair production and inclusive jet or di-jet production
at hadron colliders. A related, though substantially simpler problem is the treatment of
processes with multiple, disconnected QCD multipoles, such as vector boson fusion in
the structure function approximation, or the production of a Higgs boson in association
with a hadronically decaying vector boson in the narrow width approximation. The latter
cases can be handled by applying the algorithms introduced here to each QCD multipole
individually, while keeping track of spin correlations among the different multipoles. Finally,
we plan to extend our new algorithms to higher-orders, based on the techniques developed
in [73, 74, 95].
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A Implementation details

This appendix summarizes details of the kinematics mapping and the relations between
the kinematic invariants and the evolution and splitting variables for both final-state and
initial-state evolution. We limit the discussion to situations where the recoiler momentum
is composed either of final-state momenta only, or of initial-state momenta only.
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A.1 Final-state evolution

We will first discuss the case of a final-state emitter with a recoil momentum K̃ that is
composed only of final-state momenta. The momentum mapping is sketched in figure 7 (FF).
The emitting particle is labeled i, the emission is labeled j, and the color spectator is
labeled k. The momenta pi, pj and K are given by eq. (3.7)

pi = z p̃i ,

pj = (1− z) p̃i + v
(
K̃ − (1− z + 2κ) p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ − (1− z + 2κ) p̃i

)
− k⊥ ,

(A.1)

where
k2
⊥ = v(1− v)(1− z) 2p̃iK̃ − v2K̃2 , and v = τ

1− z . (A.2)

The particles included in the momentum K̃ are subjected to a Lorentz transformation,
which accounts for the decay of the new recoil momentum, K, in a different frame. If the
recoil momentum is given by a single, light-like vector, no such transformation is necessary.

pµl → Λµν(K̃,K) pνl . (A.3)

The momentum mapping for final-state emitters with a recoil momentum K̃ composed
only of initial-state momenta is sketched in figure 7 (FI). We define the momentum K̃

as incoming, i.e. K̃0 > 0. This implies the replacement v → −v, K̃ → −K̃ and n → −n,
leading to

pi = z p̃i ,

pj = (1− z) p̃i + v
(
K̃ + (1− z − 2κ) p̃i

)
+ k⊥ ,

K = K̃ + v
(
K̃ + (1− z − 2κ) p̃i

)
+ k⊥ ,

(A.4)

where
k2
⊥ = v(1 + v)(1− z) 2p̃iK̃ − v2K̃2 , and v = τ

1− z . (A.5)

As in the case of a final-state spectator, the momenta defining K̃ are subjected to the
Lorentz transformation given by eq. (A.3). An additional transformation has to be applied,
such as to align the momenta of both redefined beam particles, pa and pb, with the beam
axis. If there are no strongly interacting particles in the initial state, this can be achieved
by the simple mapping

pµl → Λµν(pa + pb, p̃a + p̃b) pνl . (A.6)

Note that this additional Lorentz transformation is applied to all particles in the event.

A.2 Initial-state evolution

For initial-state emissions, we redefine z → 1/z. The momentum mapping for recoil
momenta K̃ composed only of initial-state momenta is sketched in figure 7 (II). The
emitting particle is labeled i, the emission is labeled j, and the color spectator is labeled k.
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We define both p̃i and K̃ as incoming, i.e. p̃i,0 > 0 and K̃0 > 0. The momenta pi, pj and K
are then given by eq. (3.7)

pi = 1
z
p̃i ,

pj = 1− z
z

p̃i + v

(
K̃ +

(1− z
z
− 2κ

)
p̃i

)
+ k⊥ ,

K = K̃ + v

(
K̃ +

(1− z
z
− 2κ

)
p̃i

)
+ k⊥ ,

(A.7)

where
k2
⊥ = v(1 + v)1− z

z
2p̃iK̃ − v2K̃2 , and v = τ

1− z . (A.8)

As in the case of final-state evolution, the momenta defining K̃ are subjected to the Lorentz
transformation given by eq. (A.3). The complete event is then subjected to a Lorentz
transformation, determined such as to align the momenta of the initial-state particles, pa
and pb, with the beam axis, while shifting the event rapidity to y = ỹ − sgn(pi,z) ln

√
z and

preserving the azimuthal orientation of the event.
The momentum mapping for initial-state emitters with a recoil momentum K̃ composed

only of final-state momenta is sketched in figure 7 (IF). The momenta pi, pj and K are
given by

pi = 1
z
p̃i ,

pj = 1− z
z

p̃i + v

(
K̃ −

(1− z
z

+ 2κ
)
p̃i

)
+ k⊥ ,

K = K̃ − v
(
K̃ −

(1− z
z

+ 2κ
)
p̃i

)
− k⊥ ,

(A.9)

where
k2
⊥ = v(1− v)1− z

z
2p̃iK̃ − v2K̃2 , and v = τ

1− z . (A.10)
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The particles included in the momentum K̃ are subjected to a Lorentz transformation,
which accounts for the decay of the new recoil momentum, K, in a different frame. As in the
case of final-state evolution, this can be achieved by applying the Lorentz transformation in
eq. (A.3). If the recoil momentum is given by a single, light-like vector, no transformation
is needed.

B Phase-space factorization

This appendix summarizes details on the phase-space factorization for both final-state and
initial-state evolution. The case of final-state emitter and initial-state recoiler was discussed
in section 3, and we do not repeat it here.

B.1 Final-state emitter and final-state recoiler

This case covers electroweak decays of a color-charged resonance, such as the top quark.
We start from

dΦ3(pi, pj ,K;Q) = dΦ2(pi, n;Q) dn2

2π dΦ2(pj ,K;n) (B.1)

The generic frame-independent form of the two-particle phase space is given in eq. (3.16).
We perform all transformations in the rest frame of n, where we have the simple relations

Ei = z
p̃iK̃√
n2

, Ej = (1− z) p̃iK̃√
n2

,

EK = (1− z + 2κ) p̃iK̃√
n2

, and n2 = 2p̃iK̃ (1− z + κ) .
(B.2)

Using the following identity for the polar angle θj of the emission,

1− cos θ ij = −2v 1− z + κ

1− z , (B.3)

we find the first two-particle decay phase space to be

dΦ2(pj ,K;n) = 1
16π2 dv

dφ(n)
j

2π . (B.4)

Analogous to eq. (3.20), we can write dn2 = 2p̃iK̃ dz. Finally, we rewrite the second
two-particle decay phase space

dΦ2(pi, n;Q) = 1
16π2

z

2(1− z + κ) d cos θ(n)
i

dφ(n)
i

2π . (B.5)

In order to obtain a factorization formula, this must be mapped to the Born phase space,
which is given by dΦ2(p̃i, K̃;Q). The angular integrals in eq. (B.5) are identical when
working in the rest frame of the momentum n, which leads to the relation dΦ2(pi, n;Q) =
z dΦ2(p̃i, q̃i; K̃). Combining all of the above, we find the single-emission phase space element

dΦ(FF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) = 2zp̃iK̃

16π2 dv dz dφ
2π . (B.6)
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B.2 Initial-state emitter and final-state recoiler

This case covers hadroproduction of a colorless final state, in particular Drell-Yan lepton
pair production. We start from the factorization formula

dΦ2(pj ,K;Q+ pi) = dΦ2(pj ,K;n) dn2

2π dΦ1(n;Q+ pi) (B.7)

The generic frame-independent form of the two-particle phase space is given in eq. (3.16).
Again, we perform all transformations in the rest frame of n, leading to the relations in
eq. (B.2). Using eq. (B.3) for the polar angle θj of the emission, we find the two-particle
decay phase space in eq. (B.4). Analogous to eq. (3.20), we can write dn2 = 2p̃iK̃ dz. The
one-particle production phase space is given by

dΦ1(n;Q+ pi) = 2π δ(n2 − (Q+ pi)2) . (B.8)

In order to obtain a factorization formula, this is mapped to the Born phase space, leading
to dΦ1(n;Q + pi) = 1/z dΦ2(K̃;Q + p̃i). Combining all of the above, we obtain the
single-emission phase space element

dΦ(IF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) = 2p̃iK̃

16π2 dv dx
x

dφ
2π . (B.9)

B.3 Initial-state emitter and initial-state recoiler

This case covers deep inelastic scattering. We start from the two-particle phase space

dΦ2(pj , Q;K + pi) . (B.10)

Its generic, frame-independent form is given in eq. (3.16). We perform all transformations
in the rest frame of n, where we have the relations in eq. (3.17). Next we insert the identity

1 =
∫

dx δ
(
x− p̃iK̃

pin

)
=
∫

dx 2p̃iK̃
x

δ
(
2p̃iK̃ − (pi + pj)n

)
=
∫

dx 2p̃iK̃
x

δ
(
(p̃i + K̃)2 −Q2

)
. (B.11)

In order to obtain a factorization formula, this is mapped to the Born phase space as
dΦ1(Q̃; p̃i + K̃) = 2π δ(Q̃2 − (p̃i + K̃)2). Combining all of the above, we obtain the
single-emission phase space element

dΦ(IF)
+1 (K̃; p̃1, . . . , p̃j−1, p̃j+1, . . . , p̃n; pj) = 2p̃iK̃

16π2 dv dx
x

dφ
2π . (B.12)

C Monte-Carlo counterterms for MC@NLO matching

To match a parton shower to NLO calculations in dimensional regularization based on
the MC@NLO algorithm [27], the integral of the splitting functions must be known in
D = 4− 2ε dimensions. Since our new parton shower is modeled on the Catani-Seymour
identified particle subtraction, we can utilize the techniques developed in [96, 97]. By
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means of a suitable identification of the radiating color multipole, this allows us to treat
the problem of standard final-state evolution, resonant particle production, color singlet
production at hadron colliders, deep-inelastic scattering, etc. on the same footing.

Here we will limit ourselves to listing the main changes with respect to [96, 97] that
are needed in order to implement the algorithm. For details on the respective phase-space
integrals, and on the basis of the subtraction technique, we refer the reader to [72]. Details
on the implementation of MC@NLO can be found in [27, 32].

C.1 Final-state emitter

By combining the integrated splitting function with the collinear mass factorization countert-
erms, we can derive a combined integrated subtraction term for identified parton production
with a partonic fragmentation function [96, 97]∫

m+1
dσS +

∫
m

dσC = 1
2
∑

i=g,q,q̄

m∑
ı̃=1

∫ 1

0

dz
z2−2ε

∫
m

dσB
(
p1, . . . ,

pi
z
, . . . , pm

)
⊗ Î(FS)

ı̃i , (C.1)

where the ⊗ stands for spin and color correlations. In the MS scheme, the insertion operator
is given by

Î(FS)
ı̃i = −αs2π

1
Γ(1− ε)

×
{

m∑
k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

(
4πµ2(pkn)

2(pipk)(pin)

)ε
V̂ı̃,i(z; ε; pi, pk, n)− δı̃i

1
ε

(
4πµ2

µ2
F

)ε
Pı̃i(z)

}
.

(C.2)

The explicit pole in ε, originating from the renormalization of the perturbative fragmentation
function, cancels against the corresponding pole in V̄ı̃,i. The remainder can be split into
three contributions:

Î(FS)
ı̃i = δ(1− z)Iı̃i + Pı̃i + Hı̃i . (C.3)

The singularities in the virtual corrections are canceled by the insertion operator present
for standard final-state dipoles with final-state spectator [72]

Iı̃i(p1, . . . , pi, . . . , pm; ε) = −αs2π
1

Γ(1− ε)

m∑
k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

(
4πµ2(pkn)

2(pipk)(pin)

)ε
Vı̃i(ε) . (C.4)

Employing color conservation and expanding through O(ε), the remaining two operators
read [96, 97]

Pı̃i(p1, . . . ,
pi
z
, . . . , pm; z;µF ) = αs

2π

m∑
k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

ln z2µ2
F (pkn)

2(pipk)(pin)δı̃iPı̃i(z) (C.5)

and

Hı̃i(p1, . . . , pi, . . . , pm;n; z)

= −αs2π

m∑
k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

[
K̃ ı̃i(z) + K̄ ı̃i(z) + 2Pı̃i(z) ln z + L̂ı̃i(z; pi, pk, n)

]
. (C.6)
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Finally, an integration over pi has to be performed. Following refs. [96, 97] we replace the
integration over pi by an integration over p̃i. This leads to a Jacobian of z2−2ε, canceling
the prefactor in eq. (C.1). Consequently, the differential Born cross-section dσB decouples
from the z integration and we obtain

m∑
ı̃=1

∫ dDpi
(2π)D−1 δ(p

2
i )σI(pi) =

m∑
ı̃=1

∫
m

dσB(p1, . . . , pm)⊗
∫ 1

0
dz 1

2
∑

i=g,q,q̄
Îı̃i . (C.7)

The integral over
∑
i Pı̃i vanishes, because

∑
i Pĩi is a pure plus distribution. The other two

z-integrals can be evaluated directly, because p̃i is z-independent. In particular, the integral
of the Iı̃ operator is trivial. The integral over the Hı̃i operator is given by a modified form
of the result in [96, 97]. We note that the arguments of the dilogarithms depend only on the
angle and velocity of lik as defined in eq. (4.2), see appendix B in [72]. Using the following
substitution in eq. (B.9) in [72]12

1− v cosχ→ n2 likpi
(pin)(likn) , 1− v2 → n2l2ik

(likn)2 , (C.8)

we therefore obtain∫ 1

0
dzHı̃i(p1, . . . , pi, . . . , pm;n;z)

=−αs2π

m∑
k=1,k 6=ı̃

Tı̃Tk

T2
ı̃

{
Kı̃i+δı̃iLi2

(
1− 2p̃ip̃k K̃2

(p̃iK̃)(p̃kK̃)

)
−
∫ 1

0
dz P ı̃ireg(z) ln (pipk)n2

2(pin)(pkn)

}
,

(C.9)

where the integral Kı̃i is defined as

Kı̃i =
∫ 1

0
dz
(
K̄ ı̃i(z) + K̃ ı̃i(z) + 2Pı̃i(z) ln z

)
. (C.10)

In general, the last term of eq. (C.9) must be computed numerically, as n implicitly depends
on z, see eq. (3.3).

C.2 Initial-state emitter

As in the case of a final-state emitter, the case of an initial state emitter is treated in the
same manner as in [96, 97]. The sum of the subtraction terms and the collinear counterterms
is given by∫

m+1
dσS +

∫
m

dσC =
∑

ĩ=g,q,q̄

∫ 1

0
dx
∫
m

dσB(p1, . . . , xpi, . . . , pm)⊗ Î(IS)
ĩı , (C.11)

where the ⊗ again stands for spin and color correlations. In the MS scheme, the insertion
operator is given by

Î(IS)
ĩı = δ(1− z)Iĩı + Pĩı + Kĩı . (C.12)

12Note that in this context v is defined as the relative velocity of lik and n, see appendix B in [72].
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The operator Iĩı is obtained by replacing k → k̃ in eq. (C.4). The K operator can be
written as

Kĩı(p1, . . . , pm; pi, n, x) = −αs2π

m∑
b̃=1

Tk̃Tı̃

T2
ı̃

[
K̄i,̃ı(x) + K̃i,̃ı(x) + Li,̃ı(x; pi, p̃k, n)

]
. (C.13)

This result can be derived from eq. (C.6) by using the known expressions for the breaking of
the Gribov-Lipatov relation at NLO QCD, see section 6.4 of [98]. All remaining components
of the subtraction formulae can be found in appendix C of [72].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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