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Abstract We demonstrate that cell resampling can elimi-
nate the bulk of negative event weights in large event sam-
ples of high multiplicity processes without discernible loss
of accuracy in the predicted observables. The application of
cell resampling to much larger data sets and higher multiplic-
ity processes such as vector boson production with up to five
jets has been made possible by improvements in the method
paired with drastic enhancement of the computational effi-
ciency of the implementation.

1 Introduction

One of the greatest challenges in theoretical high-energy
physics is to meet the demand for increasingly precise predic-
tions. Even leaving aside conceptual issues, reducing theoret-
ical uncertainties typically requires ever more complex calcu-
lations, which incur steeply rising computing costs. Already
now Monte Carlo event generation for the LHC constitutes
a notable fraction of the experimental computing budgets.
Even with this large computing power investment event sam-
ple sizes have to be limited to a size where the resulting
uncertainty can be non-negligible [1]. What is more, event
generation is only the first step in the full simulation chain,
and the already substantial computing costs of this step are
often dwarfed by the subsequent simulation of the detector
response. All these problems are expected to become even
more severe in the future, in particular with the advent of the
HL-LHC. This development is obviously at odds with gen-
eral sustainability goals. Improving the efficiency of event
simulation is one of the foremost tasks in particle physics
phenomenology.

For a high-accuracy simulation a Monte Carlo generator
needs to combine real and virtual corrections, match resum-
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mations in different limits and combine processes of different
multiplicities while avoiding double counting. Many differ-
ent prescriptions exist for each of these combination steps
[2–24]. While they differ substantially in the details, a com-
mon theme is the introduction of a varying number of auxil-
iary events that subtract from the accumulated cross section
instead of adding to it. If the number of such negative-weight
events becomes large enough, they can severely impair the
statistical convergence since large amounts of events are
required for a sufficient precision to allow for accurate can-
cellation of the contributions with opposite signs. In fact,
for a fractional negative-weight contribution r− the number
N (r−) of required unweighted Monte Carlo events to reach
a given statistics goal is (see e.g. [25])

N (r−) = N (0)

(1 − 2r−)2 . (1)

Requiring a larger number of events not only increases the
computational cost in the generation stage, but especially also
in the subsequent detector simulation. A further problem is
the increased disk space usage, inducing both short- and long-
term storage costs. It is therefore highly desirable to keep the
negative-weight contribution small, r− � 1

2 .
One avenue in this direction is to reduce the number of

negative-weight events during event generation, see e.g. [25–
29]. A second approach is to eliminate negative weights in
the generated sample, before detector simulation [30–33]. In
the following, we focus on the cell resampling approach pro-
posed in [33], which in turn was inspired by positive resam-
pling [30]. Cell resampling is independent of both the scat-
tering process under consideration and any later stages of the
event simulation chain. It only redistributes event weights,
exactly preserving event kinematics. The effective range over
which event weights are smeared decreases with an increas-
ing event density. This implies that the smearing uncertainty
decreases systematically with increasing statistics without
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the need to change the method. As demonstrated for the
example of the production of a W boson with two jets at next-
to-leading-order (NLO), a large fraction of negative weights
can be eliminated without discernible distortion of any pre-
dicted observable. A limitation of the original formulation
is the computational cost, which rises steeply with both the
event sample size and the number of final-state particles.

In Sect. 2, we briefly review the method and describe a
number of algorithmic improvements which allow us to over-
come the original limitations through a speed-up by several
orders of magnitude. In Sect. 3, we then apply cell resam-
pling to high-multiplicity samples with up to several billions
of events for the production of a W or Z boson in association
with up to five jets at NLO. We conclude in Sect. 4.

2 Algorithmic improvements

In the following, we briefly review cell resampling and
describe the main improvements that allow us to apply the
method also to large high-multiplicity Monte Carlo samples.
For a detailed motivation and description of the original algo-
rithm see [33].

2.1 Cell resampling

At its heart, cell resampling consists of repeatedly selecting
a subset of events – referred to as cells – and redistributing
event weights within the selected set. The steps are as follows.

1. Select an event with negative weight as the first event (the
“seed”) of a new cell C.

2. Out of all events outside the cell, add the one with the
smallest distance from the seed to the cell. Repeat for as
long as the accumulated weight of all events within the
cell is negative.

3. Redistribute the weights of the events inside the cell such
that the accumulated weight is preserved and none of the
final weights is negative.1

4. Start anew with the next cell, i.e. with step 1.

Note that an event can be part of several cells, but will only
be chosen as a cell seed at most once. In practice, we usually
want to limit the maximum cell size and abort step 2 once
the distance between the cell seed and its nearest neighbour
outside the cell becomes too large. We denote the maximum
cell radius, i.e. the maximum allowed distance between the
cell seed and any other event within the cell, by dmax. It is
a parameter of the cell resampling algorithm. If we limit the

1 A specific method of redistributing weights in this way is discussed
in [33].

cell size in this way, we can only achieve a partial cancel-
lation between negative and positive event weights in the
following step 3. For practical applications this is often suf-
ficient, since the small remaining contribution from negative
weights has a much reduced impact on the statistical conver-
gence, cf. Eq. (1).

The computational cost of cell resampling tends to be com-
pletely dominated by the nearest-neighbour search in step
2. In a naive approach, one has to calculate the distances
between the cell seed and each other event in the sample.
Since the number of cells is proportional to the sample size N ,
the total computational complexity is O(N 2). This renders
the naive approach unfeasible for samples with more than
a few million events. For this reason, an alternative approx-
imate nearest-neighbour search based on locality-sensitive
hashing (LSH) [34,35] was considered in [33]. While this
lead to an improved scaling behaviour, the quality of the
approximate search was also found to deteriorate with an
increasing sample size. An improved version of this algo-
rithm, discussed in Appendix A, still appears to suffer from
the same problem. In Sect. 2.2, we introduce an exact search
algorithm that is orders of magnitude faster than the naive
search.

The problem of costly distance calculations is further
exacerbated by the fact that a direct implementation of the
originally proposed distance function suffers from poor scal-
ing for high multiplicities. To compute the distance between
two events e and e′, we first cluster the outgoing particles into
infrared-safe physics objects, e.g. jets. We collect objects of
the same type t into sets st for e and s′

t for s. The distance
between the two events is then

d(e, e′) =
∑

t

d(st , s
′
t ), (2)

where d(st , s′
t ) is the distance between the two sets st , s′

t . It
is given by

d(st , s
′
t ) = min

σ∈SP

P∑

i=1

d(pi , qσ(i)), (3)

where p1, . . . , pP are the momenta of the objects in st and
q1, . . . , qP the momenta2 in s′

t . A naive minimisation proce-
dure considers all permutations σ in the symmetric group SP ,
i.e. P! possibilities. For large multiplicities P a direct cal-
culation quickly becomes prohibitively expensive. In [33],
it was therefore suggested to use an approximate scheme in
this case. In Sect. 2.3 we discuss how the set-to-set distance
can be calculated both exactly and efficiently.

2 If the number of objects in st and s′
t is different, we add auxiliary

objects with vanishing momenta as described in [33].
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2.2 Nearest-neighbour search

Our improved nearest-neighbour search is based on vantage-
point trees [36,37]. To construct a vantage-point tree, we
choose a single event as the first vantage point. We then
compute the distance to the vantage point for each event.
The closer half of the events lie within a hypersphere with
radius given by the median distance to the vantage point. We
call the populated part of this hypersphere the inside region
and its complement the outside region. We then recursively
construct vantage-point trees inside each of the two regions.
The construction terminates in regions that only contain a
single point.

To find the nearest neighbour for any event e, we start at
the root of the tree, namely the first chosen vantage point.
We calculate the distance D between this vantage point and
e. If D is less than the radius R of the hypersphere defining
the inside region, we first continue the search in the inside
subtree, otherwise we choose the outside subtree first. Let us
first consider the case that the inside region is the preferred
one. It will contain a nearest-neighbour candidate with a
distance d to the initial event e. By the triangle inequality we
deduce that the actual nearest neighbour can have a distance
of at most D + d to the current vantage point. Therefore, if
D + d < R, the actual nearest neighbour cannot be in the
outside region. Conversely, if we started our search in the
outside region and found a nearest-neighbour candidate with
D − d > R, then the actual nearest neighbour cannot lie
in the inside region. In summary, if d < |R − D| only the
preferred region has to be considered.

Vantage-point tree search is indeed very well suited for
cell resampling. The construction is completely agnostic to
the chosen distance function. In particular, unlike the LSH-
based methods considered in [33] and Appendix A, it does
not require a Euclidean metric. For an event sample of size N ,
the tree construction requires O(N log N ) steps and can be
easily parallelised. In the ideal case where only the preferred
regions are probed, each nearest-neighbour search requires
log2 N comparisons, which again results in an overall asymp-
totic complexity of O(N log N ). While this means that for
sufficiently large event samples cell resampling will eventu-
ally require more computing time than the O(N ) event gen-
eration, we find that this is not the case for samples with up
to several billion events. Timings for a practical application
are given in Sect. 3.3.

We further optimise the nearest-neighbour search in sev-
eral aspects. Most importantly, if we limit the maximum cell
size to dmax, we can dramatically increase the probability that
only the preferred regions have to be considered. In fact, if
|R − D| > dmax then any suitable nearest neighbours have
to lie inside the preferred region. We can further enhance the
probability through a judicious choice of the vantage points.
Since input events near the boundary between inside and out-

side regions require checking both regions for nearest neigh-
bours, the general goal is to minimise this surface. To this
end, we choose our first vantage point at the boundary of the
populated phase space. We select a random event, calculate
the distance to all other events, and choose the event with the
largest distance as the vantage point. Then, when construct-
ing the subtrees for the inside and outside regions, we choose
as vantage points those events that have the largest distance
to the parent vantage point.

When constructing a cell, we have to find nearest neigh-
bours until either the accumulated weight becomes non-
negative or the distance exceeds the maximum cell radius.
This corresponds to a so-called k nearest neighbour search,
where in this case the required number k of nearest neigh-
bours is a priori unknown. To speed up successive searches,
we cache the results of distance calculations, i.e. all values
of D for a given input event.

Finally, we note that the vantage-point tree can also be
employed for approximate nearest-neighbour search if one
only searches the preferred region in each step. We exploit
this property by first partitioning the input events into the
inside and outside regions of a shallow vantage point tree,
aborting the construction already after the first few steps. We
then apply cell resampling to each partition independently.
This approach allows efficient parallelisation, while yielding
much better results than the independent cell resampling of
randomly chosen partial samples. The price to pay is that the
quality of the nearest-neighbour search and therefore also of
the overall resampling deteriorates to some degree. In prac-
tice this effect appears to be minor, see also Sect. 3.2.

2.3 Set-to-set distance at high multiplicities

The distance between two events as defined in [33] is the sum
of distances between sets of infrared-safe physics objects, see
Eq. (2). To define the distance between two such sets st , s′

t ,
we aim to find the optimal pairing between the momenta
p1, . . . , pP of the objects in st and the momenta q1, . . . , qP
of the objects in s′

t . The naive approach of considering all
possible pairings, cf. Eq. (3), scales very poorly with the
number of objects. However, the task of finding an optimal
pairing is an instance of the well-studiedassignment problem.

Let us introduce the matrix D of distances with

Di j ≡ d(qi , p j ). (4)

An efficient method for minimising
∑P

i=1 Diσ(i) was first
found by Jacobi [38,39]. It was later rediscovered indepen-
dently and popularised under the name “Hungarian method”
[40–44]. The algorithm mutates the entries of Di j in such a
way that the optimal pairing is preserved during each step.
After each step, one marks a minimum number of rows and
columns such that each vanishing entry is part of a marked
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Table 1 NLO event samples used for cell resampling

Sample Process Centre-of-mass energy # events

Z1 pp → (Z → e+e−) + jet 13 TeV 8.21 × 108

Z2 pp → (Z → e+e−) + 2 jets 13 TeV 5.30 × 108

Z3 pp → (Z → e+e−) + 3 jets 13 TeV 1.65 × 109

W5 pp → (W− → e−νe) + 5 jets 7 TeV 1.17 × 109

row or column. The algorithm terminates as soon as all rows
(or columns) have to be marked. The mutating steps are as
follows:

1. Replace each Di j by Di j − mink Dik .
2. Replace each Di j by Di j − mink Dk j .
3. Find the smallest non-vanishing entry. Subtract it from

all unmarked rows and add it to all marked columns.

Step 3 is repeated until the termination criterion is fulfilled. In
our code, we use the implementation in the pathfinding
[45] package. Like the remainder of our implementation of
cell resampling it is written in the Rust programming lan-
guage.

Using the Hungarian algorithm instead of a brute-force
search improves the scaling behaviour for sets with P
momenta from O(P!) to O(P3). In practice, we find it supe-
rior for P > 3. The FlowAssign algorithm proposed by
Ramshaw and Tarjan [46] would scale even better, with a time
complexity of O(

P5/2 log(DP)
)
. The caveat is that the scal-

ing also depends logarithmically on the range D of distances
encountered. Since the maximum multiplicity reached in cur-
rent NLO computations is limited, an auction [47] (or equiva-
lently push-relabel [48,49]) algorithm may still perform bet-
ter in practice despite formally inferior scaling behaviour.
We leave a detailed comparison to future work.

3 Negative weight elimination in vector boson plus jets
production at NLO

We are now in a position to apply cell resampling to large
high-multiplicity event samples. We consider the produc-
tion of a vector boson in association with jets at NLO,
using ROOT [50] ntuple [51,52] event files generated
with BlackHat [53] and Sherpa 2.1 [54]. Jets are defined
according to the anti-kt algorithm [55] with R = 0.4 and a
minimum transverse momentum of 25 GeV. More details on
the event generation are given in [52,56]. The various sam-
ples with their most salient properties are listed in Table 1.

We apply cell resampling to each of the samples, defining
infrared-safe physics objects according to the above jet def-
inition. We use the distance function defined in [30], which
follows from Eqs. (2), (3), and the momentum distance

d(p, q) =
√

| �p − �q |2 + τ 2(p⊥ − q⊥)2. (5)

Here, we set τ = 0 and limit the maximum cell radius to
10 GeV for samplesZ1,Z2, and W5, and to 2 GeV for sample
Z3. To examine the impact of these choices for the maximum
radius we additionally compare to a resampling run with a
maximum cell size of 100 GeV for sample W5.

For better parallelisation and general performance we pre-
partition each input sample into several regions according to
one of the upper levels of a vantage-point tree, as explained
in Sect. 2.2. Here, we use the seventh level, corresponding to
128 regions.

To interpret our results we use standard Rivet [57] anal-
yses. We verify that the event count and total cross section
of each sample is preserved using the MC_XS analysis. Fur-
thermore, we employ this analysis to assess the degree to
which negative weights are eliminated. For the sample W5
we additionally use the MC_WINC and MC_WJETS analy-
sis, and their counterparts MC_ZINC and MC_ZJETS for
the remaining samples involving a Z boson. We investigate
the impact of additional cuts applied after cell resampling
using the ATLAS analysis ATLAS_2017_I1514251 [58]
for inclusive Z boson production.

3.1 Comparison of predictions

We first assert that predictions remain equivalent by compar-
ing a number of distributions before and after cell resampling.
Figure 1 shows a variety of distributions for sample W5. In
Fig. 2 we show selected distributions for the Z1, Z2, and Z3
samples. In all cases, we find that the differences between
original and resampled predictions are comparable to or even
smaller than the statistical bin-to-bin fluctuations in the orig-
inal. A more indirect way to estimate the bias introduced by
cell resampling is to consider the characteristic cell radii and
the spread of measured observables within the cells. This is
discussed in Appendix 1.

3.2 Improvement in sample quality

In order to assess the improvement achieved through cell
resampling, we first consider the reduction in the negative
weight contribution. To this end, we determine how much
larger the original and the resampled event samples have

123



Eur. Phys. J. C           (2023) 83:835 Page 5 of 11   835 

Fig. 1 Comparison of distributions before and after cell resampling for sample W5 in Table 1. The blue lines indicate cell resampling with a
maximum cell radius of 10 GeV, the green lines result from a radius limit of 100 GeV. Distributions are normalised according to the total cross
section for sample W5
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Fig. 2 Comparison of distributions before and after cell resampling for samples Z1, Z2, and Z3 in Table 1. a–d show jet transverse momentum
and rapidity distributions taken from the ATLAS_2017_I1514251 Rivet analysis. e is a jet rapidity distribution taken from MC_ZJETS

123



Eur. Phys. J. C           (2023) 83:835 Page 7 of 11   835 

101
102

103
104

N
(r

−)
/
N
(0
)

W5
Z3

Z2
Z1

original

≤ 2GeV cells
≤ 10GeV cells
≤ 100GeV cells

Fig. 3 Required number of events relative to an ideal event sample
without negative weights before and after resampling. Event samples
are labeled as listed in Table 1

to be to reach the same statistical power as an event sam-
ple without negative weights. In other words, we compute
N (r−) as defined in Eq. (1), where the fractional negative-
weight contribution r− = σ−/(σ++σ−) is obtained from the
contribution σ+ of positive-weight events to the total cross
section σ and the absolute value of the negative-weight cross
section contribution σ− = σ+ − σ .

As demonstrated in Fig. 3, cell resampling leads to a dras-
tic improvement by roughly two to three orders of magnitude.
Increasing the maximum cell radius leads to an even stronger
reduction, at the cost of increased computing time and poten-
tially larger systematic errors introduced by the procedure.
To assess the impact of pre-partioning the event samples, we
alternatively resample Z1 without prior partitioning. This
leads to a slight reduction of N (r−)/N (0) from 18.4 with
pre-partitioning to 17.1 without pre-partitioning.

Cell resampling not only reduces the amount of negative
weights, but as a by-product also results in a narrower weight
distribution, enhancing the unweighting efficiency. Indeed,
after standard unweighting we retain only 320 out of the
8.21 × 108 events in the Z1 sample. If we apply resampling
beforehand, unweighting yields 11,574 events. The resulting
unweighted sample is not only larger, but also contains a
lower fraction of negative-weight events. We show the gain
in statistical power by selecting a subset of 320 randomly
chosen events and compare to the unweighted sample based
on the original events. Selected distributions are shown in
Fig. 4.

3.3 Runtime requirements

Cell resampling with the improvements presented in Sect. 2
and a maximum cell size of 10 GeV typically takes a few
hours of wall-clock time for samples with about a billion
events. As an example, let us consider the resampling for the
W5 sample listed in Table 1. The combined size of the orig-
inal compressed event files is approximately 150 GB. The
resampling program requires about 450 GB of memory and
the total runtime is about 9 h on a machine with 24 Intel Xeon
E5-2643 processors. The memory usage could of course be
reduced significantly at the cost of computing time by not
keeping all events in memory, but we have not explored this

option in our current implementation. Reading in the events
and converting them to a space-efficient internal format that
only retains the information needed for resampling takes
about 2 h. This is followed by approximately 30 min spent
for the pre-partitioning of the event sample and less than 3 h
for resampling itself, including the construction of the search
trees, cf. Sect. 2.2. Since the event information in the internal
format is incomplete, we finally read in the original events
again and write them to disk after updating their weights.
This final step takes roughly 4 h. While input and output do
not benefit from parallelisation, the pre-partitioning and the
resampling are performed in parallel and the total CPU time
spent is 55 h.

One important optimisation discussed in Sect. 2.2 is trim-
ming the nearest-neighbour search according to the maxi-
mum cell radius. In fact, when increasing the allowed radius
from 10 to 100 GeV the wall clock time needed for resam-
pling rises to several weeks, with a corresponding increase
in total CPU time. Extrapolating from smaller sample sizes,
the expected total required CPU time without any of the new
optimisations would be of the order of 1600 years for the
much simpler process of W boson production with two jets
considered in [33].

4 Conclusions

We have demonstrated that the fraction of negative event
weights in existing large high-multiplicity samples can be
reduced by more than an order of magnitude, whilst pre-
serving predictions for observables within statistical uncer-
tainties. Concretely, we have employed the cell resampling
method proposed in [33] with NLO event samples for Z boson
production with up to three jets and W boson production with
five jets produced with Sherpa and BlackHat.

For the first time, cell resampling has been applied to sam-
ples with up to several billions of events. This was made
possible by algorithmic improvements leading to a speed-up
by several orders of magnitude. Our updated implementation
can be retrieved from https://cres.hepforge.org/.

The advances in the development of the cell resampling
method presented in this work pave the way for future appli-
cations to processes with high-multiplicities, in particular
including parton showered predictions. It will be necessary to
quantify the uncertainty introduced by the weight smearing.
Variations in the maximum cell size parameter and differ-
ent prescriptions for weight redistribution within a cell can
serve as handles to assess this uncertainty. Another promising
avenue for further exploration is the analysis of the informa-
tion on weight distribution within phase space collected dur-
ing cell resampling. Regions with insufficient Monte Carlo
statistics could be identified by their accumulated negative
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Fig. 4 Comparison between unweighted samples before and after cell
resampling. Lines labeled “original” show the reference prediction from
the original weighted event sample Z1. After standard unweighting, the
lines with the label “unweighted” are obtained. Applying cell resam-
pling followed by standard unweighting to the sample Z1 yields a sam-

ple represented by the “resampled + unweighted” lines. Out of this
sample, we randomly select a subset matching the size of the origi-
nal “unweighted” sample. This leads to the “resampled + unweighted
(small sample)” lines. Data points are taken from [58]

weight, thereby guiding the event generation. We leave the
investigation of these questions to future work.
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Appendix A: Improved search based on locality-sensitive
hashing

Locality-sensitive hashing (LSH) is a method for approxi-
mate nearest-neighbour search where points are inserted into
a number of hash tables, with hashes that are calculated from
the coordinates in such a way that nearby points end up inside
the same hash table buckets with high probability. To search
for a point’s nearest neighbour, one only checks points that
share at least a given number of hash table buckets. An equiv-
alent formulation in the language of particle physics is to
consider a number of one-dimensional histograms, where the
observables are chosen such that similar events end up in the
same histogram bins. To find events that are nearby in phase
space, one only checks those events that share a large number
of histogram bins. A first LSH-based search algorithm for cell
resampling was proposed in [33]. In the following, we dis-
cuss an improved version, where the histogram observables
have a closer relation to the exact distance measure.

The first step in defining the locality-sensitive observables
is the same as in the exact distance calculation: we cluster
the outgoing particles in each event into infrared-safe physics
objects and group them according to their types. As usual,
we add objects with vanishing momentum to ensure that all
events have the same number of objects for each type. For
each object type t , we then choose a random axis at in three-
dimensional Euclidean space. We choose a final axis A in a
Euclidean space whose dimension is equal to the total number
of infrared-safe physics objects in an event.

For a given event, we then calculate the observable as fol-
lows. For each object type t , we project the spatial momen-
tum of each object onto the previously chosen axis at and
sort the resulting coordinates. We concatenate all coordinates
obtained in this way into a single vector. Finally, we obtain
the observable by projecting this vector onto the axis A.

We find that the LSH-based search based on the present
observables performs significantly better than the original
version [33]. However, it still suffers from the same problem.
For constant (or at most logarithmically growing) numbers of
histograms and bin sizes we observe that the typical distance
between an event and the approximate nearest neighbour fails
to decrease with a growing sample size. Hence, we mainly
focus on the exact tree-based search presented in Sect. 2.2.

Appendix B: Cell sizes

Larger cell sizes naturally lead to stronger smearing effects.
Ideally, all cells should be small compared to the experimen-
tal resolution, which is limited both by the detector and by
statistics.

In the upper pane of Fig. 5 we show the distribution of
cell radii obtained for the Z + 1 jet sample Z1, cf. Table 1.

Fig. 5 Cell size characteristics for the sample Z1. The upper pane
shows the distribution of cell radii. The lower pane displays the dif-
ferences between the transverse momenta of the hardest and softest jet
within a cell

We have omitted cells where aside from the seed no further
event is found within the maximum cell radius of 10 GeV.
The shape of the distribution is similar to the one found for
W + 2 jets [33].

The cell diameter imposes an upper limit on the spread
in any single direction. However, especially in a higher-
dimensional phase space, the smearing range in one-
dimensional distributions will be typically much smaller, as
pointed out in our earlier work [33]. To illustrate this point,
we compute the difference �p⊥(jet) between the transverse
momenta of the softest jet and the hardest jet among all events
within a cell. The distribution is shown in the lower pane of
Fig. 5. We observe a steep decline with a median of 0.4 GeV.
There is a notable drop where �p⊥(jet) reaches the maxi-
mum cell radius of 10 GeV. While the theoretical upper limit
is given by the maximum cell diameter of 20 GeV, we find
that the largest transverse momentum spread in the consid-
ered sample is approximately 15 GeV.
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