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A B S T R A C T

Accurately assessing task difficulty is a critical aspect to achieve adaptation in computer-based educational
systems. In real-world scenarios, task difficulty estimation can be personalised for individuals by leveraging
Item Response Theory (IRT) to analyse the collective performance of a group of students across various tasks.
Additionally, recent studies have revealed the potential of inferring task difficulty through the analysis of
physiological signals, such as electrocardiography (ECG). In this paper, we propose a novel hybrid approach
that combines both methodologies to enhance task difficulty estimates, surpassing the individual performance
of each method. The availability of non-intrusive techniques for capturing heart rate adds further value to the
proposal, facilitating its potential integration into future computer-based educational systems. Experimental
results on a dataset captured during two computerised English tests show that our proposed hybrid approach
outperforms each individual method for the task of difficulty estimation.
1. Introduction

The adaptation of difficulty has been investigated in a wide range of
domains. In the gaming industry, Dynamic Difficulty Adjustment (DDA)
enables the fine-tuning of games to align with the player’s desired flow
state, ensuring that the game maintains optimal levels of motivation
and challenge to enhance the overall gaming experience [1–3]. In the
field of computer-assisted instruction, DDA has been widely applied to
serve various purposes. One typical use has been to adaptively regulate
task difficulty to maintain an optimal user performance level through-
out a series of activities [4,5]. Another use has been to personalise
the sequence of educational content to maximise learning gains over
time [6,7]. Additionally, DDA has been employed to generate adaptive
tests for assessment purposes [8] and issue recommendations [9],
among other educational tasks.

In traditional one-to-one teaching situations, instructors are re-
sponsible for discerning the needs of learners and taking appropriate
actions to guide the learning process. Nevertheless, in group learning
settings or online remote learning, teachers may have limited contact
with each learner. Intelligent Tutoring Systems (ITS) are computer
systems that seek to resolve this issue by providing a tailored learning
experience that is customised to the knowledge, needs, and abilities of
each learner. Their advantage over traditional teaching and learning
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methods is their ability to provide automated knowledge tracing [10,
11], as well as their capacity to adapt the learning process to match
each student’s unique requirements, resulting in a personalised learning
experience [12,13]. This adaptation process usually focuses on offering
learning activities that both challenge and motivate the student, and
also on providing adequate support when the system detects that the
learner is facing difficulties. To enable such adaptation capabilities, it is
necessary to have estimation methods that can accurately determine a
student’s abilities and the level of difficulty associated with a particular
task [14].

Item Response Theory (IRT) has proven successful in estimating stu-
dents’ abilities and task difficulties within computer-based learning en-
vironments, e.g. [15,16]. Recent attempts have also been made at pre-
dicting difficulty by using different types of physiological signals [17,
18]. While some signals may require a certain level of intrusiveness,
others can be easily obtained without any intrusion at all. This is the
case with Electrocardiography (ECG) signals [19], which measure the
electrical activity of the heart and can be easily captured by using typ-
ical wearables, such as activity wristbands, or by using camera-based
methods, e.g. remote photoplethysmography (rPPG) [20].

IRT methods lead to a more accurate task difficulty estimation,
despite making some assumptions that generally do not hold in learning
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systems. In particular, they assume that the ability of the learner does
not change across different activities and that all tasks are indepen-
dent [16]. On the contrary, Heart Rate (HR) variations are subject-
dependent and ECG-based predictions are able to capture a different
point-of-view and offer a unique perspective with regard to difficulty
measurements [18]. This leads to the hypothesis that combining IRT-
based and ECG-based estimates could result in higher performance than
using either method in isolation.

In this paper, we validate this hypothesis on a concrete ITS, using
two computerised English-level tests that were designed to measure
the learner’s competence in the English language. Learners completed
a first test, received tutoring using a video tutorial, and then took a
second test while physiological signals were recorded. After answering
each question, they were asked to report their perceived difficulty level
on a 5-point Likert scale [21]. Three machine-learning models were
then built with the objective of predicting self-reported question diffi-
culty levels. The first model used features obtained from physiological
signals, while the second model relied on IRT to estimate question
difficulty without using physiological signals. The third model used late
fusion to integrate the outputs of the first two models and generate
a combined score, in an attempt to produce more reliable results.
The findings indicate that the hybrid prediction method outperformed
the other models on various metrics, including the area under the
ROC (Receiver Operating Characteristic) curve (AUC), F1-score, and
accuracy, demonstrating its efficiency for the task at hand.

The current work presents a strong contribution towards effectively
assessing task difficulty in the context of computer-supported learn-
ing. This information can then be used to personalise instruction, by
providing the most appropriate content and also by identifying the
optimal timing to offer instructional scaffolding within the computer-
based learning setting. The contributions and novelty of the proposed
work can be summarised as follows: (i) We propose a hybrid approach
for estimating task difficulty in a computerised learning environment,
based on physiological signals and item response theory. (ii) We vali-
date our proposed models on real data captured from students during
test taking. (iii) We provide an extensive evaluation and analysis of the
proposed and examined methods.

The remainder of the paper is organised in four sections. In Sec-
tion 2, we provide background information about the problem and
explain why this research is important and relevant. In Section 3, we
aim to provide a comprehensive understanding of the datasets used
in our experiments and the experimental setting, together with the
proposed hybrid method for difficulty estimation. Section 4 focuses
on the evaluation of the proposal, and presents an analysis of the
results. Finally, Section 6 summarises the main findings of the study
and suggests possible directions for future research.

2. Background and previous work

Progress in the field of ITS has provided alternatives to conventional
teaching methods by reducing the need for extensive tutor involve-
ment and allowing for prompt and customised feedback to learners.
However, there is no universally accepted collection of features and
approaches that define an ITS. The term ‘‘ITS’’ encompasses a wide
range of techniques aimed at achieving a common objective: enhancing
the learning process [18]. The general structure of ITS typically com-
prises four modules [22]: (i) The expert module, which encompasses
the system’s domain knowledge to be conveyed to the learners, as
well as methods for examining the actions and behaviours of learners
throughout their interaction with the system. (ii) The student module,
which collects and updates information about the learner throughout
the learning journey, such as submitted answers, behaviours, knowl-
edge level, learning style, and more. (iii) The pedagogical (also known
as instruction or tutor) module, responsible for identifying knowledge
gaps and implementing specific strategies or teaching methods to com-
pensate for these gaps and overcome learning difficulties. This module
2

employs various methods, including adaptive feedback, hints, recom-
mendations, and guiding the learner’s path. (iv) The user interface,
facilitating communication and interaction between the ITS and the
learner.

The ability of ITS to adapt to the learners’ needs and capabilities
constitutes one of their most significant advantages. It is widely ac-
cepted that scaffolding strategies and adaptive difficulty adjustments
have a positive impact on computerised learning systems, and help
maintain the student’s interest and achieve a convenient state of
flow [23–25]. These scaffolding/adaptive strategies are typically based
on a student model, which is conveniently used to present students
with challenging problems, sequence activities in increasing order of
difficulty, and/or offer hints or specific aids in difficult steps. Typically,
adaptation techniques depend on estimates of both activity difficulty
and student ability, and employ specialised algorithms to support the
adaptation process.

The first approaches to difficulty assessment relied on relatively
simple measures, which are generally applicable in most domains [16,
26]. The success rate is defined as the proportion of students who
correctly solved the item, and can seamlessly be computed in most
cases. The failure rate is generally used instead, because it aligns with
the natural progression of greater difficulty corresponding to a higher
failure rate. The average or median response time is another commonly
used estimator. Due to their highly skewed nature, response times are
better represented by the median as a measure of centrality rather than
the mean. Another option is to use the mean of log-transformed times.
Additional measures can be used in more constrained situations to
supplement the aforementioned measures. For example, when multiple
attempts are allowed, the number of attempts can be considered. When
available, the number of hints requested and the number of edits
required to construct an answer on a text editor can also be taken into
account [26].

Similarly, the easiest method for estimating a student’s ability is to
rely on the same kind of statistical estimates, but computed across each
student, rather than across each question/item. However, these simple
measures fail to recognise that ability and difficulty are intertwined
variables and do not consider the existing implicit relation between the
two variables. Students who achieve the same proportion of correct
answers are considered to have equivalent abilities, regardless of the
difficulty of the problems they were able to solve correctly.

Item Response Theory (IRT) has wielded significant influence in psy-
chological and educational measurement. Psychometric models within
IRT assume that a person’s answer to an item depends on the properties
of both the person and the item [27]. The most basic model, known as
the one-parameter Rasch model for dichotomous data (right/wrong an-
swers), characterises the probability 𝑝 of subject 𝑠 correctly answering
a specific question 𝑞 as a logistic function of the difference between the
estimated person’s ability (𝛽𝑠) and item’s difficulty (𝛿𝑞):

𝑝(𝑦𝑠𝑞 = 1|𝛽𝑠, 𝛿𝑞) =
𝑒𝛽𝑠−𝛿𝑞

1 + 𝑒𝛽𝑠−𝛿𝑞
(1)

where 𝑦𝑠𝑞 = 1 denotes that the answer provided by user 𝑠 to question
𝑞 is correct.

Using this model, the ability and difficulty parameters are mapped
to a common scale, enabling the estimation of a success probability
for any given item and learner. When 𝛽𝑠 = 𝛿𝑞 , the probability of
a correct response is 0.5; if a person’s ability level is greater than
the difficulty level of a question, the likelihood of them answering it
correctly is greater than 0.5; and conversely, if the difficulty level of a
question exceeds the person’s ability level, the likelihood of answering
it correctly is less than 0.5.

Following their success in affect recognition tasks [28], the use of
physiological signals has recently been explored for difficulty estima-
tion. In particular, electrocardiography (ECG) and electromyography
(EMG) signals were used in [17,19] as source data for a supervised clas-
sification method, in an attempt to estimate the self-perceived difficulty
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level of the questions in real-time. To this end, several classifiers were
trained using self-reported difficulty values as labels. The conducted ex-
periments showed promising results, achieving an F1-score of 75.49%
in the most favourable case when using ECG signals. In [29], enjoy-
ment, valence, arousal, and perceived difficulty task difficulty were
estimated from 5 different physiological responses, namely respiration,
skin conductance, electrocardiogram, and 2 facial electromyograms.
For perceived difficulty, the highest classification accuracies achieved
were 84.3% for the two-class classification and 60.5% for the three-
class classification. One intriguing aspect of these approaches is the
seamless and implicit integration of the student’s ability into the com-
putation of the difficulty estimate, as signal variations will depend on
it. This is particularly noteworthy given the highly subjective nature of
the concept of difficulty, which may be influenced by a wide range of
user-related traits.

IRT and physiological signal-based prediction methods use differ-
ent input data and provide two very different views of the same
problem. The Rasch model is only based on collected data regarding
correct/incorrect answers. On the contrary, physiological signal-based
estimates only consider information related to alterations detected on
ECG and EMG signals to compute a difficulty estimate. Consequently,
we hypothesise that merging the estimates generated by both ap-
proaches can result in enhanced outcomes, surpassing the performance
of each individual modality. In addition, the current state of technology
makes it possible to obtain non-invasive ECG measurements through
the use of activity wristbands or rPPG techniques. As a result, it is now
practical to employ this approach in real educational settings, without
compromising the applicability of the resulting method.

3. Methodology

3.1. Data acquisition

To evaluate our hypothesis that combining IRT-based and ECG-
based estimates could improve the performance of difficulty prediction
within an educational setting, we first recruited a total of 28 individuals
(18 male and 10 female) to participate in this study. All participants
were international students at the University of the West of Scotland
and/or lived in the local area (Paisley and Glasgow, Scotland, United
Kingdom), and had familiarity with computer usage and a basic under-
standing of the English language. Their age was from 20 to 35 years
old (𝜇age = 24.1 years, 𝜎age = 4.4 years). It must be noted that this work
btained approval from the Ethics Committee of the University of the
est of Scotland based on a detailed description of the data collection
ethod and anonymisation procedures for the data captured.

During the experimental sessions, ECG signals for each participant
ere recorded for the whole duration of the experiment. To minimise
ny discomfort or intrusion for the participants and reduce potential bi-
ses stemming from the presence of equipment, a portable and wireless
easurement device with lightweight sensors was chosen to collect the
CG signals. In particular, a SHIMMER™ v2 wireless sensor was used

to record the ECG at a 256 Hz sampling rate, with the four electrodes
being positioned on the standard locations, on both lower ribs and
clavicle. Additionally, a laptop computer was utilised to record the
transmitted signals and monitor their quality.

3.2. Experimental protocol

We based our experimental protocol on [18] and extended it to
fit our intended research questions. To this end, all participants were
asked not to consume caffeine or drugs before the experiment, in order
to avoid any potential effects on the physiological signals. In addition,
the experimental setting was carefully designed to ensure a quiet and
distraction-free environment. It took place in an office with no external
noises or disturbances. Participants were first given an explanation of
the experimental procedure and were offered the opportunity to ask
3

questions. Then, they were asked to voluntarily sign a consent form and
sit in front of a computer. A member of the research team supervised
the attachment of the physiological sensors to the participants, either
by attaching them directly or by guiding the participants in attaching
them themselves, especially when the electrodes had to be placed
on the skin beneath their clothing. To minimise motion artefacts in
the recorded signals, participants were instructed to avoid excessive
body and head movement during the experiment. The experiment then
started once the correct signal transmission and acquisition had been
confirmed.

The data acquisition experiment consisted of the three stages de-
scribed below.

3.2.1. Stage 1
In the first stage, participants were required to take a computerised

English language test. Participants were not restricted by any time limit
per question and were instructed to indicate the perceived difficulty
level of each question after providing each answer, as one of the
following values: ‘‘Very Easy’’, ‘‘Easy’’, ‘‘Moderate’’, ‘‘Hard’’, or ‘‘Very
Hard’’. The test consisted of 20 questions extracted from the Oxford
Quick Placement Test (QPT) [30]. Designed to measure the English
language proficiency of test takers and accurately place them into levels
that align with the Common European Framework of Reference for
languages (CEFR), the Oxford QPT consists of 40 questions of varying
difficulty, related to 4 different tasks. Task 1 measures the test taker’s
ability to understand the meanings of phrases in a short text. Task 2
focuses on grammatical forms and requires test takers to complete a
short gaped text by selecting one of three options. Task 3 tests test
takers’ knowledge of pragmatic meaning and contextual information,
particularly in verbal phenomena where the communicative meaning
differs from the literal meaning. Task 4 is designed to assess the test
takers’ comprehension of form and meaning. It involves a long passage
with gaps that the test takers need to fill in with the correct answers
and evaluates whether the test takers possess sufficient knowledge of
grammar and vocabulary to accurately complete the gaps. Our test
included 5 questions for each of these tasks. Specifically, we included
all 5 questions for tasks 1 and 2, 5 questions from the 10 questions in
task 3, and 5 more from the 20 questions in task 4. The selection of
the questions for tasks 3 and 4 was done randomly, and the selected
questions were all presented in the same order as they originally were
in the Oxford QPT.

3.2.2. Stage 2 (Video tutorial)
During stage 2, participants watched a 26-minute English language

video tutorial that did not require any interaction. The tutorial was
26.8 min long and consisted of: (a) examples of how to answer test
questions similar to those in the Oxford QPT, including explanations
justifying the correct answer, (b) instructional videos on various aspects
of the English language, and (c) a motivational speech to encourage
learning, titled ‘‘Go ahead, make up new words!’’ [31]. The purpose of
this video tutorial was simply to have two different sessions separated
in time, to be able to provide a more robust evaluation of the proposed
method.

3.2.3. Stage 3
The third stage followed the same procedure as Stage 1 but used a

different test that was built using a different version of the Oxford QPT
that contained different test questions than the ones used in Stage 1.

3.2.4. Dataset preparation
The experiment concluded once all three stages were completed

and feedback was provided. The average duration of the experiment
across participants was 45.9 min, with a standard deviation of 4.8 min.
To facilitate a more reliable experimental evaluation of our proposed
method, the data collected in stages 1 and 3 were treated separately, re-
sulting in the construction of two distinct datasets  and  , with
𝑝𝑟𝑒 𝑝𝑜𝑠𝑡
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Fig. 1. Construction of the 𝐷𝑝𝑟𝑒 dataset used to estimate difficulty from the ECG signals.

𝑝𝑟𝑒 referring to the English test conducted before the video tutorial, and
𝑝𝑜𝑠𝑡 to the test conducted after the tutorial.

Following the protocol described in [18], after data acquisition, the
examined problem was transformed to a binary classification one by
converting the difficulty scores into a binary format by merging the
samples rated as Very easy and Easy into the Low difficulty class, and
the ones rated as Hard and Very hard into the High difficulty class. The
samples corresponding to the Moderate difficulty level were excluded,
leading to a total of 416 labelled samples in dataset 𝑝𝑟𝑒 and 435
samples in 𝑝𝑜𝑠𝑡. It must be highlighted that the binary class labels
were assigned by only considering the original user-reported difficulty
scores, disregarding the correctness of the answer provided.

Note that the binarisation of difficulty scores has a two-fold effect in
our setting. On one hand, it helps decrease the subjectivity associated
with the adverb ‘‘very’’. On the other hand, it removes the intensity
information that could further help learning algorithms to make more
accurate predictions. Considering intensity would turn the problem
into a regression one, introducing additional complexity due to the
inherent subjectivity linked with grading difficulty. In this context,
the utilisation of the two designated classes, namely ‘‘Low difficulty’’
and ‘‘High difficulty’’, along with the omission of samples labelled as
‘‘Moderate difficulty’’, serves not only to simplify the problem at hand
but also to enhance the comparability of assessments made by various
users.

3.3. Difficulty estimation from ECG signals

The acquired ECG signals were captured in a single continuous
recording spanning the whole duration of the experiment for each
participant. To reduce the effects of noise and artefacts, baseline wan-
der was removed from the ECG signals [32], followed by a bandpass
filter between 0.7–20 Hz. Then, for each dataset (𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡),
the ECG signal recording for each participant was divided into 20
segments, each associated with one question. Each segment was then
processed to compute the following spatial and spectral features using
the Augsburg Biosignal Toolbox’s (AuBT) [33] ECG feature extraction
pipeline: minima, maxima, range (𝑚𝑎𝑥𝑖𝑚𝑎 − 𝑚𝑖𝑛𝑖𝑚𝑎), mean, median
and standard deviation of (a) the first-order difference of R-wave,
P-wave, Q-peak, S-peak, T-wave indices, (b) the PQ, QS, ST indices
difference, (c) the raw P, R, S signals subtracted by the mean of the
raw PQST complexes’ values, (d) the Heart Rate Variability (HRV),
and (e) the HRV histogram; the number of intervals with latency >
50 ms from HRV divided by the total number of intervals; the total
number of all intervals in the HRV histogram divided by the height
of the HRV histogram; and the mean of the frequency spectrum of the
HRV in the ranges [0 , 0.2], [0.2 , 0.4], [0.4 , 0.6] and [0.6 , 0.8] Hz. The
4

resulting feature vectors for each segment were then annotated with
the self-reported difficulty level assigned by the participant. The data
processing performed in 𝑝𝑟𝑒 is illustrated in Fig. 1. 𝑝𝑜𝑠𝑡 was processed
in the same way, but using the data obtained during Stage 3 of the
experiment.

The extracted features from the 𝑝𝑟𝑒 and the 𝑝𝑜𝑠𝑡 datasets were
then used in order to train machine learning models for each individual
subject (participant) of this study for the task of difficulty prediction.
To this end, four different classification algorithms were used to train
five separate models for each participant, namely Linear Discriminant
Analysis (LDA), Decision Tree (DT), Linear Support Vector Machine
(LSVM) and 𝑘-Nearest Neighbour for 𝑘 = 1, 3. To avoid overfitting
and ensure a fair performance evaluation, difficulty estimates for each
sample were produced by using the rest of the samples for the same
participant as training data to build a subject-specific model.

3.4. Difficulty estimation using IRT

Difficulty estimates were also computed by using a one-parameter
Rasch model for dichotomous data, using the girth v.0.8.0 python
package implementation on the available data about the correctness
of the answers provided by all subjects. For each sample, the entire
𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 × 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 (20 × 28) matrix 𝑀 holding the correctness of the
answers provided by all subjects in the corresponding dataset was used
for the prediction, discarding the one associated with the particular
sample. This is, for a subject 𝑠 and a question 𝑞, the matrix element 𝑀𝑞𝑠
was designated as a missing value and predicted using the remaining
matrix elements. This approach allowed the evaluation of the methods’
performance by comparing the prediction to the original label.

The absolute difficulty parameter 𝛿𝑞 for each question 𝑞 was esti-
mated using Marginal Maximum Likelihood (MML), assuming
𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 1. Then, the ability for each subject 𝑠, 𝛽𝑠, was
computed using Maximum Likelihood Estimation (MLE). Even though
the package offers alternative methods to MLE and MML for estimating
the abilities of subjects and the difficulty of questions, no significant
differences were noted in the final results. The ability value allowed
us to contextualise the absolute difficulty of each question based on
the subject’s skill level, resulting in a perceptual difficulty value 𝑝𝑑𝑞𝑠.
Such contextualisation was achieved by adapting Eq. (1) to align with
the difficulty concept, considering it as inversely proportional to this
probability.

𝑝𝑑𝑞𝑠 = 1 − 𝑒𝛽𝑠−𝛿𝑞

1 + 𝑒𝛽𝑠−𝛿𝑞
= 1

1 + 𝑒𝛽𝑠−𝛿𝑞
(2)

3.5. Difficulty estimation using the hybrid approach

The difficulty estimates obtained using the methods described in
Sections 3.3 and 3.4 above were combined in an attempt to achieve a
more reliable estimate of the perceived difficulty. To this end, we used
a standard late fusion method, using a Linear Discriminant Analysis
(LDA) classifier [34] to merge the scores obtained by using the ECG
model built with all other samples from the same participant and the
IRT model created using all other samples.

LDA assumes that variances are equal across classes and attempts to
find a linear combination of features that best separates the classes. This
is achieved by calculating statistical measures, such as class means and
covariance matrices, to find a linear transformation that projects the
data onto a lower-dimensional space in which the separation between
classes is optimised. LDA aims to maximise the ratio of between-
class variance to within-class variance, ensuring that classes are well-
separated while minimising the variance within each class. This makes
LDA effective for classification tasks, where the goal is to accurately
categorise new data points into predefined classes based on their fea-
tures. LDA is related to Principal Component Analysis (PCA), as they
both look for linear combinations of the features that best explain the
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Fig. 2. Fusion of difficulty scores estimated by using ECG signals and IRT.
Table 1
Number of positive and negative samples in each dataset.

Dataset Positive samples Negative samples Total
(High difficulty) (Low difficulty) samples

𝑝𝑟𝑒 314 102 416
𝑝𝑜𝑠𝑡 355 80 435

data. The main difference is that LDA is a supervised dimensionality
reduction technique that also achieves the classification of the data
simultaneously.

The choice of the LDA classifier was motivated by the simplicity
of the fusion tasks, which is only acting on two dimensions; and the
fact that this classifier does not require prior knowledge of the optimal
parameter values, thus allowing for a more objective and unbiased
assessment of our approach. Fig. 2 illustrates this approach, which
takes the ECG signal and the correctness of responses by all users on
the corresponding dataset as the input, in an attempt to leverage the
information coming from both data sources.

4. Evaluation and results

4.1. Experimental setting

To fairly compare the quality of difficulty estimates using ECG
signals, IRT, and the suggested hybrid approach, we have maintained
a consistent experimental setup across all three methods. To make the
most of our limited training data, we have used a leave-one-out cross-
validation scheme. This technique involves sequentially designating
each sample within the dataset as the test sample, while the rest of
the samples are used for model training. The training and test process
is repeated for every sample in the dataset, ensuring that each one is
employed as a validation sample exactly once. Leave-one-out validation
provides a rigorous evaluation of a model’s generalisation ability, as it
simulates the scenario where each sample is treated as entirely unseen
during validation. Despite its computational demands, as the model
must be trained and evaluated for each individual data point, our
dataset’s relatively modest size made this approach feasible.

4.2. Performance metrics

Table 1 presents the number of low and high-difficulty samples in
each of the two datasets considered in this work. As it can be observed,
low and high-difficulty judgements were unbalanced towards the high
class, making accuracy (the proportion of correct predictions) an in-
adequate performance metric as the classifier could always achieve
high accuracy by always predicting the majority class. In this case,
the F1-score is a more appropriate metric that takes into account both
precision and recall, providing a more reliable evaluation of classifier
5

performance using a single number that takes the class imbalance
into consideration. Precision measures the proportion of true positives
among all predicted positives, while recall measures the proportion
of true positives among all actual positives. The F1 score is the har-
monic mean of precision and recall, taking into account both measures
equally.

As we are not only concerned about the predicted class label but
also about the predicted score as a difficulty estimate, the AUC-ROC
(Area Under the Receiver Operating Characteristic curve) is also an
interesting performance measure. In fact, the final label assignment
should take into consideration the relative importance of false positives
and false negatives, to set an appropriate threshold to classify the
sample as either low or high difficulty. To put it in the context of real-
world learning systems, if the difficulty score is used as a trigger to
provide unsolicited assistance, false negatives would lead to instances
where aid is not given when the user is experiencing challenges, po-
tentially going unnoticed by the user. Conversely, false positives would
involve offering help when it is unnecessary and was not requested,
potentially yielding a perceptible adverse impact. AUC-ROC does not
use a specific threshold to assign low or high labels. Instead, it considers
the overall ranking of predicted scores for low and high-difficulty
instances and provides a single threshold-independent summary score,
which represents the overall ability of the classifier to assign higher
scores to high-difficulty samples than to low-difficulty ones.

It must be noted that results reported in this work for all metrics
correspond to the leave-one-out cross-validation scheme described in
Section 4.1. They hence imply the use of 416 different models in the
𝑝𝑟𝑒 dataset and 435 in 𝑝𝑜𝑠𝑡 (one per sample), providing a valuable
ground for assessing the reliability of the tested models.

4.3. Difficulty estimation from ECG signals

Table 2 shows the average AUC, F1-score and accuracy results on
the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets, respectively. As it can be observed, and
despite data scarcity (an average of 13.86 training samples for each
subject-dependent model in 𝑝𝑟𝑒 and 14.54 in 𝑝𝑜𝑠𝑡), the outcomes of
this first experiment unambiguously indicate that the difficulty level of
the question being asked has a significant impact on the ECG signal. The
highest AUC was achieved using LDA to classify the ECG feature vector,
reaching 0.744 and 0.746 for the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets, respectively.
On the contrary, when focusing on the F1-score, 𝑘-NN with 𝑘 = 3 was
the best-performing classifier in 𝑝𝑟𝑒 and the SVM performed best in
𝑝𝑜𝑠𝑡, achieving values of 0.852 and 0.882, respectively. With regard
to the accuracy, 𝑘-NN with 𝑘 = 3 performed best on 𝑝𝑟𝑒, reaching a
score of 0.776; and the SVM did best at 𝑝𝑜𝑠𝑡, obtaining a 0.80 accuracy.
Despite the differences in the best-performing algorithm for the F1-
score and accuracy metrics, consistent results are obtained across the
three different metrics considered, with only minor disparities between

the rankings for each measure across the two different datasets.
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Table 2
Performance of difficulty estimation using the ECG signals on the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets.

Model 𝑝𝑟𝑒 𝑝𝑜𝑠𝑡

Average Average Average Average Average Average
AUC F1-score accuracy AUC F1-score accuracy

LDA 0.744 0.827 0.743 0.746 0.875 0.795
Decision Tree 0.665 0.819 0.728 0.694 0.867 0.786
Linear SVM 0.740 0.851 0.762 0.710 0.882 0.800
𝑘-NN (𝑘 = 1) 0.677 0.825 0.743 0.666 0.874 0.795
𝑘-NN (𝑘 = 3) 0.742 0.852 0.776 0.708 0.876 0.793

Average 0.714 0.835 0.750 0.705 0.875 0.794
St. Dev. 0.039 0.016 0.019 0.029 0.005 0.005
N

Table 3
Performance of difficulty estimation using IRT on the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets.

Dataset Average Average Average
AUC F1-score accuracy

𝑝𝑟𝑒 0.833 0.864 0.796
𝑝𝑜𝑠𝑡 0.814 0.888 0.809

Fig. 3. Comparison of different performance metrics for difficulty estimation using ECG
signals and IRT for the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets. In the ECG case, both the top-performing
(ECGbest) and lowest-performing (ECGworst) classifiers’ results are presented.

4.4. Difficulty estimation using IRT

Table 3 shows the results when fitting a Rasch model on the
question by subject matrix containing the correctness of the responses
for all users in each particular dataset. Fig. 3 compares all metrics
considered against those reported for the best- and worst-performing
classifier when using ECG signals to estimate question difficulty. At the
sight of the plots, and even taking the best classifier as a reference,
IRT-based estimations seem more reliable than those based on the ECG
signals. IRT achieved an average AUC value of 0.833 for the 𝑝𝑟𝑒
dataset, compared to the highest average AUC of 0.744 for the ECG-
based approach. Performance was similar for the  dataset, with IRT
6

𝑝𝑜𝑠𝑡
achieving an average AUC of 0.814, compared to the highest average
AUC of 0.746 for the ECG-based approach.

The IRT model in 𝑝𝑟𝑒 achieved an average F1-score of 0.864,
surpassing the F1-score of the best-performing ECG model, which was
0.852. Similarly, the accuracy attained by the IRT model in 𝑝𝑟𝑒 was
0.796, outperforming the accuracy of the top-performing ECG model,
which was 0.776. Consistently, the F1-score and accuracy outcomes in
𝑝𝑜𝑠𝑡 were similar, albeit with slightly smaller performance gaps. The
IRT model achieved an F1-score of 0.888, surpassing the 0.882 F1-score
obtained by the best-performing ECG model. Additionally, the accuracy
of the IRT model in 𝑝𝑜𝑠𝑡 was 0.809, exceeding the 0.80 accuracy
reported for the top-performing ECG model.

While the F1-scores and accuracy values for the IRT model are
clearly superior to those of the ECG model, the most notable difference
is observed in terms of AUC. One possible explanation for this could
be that the threshold used to differentiate between the two classes is
considerably distant from its optimal value. Given that the notions of
low and high difficulty are highly subjective, the model’s ranking abil-
ity is generally of greater interest than the classification label obtained
after applying the threshold. Therefore, we should highlight the better
behaviour observed regarding AUC in the IRT-based estimation, which
clearly surpasses the one obtained by using ECG signals.

4.5. Difficulty estimation using the hybrid approach

Table 4 provides the values of the three performance metrics con-
sidered in this work when using an LDA classifier to combine the scores
produced by the ECG- and IRT-based difficulty estimators, in the two
datasets, 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡. For the 𝑝𝑟𝑒 dataset, the average AUC reached
0.856, the average F1-score reached 0.889, and the average accuracy
reached 0.827 using LDA for the hybrid approach based on the 𝑘-

N (𝑘 = 3) ECG-based model. For the 𝑝𝑟𝑒 dataset, the best results
were obtained when using the 𝑘-NN classifier with 𝑘 = 3, although
the results for the remaining classifiers were remarkably close across
all metrics. When using the k-NN classifier, the average AUC reached
0.856, the average F1-score reached 0.889, and the average accuracy
reached 0.827. For the 𝑝𝑜𝑠𝑡 dataset, the average AUC reached 0.832
using LDA, the average F1-score reached 0.900 using 𝑘-NN (𝑘 = 1), and
the average accuracy reached 0.832, also when using the 𝑘-NN (𝑘 = 1)
classifier. Again, the performance obtained for the remaining classifiers
was very close.

We should note that the hybrid approach outperforms the ECG-
based and IRT-based approaches, as all reported values are higher than
the ones reported in Table 2 for the ECG-based estimator, and also
higher than the ones reported in Table 3 for the IRT-based estimator.
Table 5 summarises the results by averaging values across all different
classifiers for the IRT-based and hybrid approaches. These superior
results can be visually observed by looking at Figs. 4 and 5, for the
𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets, respectively. These plots depict a detailed
representation of the results for the three different measures considered
in the study, according to the classifier employed. They have been
produced by combining the information provided by Tables 2, 3 and 4.

Note that performance values for the IRT methods are constant across
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Table 4
Performance of difficulty estimation using the hybrid approach on the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets.

Model 𝑝𝑟𝑒 𝑝𝑜𝑠𝑡

Average Average Average Average Average Average
AUC F1-score accuracy AUC F1-score accuracy

LDA 0.854 0.887 0.822 0.832 0.899 0.830
Decision Tree 0.835 0.883 0.817 0.831 0.898 0.828
Linear SVM 0.847 0.883 0.817 0.825 0.899 0.830
𝑘-NN (𝑘 = 1) 0.842 0.886 0.822 0.826 0.900 0.832
𝑘-NN (𝑘 = 3) 0.856 0.889 0.827 0.820 0.889 0.811

Average 0.847 0.886 0.821 0.827 0.897 0.826
St. Dev. 0.009 0.003 0.004 0.005 0.005 0.009
s
w
i
I
t

Table 5
Performance comparison of different approaches on the 𝑝𝑟𝑒 and 𝑝𝑜𝑠𝑡 datasets. Values
hown for ECG-based and hybrid methods are average values across all different
lassifiers.
Dataset Method Average Average Average

AUC F1-score accuracy

𝑝𝑟𝑒

Hybrid 0.847 0.886 0.821
ECG-based 0.714 0.835 0.750
IRT-based 0.833 0.864 0.796

𝑝𝑜𝑠𝑡

Hybrid 0.827 0.897 0.826
ECG-based 0.705 0.875 0.794
IRT-based 0.814 0.888 0.809

the classifier as they are obtained by using MLE in all cases. The plot
clearly shows that IRT-based methods offer better performance than the
ECG methods in all cases, but the combined score consistently surpasses
the scores obtained by any of the ECG and IRT models when used
independently. In addition, as can be seen from Table 4, the hybrid
approach shows a notable insensitivity to the choice of classifier for
the ECG-based model, as evidenced by the very low standard deviation
reported for the three examined performance metrics across the five
examined options. It is particularly relevant that the hybrid method
outperforms the others even when using the least favourable classifier.

5. Limitations of current work

Despite the positive results reported in this paper, we should remark
on certain limitations of the presented study. First, with regard to
labelling, the binarisation of the difficulty scores helped simplify the
classification problem, but also imposed restrictions on the evaluation
of the approach, which did not take into consideration the original
difficulty scores provided by the user. In addition, difficulty judgements
have been considered independent, disregarding that the perceived
difficulty of one question may influence the perceived difficulty of the
next question.

Second, the proposed hybrid approach requires the use of physiolog-
ical sensors, potentially impacting its practical viability in real-world
scenarios. ECG signals can nowadays be captured non-intrusively us-
ing current technology, ranging from everyday wearables, such as
wristbands, to more complex technologies like remote photoplethys-
mography (rPPG). However, the integration of such data acquisition
devices into existing applications is not straightforward and still needs
further development.

A third limitation that also relates to the practical applicability of
the proposed method, involves ethical concerns. Whether ECG signals
are captured using rPPG, wristbands, or alternative methods, they are
highly personal and can provide intimate insights into an individual’s
health and well-being. Therefore, informed consent becomes a require-
ment, making learners fully aware of the purpose, risks, and benefits
associated with their data being captured. In addition, it is crucial to
ensure that proper measures are in place to protect the confidentiality
and integrity of this sensitive data. Federated learning techniques may
7

be able to address this issue and will be explored in our future work. c
A fourth aspect relates to the boundaries of the work presented.
While the study has concentrated on task difficulty estimation, it has
not delved into its practical implications. Adaptive behaviour is highly
application-dependent and has been intentionally excluded from the
scope of the study.

Finally, a last issue relates to the scope of application of the pro-
posed method. Due to the lack of standard databases that could be
used to conduct the presented research, it became necessary to con-
struct an experimental setting tailored to our objective. This setting
was restricted to two computerised English tests, which may not be
representative of other subjects or domains. While no evident barriers
hinder the extension of these findings to different educational settings,
the generalisation of the results to other domains should hence be taken
with care.

6. Discussion and conclusion

Including scaffolding in learning activities has led to improved
learning outcomes compared to using the same activities without scaf-
folding [25]. Difficulty estimation helps the development of scaffolding
strategies by identifying situations in which learners struggle and re-
quire additional support. It also assists in selecting activities that offer
an optimal level of challenge to students and helps the design of
adequate learning trajectories.

In this work, we have introduced a difficulty estimation model that
seamlessly integrates the use of ECG signals and IRT methods. ECG-
based models are subject-based and therefore can capture the nuances
and intricacies of each specific user. However, they need data from the
same individual, hence limiting the amount of data that is available for
training. On the contrary, IRT-based models are subject-independent
and can make use of a larger amount of training data, although they
may struggle to capture the specific intricacies that are inherent to each
subject. By combining both approaches, we leverage the strengths of
each method and achieve superior results. The subject-dependent ECG-
based models provide personalised insights, while the user-independent
IRT-based models offer a broader understanding of common patterns.
This hybrid approach allows for a more comprehensive analysis that
surpasses the capabilities of either method used separately and leads
to more accurate estimates.

While additional physiological signals can be incorporated into the
hybrid model to enhance the results, our primary focus was on the
practical applicability of the presented approach in real-world settings.
Hence, we specifically emphasised the use of data that can be seam-
lessly captured while maintaining a low level of intrusiveness. From
this point of view, the data used by the IRT model can be captured
seamlessly and transparently to the user. Regarding ECG signals, rPPG
methods offer the capability to compute HR from video, replacing the
need for more intrusive sensors such as the SHIMMER™ v2 wireless
ensor used in this work. Moreover, the rapid advancements of activity
ristbands and other personal devices suggest that alternative non-

ntrusive methods for measuring ECG may become available shortly.
n contrast, other common physiological signals such as EMG or elec-
roencephalography (EEG) require more invasive devices to accurately

apture the required signals.
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Fig. 4. Comparison of difficulty estimation using ECG signals, IRT and the hybrid approach, for the 𝑝𝑟𝑒 dataset, according to the classifier used. Average results across all
classifiers are also reported on the right-most bars. The evaluation includes the three different measures considered in the study, namely AUC, F1-scores, and accuracy. The top
row displays the AUC results, the middle row showcases F1-scores, and the bottom row illustrates accuracy results.

Fig. 5. Comparison of difficulty estimation using ECG signals, IRT and the hybrid approach, for the 𝑝𝑜𝑠𝑡 dataset, according to the classifier used. Average results across all
classifiers are also reported on the right-most bars. The evaluation includes the three different measures considered in the study, namely AUC, F1-scores, and accuracy. The top
row displays the AUC results, the middle row showcases F1-scores, and the bottom row illustrates accuracy results.
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We should also highlight the impact of the cold start problem on
the applicability of the proposed method. This is a shared challenge
to most recommender systems [35] and arises when a new user or
activity is introduced to the system. In the case of an ECG-based model,
there may not be an existing model that can be directly applied to
the new user. Similarly, the IRT-based model requires initial data to
estimate the student’s ability 𝛽𝑠 accurately, which is necessary for
stimating task difficulty by using Eq. (2). Building an ECG-based
ubject-dependent model for new users requires explicitly asking them
bout the difficulty experienced with the first activities offered to them,
nd building a new model combining their responses with their ECG
ignals. When introducing new activities, task complexity [26] can
nitially be estimated by analysing its internal structure, serving as

proxy [36] for difficulty. For new users, an average ability 𝛽𝑠 can
nitially be assumed, and further refined as additional data becomes
vailable. Therefore, only when sufficient data become available, the
roposed method allows for the inclusion of the individual’s perception
n the estimation process. On the positive side, it is worth noting that
he accuracy of the estimation is expected to improve as new data is
ncorporated into the system. This new data will increase the size of
he 𝑀𝑞𝑠 matrix and allow the IRT-based model to make more informed
ecisions, improving its estimation capabilities.

Future work will take several potential directions, primarily focused
n addressing the limitations outlined in Section 5. First, this study has
xclusively focused on task difficulty estimation and has not addressed
ther aspects of adaptive learning, such as personalised feedback or
ontent recommendation. It is, therefore, a natural progression of this
tudy to analyse the practical application of the proposed method to
emonstrate the utility of estimating task difficulty within particular
earning environments. We will also delve into the feasibility of em-
loying alternative, less obtrusive, and more cost-effective capturing
evices, while also scrutinising the impact of their precision on the
ybrid method we have proposed. For example, rPPG exhibits optimal
erformance under controlled illumination conditions. Nonetheless, in
typical computer learning scenario, sudden illumination changes are

nfrequent and can be identified, allowing us to discard measurements
aken during these occurrences.

It should also be noticed that the present study has been limited
o a specific type of learning activity (computerised English tests).
urther work will be required to replicate the approach across different
earning contexts and confirm the broad applicability of the findings.
t the same time, we shall extend the study to other alternative
hysiological signals, and analyse their correlation with the difficulty
evel. More complex fusion approaches that simultaneously consider
everal sources of information may become feasible and improve the
ccuracy of the prediction. Finally, intensive work will be required to
ase the integration of the approach in real learning settings. Ideally,
e should face the construction of an off-the-shelf component that
akes use of the available physiological signals to feed recommender

ystems with an estimated difficulty value. We must not underestimate
he complexity of this undertaking, which could potentially be a project
n its own right, demanding substantial effort and human resources.
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