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1. Introduction

Effective field theories (EFT) provide a model-independent theory framework to explore energy frontiers. This exploration has, in the 
past, yielded predictive models which improve our understanding of Nature. Inspired by the success of models one can try and use them 
as exploration tools yet it is useful to keep in mind that, compared with EFT, what they offer in predictivity they lack in generality. This 
discussion finds meaning in the most prominent energy frontier of our era, the electro-weak scale, presently being explored at the LHC. 
The importance of this endeavour can hardly be overstated; it holds the answer to the mechanism behind gauge symmetry breaking, 
the generation of masses and the hierarchy problem. In our search for new physics at LHC, EFT has been gaining prominence given 
the experimental absence of predictions from postulated models thus far. The honing of EFT as a tool to describe electro-weak physics 
has produced Higgs Effective Field Theory (HEFT) as the most general EFT to describe Lorentz and gauge invariant model independent 
processes at LHC. A subset of this theory space is known as the Standard Model EFT (SMEFT) and presents a linear realization of EWSB. 
A dichotomy has hence formed; SMEFT or HEFT/SMEFT, this latter referred here as quotient space or quotient theories. The exploration of 
this quotient space has taken theory into new territory in subjects such as geometry for field space [1,2], the UV completion of non-linear 
theories [3–5], and amplitude methods [4,6–8]; the phenomenology in turn has been studied in e.g. [9–11]. This letter is concerned with 
the geometric description and quantum corrections.

Differential geometry proves useful when describing scalars parametrising a general manifold, the scalar sector of the electro-weak the-
ory being a current case study just as pions were in the past; it connects tensors in field space with physical quantities and preserves field 
reparametrization invariance along with symmetry. An appropriate tool to preserve these qualities all throughout derivation of results are 
functional methods. Functional techniques, referred to as the background field method during their inception in particle physics [12–15], 
have been in use for half a century in effective potential computations [16–18], gravity [12,19], string theory [20,21] and gauge invariant 
computations [22–25] to name a few. Often these methods implement computations with the heat-kernel technique; an alternative yet 
less developed option being known as covariant derivative expansion (CDE) [26–29]. This work will employ functional methods and a CDE 
to lay out the extension of quantum loop computations beyond one loop in the geometric description, including gauge and gravitational 
interactions, together with a sample two loop computation.

As means of introduction and for later reference, let us sketch here the functional method formulation to the extent in which is most 
commonly encountered, i.e. with just sufficient depth to derive one loop results for scalar fields in a flat manifold. The partition function 
and generating functional read, in terms of the tree level action,

Z [ J ] =
∫

[dφ] ei(S[φ]+ J ·φ)/h̄ ≡ eiW [ J ]/h̄ , (1)
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where h̄ is Planck’s constant that we set to 1 until further notice, [dφ] is the functional measure and we use · for the scalar functional 
product, also denoted with DeWitt notation (e.g. φx), as

J · φ ≡
∫

ddxφ(x) J (x) ≡ J x φx (2)

where d is the space-time dimension. Next the Legendre-transform gives the effective action

�[ϕ] ≡ W [ J (ϕ)] − ϕ · J (ϕ) , ϕ ≡ δW

δ J
, (3)

where one would use the definition of ϕ to invert and find J (ϕ), to be substituted in the definition of � above.
The n-point scattering matrix S follows from the poles of correlation functions as

S(n) = 1

Z [0]

(
n∏
i

p2
i − m2

i√
Z

δ

iδ J (pi)

)
Z [ J ] (4)

=
(∏

i

p2
i − m2

i√
Z

)(
ϕ + i

δ2�

δϕ2

δ

δϕ

)n

(5)

with Z the field normalization (i.e. the residue of the two point function 〈φφ〉 = iZ/(p2 −m2) + . . . ) and δ/δϕ is the functional derivative, 
e.g.

δφx

δφ y
= δd(x − y) , (6)

δS

δφ y
=

∫
d4x

δφx

δφ y

(
∂L
∂φ

− ∂μ
∂L

∂∂μφ
+ . . .

)
. (7)

Given the inability to carry out the path integration in general, one resorts to an expansion on radiative corrections with φ = φ0 + φq, 
φ0 the background field, and φq parametrises virtual fluctuations, i.e. it is the dummy variable for the path integration and as such not 
featuring in the final results. The expansion reads,

S[φ] + J · φ = S[φ0] + J · φ0 +
∑
n=2

φn
q

n!
δn S

δφn
[φ0] , (8)

and the field φ0 is defined to cancel the linear term in φq

δS

δφ
[φ0] + J ≡ 0 , (9)

and is hence a function of the source J . The first term in this expansion, S[φ0] + J ·φ0, is a constant factor which can be pulled out of the 
path integral, giving the classical generating functional and effective action: �(0)[ϕ] = S[ϕ] and �(n) is the n’th order quantum correction, 
� = �n�(n) . Further, the first quantum corrections can be obtained from the next term in the expansion in eq. (8) by performing a 
Gaussian integral:∫

[dφq]eiφ2
q δ2S[φ0]/2 = N√

det(−δ2 S)
, (10)

where we have wick rotated to Euclidean space and come back and N is a constant factor. The effective action at the one loop level reads, 
after using det(A) = etr[log(A)] ,

�(0)[ϕ] + �(1)[ϕ] = S[ϕ] + i

2
Tr [log(−δ2 S[ϕ])] , (11)

where the trace is to be taken over space-time and internal indexes in our fields.
Sec. 2 presents the extension of this procedure and generalisation of the effective action above to the invariant effective action to 

arbitrary loop order and scalar manifold, while sec. 3 reports the three loop formula and sec. 4 uses this result to compute the two loop 
corrections to the effective potential for a scalar manifold of N dimensions and O (N) symmetry. The summary can be found in sec. 5.

2. The effective action for any scalar manifold and loop order

The abridged version of the functional method derivation of one loop corrections is the addition of iTr(log(−δ2 S))/2 to the tree-level 
action. This is a remarkably simple and portable result, yet this simplicity also obscures the generalization to both higher loops and scalar 
fields spanning a non-trivial manifold Mφ , such as pions or other Goldstones where the manifold is a coset, Mφ = G/H. This section is 
concerned with the simultaneous extension in both these directions. One can find in [23] an accessible account of the extension to higher 
loops in flat scalar space and a discussion of the formulation for curved field space on [13], yet the discussion here presented differs in 
novel ways: the introduction of covariant correlation functions, the covariant and parallel transport treatment of the source J and a CDE 
as a technique to evaluate loop corrections including gravitational interactions.

The method for the generalization is differential geometry and the upshot: the covariantization of the partition function and correlation 
functions via the introduction of tensors in field space. The derivation of results, presented next, does introduce some notation and 
geometric concepts which might at times divert from the goal: an invariant effective action as summarized in eq. (70) and the itemized 
list just above it, to which the time-pressed reader might skip given it is self contained.
2
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2.1. Covariant correlation functions and invariant partition function

Consider n scalar fields φa , a = 1, ..., n, as a set of ‘coordinates’ parametrizing a Riemannian1 manifold Mφ . The manifold can be 
characterized locally by the field-metric G which appears in the kinetic term in the action, SKE, and transforms covariantly as made 
explicit from taking a field transformation φ = φ(φ̃), and using the chain rule,

SKE =
∫

ddx
√|g|1

2
∂μφaGab(φ)∂μφb (12)

=
∫

ddx
√|g|1

2
∂μφ̃c ∂φa

∂φ̃c
Gab(φ(φ̃))

∂φb

∂φ̃d
∂μφ̃d (13)

≡
∫

ddx
√|g|1

2
∂μφ̃c G̃cd∂

μφ̃d , (14)

where g is the space-time metric and |g| = | det(gμν)|. For consistency and to preserve any symmetries of the system which might be 
embedded in these field transformations, the expansion should be made covariant and integration over our manifold defined in terms of 
the (field transformation) invariant measure

Z [0]=
∫

[dφ]√det G(φ) eiS[φ] . (15)

Adding a conventional source term J · φ does not respect invariance since φ itself does not transform covariantly. The introduction of 
the source J is a device to compile correlation functions and these would not be covariant in turn. Let us then explore the generalization 
to a fully invariant partition function which requires modification of the correlation functions.

For convenience, take the fields to have their origin φa = 0 at the (tree level) vacuum, performing a shift if necessary, so they describe 
excitations over the vacuum and 〈φa〉 = 0. In place of φ which does not transform covariantly, consider Riemann normal coordinates (RNC), 
ηa , that follow geodesics. These are specified by the direction in tangent φ-space at which the geodesic curve is departing from zero, and 
the length along this geodesic, σ ; the definition is

ηa = dφa(0)

dσ
σ , (16)

the point φa = 0 (i.e. the vacuum) is then ηa = 0 in these coordinates. The connection, or mapping, between the two coordinate systems 
is given by the solution to the Geodesic equation

dφb(σ )

dσ
Db

dφa(σ )

dσ
= d2φa

dσ 2
+ �a

bc
dφb

dσ

dφc

dσ
= 0 , (17)

with � the field-connection (or Christoffel symbols) that follows from G , and D the covariant derivative wrt φ. An expansion around the 
origin

φa(σ ) =
∑

n

1

n!
dnφa(0)

dσ n
σ n , (18)

put into the geodesic equation returns the higher derivative terms in terms of the tangent vector

φa =
∑

n

Ca
i1...in

n!
n∏
j

(
dφi j (0)

dσ
σ

)
, (19)

if we now substitute η in we obtain a mapping from φ to RNC η coordinates as

φa[V ] =
∑

n

Ca
i1...in

n!
n∏
j

ηi j (20)

=ηa − �a
i j|V

2
ηiη j − (∂i�

a
kl − 2�a

il�
l
jk|V

6
ηiη jηk

+O(η4) , (21)

where the C coefficients are related to the generalized Christoffel symbols, see [30] for higher orders, and V denotes the point of the 
manifold around which we set up RNC, in particular V marks the vacuum, φa = 0. From the above definition it follows that both η and φ
will excite the same particle out of the vacuum and hence yield the same S-matrix elements,

〈0|φc|c, pμ〉 = 〈0|ηc|c, pμ〉 , (22)

yet it is only η that transforms covariantly.2 This is most evident in the definition of eq. (16) in terms of tangent vectors, so it is in terms 
of these fields that we define our partition function, and correlation functions:

1 This manifold has a strictly positive definite metric; treating e.g. gauge fields this assumption should be revisited.
2 Contravariantly to be precise.
3
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Z [ J ] =
∫

[dη]√det G(η) eiS[φ[V ](η)]+i J ·η , (23)

Gn(x1, ..., xn) ≡
∫

[dη]√det G(η)eiS[φ[V ](η)] ∏
i

η(xi), (24)

with

Gab = ∂φc

∂ηa
G(φ[V ](η))cd

∂φd

∂ηb
, (25)

while J is assigned a covariant index, Ja . We note that the present definition of the partition function coincides with [19] up to non-linear 
terms in the coupling to the source O(ηn≥2 J ) due to the RNC expansion being in this work around the vacuum rather than the mean field 
as done in ref [19]. Having said that, the practical implication of the formulation is both here and in [19]: replacing partial derivatives 
of the action S for covariant derivatives. Under a field transformation φ(φ̃) which leaves the vacuum at φ̃ = 0, our partition function is 
invariant and our correlation functions transform as tensors in tangent space

Z̃ =
∫

[dη̃]
√

det G̃(η̃) eiS[φ(φ̃[V ](η̃))]+i J̃ ·η̃ = Z , (26)

G̃n =
(∏

i

∂φ̃

∂φ

∣∣∣∣∣
V

)
Gn , (27)

where J̃ = (∂φ/∂φ̃) J . To keep the discussion explicit let us show the covariant nature of RNC to order φ3; one has, for each φ and φ̃
coordinates,

ηa = φa + 1

2
�a

bcφ
bφc +O(φ3) , (28)

η̃a = φ̃a + 1

2
�̃a

bcφ̃
bφ̃c +O(φ̃3) . (29)

A Taylor expansion of the change of coordinates gives to this order,

η̃a = ∂φ̃a

∂φb
φb + ∂2φ̃a

2∂φb∂φc
φbφc + ∂φ̃a

∂φd

�d
bc

2
φbφc (30)

+ ∂φ̃a

∂φd

∂2φd

∂φ̃b∂φ̃c

1

2

(
∂φ̃

∂φ
φ

)b (
∂φ̃

∂φ
φ

)c

+O(φ3)

= ∂φ̃a

∂φd

(
φd + 1

2
�d

bcφ
bφc

)
+O(φ3) = ∂φ̃a

∂φd

∣∣∣∣∣
V

ηd +O(φ3) ,

i.e. a covariant transformation around the vacuum.
To close this section we present a generalisation of the LSZ formula for non-trivial geometry. The matrix S is given in terms of 

correlation functions, which as just described are tensors in field space, so it just field normalization Z that remains to be addressed. This 
relevant step can be made clearer by equating our curved-space kinetic term G(∂φ)2 to the action that produces 〈φφ〉 = iZ/p2 + . . . , that 
is Z−1(∂φ)2, which gives G|V =Z−1. The LSZ contains the square root of inverse normalization which corresponds then to the vierbein e

Gab =
∑

I J

eI
ae J

b δI J (31)

and the LSZ generalization reads, as first presented in [6] (unbeknownst to us when derived in this work)

S A1...An
(n) = 1

Z [0]

(
n∏
i

(p2
i − m2

i )eAi
ai

δ

iδ J (pi)ai

)
Z [ J ] (32)

=
(∏

i

(p2
i − m2

i )eAi
ai

)
Ga1...an

(n) (33)

a formula which can be verified readily with available results [2,4] and reconciles the tensorial nature of matrix elements and amplitudes 
with their dependence on invariant geometric measures, as, e.g. in [4], one can take a trace over the two to two S matrix to obtain a 
term proportional to the Ricci scalar.

2.2. Quantum corrections

After the definition of our covariant magnitudes, we turn to the evaluation of the partition function in an h̄ expansion. Quantum 
corrections will be computed as Gaussian path integrals in Euclidean then rotated to Minkowski space; given our frequents trips between 
the two it is useful to make this explicit (the (+ − −−) metric being used):
4
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x0 = −ix0
E , p0 = i(p0)E . (34)

We begin by shifting our integration from V to a point B for background on the manifold, given in RNC by η0, and in φ coordinates 
by φ0 = φ[V ](η0). It is around this point that we will perform a covariant expansion by deploying once more RNC, here denoted η̂q. The 
relation between RNC around V , η, (η ≡ η0 +ηq) and RNC coordinates around B , η̂q, follows from both referring to the same point on the 
manifold, φ[V ](η0 + ηq) = φ[V ](η0) + φ[B](η̂q), with the φ[B] the mapping of eq. (21) around B . This relation can be cast as

η̂a
q = (φ−1

[B])
a(φ[V ](η0 + ηq) − φ[V ](η0)) (35)

=
(

∂φa[V ]
∂ηi

)
B

ηi
q (36)

+ 1

2

(
∂2φa[V ]
∂ηl∂ηk

+ �a
i j

∂φi[V ]
∂ηk

∂φ
j
[V ]

∂ηl

)
B

ηk
qη

l
q +O(η3

q )

and the source term in the action:

J · η = J · η0 + J · ηq = J · η0 + Ĵ · η̂q +O( Ĵ η̂2
q ) , (37)

Ĵa ≡ ∂ηb

∂φa[V ]

∣∣∣∣∣
B

Jb . (38)

Relation (36) turns linear and is equivalent to parallel transport for ηq ‖ η0 since all three V , B and φV (η0 + ηq) points line up along a 
single geodesic. The limit η0 → 0 gives the identity mapping η̂q = ηq given B → V for η0 → 0 and hence φ[V ](ηq) = φ[V ](ηq).

The expansion in η̂q of our action is covariant as can be derived explicitly for the first few terms

Ĵaη̂
a
q +

(
η̂a

q − �a
bc

2
η̂b

qη̂
c
q

)
δS

δφa

∣∣∣∣∣
B

+ 1

2
η̂2

q · δ2 S

δφ2

∣∣∣∣∣
B

+O(η̂2
q Ĵ )

=η̂a
q((D S[φ0])a + Ĵa) + 1

2
η̂a

qη̂
b
q(D

2S[φ0])ab + . . . , (39)

with D the covariant functional derivative around φ0 which coincides to first order with the variation wrt φ. As in the flat manifold case 
we define the point around which we expand by requiring the cancellation of the first term

δS

δηa
[η0] + Ja = ∂φb[V ]

∂ηa

∣∣∣∣∣
B

Db S[φ0] + Ja ≡ 0 (40)

Da S[φ0] + Ĵa ≡ 0 , (41)

where variation wrt η0 (i.e. along ηq) differs from variations wrt to η̂q as given by the chain rule (note that this holds regardless of 
neglecting higher orders in eq. (36)) and the two definitions of η0 being compatible as follows from eq. (38). One has after this condition 
that all explicit Ĵ dependence is in higher order terms in eq. (37), O(η̂n≥2 Ĵ ) =O(−η̂n≥2D S). All these terms will not affect the S-matrix 
and further, are not necessary to obtain a covariant expansion of the action around B . It is for these reasons that we neglect them in the 
following, deferring their study and possible connection with redundancies in the partition function definition to future study. In practice 
this means using a linearised version of eq. (37)

J · η = J · η0 + J · ηq → J · η0 + Ĵ · η̂q (42)

the path integral reads

Z [ J ] = ei J ·η0

∫
[dη̂q]

√
det G eiS[φ0+φ[B](η̂q)]+i Ĵ ·η̂q , (43)

with φ(η̂q) as φ(η) in eq. (21) but with connections evaluated at φ0 rather than 0.
The integral measure in RNC has itself a covariant expansion since the metric has the following expansion,

Gab =
(

∂φ

∂η
G(φ0 + φ[B](η̂q))

∂φ

∂η

)
ab

(44)

=G(φ0)ab + 1

3
η̂c

qη̂
d
q Racdb +O(η3

q) , (45)

see [30] for higher order terms. The partition function with this expansion is

Z =
∫

[dη̂q]e 1
2 Tr log(G)+i S+i J ·η0+i Ĵ ·η̂q

=eiS[φ0]+i J ·η0+ 1
2 Tr log(G(φ0)) (46)

×
∫

[dη̂q]Exp

(∑
n

η̂n
q

n!
[

iDn S + 1

2

δn

δη̂n
q

Tr log

(
G

G

)]
B

)
.

5



R. Alonso and M. West Physics Letters B 841 (2023) 137937
Let us look at the second term in the measure series for n = 2

1

2!
1

2
η̂2

q

[
δ2

δη̂2
q

tr log

(
G

G

)]
B

(47)

= 1

12

∫
ddxddq

(2π)d
(G−1)cdη̂a

qη̂
b
q Racbd ∝

∫
d�dqd−2dq2 .

Here one can observe both that the contribution is one loop order higher than Dn S and that it cancels out if we use a regularization 
scheme without dimension-full parameters, e.g. dimensional regularization. This simplification will be applied later, but for the sake of 
generality here let us define

Dn S =
(

Dn S − i

2

δn

δη̂n
q

Tr log

(
G

G

))
B

, (48)

which makes the expansion,

Z [ J ] =N ei(S[φ0]+ J ·η0)− 1
2 Tr[log(−(D2 S)G−1)] (49)

×
∫

[dη̂q]
√

det(−D2 S)

N
Exp

(∑
n=2

i

n! η̂
n
qDn S

)
,

where we divided and multiplied by the factor that results from the Gaussian integration. One last step defines

α ≡
√

−D2 S η̂q , (50)

where the square root operator has the transformation properties of a vierbein, taking us from curved to flat field-space. This substitution 
gives us, now restoring h̄ in our equations, (cf. eq. (1) this is achieved by S → S/h̄, J → J/h̄)

Z [ J ] =N e
i
h̄ (S[φ0]+ J ·η0)− 1

2 Tr[log(−(D2 S)G−1)] (51)

×
∫

[dα]Gs[α]Exp

⎛
⎝i

∑
n≥3

h̄n/2−1αnDn S

n!(−D2 S)n/2

⎞
⎠

with

Gs[α] ≡e
i
2 α·α

N
, (Euclidean)

∫
[dα]Gs[α] = 1 . (52)

We have arrived at our manifestly covariant loop expansion; for the one loop correction making indexes explicit, D2 SG−1 = (D2 S) b
a , one 

can see the trace will produce an invariant term, whereas for the higher-order terms, indices of the Dn S tensors are taken from curved 
to flat field space by the verbein-like square-root of −D2 S , where the functional α integrals are performed for an invariant result.

While invariance is thus recovered, the loop expansion is somewhat obscured by the addition to S that the measure causes in Dn S , 
eq. (48), since in restoring h̄ the two terms in Dn S have different loop order. Were one to use dimensional regularization, this term would 
vanish leaving a simpler result, so let us write

Z [ J ] =N Zrege
i
h̄ (S[φ0]+ J ·η0)− 1

2 Tr[log(−(D2 S)G−1)] (53)

×
∫

[dα]Gs[α]Exp

⎛
⎝i

∑
n≥3

h̄n/2−1αnDn S

n!(−D2 S)n/2

⎞
⎠ ,

with Zreg = 1 for dimensional regularization for any manifold or for a flat manifold in any regularization. In the following we assume Zreg = 1.
First let us make explicit that the operator indexes are contracted as

αnDn S

(−D2 S)n/2
= (Dn S)x1...xn

∏(
[(−D2 S)−1/2]xi

y
i
α y

i

)
x = {xμ , a} , (54)

with our convention of integration/summation over repeated indexes and x capturing both space-time (xμ) and internal (a) indexes. The 
n-th order loop correction to the generating functional we define as∑

n≥1

h̄nQn+1 (55)

≡ log

⎛
⎝∫

[dα]Gs[α]Exp

⎛
⎝∑

n≥3

ih̄n/2−1αnDn S

n!(−D2 S)n/2

⎞
⎠
⎞
⎠ .
6
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Fig. 1. Scalar manifold parametrised by φ coordinates (black grid) with the three relevant points: vacuum V , background B , and effective field E and RNCs at each point 
shown as tangent vectors.

In the perturbative h̄ expansion, the Taylor series of the exponential will yield integrals of Gaussian times polynomials which can be 
computed by integrating by parts (in Euclidean)

∫
[dα]Gs[α]

2p∏
i

αxi = δx1x2 . . . δ
xp−1xp + perm.,

with (2p − 1)!! the number of terms, i.e. the number of possible pairings of p elements in p/2 groups of 2, and δxy = δd(x − y)δab . Note 
that integration over an odd polynomial in α vanishes, this being the reason one need not compute 

√−D2 S explicitly.
The operators obtained in this way are evaluated at the point B of the manifold, that is, are functions of the field φ0 or equivalently 

the RNC η0. The field itself is given in terms of the source J by virtue of eq. (40) which allows the determination of the W [ J ]

W [ J ] =S[φ0( J )] + J · η0( J ) +
∑

h̄nQn[φ0( J )] , (56)

where we have included the one loop correction as Q1 and φ0 = φ[V ](η0). The effective action then follows as

�[φ[V ](ξ V )] =S[φ0] + J · (η0 − ξ V ) +
∑

h̄nQn[φ0] , (57)

where the effective field in RNC ξ V is given by the Legendre transform as

ξ V ≡δW

δ J
= δ

δ J

(
S[φ[V ](η0( J ))] + J · η0 +

∑
n

h̄nQn

)

= η0 + δ

δ J

[∑
h̄nQn

]
, (58)

where the cancellation of the term linear in J follows from eq. (40) and to express the effective action as a explicit function of ξ V one 
should find its relation to η0 and substitute it in. The field ξ V takes us to a third point in the manifold, let us call it E and note that it is 
specified in φ coordinates by ϕ ≡ φ[V ](ξ V ); both ξ V and ϕ are here referred to as effective fields. Points B and E are distinct, which is to 
say the background field φ0 differs from the effective field ϕ; it is useful to identify this difference via

�ξ V ≡ η0 − ξ V = − δ

δ J

[∑
h̄nQn

]
, (59)

which is related to RNCs around B (Fig. 1), �ξ̂ , by φ[V ](η0 − �ξ V ) = φ0 + φ[B](−�ξ̂), so that at the linear level

�ξ̂ = ∂φ[V ]
∂η

∣∣∣∣
B
�ξ V +O(�ξ2) (60)

A relation which we will once more truncate to linear order and hence substitute

J · (η0 − ξ V ) = J · �ξ V → Ĵ · �ξ̂ (61)

As for the third manifold point, the conversion of �ξ̂ to RNC around E is linear without any approximation, since �ξ̂ is tangent to the 
geodesic connecting B and E and connects the two points as ϕ = φ0 + φ[B](−�ξ̂); so we have

�ξ =
(

∂φ[B]
∂η̂

)
E
�ξ̂ (62)

in terms of which ϕ + φ[E](�ξ) = φ0. Manipulation of the tree-level action and source term yields, using our truncation and the operator 
e�ξD to shift back and forth in geodesic coordinates around B and E
7
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S[φ0] + Ĵ · �ξ̂ = S[φ0] − �ξ̂D S[φ0] (63)

=(1 − �ξ̂D)e�ξD S[ϕ] =
(

1 − �ξ̂
δ

δη̂

)
e�ξD S[ϕ]

=
(

1 − �ξ̂
∂φ[B]
∂η̂

δ

δϕ

)
e�ξD S|E = (1 − �ξD)e�ξD S[ϕ] ,

where the exponential is to be expanded in its Taylor series with derivatives evaluated at E . To make explicit the action of �ξ̂D around 
E rather than B we used: the form �ξ̂D = �ξ̂δ/δη̂ with η̂ RNCs around B , the chain rule, and the linear relation between �ξ̂ and �ξ . 
The difference between background and effective field �ξ is found via eq. (59), first taking �ξ̂ and using the chain rule and eq. (40) to 
substitute D Ĵ = (−D2 S)−1|B , finding

�ξ̂ = (D2 S[φ0])−1D
∑

n

h̄nQn[φ0]

which can then be used to find �ξ via eq. (62) and has an expansion around E as

�ξ =
(

∂φ[B]
∂η̂

∣∣∣∣
E

[(
∂φ[B]
∂η̂

∣∣∣∣
E
D2e�ξD S[ϕ]

(
∂φ[B]
∂η̂

∣∣∣∣
E

]−1

×
(

∂φ[B]
∂η̂

∣∣∣∣
E
De�ξD Q [ϕ] (64)

=(D2e�ξD S[ϕ])−1D
∑

n

h̄ne�ξDQn[ϕ] . (65)

This definition has a recursive nature which nonetheless can be dealt with systematically in our h̄ expansion,

�ξ =
∑

j

h̄ j�ξ j (66)

with the two first terms as

�ξ
x
1 =[(D2 S)−1]xyDyQ1 , (67)

�ξ
x
2 =[(D2 S)−1]xyDyQ2 (68)

− [(D2 S)−1]xy(D2
yz�ξ1D S)[(D2 S)−1]zuDuQ1

+ [(D2 S)−1]xy(Dy�ξ1DQ1) . (69)

Laborious as this might seem, the job of the Legendre transform is simply to get rid of the one-particle-reducible terms as usual and 
we shall show this explicitly in the next section.

To summarise, the functional method procedure for the effective action to order h̄n requires

i) computation, in Euclidean space, of Gaussian times polynomial path integrals to obtain Q1-Qn from (55),
ii) solving for the geodesic distance between the background φ0 and the effective field ϕ (65, 64) to order n − 1 (�ξn−1),

iii) combining these results for the order n effective action in

�[ϕ] = (1 − �ξD)e�ξD S[ϕ] + e�ξD
∑

n

h̄nQn[ϕ] . (70)

This self contained procedure presents the loop expansion in QFT for any field manifold, with no restriction on the number of field 
insertions, and to any loop order. It comprises, just as in the case of CW [16], infinitely many Feynman diagrams whose summation 
beyond one loop with conventional methods might be unviable.

From this invariant effective action covariant correlation functions can be built, following standard methods, as

Gn =
(

�ξ + i
(
D2�

)−1
D

)n

, (71)

G2 = i
(
(D�)−1

∣∣
V , G3 = i2

(
(D2�)−3D3�

∣∣∣
V

,

which is the usual expression with Dx�ξ y = δ
x
y since in geodesic coordinates the connection vanishes. On passing we note that the 

correction from h̄�ξ1 enters at the quadratic level on the S[ϕ] expansion and multiplying a first order quantum term Q1; it is for this 
reason that one can take φ0 = ϕ for the one loop result.

Lastly, from our definition of quantum corrections eq. (55), a sum rule follows. Define

L = h̄ order , V = Dn>2 S insertions ,

I = powers of (D2 S)−1 , V ( j) = D j S insertions , (72)
8
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with V = ∑
V ( j) , one has the relation

L − 1 = I − V , j × V ( j) = 2I . (73)

In diagrammatic terms, we would have the equivalence: I as internal lines, V as vertexes and L as loops; this connection will be made 
clearer in sec. 3 yet let us remark that no Feynman-diagram-like structure need be introduced in this formalism.

2.3. The inverse of the second covariant variation of the action to order ∂2

To finalize the discussion in this section, let us derive an explicit inversion of D2 S as this generalized ‘propagator’ is a building block of 
the expansion. For this purpose we restrict to an action at most quadratic in derivatives. While this is not needed for the formal derivation 
of results and it unavoidably somewhat reduces the generality, in practical examples an explicit form is the first element needed.

Assuming asymptotic states with relativistic dispersion relations, let us take eq. (12) as the leading action term with the addition of 
gauge interactions, gravity and a potential term as

S =
∫

ddx
√|g|

[
1

2
dμφaGab(φ)dμφb − V I

]
(74)

dμφ ≡ ∂μφ + AI
μta(φ)I (75)

with ta
I the I’th killing vector of our gauge symmetry which satisfy

(Lt I (G))ab = tc
I

∂

∂φc
Gab + ∂tc

I

∂φa
Gcb + Gac

∂tc
I

∂φb
= 0 , (76)

[Lt J , Lt I ] = ∂ta[ J

∂φc

∂tc
I]

∂φb
+ tc[ J

∂2ta
I]

∂φc∂φb
= f K

I K
∂ta

K

∂φb
, (77)

where L is the lie derivative which makes the group structure more transparent yet it need and will not otherwise feature in the following. 
The first variation reads

η̂qD S =
∫

d4x
√|g| η̂a

q(−∇μ(Gabdμφb) −Da V I ) (78)

where

∇μGabdνφb (79)

=
(

gν
ρ∂μδc

a − gν
ρ AI

μ

∂tc
I

∂φa
− gν

ρ�c
addμφd + δc

a�
ν
μρ

)
dρφc

=Gab

(
gν
ρ∂μδb

c + gν
ρ AI

μ

∂tb
I

∂φb
+ gν

ρ�b
cddμφd + δc

a�
ν
μρ

)
dρφc ,

is our field, gauge and space-time covariant derivative with �μ
νρ the space-time connection. The second order variation is, in Euclidean,

(−D2 S)xy = √|g| δd(x − y)
[
−Gab(∇)2 + Uab

]
(80)

with [1],

Uab = (D2 V )ab +Rcabddμφcdμφd (81)

where R is the field Riemann tensor built with the field metric G;

Ra
bcd = ∂c�

a
db + �a

ce�
e
db − (c ↔ d) . (82)

To solve for the inverse one can use Heat-Kernel techniques or, as it is done here, take an ansatz based on the CDE procedure [27,28] as

(−D2 S)xy[(−D2 S)−1]yz =
∫ √|g|δd(x − y)

(
−Gab(y)∇2 + Uab

)
eiq(y−z)T −1

yq Obc dd yddq

(2π)d
(83)

=
∫ √|g|δd(x − y)eiq(y−z)T −1

yq Tyq

(
−Gab(y)(iq + ∇)2 + Uab

)
T −1

yq Obc dd yddq

(2π)d
(84)

=
∫ √|g|eiq(x−z)T −1

xq

[
−Gab

(
iq + ∇ + [i∂q, iq]∇ +O(1/q)

)2 + (UT )ab

]
Obc ddq

(2π)d

≡
∫ √|g|eiq(x−z)T −1

xq

[
Gab (q +K([∇,∇],q))2 + (UT )ab

]
Obc ddq

(2π)d
(85)

with UT ≡ TyqUT −1
yq and the definition of our CDE transformation Tyq in the last line is to remove ‘open’ derivatives ∇ acting to the right 

in favour of the commutator [∇, ∇] which allows for the equation of the inverse turning from differential to algebraic. The transformation 
in the presence of gravity is presently known to finite order in an expansion on inverse powers of q [29], the first few terms being
9
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Txq = Exp

[
i

2

{
∂
μ
q ,∇μ

} + i

4

{[
∂q∇, ∂ν

q

]
,qν

}+O
(
q−1)] ,

Kμ = 1

4

{
∂ν

q ,
[∇ν,∇μ

]}+ 1

12
Rν

ρκμ

{
∂
ρ
q ∂κ

q ,qν

}+O(q−2),

UT = U + [∇μ, U
]
∂
μ
q +O(q−2) , (86)

with {, } the anticommutator. The transformation is known exactly in the case without gravity where one has [27,28]

(Txq)gμν→ημν = Exp
[
i∂μ

q ∇μ

]
,

(Kμ)gμν→ημν =
∑

incn [∂q∇, [..., [∂q∇︸ ︷︷ ︸
n times

, [∇μ,∇ν ]∂q], ..., ],

(UT )gμν→ημν =
∑ in

n! [∂q∇, [..., [∂q∇︸ ︷︷ ︸
n times

, U ], ..., ] , (87)

with cn = (n + 1)/(n + 2)!. Given these expressions, solving for O one obtains the inverse in Euclidean as[ −1

D2 S

]yz

=
∫

ddq

(2π)d
eiq(y−z)T −1

yq
Gac

√|g|C(q, φ0(y)) b
c Tyq

[C(q, φ0(y))] b
a ≡

[
1

(q +K)2 + UT

] b

a
, (88)

where the following expansion is to be understood in this expression

q2 + {q,K} + UT +K2 ≡ q2 + U + �U , (89)

1

(q +K)2 + UT
=

[
1

q2 + U
(−�U )

]n 1

q2 + U
. (90)

The transformed covariant derivative when acting on an upper index a is

Kμηa =1

2

(
F I
μνDbta

I ∂
ν
q +Ra

cbddμφcdνφd∂ν
q

)
ηb (91)

+ 1

12
Rν

ρκμ

{
∂
ρ
q ∂κ

q ,qν

}
ηa +O(q−2) ,

with Rμν = Rα
μαν . Lastly to reduce the length of our expressions we define

P ≡ (−D2 S)−1 . (92)

3. Three loop results

The perturbative expansion allows for derivation of results to any given loop order, to illustrate the obtention of such results we present 
here the three loop corrections.

All h̄1/2 terms are odd in α and vanish when integrating; one encounters two terms to order h̄ in eq. (55), let us define:

� =
∑

n

h̄n�(n) , Q2 = Q2, f +Q2,s ,

so that the first contribution reads, in Euclidean,

Q2, f =
∫

[dα]Gs[α] 1

4

α4D4 S

(−D2 S)2

= 3!!
4! (D4 S)xyzuPxyP zu , (93)

with integration and summation over repeated indexes and the 4th variation D4 S is understood to be symmetrised on its indexes. It is 
this index notation that makes it useful to introduce diagrams for bookkeeping, so the above looks like

1
8

The index-exchange symmetry in D4 S indexes yields a simple result. For the second contribution some attention should be paid to the 
contraction of these indexes
10
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Q2,s =
∫

[dα]Gs[α] 1

2

(
α3D3 S

3!(−D2 S)3/2

)2

=1

8
P yz(D3 S)xyzP

xu(D3 S)uv wP v w

+ 1

12
(D3 S)xyz(D

3 S)uv wPxuP yvP zw . (94)

These two terms can be represented diagrammatically as

1
8 + 1

12

The effective action at two loops requires of the definition of the effective (Legendre transformed) field to one loop, eq. (64), which yields 
a two loop correction in addition to Q2

�(2)[ϕ] = −1

2
(�ξ1)

2 · D2 S + �ξ1 · DQ1 +Q2 , (95)

where from eq. (67) follows that

(�ξ1)
x = −1

2
Pxy(D3 S)yzuP zu , (96)

and one has

− 1

2
(�ξ1)

2D2 S + �ξ1DQ1 (97)

= −1

8
P yz(D3 S)xyzP

xu(D3 S)uv wP v w .

Diagrammatically one can recognize

− 1
8

which will cancel out against the first term in the Gaussian integral in eq. (94). It is here that one sees the Legendre transform at work 
subtracting all one-particle-reducible contributions.

Turning back to Minkowski the Effective action to the two loop order reads

�[ϕ] =S[ϕ] − i

2
h̄ Tr log(P)− h̄2

8
D4 SxyzwPxyP zw

− h̄2

12
D3 SxyzP

xwP yvP zuD3 Suv w +O(h̄3) (98)

Or, diagrammatically,

− i
2 log − 1

8 − 1
12

with n-vertexes representing Dn S and lines P = (−D2 S)−1, this being the reason we substitute P inside the trace rather than the usual 
(−D2 S) and hence the extra sign.

Two loop terms present all elements of the computation in simplified form; for the three loop order one has

�(3)[ϕ] = − 1

3
(�ξ1)

3D3 S − �ξ1�ξ2D2 S + 1

2
(�ξ1)

2D2Q1

+ �ξ2DQ1 + �ξ1DQ2 +Q3 (99)

where the first five terms give one particle reducible terms that cancel out against the terms in the Gaussian integrals of Q3; e.g. the term

− 1

48
D3 Sx1x2x3

∏
i

(Pxi y3D3 S yi
1 yi

2 yi
3
P

yi
1 yi

2), (100)

− 1
48
11
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cancels against an opposite sign contribution from Q3, as do the other 6 one-particle reducible contributions. The outcome of the proce-
dure gives the effective action to three loops, in Minkowski,

�[ϕ] =S[ϕ] − ih̄

2
[log(P)] x

x − h̄2

8
D4 SxyzwPxyP zw − h̄2

12
D3 SxyzP

xwP yvP zuD3 Suv w

+ ih̄3

48
D6 Sxyzuv wPxyP zuP v w + ih̄3

12
PxyD5 SxyzuvP zwPusP vtD3 S wst

+ ih̄3

48
D4 SxyzuPxvP ywP zsPutD4 S v wst + ih̄3

16
PxyD4SxyzuP zvPuwD4 S v wstP

st

+ ih̄3

8
D4 SxyzuPxvP ywD3 S v wsP

ztPurD3 Str jP
js + ih̄3

8
PxyD4 SxyzuP zvD3 S vsjP

uwD3 S wtrP
stP jr

+ ih̄3

16
D3 SxyzP

xuP ysP ztD3 SstrD
3 Suv wP viPw jD3 SijmPmr

+ ih̄3

8
Ptx(D3 S)xyzP

yu(D3 S)uv wP vs(D3 S)strP
ziPw jPrm(D3 S)i jm +O(h̄4) (101)

or diagrammatically

� = S − i
2 log − 1

8 − 1
12 + i

8
+ i

12

+ i
16 + i

8 + i
16 + i

48 + i
48 + i

8 +O(h̄4) .

where we note that the coefficient of each term can also be derived with symmetry factor formulae [31,32]. Let us remark that this 
formula applies to any tree-level action S , regardless of the number of derivatives or powers of fields in interaction terms. The explicit 
evaluation of the operators at two loops, for the particular case of an action as in sec. 2.3 would involve the integrals, in Euclidean,

D4 SxyzwPxyP zw =
∫

dxdydzdudqdp

(2π)2d
√|gx|√|gz| (D

4 S)xyzueiq(x−y)T −1
xq

[
C(q, ∂q, x)

]ab Txqeip(z−u)T −1
zp

[
C(p, ∂p, z)

]cd Tzp

=
∫

dxdpdq

(2π)2d
√|g| [(D

4L)(x)]abcd

(
T −1

xq

[
C(q, ∂q, x)

]ab Txq

)(
T −1

xp

[
C(p, ∂p, x)

]cd Txp

)
(102)

where we assumed the locality of the interaction can be cast as (D4 S)xyzu ≡ √|g|(D4L)abcdδ
d(x − y)δd(x − z)δd(x − u) and we note that 

the momenta integrals will restore the invariant measure of space-time (q2 = gμνqμqν ). The second term at two loops requires of an 
expansion in the two vertexes separation x − y to extract local results, explicitly

D3 Sx1x2x3P
x1 y1Px2 y2Px3 y3D3 S y1 y2 y3 (103)

=
∫ ⎛

⎝ 3∏
j=1

dx jdy j√|gxi |

⎞
⎠ (D3 S)x1x2x3D

3 S y1 y2 y3

(
3∏

i=1

eipi(xi−yi)dqi

(2π)d
T −1

pi xi

[
C(pi, ∂pi , xi)

]aibi Tpi xi

)

=
∫

dxdy

|gx| [D3L(x)]a1a2a3

√|g y|[D3L(y)]b1b2b3 ei
∑

pi(x−y)

(
3∏

i=1

dqi

(2π)d
T −1

pi x

[
C(pi, ∂pi , x)

]aibi Tpi x

)

=
∫

dx

|gx| [D
3L(x)]a1a2a3

(
3∏

i=1

dqi

(2π)d
T −1

pi xi

[
C(pi, ∂pi , xi)

]aibi Tpi xi

)
e(y−x)∇x

√−gx[D3L(x)]b1b2b3 e−(x−y)∇x ei
∑

pi(x−y)dy

=
∫

dx

|gx| [D3L(x)]a1a2a3

(
3∏

i=1

dqi

(2π)d
T −1

pi xi

[
C(pi, ∂pi , xi)

]aibi Tpi xi

)(
Tp1x

[√|gx|[D3L(x)]b1b2b3

]
T −1

p1x (2π)dδ(
∑

pi)
)

,

where we have used overall invariance of the expression to move from x to y with a covariant derivative expansion and derivatives act 
within the parenthesis. These expressions can expanded on field derivatives via eq. (90) with the first order given the effective potential 
corrections, the second the kinetic term etc.

4. Two loop effective potential for a N-manifold with O(N) symmetry

Consider the tree level action with an O(N) symmetry:

S =
∫

d4x
1

2

(
∂μφaGab∂

μφb − V (φ)
)

, (104)
12
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where the index in φa runs over N fields: a radial mode h and n = N − 1 angular modes ϕ i=1,...,n parametrizing a S N−1 sphere where the 
O (N) symmetry acts. The metric reads

Gab =
(

1
F 2(h)g̃i j

)
, Gab =

(
1

g̃i j/F 2(h)

)
, (105)

with g̃ being the n-sphere metric, which can be given in terms of an N-dimensional unit vector u(ϕ) as

g̃i j = ∂u(ϕ)

∂ϕ i
· ∂u(ϕ)

∂ϕ j
, u · u = 1. (106)

Maximally symmetric cases would give a scalar field manifold as RN , SN or HN with explicit F (h) functions for each yet it could also be 
other type of manifold, one with e.g. non-trivial topology; to capture all these and more we keep F (h) general.

A number of tensors will feature in the two loop effective potential; first, those related to the curvature of field space read,

Rhi jh = −F 2Rh g̃i j, (107)

Ri jkl = F 4Rϕ(g̃ik g̃ jl − g̃il g̃ jk), (108)

in addition to entries related by the symmetry properties of the Riemann tensor and where,

Rh ≡ − F ′′

F
, Rϕ ≡ 1

v2 F 2
− (F ′)2

F 2
; (109)

second, tensors built out of the potential at the second:

(D2 V )ab =
(

V ′′
F ′ F V ′ g̃i j

)
, (110)

third

(D3 V )hhh = V ′′′, (111)

(D3 V )hi j = F 2
( V ′ F ′

F

)′
g̃i j, (112)

(D3 V )ihj = (D3 V )i jh = F 2 F ′( V ′

F

)′
g̃i j, (113)

and fourth order

(D4 V )hhhh = V ′′′′, (114)

(D4 V )hhi j = F 2
( V ′ F ′

F

)′′
g̃i j, (115)

(D4 V )hihj = (D4 V )hi jh = F 2
(

F ′( V ′

F

)′)′
g̃i j, (116)

(D4 V )ihhj = (D4 V )ihjh

= F F ′(F F ′V ′′′ −
( V ′ F ′

F

)′ − F ′( V ′

F

)′)
g̃i j, (117)

(D4 V )i jhh = F F ′(V ′′′ − 2F ′( V ′

F

)′)
g̃i j, (118)

(D4 V )i jkl = F 3 F ′
(( V ′ F ′

F

)′
g̃i j g̃kl + F ′( V ′

F

)′
g̃i(k g̃l) j

)
. (119)

These will feature in the second, third and fourth order covariant variations of the action that enter the two-loop computation. The 
second order variation has been given in eq. (80); with the added simplification that follows from neglecting gauge and gravitational 
interactions, i.e. eq. (79) now reads ∇μηa = ∂μηa − �a

bc(∂μφ)bηc , and restricting to the effective potential which further allows to set 
∂μφ → 0, the inverted second order variation P reads, in terms of the coefficient C in eq. (88), in Euclidean,

[
C∂φ→0(q)

]a
b =

[
1

q2 +D2 V

]a

b

=
⎛
⎝ 1

(q2+V ′′)
δi

j

q2+F ′V ′/F

⎞
⎠ .

(120)

Diagrammatically, we associate the above with a line. Next, the third and fourth order variations, which we associate with 3- and 4-point 
vertices respectively, have the form, in Minkowski:
13
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η̂3
qD3 S =

∫
d4x

{
Dc1Rac2c3bη̂

c1
q η̂

c2
q η̂

c3
q ∂μφa∂μφb

+ 4Rac1c2c3 η̂
c1
q η̂

c2
q ∇μη̂

c3
q ∂μφa − η̂a

qη̂
b
qη̂

c
q(D3 V )abc

}
,

(121)

and [21],

η̂4
qD4 S =

∫
d4x

{
4Rc1c2c3c4 η̂

c2
q η̂

c3
q ∇μη̂c1

q ∇μη̂
c4
q

+ 6Dc1Rac2c3c4 η̂
c1
q η̂

c2
q η̂

c3
q ∇μη̂

c4
q ∂μφa

+ (Dc1Dc2Rac3c4b + 4Rd
c1c2aRdc3c4b)

η̂c1
q η̂

c2
q η̂

c3
q η̂

c4
q ∂μφa∂μφb

− η̂a
qη̂

b
qη̂

c
qη̂

d
q(D4 V )abcd

}
,

(122)

where we note that the exchange symmetry of the quantum fields η selects the fully symmetric components of each tensor. This will give 
the symmetric covariant derivative tensor of the potential in each case, whereas for the curvature terms with covariant derivatives acting 
on η, this symmetrization would yield, in momentum space using our CDE expansion, in Minkowski,

4Rabcd∇μη̂a
qη̂

b
qη̂

c
q∇μη̂d

q

=1

3

(
Rabcd(iq(a) − iq(b))(iq(d) − iq(c))

+Racbd(iq(a) − iq(c))(iq(d) − iq(b)) (123)

+Radcb(iq(a) − iq(d))(iq(b) − iq(c))
)
η̂a

qη̂
b
qη̂

c
qη̂

d
q +O(K)

Let us separate the two diagrams which contribute at two-loop order to the effective potential as,

−
∫

d4xV (2)

eff = − 1
8 − 1

12

≡ −
∫

d4xV f
eff −

∫
d4xV s

eff. (124)

The expression for the first term can be obtained from (103) with the simplifications detailed above to find

−V s
eff = 1

12
(μ2)2ε

∫
ddqddk

(2π)2d
(D3 V )(abc)C d

a (q)C(p) e
bC(p + q)

f
c (D3 V )(def )

= 1

12

⎡
⎣IV ′′(V ′′′)2 + nIV ′′,F ′ V ′/F

3

((
F ′V ′

F

)′
+ 2F ′

(
V ′

F

)′)2
⎤
⎦ ; (125)

where () stands for symmetrisation. The second term follows from eq. (102),

−V f
eff = 1

8
(μ2)2ε

∫
ddqddk

(2π)2d
Gaa′

Gcc′C(q) b
a′C(k) d

c′

(
1

3
Racbd((q − k))2 + ((a ↔ c) + (a ↔ d)) − (D4 V )(abcd)

)

= −1

6

[
nRhJV ′′JF ′V ′/F

(
V ′′ + F ′V ′

F

)
+ n(n − 1)RϕJ 2

F ′V ′/F

(
F ′V ′

F

)]

− 1

8

[
J 2

V ′′(V ′′′′) + nJV ′′JF ′V ′/F

3

{(
F ′V ′

F

)′′
+ F ′

F
[3V ′′′ − 4F ′

(
V ′

F

)′
] − 2

F ′

F

(
F ′V ′

F

)′
+ 2

(
F ′

(
V ′

F

)′)′}

+ n2 + 2n

3
J 2

F ′V ′/F

(
F ′

F

(
F ′V ′

F

)′
+ 2

F ′,2

F

(
V ′

F

)′)]
, (126)

where in the index exchange for the curvature term the momentum should be changed accordingly.
The functions Iα,β and Jα are the solutions to loop integrals, as outlined in sec. 2 it is convenient to use dimensional regularization 

in d = 4 − 2ε , in which case,

Iα,β = (μ2)2ε

∫
ddqddk

(2π)2d

1

(q2 + α)((k + q)2 + α)(k2 + β)

Jα = (μ2)ε
∫

ddq

(2π)d

1

q2 + α
(127)
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with μ the renormalisation scale and an explicit form is drawn from [17] and shown in Appendix A, see ref. [33] for a partial differential 
equation derivation of these integrals.

Before summarising we comment on checks to our computation. A self-consistency check is the cancellation of non-1PI terms which 
we have checked explicitly at the 2 and 3 loop order. A further check is the derivation of the symmetry factors from our Gaussian integral 
formulae, and the agreement with [31]. Finally, in the flat case with N = 4 (n = 3), eqs. (103, 102) yield the 2 loop self-corrections to the 
SM potential and they do indeed reproduce the results of ref [17] eq. (5.2) prior to renormalisation.3

5. Summary

This letter presented a covariant procedure for arbitrary loop correction computation on a general scalar manifold with gauge interac-
tions and gravity via functional methods and an expansion on field derivatives, defining in the process an invariant partition function and 
covariant correlation functions off-shell which we connected to the geometric LSZ reduction formula. The formula for the effective action 
is given in eq. (70) together with the steps for the computational procedure and applies to an arbitrary tree level action. In the derivation, 
we have neglected terms proportional to the source and n ≥ 2 powers of the field which do not affect the S-matrix and arise when 
expanding around field-points away from the vacuum; we nevertheless believe their merit further study, deferred to future work. The 
procedure was put to use in the computation of two loop contributions to the effective potential of an O (N) symmetric N-dimensional 
manifold with an arbitrary (but O (N) symmetric) potential, readily applicable in HEFT with N = 4, and agreeing in the appropriate limit 
with results from [17].
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Appendix A

Following [17], we present in this appendix the solutions to integrals Iα,β, Jα defined in eq. (127). We use dimensional regularisation 
with d = 4 − 2ε , and define the renormalisation scale to be μ. Here, we have opted to leave formulae in terms of bare parameters and 
hence have left the UV divergences explicit as poles in ε , which will be cancelled by renormalising in your scheme of choice. The finite 
remainder is the relevant piece for the effective potential. We begin with the solution to Jα as:

Jα = (μ2)ε

(2π)d

∫
ddk

k2 + α

= (μ2)ε

(4π)d/2
�(1 − d/2)αd/2−1 (A.1)

where � is the usual Gamma function. Recall in the two-loop potential computation from sec. 4, Jα always appears with a Jβ . Hence, 
the Laurent series in ε we need to construct is:

JαJβ = (μ2)2ε

(4π)d
�(1 − d/2)2(αβ)d/2−1

= T 2 αβ

(4π)4

[
1

ε2 + 1

ε

{
2 − log

( α

μ2

)
− log

( β

μ2

)}

+
{

3 + π2

6
− 2 log

( α

μ2

)
− 2 log

( β

μ2

)

+ 1

2

(
log

( α

μ2

)
+ log

( β

μ2

))2 }
+O(ε)

]
, (A.2)

with T = e−εγ /(4π)ε and γ Euler’s constant. Note in MS, T = 1. Then Iα,β :

3 Which in practice means substituting the functions Î, ̂J for I, J .
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Iα,β = (μ2)2ε

∫
ddqddk

(2π)2d

1

(q2 + α)((k + q)2 + α)(k2 + β)

= −T 2 � + 2

2(4π)4
α
( 1

ε2
+ a1

ε
+ a2 +O(ε)

)
, (A.3)

where � = β/α, and

a1 = 3 − 2� log(�)

� + 2
− 2 log

( α

μ2

)
(A.4)

a2 = 7 + �(log2(�) − 6 log(�))

� + 2
− 2 log2

( α

μ2

)
− 2a1 log

( α

μ2

)
+ ζ(2) + 8ξ(�). (A.5)

The function ξ is defined, if � < 4, as:

ξ(�) =
√

�(4 − �)

� + 2

θ∫
0

log(2 sin a)da, (A.6)

with sin θ = √
�/2, and for � > 4 as:

ξ(�) =
√

�(� − 4)

� + 2

α∫
0

log(2 cosh a)da, (A.7)

where coshα = √
�/2. Further, the function ξ(�) is continuous for � = 4 and either expression can be used.
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