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Abstract

This paper presents a new extended isogeometric boundary element method (XIGABEM) for the
analysis of cracks in two-dimensional bimaterial interfaces. The classical NURBS approximations
used in isogeometric formulations are augmented with functions based on the first two terms of the
crack-tip stress and displacement series expansions. The first term is related to the complex stress
intensity factor (SIF) and allows the numerical method to capture the singular and oscillatory
near-tip behaviour, while the second accounts for the T-stress contribution to the solutions. The
proposed enrichment strategy only introduces three additional degrees of freedom per crack tip,
which are accommodated in a square linear system by a crack tip tying constraint and a novel
condition on the stress parallel to the tip. These supplementary relations also cause the enrichment
parameters to become proxies for the SIFs and T-stress. Therefore, the crack-tip factors can be
obtained directly from the solution vector given by XIGABEM, eliminating the need for costly
computational post-processing techniques. Several benchmark examples, including both straight
and curved cracks, are presented to demonstrate the accuracy and convergence of the proposed
method. The direct XIGABEM solutions for the SIFs and T-stress compare favourably against
those from the literature.
Keywords: Extended isogeometric boundary element method, Direct methods, Enriched
formulations, Interface crack, Stress intensity factors, T-stress

1. Introduction

Applications of composite materials have received increasing interest in several industries over
the past years. Due to their practical importance, the verification of structural integrity in these
types of materials involves the investigation of fracture and delamination processes that occur at
the interface between dissimilar media. Considering linear elastic fracture mechanics, early studies
on interface cracks revealed that the stress and displacement fields near the crack tip exhibit an
oscillatory behaviour [1–4]. As a result of this oscillatory nature, a zone of interpenetration has
been demonstrated in regions close to the tip. According to Banks-Sills [5], this anomalous, non-
physical behaviour was responsible for a hiatus of more than a decade in research on the subject.
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However, since the size of the contact zone in practical applications is small in comparison to the
crack length [6], many studies were later conducted that included the oscillatory characteristic of
the near-tip fields [7–10].

Due to the difficulties arising when working with singular and oscillatory fields, investigations
of interface cracks are commonly based on the determination of crack tip parameters, especially
the Stress Intensity Factors (SIFs) and the T-stress. The complex SIF defined by Rice [8] is
able to represent the asymptotic singular stress field near the tip, and is a key parameter for
delamination analyses. On the other hand, the T-stress is the first non-singular term in the
eigenfunction expansion of the stress field and provides relevant aspects for fracture analysis [11],
such as assessment of stability [12], kinked cracks [13, 14] and definition of the plastic zone near
the tip [15].

Closed-form solutions for the SIFs and T-stress of interface cracks are available only for a limited
number of configurations [16–18] and solutions for the vast majority of industrially relevant applic-
ations can be determined only by numerical methods, such as the Finite Element Method (FEM)
[19–21] and the Boundary Element Method (BEM) [22–25]. One of the variants of FEM, the eX-
tended FEM (XFEM), is perhaps the most popular method for the analysis of interface cracks and
extraction of tip parameters [26–29]. The XFEM is derived by enriching the FE approximation
space through partition of unity enrichment [30, 31] with functions defined from the analytical
expansion of the near-tip fields. The BEM is another widely applied numerical method which is
particularly suitable for crack analysis due to its boundary-only discretisation and accurate repres-
entation of the internal fields. Early BEM strategies for the analysis of interface cracks consisted
mainly in coupling the multi-region technique with a quarter-point element formulation [32–34].
This special crack-tip element was originally developed for cracks in homogeneous materials and is
able to represent the square root singularity in the analytical near-tip solutions. However, the os-
cillatory behaviour over interface cracks is not included in the quarter-point formulation, so such a
strategy leads to the improper representation of the near-tip fields, and this is particularly evident
when large differences between the materials along the interface are considered. Recently, Gu and
Zhang [35] proposed a new crack-tip element able to represent the analytical near-tip solution for
interface cracks and were able to compute the SIFs using the displacement extrapolation technique.
However, the use of special tip elements restricts the analytical behaviour to crack-tip elements,
while more accuracy can be realised by considering more elements to be within the local influence
of the crack-tip singularity. Besides, the optimum choice for the size of the special elements is not
clear [36–39].

Several methods have been proposed for extracting the SIFs and T-stress of interface cracks,
and they have been mainly based on the interaction integral (or M-integral). This approach is
an extension of the path-independent J-integral [40] and relies on the existence of auxiliary fields
for evaluating the crack parameters. While the definition of auxiliary fields is straightforward for
straight cracks, this task is cumbersome when dealing with curvilinear cracks since the omission
of the curvature effect in the definition of the auxiliary fields may degrade the accuracy and
convergence of the interaction integral method [41, 42]. To overcome this drawback, some XFEM
approaches have been proposed to compute the crack parameters directly from the solution of the
system of equations without extra post-processing [43, 44]. These so-called direct methods have
also been applied for SIF and T-stress extraction in interface cracks in the Scaled Boundary Finite
Element Method (SBFEM) framework [45, 46].

Over the past decade, enriched BEM formulations have been developed to improve the near-
tip solution in fracture analysis of homogeneous materials, giving rise to the eXtended BEM
(XBEM) [47–50]. An eXtended IsoGeometric Analysis BEM (XIGABEM) has also been proposed
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to take advantage of the use of both Non-Uniform Rational B-Splines (NURBS) and enrichment
functions in the numerical analyses [51, 52]. NURBS are the standard mathematical model used
for describing curves and surfaces in computer-aided design software and provide an accurate
geometry description; one, indeed, that is exact for conic sections. The fact that both the NURBS
approximation and the BEM deal with quantities entirely on the boundary makes the coupling
between them natural, which promotes significant effort savings during the meshing process for
the numerical model. Nevertheless, like the Lagrange polynomials used in conventional BEM, the
NURBS basis functions fail to describe the analytical mechanical fields near the crack tip. Hence,
the enrichment of the approximation space in the XIGABEM framework creates an approach that,
in addition to the accurate geometry description, is also able to capture the singular near-tip
behaviour.

The introduction of enrichment degrees of freedom in the XBEM and XIGABEM formulations
requires the definition of an equal number of auxiliary equations in order to achieve a square linear
system. As demonstrated by many previous works [48–50, 52], the use of a crack tip tying constraint
to accommodate the additional enrichment parameters allows these parameters to become proxies
for the SIFs. Therefore, these crack parameters can be obtained directly from the solution vector
given by the method. Consequently, we call this approach a direct method, and it therefore provides
significant benefits by precluding the need for post-processing by techniques such as the interaction
integral. This is particularly beneficial in the BEM context since it saves the computational cost
of evaluating the mechanical fields at several internal points. As a result, a substantial reduction
in execution time can be achieved when using the direct method without prejudice to the accuracy
of the solutions [52]. Note that the use of the term direct is not to be confused with the classical
direct and indirect boundary element methods.

All the aforementioned enriched BEM works are concerned only with homogeneous materials.
Furthermore, no direct evaluation of the T-stress using the extended BEM approach has yet been
reported in the literature.

In this context, this paper presents a novel XIGABEM formulation for the analysis of bimaterial
interface cracks in 2D domains. It is the first extended BEM scheme developed for interface cracks,
and the first also to extend the enrichment to the direct T-stress calculation by including the second
term of the near-tip asymptotic expansion in the approximation space. The presence of singular
traction fields to be recovered on interfaces at the crack tip requires the consideration for the
first time of singular enrichment functions. In addition to the classical use of the crack tip tying
constraint to accommodate the degrees of freedom related to the SIFs in the linear system, a
novel constraint on the stress parallel to the interface at the crack tip is applied to determine the
T-stress parameter. We demonstrate that the proposed direct XIGABEM formulation is able to
recover accurate solutions for the crack parameters, including for curvilinear crack paths, without
incurring costly computational post-processing techniques.

The remainder of this paper is organised as follows: Section 2 describes the fundamentals of
interface fracture mechanics that form the basis for the novel XIGABEM formulation presented
in Section 3. The accuracy and stability of the proposed approach are verified in six numerical
benchmark examples presented in Section 4, while Section 5 draws some conclusions about the
extended isogeometric formulation developed in this study.

2. Interface fracture mechanics

Let Ω be a 2D-domain consisting of two dissimilar isotropic and elastic materials. The material
above the interface is denoted as material 1, while the material below is defined as material 2,
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Figure 1: Interface crack between two dissimilar materials.

as illustrated in Fig. 1. Consider a crack lying along the interface, with upper and lower crack
surfaces represented by ΓC

1 and ΓC
2 , respectively. Moreover, assume that the interface boundary

ΓI
1 from material 1 is perfectly bonded with the interface boundary ΓI

2 from material 2. In this
situation, the complete expansion for the crack-tip stress field is given by [53]:

σij(ρ, θ, s) =
∞∑
n=1

ρ
n−2
2

√
2π

{
ℜ
[
Knρ

iεn
]
Σn

ij(θ, s) + ℑ
[
Knρ

iεn
]
Υn

ij(θ, s)
}
, (1)

where i, j = 1, 2 denote the direction in the crack-tip coordinate system (x1, x2), (ρ, θ) are the
crack-tip polar coordinates shown in Fig. 1, s = 1, 2 indicates the material 1 and 2, respectively,
Kn ∈ C represents the n-th crack parameter, and Σn

ij(θ, s) and Υn
ij(θ, s) are the stress functions

given in Appendix A. The symbols ℜ and ℑ denote, respectively, the real and imaginary parts of
the quantity in brackets [•] and i =

√
−1 is the imaginary unit. εn is defined as follows:

εn =

{
ε = 1

2π
log µ2κ1+µ1

µ1κ2+µ2
, if n = 1, 3, 5, ...

0, if n = 2, 4, 6, ...
, (2)

where ε is known as the oscillatory parameter since it is related to the oscillatory behaviour of the
odd terms in the solution. µs = Es/[2(1 + νs)] is the shear modulus and κs is the Kolosov constant
defined as κs = 3 − 4νs for plane strain and κs = (3− νs) / (1 + νs) for plane stress. Es and νs
represent, respectively, the Young’s modulus and the Poisson’s ratio of material s = 1, 2.

The general form of the crack-tip displacement field is also provided by Deng [53], to be:

uj(ρ, θ, s) =
∞∑
n=1

ρn/2√
2π

{
ℜ
[
Knρ

iεn
]
∆n

j (θ, s) + ℑ
[
Knρ

iεn
]
Θn

j (θ, s)
}
, (3)

where ∆n
j (θ, s) and Θn

j (θ, s) are the displacement functions given in Appendix A.
In this study, we are concerned with the evaluation of the SIFs and the T-stress for interface

cracks. The SIFs are related to the leading-order term of the expansions in Eqs. (1) and (3), while
the T-stress is associated with the second term. Therefore, in the proposed XIGABEM formulation
for interface cracks, we take the functions given by Eqs. (1) and (3) considering n = 1, 2. For n = 1,
the corresponding Kn is termed the complex SIF and is given by:

K1 = K1 + iK2, (4)

where K1 and K2 ∈ R are the modes 1 and 2 SIFs, respectively. For an interface crack of length
2a in an infinite body, subjected to remote stresses σ∞ (normal to the crack surfaces) and τ∞

(in-plane shear), the complex SIF is given by [8]:
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K1 + iK2 = (σ∞ + iτ∞)
√
πa (1 + 2iε) (2a)−iε . (5)

Note from Eq. (5) that, unlike the homogeneous case, the SIFs cannot be unambiguously
associated with the normal tension and the in-plane shear stresses. Therefore, the Arabic subscripts
1, 2 are adopted to denote these factors instead of the classical Roman numerals I, II used in the
analysis of cracks in homogeneous media. Additionally, a dimensional analysis of Eq. (5) reveals
that the physical units of the complex SIF are FL−1.5−iε, where F and L denote force and length,
respectively. To recover the same units from the homogeneous case (FL−1.5), the complex SIF must
be multiplied by a factor liε, where l is an arbitrary length. Note that homogeneous relationships
are recovered from the above solutions if the oscillatory parameter is taken as ε = 0.

Using Eq. (4) and Euler’s formula, the term in square brackets that appears in Eqs. (1) and
(3) can be rewritten as:

K1ρ
iε = [K1 cos (ε log ρ)−K2 sin (ε log ρ)] + i [K1 sin (ε log ρ) +K2 cos (ε log ρ)] . (6)

For n = 2, after examination of the stress functions given in Appendix A, it can be observed
that Υ2

ij(θ, s) = 0 for i, j = 1, 2. Consequently, only the real part of K2 is related to the T-stress
term in the stress expansion. Therefore, without loss of generality, the crack parameter K2 is
adopted as:

K2 = KT , (7)

where KT ∈ R and the subscript T indicates that this factor is related to the T-stress.
Using Eq. (1), the stress functions given in Appendix A and Eq. (6), the two-term asymptotic

expansion for stresses can be written as follows:

σij(ρ, θ, s) =
1√
2πρ

{
Σ1

ij(θ, s) Υ1
ij(θ, s)

}[ cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]{
K1

K2

}
+ CsTδi1δj1,

(8)
where Σ1

ij(θ, s) and Υ1
ij(θ, s) are the stress functions for n = 1, δij is the Kronecker delta and:

Cs =

{
(κ2+1)µ1

(κ1+1)µ2
, if s = 1

1, if s = 2
, (9)

T =
4√
2π

(κ1 + 1)µ2

[(κ1 + 1)µ2 + (κ2 + 1)µ1]
KT . (10)

By examination of Eq. (8), it can be noted that the SIFs K1 and K2 characterise the singular
and oscillatory stress field related to the distance ρ. On the other hand, the T-stress defines the
homogeneous term in the expansion, with T1 = C1T and T2 = T representing the contribution of
the normal stress parallel to the interface at the crack tip in materials 1 and 2, respectively.

Analogously, the two-term asymptotic expansion for displacements can be defined from Eq. (3)
and is given by:

uj(ρ, θ, s) =

√
ρ

2π

{
∆1

j(θ, s) Θ1
j(θ, s)

}[ cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]{
K1

K2

}
+

ρ√
2π

∆2
j(θ, s)KT ,

(11)
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where ∆1
j(θ, s), ∆2

j(θ, s) and Θ1
j(θ, s) are displacement functions for n = 1, 2 that can be computed

from Appendix A.
In the expansion shown in Eq. (11), the SIFs K1 and K2 are related to the square-root and

oscillatory behaviour of the displacement field near the tip, while the T-stress parameter KT is
associated with a linear contribution with respect to the distance ρ.

3. XIGABEM formulation for interface cracks

3.1. Boundary integral formulation for multi-region domains

For the crack analysis of domains containing different materials, we adopt the sub-region BEM
technique [54, 55]. Consider the inhomogeneous domain Ω = Ω1 ∪ Ω2 shown in Fig. 2. Each
subdomain Ωs is assumed as homogeneous, isotropic and linear elastic, and is enclosed by its
respective boundary Γs = ∂Ωs, which is given by the union of the external boundary ΓB

s , the crack
surface ΓC

s and the interface boundary ΓI
s, i.e., Γs = ΓB

s ∪ ΓC
s ∪ ΓI

s. Disregarding body forces, the
displacement components at each point x′ ∈ Γs can be computed from the following boundary
integral equation (BIE):

cij(x
′)uj(x

′) +−
∫
Γs

P ∗
ij(x

′,x)uj(x)dΓs =

∫
Γs

U∗
ij(x

′,x)pj(x)dΓs x′,x ∈ Γs, (12)

in which uj(x) and pj(x) are the displacement and traction components on the boundary Γs, cij(x′)
is the jump term coefficient that depends on the local geometry at x′ and is equal to cij = δij/2
for x′ at smooth boundaries, where δij is the Kronecker delta. −

∫
denotes a singular integral to be

evaluated in the Cauchy principal value sense and U∗
ij(x

′,x) and P ∗
ij(x

′,x) are, respectively, the
displacement and traction fundamental solutions given by:

U∗
ij(x

′,x) =
1

8πµs (1− νs)

[
(3− 4νs) ln

(
1

r

)
δij + r,ir,j

]
, (13)

P ∗
ij(x

′,x) = − 1

4π (1− νs) r
{(1− 2νs) (r,jni − r,inj) + r,lnl [(1− 2νs) δij + 2r,ir,j]} , (14)

where r := ∥x′ − x∥ is the distance between the source point x′ = (x′1, x
′
2) and the field point

x = (x1, x2), ni represents the components of the outward normal vector at x and r,i = ∂r/∂xi =
(xi − x′i) /r. The fundamental solutions in Eqs. (13) and (14) are valid for plane strain conditions.
For plane stress states, these expressions must be used considering the modified Poisson’s ratio
ν̄s = νs/ (1 + νs).

After considering a boundary discretisation, Eq. (12) can be applied independently for each
subdomain to define a set of linear equations, as discussed in Section 3.6. To consider the inter-
action between the sub-regions, we assume that two adjacent sub-regions Ω1 and Ω2 are perfectly
bonded at the interface boundaries ΓI

1 and ΓI
2. Hence, for corresponding points on the interface,

each belonging to one of the materials, the following compatibility and equilibrium conditions hold:

uI
1 = uI

2 and pI
1 = −pI

2, (15)

where uI
s and pI

s denote the displacement and traction components at a point on ΓI
s.
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Figure 2: Interface crack between two dissimilar materials.

3.2. NURBS basis functions
Following an isogeometric approach [56, 57], we adopt the NURBS basis functions to approx-

imate both the geometry and the mechanical fields in Eq. (12). The NURBS are a generalisation
of B-splines, which are defined over a knot vector Ξ consisting of a non-decreasing sequence of
real numbers in the parametric space ξ. Given the knot vector Ξ = {ξ1, ξ2, ..., ξf}, the B-spline
functions of order p are defined by the Cox-de Boor recursion formula [58, 59]:

Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
, (16)

for p = 0 (constant B-spline) and:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (17)

for p ≥ 1. Ni,p represents the i-th B-spline function, with i = 1, . . . , n, while n represents the
number of basis functions defined over the parametric space ξ ∈ [ξ1, ξf ]. Here, we assume an open
knot vector, in which the initial and final knots are repeated p + 1 times at the start and end of
Ξ. In this case, the number of entries in the knot vector is f = n+ p+ 1, and ξf = ξn+p+1.

Using the B-spline definition given in Eqs. (16) and (17) and considering a set of positive
weights Λ = {w1, w2, ..., wn}, in which each value wi is associated with Ni,p, the NURBS basis
functions are obtained by:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

. (18)

When considering the isogeometric formulation, the first derivative of the NURBS basis func-
tions is often required, and can be determined recursively by:

R′
i,p(ξ) =

dRi,p

dξ
(ξ) = wi

N ′
i,p(ξ)

(∑n
j=1Nj,p(ξ)wj

)
−Ni,p(ξ)

(∑n
j=1N

′
j,p(ξ)wj

)
(∑n

j=1Nj,p(ξ)wj

)2 , (19)

where N ′
i,p(ξ) is the first derivative of the B-spline functions, which are computed from:

N ′
i,p(ξ) =

dNi,p

dξ
(ξ) = p

(
Ni,p−1(ξ)

ξi+p − ξi
− Ni+1,p−1(ξ)

ξi+p+1 − ξi+1

)
. (20)
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Although the NURBS basis functions form a partition of unity,
∑n

i=1Ri,p(ξ) = 1, they do
not have the Kronecker delta property (i.e., Ri,p(ξm) ̸= δim) exhibited by the standard Lagrange
polynomials used in conventional BEM. Therefore, the NURBS approximation is generally non-
interpolatory at the control points. Nonetheless, the approximation is interpolatory at the start
and end of the curve when considering open knot vectors.

3.3. Extended formulation

For the purpose of the isogeometric BEM analysis, a boundary element is defined in the para-
metric space as the span between two distinct knots, i.e., [ξq, ξq+1], with ξq ̸= ξq+1. From the
recursive nature of the NURBS basis inherited from the B-splines, only the rational functions
Rq−p,p, Rq−p+1,p, ..., Rq,p are non-zero over the knot span. Therefore, the coordinates x̃ej , j = 1, 2,
along an element e can be computed from:

x̃ej(ξ) =

p+1∑
m=1

ϕem(ξ)xemj ξ ∈ [ξq, ξq+1] : ξq ̸= ξq+1, (21)

where the terms ϕem(ξ) = Ri,p(ξ) represent the m-th shape function of order p from element e,
with i = m + q − p − 1. Additionally, xemj denotes the j-th coordinate of the m-th local control
point from element e.

In the conventional IGABEM formulation [56, 57], the same approximation used in the geo-
metry description (Eq. (21)) is applied to interpolate the displacements and tractions along the
element. Therefore, similar approximations are written for the mechanical fields as follows:

ũej(ξ) = u
(N)
j (ξ) =

p+1∑
m=1

ϕem(ξ)demj , (22)

p̃ej(ξ) = p
(N)
j (ξ) =

p+1∑
m=1

ϕem(ξ)temj , (23)

where the superscript (N) emphasises that the approximations come from NURBS functions and
demj and temj represent, respectively, the m-th local displacement and traction control parameters
from element e.

One issue arising from the use of the approximations in Eqs. (22) and (23) is that the NURBS
basis functions fail to accurately represent the near-tip solutions for interface cracks expressed
in Eqs. (1) and (3), especially the leading-order terms. To improve the numerical responses, we
propose an extended formulation in which the two-term asymptotic expansions for stresses (Eq. (8))
and displacements (Eq. (11)) are used to augment the approximations over elements defining the
interface and crack surfaces. Hence, the displacement approximation over an element e near a
crack tip λ becomes:

ũeλj (ξ) = u
(N)
j (ξ) + T λ

jku
(1)
k (xλ,x(ξ)) + T λ

jku
(2)
k (xλ,x(ξ)), (24)

where xλ denotes the position of the crack tip λ, u(1)k and u
(2)
k , k = 1, 2, are the first and second

terms of the enrichment, respectively, which are expressed by:{
u
(1)
1

u
(1)
2

}
=

√
ρ

2π

[
∆1

1(θ, s) Θ1
1(θ, s)

∆1
2(θ, s) Θ1

2(θ, s)

] [
cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]{
K̃λ

1

K̃λ
2

}
, (25)
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{
u
(2)
1

u
(2)
2

}
=

ρ√
2π

{
∆2

1(θ, s)
∆2

2(θ, s)

}
K̃λ

T , (26)

where ρ :=
∥∥x− xλ

∥∥, while K̃λ
1 , K̃λ

2 and K̃λ
T represent the additional degrees of freedom included

by the enrichment that are found as part of the BEM solution vector. We stress that they become
accurate approximations for the SIFs and T-stress parameter only if the additional constraints to
be presented in Section 3.5 are enforced at the crack tip.

The components given in Eqs. (25) and (26) are related to the local crack tip coordinate system
(x′1, x

′
2), as represented in Fig. 3a. Therefore, to express the contributions of the enrichment terms

in the global coordinate system x1x2, the components T λ
jk from the rotation matrix are included

in Eq. (24), in which: [
T λ
11 T λ

12

T λ
21 T λ

22

]
=

[
cosωλ − sinωλ

sinωλ cosωλ

]
, (27)

where ωλ is the angle between (x′1, x
′
2) and (x1, x2) (see Fig. 3a), taken positive counter-clockwise,

for the crack tip λ.
To represent the near-tip singularity, the traction approximation over interface elements is

also enriched with functions based on the analytical stress expansion. The enrichment terms are
obtained through Cauchy’s formula pi = σijnj, where the stresses σij are defined from Eq. (8)
and nj represents the outward unit normal vector at the surface. Considering a straight crack, as
depicted in Fig. 3a, the enrichment traction components – oriented according to the local crack tip
coordinate system (x′1, x

′
2) – are: p1 = −σ12 and p2 = −σ22 for the upper interface surface (s = 1)

and p1 = σ12 and p2 = σ22 for the lower interface surface (s = 2). Note that the second term of the
stress component in Eq. (8) is related to the component σ11, so there is no influence of the T-stress
on the tractions along the interface. Hence, the enriched traction approximation is written as:

p̃eλj (ξ) = p
(N)
j (ξ) + T λ

jkp
(1)
k (xλ,x(ξ)), (28)

where the enrichment components p(1)k are computed by:

{
p
(1)
1

p
(1)
2

}
=

(δs2 − δs1)√
2πρ

[
Σ1

12(θ, s) Υ1
12(θ, s)

Σ1
22(θ, s) Υ1

22(θ, s)

] [
cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]{
K̃λ

1

K̃λ
2

}
, (29)

in which the expression (δs2 − δs1) is included to result in −1 for s = 1 and +1 for s = 2. When
analysing straight cracks, as illustrated in Fig. 3a, the enrichment components in Eqs. (25), (26)
and (29) can be simplified for the crack and interface surfaces by setting θ = ±π and θ = 0,
respectively.

In the XIGABEM approximations shown in Eqs. (24) and (28), the enrichment terms are able
to represent the near-tip solutions, while the NURBS basis functions are required to capture the
difference between those near-tip solutions and the true solution over the boundary. Since this
difference is a slowly varying function, the discretisation in XIGABEM can be considerably coarser
than in conventional BEM, allowing a significant reduction in problem size while still obtaining
highly accurate solutions.

In cases where curved cracks are considered, as illustrated in Fig. 3b, the enrichment terms are
still able to represent the near-tip solution at portions close to the crack tip since the curvature

9



(a) (b)

Figure 3: Representation of (a) a straight crack and (b) a curved crack. The polar coordinates θ used in the
definition of the enrichment functions over the crack and interface surfaces are equivalent in both geometries and
their values are also indicated.

at this region is negligible. In this situation, the polar coordinate θ can be defined similarly to
that of Wang et al. [60], so that its value along the crack and interface surfaces is the same as
for the straight crack, as represented in Fig. 3b. Consequently, the same enriched approximations
presented above can be applied to allow the direct extraction of the tip parameters for curved
cracks. While the enrichment terms capture the near-tip behaviour, the NURBS terms remain
capable of representing the (still slowly varying) difference between the near-tip solutions and the
true solution over the boundary. The use of the direct method is particularly beneficial in this case
since the application of the interaction integral strategies, such as those based on the J-integral
[40], requires the definition of auxiliary solutions considering the curvilinear nature of cracks, which
is not straightforward [41, 42].

In what follows, the displacement and traction approximations used over elements on the
external boundary

(
ΓB
s

)
, crack surface

(
ΓC
s

)
and interface

(
ΓI
s

)
are presented. Then, these ap-

proximations are included in Eq. (12) to define the discrete BIE for the analysis of interface crack
problems.

3.3.1. Approximations over the external boundary
(
ΓB
s

)
The NURBS defining the external boundary ΓB

s are not considered enriched in the proposed
XIGABEM formulation. The approximations for displacements and tractions over elements at
these regions are the same used in conventional IGABEM, which are presented in Eqs. (22) and
(23).

3.3.2. Approximations over the crack boundary
(
ΓC
s

)
For elements along the crack surfaces ΓC

s , the enriched displacement approximation can be
written as:

ũeλj (ξ) =

p+1∑
m=1

ϕem(ξ)demj +
2∑

M=1

K̃λ
MT

λ
jkψ

C
kM(xλ,x(ξ)) + K̃λ

TT
λ
j1φ

C(xλ,x(ξ)), (30)

where the enrichment functions ψC
kM and φC are determined from Eqs. (25) and (26) considering

θ = ±π. They are expressed as follows:

[
ψC
11 ψC

12

ψC
21 ψC

22

]
(ρ, s) =

√
ρ

2π

(δs1 − δs2) (κs + 1)

[2µs (1 + 4ε2) cosh (πε)]

[
−2ε 1
1 2ε

] [
cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]
,

(31)
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φC(ρ, s) =
ρ

2
√
2π

(δs1 − δs2) (1 + κ1) (1 + κ2)

[(1 + κ2)µ1 + (1 + κ1)µ2]
, (32)

where s = 1 for the upper surface and s = 2 for the lower surface.
In the approximation shown in Eq. (30), the first enrichment term represents the analytical

oscillatory square-root behaviour for displacements near the tip, while the second describes the
linear contribution related to the T-stress. Although the NURBS bases are able to capture a
linearly varying function, the second term of the displacement expansion is included to extract the
T-stress parameter directly from the solution vector. This requires that the additional constraint
equation, introduced to accommodate the additional unknown K̃λ

T , should be defined in a way that
unambiguously specifies the T-stress and NURBS contributions so that the resulting system of
equations does not become rank-deficient. In other words, the definition of general supplementary
equations as, for example, by insertion of additional collocation points in the style of [47], is not
sufficient to yield a determined algebraic system. Section 3.5.2 presents a constraint that can be
applied to accommodate K̃λ

T that leads to a non-singular system, which allows the direct evaluation
of the T-stress parameter.

At the crack boundary, the enrichment traction components p(1)k in Eq. (29) are zero since
traction-free surfaces are assumed in the near-tip solution. Consequently, the unenriched traction
approximation given in Eq. (23) is sufficient for elements on crack surfaces.

3.3.3. Approximations over the interface boundary
(
ΓI
s

)
For elements on the interface boundary ΓI

s, the displacement approximation is similar to the
one adopted for crack elements, being expressed by:

ũeλj (ξ) =

p+1∑
m=1

ϕem(ξ)demj +
2∑

M=1

K̃λ
MT

λ
jkψ

I
kM(xλ,x(ξ)) + K̃λ

TT
λ
j1φ

I(xλ,x(ξ)), (33)

where the enrichment functions ψI
kM and φI are determined from Eqs. (25) and (26) considering

θ = 0. They are computed from:

[
ψI
11 ψI

12

ψI
21 ψI

22

]
(ρ) =

√
ρ

2π

κ1κ2 − 1

[(κ1µ2 + µ1) (κ2µ1 + µ2)]
1/2

[
1 2ε
2ε −1

] [
cos (ε log ρ) − sin (ε log ρ)
sin (ε log ρ) cos (ε log ρ)

]
,

(34)

φI(ρ) =
ρ

2
√
2π

(1 + κ1) (1 + κ2)

[(1 + κ2)µ1 + (1 + κ1)µ2]
. (35)

Note that the displacement enrichment functions are the same regardless of whether the upper
or lower material is considered, which results from the assumption of a perfectly bonded interface.
Besides, the functions ψI

kM and φI introduce the same behaviour of the analogous enrichment
functions for crack surfaces.

To represent the singular stress field at the crack tip, the enriched traction approximation over
the interface elements is defined as:

p̃eλj (ξ) =

p+1∑
m=1

ϕem(ξ)temj +
2∑

M=1

K̃λ
MT

λ
jkϖ

I
kM(xλ,x(ξ)), (36)
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where the traction enrichment functions ϖI
kM are defined from Eq. (29) considering θ = 0, being

expressed by: [
ϖI

11 ϖI
12

ϖI
21 ϖI

22

]
(ρ, s) =

(δs2 − δs1)√
2πρ

[
sin (ε log ρ) cos (ε log ρ)
cos (ε log ρ) − sin (ε log ρ)

]
. (37)

Note that the traction enrichment functions ϖI
kM are singular as ρ → 0. Consequently, the

enriched approximation given in Eq. (36) is able to represent the singular analytical behaviour at
the interface.

3.4. Discrete BIE
To introduce the approximations into the BIE, the integral over Γs can be subdivided into

integrals over the external ΓB
s , crack ΓC

s and interface ΓI
s boundaries, resulting in:

cij(x
′)uj(x

′) +−
∫
ΓB
s

P ∗
ij(x

′,x)ũj(x)dΓ
B
s +−

∫
ΓC
s

P ∗
ij(x

′,x)ũj(x)dΓ
C
s +−

∫
ΓI
s

P ∗
ij(x

′,x)ũj(x)dΓ
I
s = (38)

=

∫
ΓB
s

U∗
ij(x

′,x)p̃j(x)dΓ
B
s +

∫
ΓC
s

U∗
ij(x

′,x)p̃j(x)dΓ
C
s +

∫
ΓI
s

U∗
ij(x

′,x)p̃j(x)dΓ
I
s.

Then, introducing the displacement and traction approximations presented in Sections 3.3.1-
3.3.3, the discrete BIE is obtained as:

cij(x
′)ũe

′
j (ξ

′) +

Ne∑
e=1

p+1∑
m=1

P em
ij demj +

Nλ∑
λ=1

2∑
M=1

K̃λ
M

NλC
e∑

e=1

P̃ eλC
iM +

NλI
e∑

e=1

P̃ eλI
iM

+ (39)

+

Nλ∑
λ=1

K̃λ
T

NλC
e∑

e=1

P̄ eλC
i +

NλI
e∑

e=1

P̄ eλI
i

 =

Ne∑
e=1

p+1∑
m=1

U em
ij temj +

Nλ∑
λ=1

2∑
M=1

K̃λ
M

NλI
e∑

e=1

Ũ eλI
iM ,

where Ne is the number of isogeometric elements in the discretisation of Γs, Nλ is the number of
interface crack tips and NλC

e and NλI
e are, respectively, the number of crack and interface elements

enriched by tip λ.
The integral kernels P em

ij and U em
ij in Eq. (39) are exactly the same as those used in an unen-

riched IGABEM scheme, being given by:

P em
ij = −

∫ 1

−1

P ∗
ij(x

′,x(ξ̂))ϕem(ξ̂)Je(ξ̂)dξ̂, (40)

U em
ij =

∫ 1

−1

U∗
ij(x

′,x(ξ̂))ϕem(ξ̂)Je(ξ̂)dξ̂, (41)

where Je(ξ̂) is the Jacobian of the transformation from the parent space ξ̂ to the Cartesian co-
ordinate system.

The integrals in Eqs. (40) and (41) are written over the parent space ξ̂ ∈ [−1, 1] for numer-
ical integration over an isogeometric element defined in the parametric space ξ ∈ [ξq, ξq+1], with
parameters ξ and ξ̂ related by:

ξ =
(ξq+1 − ξq) ξ̂ + (ξq+1 + ξq)

2
. (42)

12



The numerical integration of Eqs. (40) and (41) can be performed following the standard
IGABEM schemes. Details about the implementation of these strategies in the isogeometric BEM
framework can be found in [52, 56, 57].

Regarding the kernels P̃ eλC
iM and P̃ eλI

iM in Eq. (39), they contain the first-order displacement
enrichment functions for crack and interface elements, respectively. A general form can be written
to express such terms as:

P̃ eλα
iM = −

∫ 1

−1

P ∗
ij(x

′,x(ξ̂))T λ
jkψ

α
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂, (43)

where α = C, I indicates whether ψα
kM is evaluated at the crack (Eq. (31)) or interface boundary

(Eq. (34)), respectively. Although the enrichment functions are oscillatory in nature, this behaviour
is restricted to portions very close to the crack tip. Elsewhere, these functions are well behaved,
which allows the use of the same integration strategies applied for the enriched integrands in
XIGABEM for homogeneous domains that are detailed in Andrade et al. [52]. Nonetheless, the
precision of the Gauss-Legendre quadrature is affected when integrating the oscillatory functions,
particularly over the elements containing the crack tip. The influence of the accuracy of the
integration over these elements on the numerical solution is investigated in Example 4.1.

The second-order displacement enrichment functions considered in the approximations of crack
and interface elements introduce the integral kernels P̄ eλC

i and P̄ eλI
i in Eq. (39), which are related

to the T-stress parameter K̃λ
T . They can be expressed as:

P̄ eλα
i = −

∫ 1

−1

P ∗
ij(x

′,x(ξ̂))T λ
j1φ

α(xλ,x(ξ̂))Je(ξ̂)dξ̂, (44)

where α = C, I indicates whether φα is evaluated at the crack (Eq. (32)) or interface boundary
(Eq. (35)), respectively. The enrichment term φα is a linear function, so the integral in Eq. (44)
can be evaluated without further difficulty with the same strategies used for kernels containing the
rational basis functions.

Finally, the extended traction approximation adopted for interface elements (Eq. (36)) intro-
duces the integral kernel Ũ eλI

iM in the discrete BIE. This integral is given by:

Ũ eλI
iM =

∫ 1

−1

U∗
ij(x

′,x(ξ̂))T λ
jkϖ

I
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂. (45)

Unlike the previous enrichment functions, the functions ϖI
kM in Eq. (45) are singular at the

crack tip, where ρ = 0 (see Eq. (37)). Therefore, to evaluate the integral in Eq. (45) over elements
containing the crack tip using Gauss-Legendre quadrature, the singularity O(ρ−0.5) must firstly
be regularised. For this purpose, the transformation of the parent coordinate ξ̂ presented in
Appendix B is applied. It is worth mentioning that discontinuous NURBS (see [52]) are adopted
to model the crack and interface surfaces so that the initial and final collocation points of the
NURBS are shifted into the curve (see Fig. 4). Therefore, no collocation point is positioned at the
crack tip and, consequently, the singularity present in the fundamental solution U∗

ij when the tip
element contains the source point x′ does not coincide with the location of the singularity in ϖI

kM .

3.5. Additional constraints

The enriched approximations used in the XIGABEM formulation contain the parameters K̃λ
1 ,

K̃λ
2 and K̃λ

T that become additional degrees of freedom in the analysis. Therefore, supplementary
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Figure 4: Illustration of the NURBS describing the crack and interface surfaces. The displacement control para-
meters involved in the crack tip tying constraint are indicated. Besides, the tip detail shows infinitesimal elements
with indication of the normal stress components parallel to the crack tip, which are used to define the additional
equation to accommodate the T-stress parameter.

relations are required to accommodate these enrichment parameters and yield a square linear
system of equations. In what follows, we provide some additional constraints used for this purpose.

These additional equations seek to introduce some analytical conditions observed at the crack
tip into the numerical solution. The use of such relations has the benefit of making the enrichment
parameters into a good representation of the SIFs Kλ

1 and Kλ
2 and the T-stress parameters Kλ

T ,
since the analytical constraints are now met in the numerical method. Consequently, the crack tip
factors are obtained directly from the solution of the algebraic system provided by the XIGABEM.

3.5.1. Crack tip tying constraint
To accommodate the additional parameters related to the SIFs for interface cracks, we enforce

continuity of displacement at the crack tip by applying the crack tip tying constraint originally
proposed by Alatawi and Trevelyan [48] for homogeneous media, and extended to the XIGABEM
formulation by Andrade et al. [52]. Here, distinct NURBS are used to describe each one of the
crack surfaces, as illustrated in Fig. 4. All elements on the NURBS defining both the crack and
interface boundaries ending at a crack tip λ are considered enriched by the corresponding functions
associated with the tip. Consequently, the displacement approximation over each crack element is
given according to Eq. (30).

Consider the enriched expansion in Eq. (30) for the displacement over the crack boundary.
When this is used to evaluate the displacement at the crack tip, the value of ρ = 0 causes the
displacement enrichment functions in Eq. (31) to vanish. In addition, since open knot vectors
are used, the NURBS contribution is reduced to the displacement control parameter at the tip.
Therefore, the displacement continuity at the tip is reduced to the following:

d
Utip

j − d
Ltip

j = 0. (46)

where dUtip

j and dLtip

j are the displacement parameters related to the control points at the crack tip
of the upper and lower NURBS, respectively (see Fig. 4).

Equation (46) provides a set of two equations per crack tip that accommodate the additional
enrichment parameters K̃λ

1 and K̃λ
2 .

3.5.2. Constraint on the stress parallel to the crack tip
To accommodate the enrichment T-stress parameter, we introduce a novel constraint based on

the relation between the normal stress components parallel to the interface at the crack tip, that
is verified in the two-term asymptotic expansion (see detail in Fig. 4).
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Similarly to displacements and tractions, the stress components over an element can also be
approximated considering the NURBS and enrichment terms. Hence, the normal stress σ11 oriented
according to the local crack tip coordinate system (x′1, x

′
2) can be approximated by:

σ̃eλ
11(ξ) = σ

(N)
11 (ξ) + σ

(1)
11 (x

λ,x(ξ)) + σ
(2)
11 (x

λ,x(ξ)), (47)

where σ(N)
11 is the contribution obtained from the NURBS functions and σ(1)

11 and σ(2)
11 are, respect-

ively, the enrichment components obtained from the first and second terms of the near-tip stress
expansion shown in Eq. (8). For elements along the crack surfaces, the enrichment terms are:

σ
(1)
11 (ρ, s) =

2 (δs2 − δs1)√
2πρ cosh(πε)

[
K̃λ

1 sin (ε log ρ) + K̃λ
2 cos (ε log ρ)

]
, (48)

σ
(2)
11 (ρ, s) = CsT =

4√
2π

Cs (κ1 + 1)µ2

[(κ1 + 1)µ2 + (κ2 + 1)µ1]
K̃T , (49)

where Eq. (10) enables the last equality in Eq. (49).
Note from Eq. (48) that the singular stress component for two corresponding points (same ρ)

on the upper and lower crack surfaces are equal in magnitude but opposite in sign. Therefore,
the sum of the analytical stress components at these two corresponding points results only in the
addition of the terms related to the T-stress, i.e., (C1 + C2)T . However, this relation between the
stress components is not ensured in the XIGABEM approximation given in Eq. (47) due to the
presence of the NURBS contribution σ

(N)
11 . Thus, to satisfy the analytical condition at the crack

tip, the sum of the NURBS terms at this point should vanish, i.e.:

σ
(U)
11 (ξf ) + σ

(L)
11 (ξ1) = 0, (50)

where σ(U)
11 and σ

(L)
11 are obtained considering the approximation over the NURBS defining the

upper and lower surfaces, respectively. It is worth emphasising that Eq. (50) does not represent
the definition of a new state of stress since the components are taken at different points – one in
material 1 and the other in material 2 – but it is solely an expression that can be used to satisfy
the analytical behaviour at the tip.

The stress components in Eq. (50) can be obtained from a generalised Hooke’s law statement,
and can be shown to be related to the NURBS derivatives and the displacement control parameters
over the tip element e by:

σ
(N)
11 (ξtip, s) =

(δs1 − δs2)E
∗
s

JN(ξtip)

p+1∑
m=1

dϕNm

dξ
(ξtip)

(
dNm
1 cosωλ + dNm

2 sinωλ
)
, (51)

where N = U,L indicates whether e is the tip element on the upper (s = 1) or lower (s = 2)

surface, respectively, JN(ξ) =

√(
dx̃e

1

dξ
(ξ)

)2

+
(

dx̃e
2

dξ
(ξ)

)2

is the Jacobian of the transformation, ξtip
denotes the corresponding knot at the crack tip, E∗

s = Es for plane stress and E∗
s = Es/ (1− ν2s )

for plane strain.
Substituting Eq. (51) in Eq. (50) leads to:

E∗
1

JU(ξf )

p+1∑
m=1

dϕUm

dξ
(ξf )

(
dUm
1 cosωλ + dUm

2 sinωλ
)
− E∗

2

JL(ξ1)

p+1∑
m=1

dϕLm

dξ
(ξ1)

(
dLm1 cosωλ + dLm2 sinωλ

)
= 0.

(52)
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Equation (52) provides an additional relation for each crack tip that accommodates the T-
stress parameter K̃λ

T . This expression defines a constraint on the NURBS derivatives at the tip
that is sufficient to make the linear displacement enrichment related to the T-stress independent
from the NURBS contribution (see Eq. (30)). Therefore, the final algebraic system becomes
determined. Additionally, we note that normalising the terms in Eq. (52) by the coefficient of
maximum magnitude has a beneficial effect on the conditioning of the resulting system of equations.

3.6. Assembly of the system of equations
The system of equations defined by XIGABEM is assembled considering the collocation method

and the discrete form of the BIE presented in Eq. (39). In this process, the source point is chosen
to lie, in turn, at each collocation point, which is defined at the Greville abscissae [61, 62]:

ξ′i =

∑p
j=1 ξi+j

p
, (53)

where ξ′i is the knot corresponding to the i-th collocation point along the NURBS of order p. With
a particular parametric coordinate ξ′, the position of the corresponding collocation point x′(ξ′)
can be computed from Eq. (21).

Special attention should be given to the jump term in Eq. (39). The displacement components
at the source point ũe′j (ξ′) must be written considering the approximation over the element e′ that
contains x′, i.e., uj(x′) = ũe

′
j (ξ

′). Consequently, when assembling the system of equations, the
jump term coefficients cij must be distributed over the degrees of freedom defining ũe′j (ξ′), which
include the enrichment parameters if e′ is enriched.

After considering each collocation point in the isogeometric boundary element mesh as source
point of the BIE (Eq. (39)) and carrying out the integration over the boundary Γs = ΓB

s ∪ΓC
s ∪ΓI

s

that contains x′, the following system of linear equations is determined:

[
HB

1 HC
1 HI

1 0 0 0 H̃C
1 + H̃I

1 H̄C
1 + H̄I

1

0 0 0 HB
2 HC

2 HI
2 H̃C

2 + H̃I
2 H̄C

2 + H̄I
2

]


dB
1

dC
1

dI
1

dB
2

dC
2

dI
2

K̃

K̃T


= (54)

=

[
GB

1 GC
1 GI

1 0 0 0 G̃I
1

0 0 0 GB
2 GC

2 GI
2 G̃I

2

]


tB1
tC1
tI1
tB2
tC2
tI2
K̃


.

In Eq. (54), the subscript s = 1, 2 denotes the subdomain, while the superscript α = B,C, I
represents the external, crack and interface boundaries, respectively. The sub-matrices Hα

s , H̃α
s

and H̄α
s are defined, respectively, from the kernels P em

ij , P̃ eλα
iM and P̄ eλα

i of the BIE (39). These sub-
matrices also contain the distribution of the jump terms cij over the degrees of freedom defining
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the displacement components at the source points. Additionally, the sub-matrices Gα
s and G̃I

s

contain the coefficients determined from the integral kernels U em
ij and Ũ eλI

iM , respectively. Finally,
the vectors dα

s and tαs include the displacement and traction parameters at the control points,
while the vectors K̃ and K̃T store the enrichment unknowns related to the SIFs and T-stress for
all crack tips. Note that, since traction-free cracks are considered, tC1 = tC2 = 0.

Algorithm 1 summarises the integration process in the XIGABEM code for interface cracks.
Note that, relative to the unenriched approach, only the conditional block to check whether an
element is enriched must be inserted. Moreover, since a significant part of the quantities in the
enriched integral kernels is already computed in the conventional BEM kernels – such as the
fundamental solutions and the Jacobian – the additional calculations are reduced to the evaluation
of the enrichment functions. Consequently, the extended formulation can be easily coupled to
existing codes without significantly affecting computational performance.

Algorithm 1: XIGABEM for interface cracks – Integration Algorithm
1 for x′ ∈ Γs do
2 for e ∈ Γs do
3 Compute P em

ij → Ha
s ;

4 Compute U em
ij → Ga

s ;
// obs: α = B if e ∈ ΓB

s ; α = C if e ∈ ΓC
s ; α = I if e ∈ ΓI

s

5 if e on a crack surface enriched by tip λ then
6 Compute P̃ eλC

iM → H̃C
s ;

7 Compute P̄ eλC
i → H̄C

s ;
8 else if e on an interface surface enriched by tip λ then
9 Compute P̃ eλI

iM → H̃I
s;

10 Compute P̄ eλI
i → H̄I

s;
11 Compute Ũ eλI

iM → G̃I
s;

12 end
13 end
14 Compute cij(x′)ũe

′
j (ξ

′) → Hα
s , H̃

α
s , H̄

α
s ;

15 end

In our applications, the NURBS used to describe the upper and lower interface surfaces are
defined by the same knot and weight vectors and by control points located at the same position (see
Fig. 4). Therefore, to satisfy the conditions of a perfectly bonded interface expressed by Eq. (15),
it is sufficient to impose the following compatibility constraints for corresponding control points:

dI
1 = dI

2 and tI1 = −tI2. (55)

After imposing the external boundary conditions and the relations of Eq. (55) in Eq. (54),
and then inserting the additional constraints given in Eqs. (46) and (52), the final the system of
equations defined by XIGABEM becomes expressed as:
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 AB
1 HC

1 HI
1 −GI

1 0 0 H̃C
1 + H̃I

1 − G̃I
1 H̄C

1 + H̄I
1

0 0 HI
2 GI

2 AB
2 HC

2 H̃C
2 + H̃I

2 − G̃I
2 H̄C

2 + H̄I
2

0 ĤC
1 0 0 0 ĤC

2 0 0





yB
1

dC
1

dI
1

tI1
yB
2

dC
2

K̃

K̃T


=


f1
f2
0

 , (56)

where AB
s contains the coefficients from HB

s and GB
s related to the unknown control values yB

s

at the external boundary ΓB
s . The vectors of constant terms f1 and f2 are given from the multi-

plication of the known control parameters and their corresponding influence coefficients from HB
s

and GB
s . The sub-matrices ĤC

s represent the additional equations introduced to accommodate the
enrichment parameters, being defined by the coefficients associated with the displacement control
parameters at the crack tip elements.

The solution of the linear system in Eq. (56) provides not only the unknown control variables
but also the crack tip parameters introduced by the enriched formulation. Therefore, the SIFs
and T-stress parameter for each crack emerge as terms in the solution vector, without requiring a
post-processing technique.

4. Numerical applications

Six examples illustrate the ability of the XIGABEM formulation presented in Section 3 to
directly evaluate the crack parameters for interface cracks. In the first and second applications, the
accuracy is assessed with respect to available analytical solutions. In addition, the convergence of
the proposed numerical formulation with mesh refinement is verified. In the last four applications,
the XIGABEM solutions are compared against results of other numerical methods available in the
literature. The third example also demonstrates the reduction in computation cost of the proposed
direct method when compared to indirect schemes based on the J-integral.

For the XIGABEM modelling, all elements on the crack and interface surfaces are considered
enriched by the tip that they define. Moreover, the order of the NURBS basis functions is selected
as p = 2 for all analyses. Uniform isogeometric boundary element meshes are considered, in which
the parametric space is subdivided in evenly spaced knots – a mesh grading scheme towards the tip
or special tip elements are not required since the enrichment terms are able to capture the analytical
behaviour in this region. In problems demanding increased mesh density, the h-refinement strategy
is used [63]. All numerical simulations are performed on a personal notebook with AMD Ryzen™
7 4800H @ 2.90 GHz processor and 8 GB of RAM.

In the reference solutions available in the literature, the values for the SIFs and T-stress are
normalised by different terms. Where applicable, we provide the expressions used to define the
normalised values.

4.1. Edge crack in a bimaterial plate
In this example, we consider a bimaterial plate with dimensions L × L containing an edge

interface crack of length a = 0.5L, as depicted in Fig. 5a. For the analysis, the analytical two-
term expansions for both displacements and tractions are applied along the external boundary as
boundary conditions. The prescribed displacement components are obtained directly from Eq. (11),
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(a)

Element Collocation Point

(b)

Figure 5: (a) Bimaterial plate containing an edge interface crack. (b) Representation of the isogeometric bound-
ary element mesh. The red and blue lines indicate the elements enriched with the crack or interface functions,
respectively (Example 4.1).

while the traction values are determined from Cauchy’s formula pi = σijnj, with the stresses σij
given by Eq. (8). Pure mode loadings are assumed to compute the analytical boundary conditions;
thus, one factor among K1, K2 or KT is considered to be different from zero and equal to unity,
while the other two are identically nil.

The analyses are carried out considering the enrichment of crack and interface elements with
the two-term expansion. Different Young’s modulus ratios β = E1/E2 are considered, while the
Poisson’s ratios for both materials are ν1 = ν2 = 0.3 and a plane strain condition is assumed. The
relative errors in the crack parameters for the pure mode problems are computed from:

eK =
∥Kana −Knum∥

∥Kana∥
= ∥1−Knum∥ , (57)

where Kana = 1 is the crack parameter considered in the pure mode and Knum is the corresponding
numerical solution determined directly via XIGABEM.

4.1.1. Accuracy of integration
As the enrichment terms contain the expected solution for this problem and the boundary

conditions are represented with a high degree of precision, the errors in XIGABEM responses are
closely related to the accuracy of the numerical integration. Thus, we investigate the influence of
the number of integration points used in the Gauss-Legendre quadrature on the results. Four ma-
terial combinations are assumed: β = 1, 2, 10 and 100, corresponding to the oscillatory parameters
ε = 0,−0.030, −0.075 and −0.092, respectively. Pure mode problems involving only K1 (K1 = 1,
K2 = 0, KT = 0), K2 (K1 = 0, K2 = 1, KT = 0) or KT (K1 = 0, K2 = 0, KT = 1) are addressed.
The XIGABEM analyses are carried out considering a uniform boundary element mesh containing
48 isogeometric elements and 24 collocation points, as illustrated in Fig. 5b.

Figure 6a presents the relative errors, eK , for the crack parameters – obtained directly by
XIGABEM for the respective pure mode problems – with the number of integration points used
for evaluation of the integrals over each element. Regarding the SIFs, the variation recovered for K1

and K2 are similar for every material combination since the corresponding enrichment functions
and boundary conditions exhibit the same behaviour for both parameters. As for the T-stress
factor, the integrals involved in the particular pure mode problem can be computed with great
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accuracy when using more than 20 integration points. After this threshold, the values obtained
for KT oscillate near the computational precision, with errors remaining below 10−13.

The precision of the results obtained for the SIFs shown in Fig. 6a is directly related to the
accuracy of the numerical integration over elements containing the tip. This aspect is underlined
in Fig. 6b, which shows the relative errors for the crack parameters with the number of integration
points adopted for the tip elements, while a 30-point Gaussian quadrature rule is applied for
elements far from the crack tip. Comparing the results from Figs. 6a and 6b, when considering the
homogeneous case (β = 1), the solutions are similar up to 30 integration points, indicating that
the errors in the SIFs are defined by the accuracy of the numerical integrals over the tip elements.
After that, the improvement of the SIFs responses in Fig. 6b becomes progressively smaller until
a plateau is reached. In this situation, the reduction of the errors is only possible by increasing
the number of quadrature points in the whole mesh, as demonstrated by the solutions shown in
Fig. 6a.

In the inhomogeneous scenarios (β > 1), practically the same SIF results are recovered by the
XIGABEM for a particular β, as shown in Figs. 6a and 6b. This behaviour indicates that the
errors in the numerical integration over the tip elements are dominant and control the accuracy of
the solutions over the entire range of integration points. When considering material dissimilarity,
the enrichment functions related to the SIFs become oscillatory. In this case, the precision of the
results is strictly related to the accuracy of the quadrature used for evaluation of the integrals
that contain these oscillatory terms, particularly over the tip elements. To demonstrate this,
consider the integral I =

∫ 1

0
cos(ε log z)dz, which resembles the oscillatory enrichment terms over

the elements containing the crack tip. The error in the numerical evaluation of this integral can
be computed from:

eint =

∥∥∥∥1− Inum

Iana

∥∥∥∥ , (58)

where Inum and Iana represent, respectively, the numerical and analytical solutions for I. The error
eint is also presented in Fig. 6b when considering ε = −0.030, −0.075 and −0.092. Note that the
convergence patterns obtained for the SIFs solutions and eint are very similar, indicating that the
errors in the XIGABEM are indeed determined by the accuracy of the numerical evaluation of
the enriched kernels over the tip elements. Additionally, eint increases with the magnitude of the
oscillatory parameter ε, which is also observed in the XIGABEM responses. However, since the
magnitude of ε is limited to an asymptotic value, the differences between solutions tend to reduce
for increasing values of β.

Regarding the results for the T-stress parameter presented in Figs. 6a and 6b, it is observed
that the influence of the number of integration points adopted for the tip element is minimal. The
enrichment functions related to KT are linear in ρ and, therefore, the enriched integral kernels can
be computed without great difficulty. Thus, when a sufficient number of quadrature points is used
for evaluating all other integrals over the elements on the mesh, the errors recovered for KT remain
close to computational precision. The results show that a 30-point quadrature rule is adequate
to ensure the accurate evaluation of these integrals and, therefore, we also adopt this amount of
integration points in the remaining examples of this paper.

It is clear from Fig. 6a that high quality solutions, demonstrably of good engineering accuracy,
can be obtained using a moderate number of Gauss points over all but the crack tip elements.
However, we proceed with the use of a 30-point quadrature rule for the following reason. There
are two main sources of error in the solution parameters: (i) the discretisation errors, which reflect
how well a linear combination of NURBS and enrichment functions is able to capture the solutions,
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(a) (b)

Figure 6: Error variation of the crack parameters with the (a) number of integration points for all elements on the
mesh and (b) number of integration points in the tip element while a 30-point Gaussian quadrature rule is applied
for the others (Example 4.1).

and (ii) integration errors, which affect the accuracy of matrix terms and then propagate through
the solution process. We consider it most important to demonstrate in this paper the discretisation
errors. A 30-point quadrature rule is chosen since it is demonstrated by the above analysis that
the integration errors will be small, so that the errors presented in the remaining sections will be
the important discretisation errors, i.e. not polluted by integration errors.

4.1.2. Convergence study
We now investigate the convergence of XIGABEM in the analysis of this problem with an exact

solution. For this purpose, the number of isogeometric elements in the uniform boundary element
mesh is varied from 48 (4 elements on the crack) to 360 (25 elements on the crack), while the
parameter β assumes the following values: 2, 10, 100 and 1000. Table 1 shows the convergence of
the relative errors in the crack parameters, computed from Eq. (57), considering the respective
pure mode problems. Comparing the SIF results from different material combinations, the errors
tend to increase with the magnitude of the oscillatory parameter for to the same reasons identified
in the previous analysis. For β = 100 and β = 1000, the solutions are practically the same as
a result of the similarity between the ε values. Regarding KT , the accuracy fluctuates close to
computational precision.

Since the enrichment functions, on their own, are able to capture the response to the analytical
problem, the contribution of the NURBS term to the final solution is minimal. Hence, the mesh
refinement has little effect on the error improvement, except by slightly increasing the accuracy
of the integration of oscillatory functions close to the tip, which ultimately leads to the small
convergence verified for the SIFs in non-homogeneous scenarios. The contribution of each term of
the XIGABEM approximation in the final displacement solution considering a pure K1 problem
and β = 10 is illustrated in Fig. 7. A 48-element mesh is used for the analysis. Figure 7a
shows the deformed shape prescribed along the edges as boundary conditions and the solutions
defined by the NURBS term along the crack and interface, while Fig. 7b present the deformed
response recovered by the enrichment terms. When these contributions are superposed, they
provide the final displacement response given in Fig. 7c. Note that the crack solution is defined by
the enrichment term, whereas the NURBS term plays a minor role in the response. Finally, Fig. 8
present the von Mises stress distribution determined by XIGABEM, which clearly shows the stress
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Table 1: Errors for crack parameters in pure mode problems considering different boundary element meshes (Ex-
ample 4.1)

β ε (×10−2) nelem eK1
eK2

eKT
β ε (×10−2) nelem eK1

eK2
eKT

2 -3.041

48 2.5E-5 2.3E-5 6.7E-15

100 -9.159

48 1.9E-4 1.8E-4 6.0E-15

96 2.4E-5 2.1E-5 3.8E-14 96 1.8E-4 1.6E-4 2.6E-14

192 2.2E-5 2.0E-5 4.9E-14 192 1.6E-4 1.5E-4 1.4E-13

360 2.0E-5 1.8E-5 1.1E-13 360 1.5E-4 1.4E-4 2.4E-13

10 -7.581

48 1.4E-4 1.3E-4 6.2E-15

1000 -9.335

48 1.9E-4 1.8E-4 9.5E-15

96 1.3E-4 1.2E-4 7.7E-14 96 1.8E-4 1.7E-4 6.3E-14

192 1.2E-4 1.1E-4 1.4E-13 192 1.7E-4 1.6E-4 1.1E-13

360 1.1E-4 1.0E-4 3.5E-13 360 1.6E-4 1.5E-4 2.5E-14

(a) (b) (c)

Figure 7: (a) Deformed shape prescribed along the edges as boundary conditions and the solutions defined by the
NURBS term along the crack and interface. (b) Deformed shape considering the contribution from enrichment
terms for pure K1 problem with β = 10. (c) Final deformed shape obtained by superposition of solutions (a) and
(b) (Example 4.1).

concentration at the crack tip and the discontinuity in the stress field occurring at the bimaterial
interface.

4.2. Curved interface crack between an inclusion and an infinite matrix
We now move on to analyse an application in which the solution is not contained in the approx-

imation space as in the previous example. Consequently, the final response is not captured solely
by the enrichment terms but also by the NURBS basis functions. Therefore, the discretisation
error plays an important role in the accuracy of the XIGABEM results for this problem.

Consider an infinite matrix containing a circular inclusion of radius R and subjected to a biaxial
tensile loading σ0, as illustrated in Fig. 9a. A curved crack with half-crack angle θ0 is positioned
along the matrix-inclusion interface. To represent the infinite matrix, we adopt L = 100R. For the
numerical analysis, different Young’s modulus ratios β = E2/E1 are considered, while the Poisson’s
ratios for both materials are taken as ν1 = ν2 = 0.3. A plane strain condition is considered.

Initially, we study the convergence of the crack parameters at tip B considering θ0 = 90◦ and
taking β = 1, 2, 10, 100 and 1000, values that correspond to ε = 0, 0.030, 0.075, 0.092 and 0.093,
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Figure 8: Von Mises stress distribution determined by the XIGABEM for pure K1 problem and β = 10 (Ex-
ample 4.1).
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Figure 9: (a) Infinite matrix containing an inclusion subjected to biaxial traction. (b) Detail of the isogeometric
boundary element mesh around the inclusion. The red and blue lines indicate the elements enriched with the crack
or interface functions, respectively (Example 4.2).
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Table 2: Analytical values for the crack parameters at tip B [17, 64] (Example 4.2).

β: 1 2 10 100 1000

K∗
1 : 0.4714 0.6288 0.8705 0.9566 0.9663

K∗
2 : -0.4714 -0.5808 -0.7147 -0.7543 -0.7586

Note: K∗
1 + iK∗

2 = (K1 + iK2) /
(
σ0

√
πR0.5−iε

)

Figure 10: Error convergence of the crack parameters solutions defined directly by XIGABEM (Example 4.2).

respectively. The number of elements in the discretisation of the interface and crack surfaces is
varied from 96 to 360, while the outer boundary mesh is fixed at 40 elements. Figure 9b shows the
detail of the discretisation around the inclusion for the coarsest mesh. The SIFs are normalised by
K∗

1 + iK∗
2 = (K1 + iK2) /

(
σ0
√
πR0.5−iε

)
, and Table 2 provides the analytical solutions [17, 64] used

to verify the accuracy of the XIGABEM results. The convergence curves of the SIF values are
shown in Fig. 10. The errors in K∗

1 decrease for increasing values of β (and ε), whereas the opposite
behaviour is observed for K∗

2 . Nevertheless, similarly to the previous example, the variations in the
SIF errors with β reduce as the oscillatory parameter ε tends to its asymptotic value. Figure 10
also shows the error convergence in the T-stress value at the inclusion (material 2) considering
β = 1, in which the normalised reference solution is T2/σ0 = 0.6667 [65]. To the best of the
authors’ knowledge, no analytical solution is available for the T-stress in the non-homogeneous
case. Accurate solutions are obtained by the direct XIGABEM formulation for both SIFs and T-
stress, with errors below 0.8% even for a coarse mesh, and the convergence pattern of the solutions
demonstrates the stability of the proposed method.

Figures 11a and 11b show, respectively, the displacement contributions of the NURBS and
enrichment terms, while the superposition of these two responses provides the final solution given
in Fig. 11c. Discontinuous NURBS are used to define each quarter of the inclusion, with those on
the upper half enriched by tip A and those on the lower half enriched by tip B. Note that very close
to the crack tips, the solution is mainly captured by the enrichment term. However, for points
away from the tip, the NURBS have a significant contribution to the response, being responsible
for correcting the enriched solution to account for the curvature effect. With mesh refinement, the
responses from the NURBS term become more accurate, leading to the convergence of the crack
parameters results shown in Fig. 10.
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(a) (b) (c)

Figure 11: Deformed shape considering the contribution from (a) NURBS basis functions and (b) enrichment terms.
(c) Final deformed shape obtained by superposition of solutions (a) and (b) (Example 4.2).
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Figure 12: (a) Normalised SIFs with the half-crack angle. Note: the continuous and dashed lines represent the
analytical distributions for K∗

1 and K∗
2 , respectively, while the dots represent the solutions determined numerically

in the present study. (b) Variation of the T-stress with the half-crack angle (Example 4.2).

We now investigate the influence of the half-crack angle on the SIFs and T-stress values. For
this purpose, the parameter θ0 is varied from 5◦ to 175◦ in steps of 5◦. The analyses are carried out
considering a total of 232 isogeometric elements in the boundary discretisation. Figure 12a presents
the discrete results for the SIFs determined directly by XIGABEM. The analytical solutions for
K∗

1 and K∗
2 are also given and are represented in solid and dashed lines, respectively. Excellent

agreement is observed between the numerical and reference results in the whole range of θ0. The
responses for the T-stress are also determined and are shown in Fig. 12b. Note that both the SIFs
and T-stresses tend to be limited as ε approaches its asymptotic value. Figure 12b also presents
the analytical solutions of the T-stress for the homogeneous case, which, again, have excellent
correspondence with the XIGABEM results.

4.3. Edge interface crack in a bimaterial strip
Consider a bimaterial strip composed of two layers of thickness h and containing an edge crack

of length a. The strip is constrained at the right end, while a load of magnitude σ0 is applied
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Figure 13: Bimaterial strip with an edge interface crack (Example 4.3).

Table 3: Normalised SIFs and T-stress in material 1 for bimaterial strip with edge crack (Example 4.3).

Case E1
E2

ν1 ν2
K∗

1 K∗
2 T1/σ0

Ref. [16] Present Ref. [16] Present Ref. [18] Ref. [29] Ref. [66] Present

1 7/3 1/3 1/3 -0.0528 -0.0526 0.2976 0.2963 0.0709 0.0702 0.0709 0.0706

2 20/9 1/4 1/8 -0.0282 -0.0285 0.3056 0.3038 0.0784 0.0773 0.0778 0.0792

3 4 2/5 2/5 -0.1033 -0.1032 0.3153 0.3142 0.1310 0.1317 0.1301 0.1301

4 4 1/4 1/4 -0.0783 -0.0781 0.3277 0.3259 0.1424 0.1410 0.1419 0.1432

Note: K∗
1 + iK∗

2 = (K1 + iK2) /
(
σ0

√
πh0.5−iε

)

at the left end of the layers, as indicated in Fig. 13. The dimensions are taken as L = 10h,
a = 0.5L and a plane strain condition is assumed in the analyses. Initially, different material
combinations are considered for the strip and the results are compared against reference solutions.
Then, the convergence and computational cost of the proposed direct method are evaluated against
an indirect method in which interaction integrals are used for crack parameter extraction.

4.3.1. Variation of material properties
In this analysis, four different combinations of material parameters are considered, and the

values adopted for each case are shown in Table 3. Table 3 also presents the SIFs and T-stress
values computed directly by XIGABEM considering a uniform boundary mesh containing 264
isogeometric elements (30 elements on each crack surface). The normalised SIF values are de-
termined by K∗

1 + iK∗
2 = (K1 + iK2) /

(
σ0
√
πh0.5−iε

)
. Other solutions available in the literature

are also shown. The results given by Suo and Hutchinson [16] for SIFs and Kim and Vlassak [18]
for T-stress are determined from semi-analytical expressions considering a bimaterial strip with
infinite length. On the other hand, the numerical solutions for the T-stress obtained by Yu et al.
[29] (XFEM) and Muthu et al. [66] (Element-free Galerkin) are also obtained considering a finite
strip of length L = 10h. Excellent agreement is found between the solution determined by the pro-
posed direct method and the reference results. Particularly, when compared to the semi-analytical
solutions provided by Suo and Hutchinson [16] and Kim and Vlassak [18], the errors obtained by
the XIGABEM are smaller than 1%, demonstrating the accuracy of the proposed direct method
in evaluating the crack parameters.

4.3.2. Comparison between the direct method and the indirect method
To compare the performance of the direct and indirect methods for evaluating the crack tip

parameters, we assume the material properties from Case 1 given in Table 3. The direct solutions
for the SIFs and T-stress are obtained directly via the proposed XIGABEM formulation, while the
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Figure 14: Convergence of normalised (a) SIFs and (b) T-stress in material 1 with refinement of the boundary
element mesh. The Direct results are obtained directly from the solution vector provided by the XIGABEM, while
the Indirect responses are determined in a post-processing strategy based on interaction integrals (Example 4.3).

indirect results are computed through a post-processing strategy using the interaction integrals
based on the J-integral [24, 25]. The interaction integrals are computed along a circular path
centred at the crack tip and discretised into 32 isogeometric elements.

Firstly, a convergence study is carried out by varying the number of elements in the boundary
mesh and the results are presented in Figs. 14a and 14b. Note that both the direct and indirect
solutions converge towards the range of values found in the literature (see Table 3), indicating
that the XIGABEM can provide solutions as accurate as the ones given by methods based on
interaction integrals. Nevertheless, the proposed method still has the advantage of eliminating the
post-processing step for the computation of the crack tip parameters.

To quantify the amount of computational effort saved by the direct method when compared
to the indirect approach, the run times obtained during the convergence analyses are presented
in Fig. 15. The relative difference curve is also shown. It can be noted that, by dismissing the
use of internal points for computing the crack tip parameters, the proposed XIGABEM is able to
reduce by 25 to 35% the execution times obtained by the indirect method. This reduction is in
accordance with previous results determined by the authors in the application of the XIGABEM
for homogeneous media [52]. Since the number of enriched elements increases at the same rate as
the total number of elements, the growth rate in the computational time in the direct approach is
close to the standard BEM, which is equal to 2. The lower growth rate observed in the indirect
approach is due to the fixed number of elements used in the discretisation of the path to calculate
the interaction integrals, regardless of mesh refinement. Improved computational performance
can be achieved by the direct method by enriching fewer crack and interface elements. Since the
analytical behaviour is predominant in regions close to the tip, the elements enriched by the crack
functions can be restricted to this region, decreasing the computational effort for the calculation
of enriched integral kernels.

4.4. Curved interface crack between the inclusion and matrix in a finite plate
In this example, we consider a square plate of unit length (L = 1) composed of a matrix of

material 1 and an inclusion of material 2. In the interface between the inclusion and the matrix,
there is a circular crack with a half-crack angle θ0, as illustrated in Fig. 16. The volume fraction of
the inclusion is 20%, so its radius is given by R =

√
0.2/π. The displacements in the x1 direction

are constrained along the left edge, while a constant displacement u1 = δ = 0.01 is prescribed
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Figure 15: Variation of execution times, in seconds, with boundary mesh refinement and relative differences, in
percentage, between run times from the direct and indirect methods (Example 4.3).
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Figure 16: Circular crack around an inclusion in a square plate (Example 4.4).

at the right edge. Two cases are analysed: in the first one (4.4.1), the SIFs determined by the
XIGABEM are compared with reference results, while in the second (4.4.2), the accuracy of the
T-stress solutions is assessed. For all analyses, a plane strain condition is considered. Additionally,
184 elements are used in the boundary element discretisation (10 at each side of the plate and 72
along the perimeter of the inclusion).

4.4.1. Stress intensity factors
In this scenario, the following material properties are considered for the numerical analysis:

E1 = 72.4× 103, ν1 = 0.22, E2 = 3.45× 103 and ν2 = 0.35. Additionally, the half-crack length θ0
varies from 10◦ to 60◦.

Figure 17 shows the results obtained for the SIFs normalised by σave
√
πRθ0, where σave is

the average normal stress on the right edge of the plate. The solutions determined by Liu and
Xu [34] using BEM and by Wu et al. [67] using XFEM are also provided for comparison. Good
correspondence is observed between the XIGABEM solutions and the reference results, especially
with those given by Wu et al. [67]. Similarly to the XFEM solutions, the curves determined by
XIGABEM vary more smoothly than those obtained by conventional BEM, which indicates that
the enriched formulation contributes to the stability of the results.

4.4.2. T-stress
For the T-stress analysis of the problem illustrated in Fig. 16, we consider different ratios

between the Young’s modulus of the inclusion and matrix, defined as β = E2/E1. The ratio β
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Figure 17: Variation of the normalised SIFs at tip A with the half-crack angle θ0 (Example 4.4).
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Figure 18: Variation of the normalised T-stress in material 1 with the half-crack angle θ0(Example 4.4).

is taken as 0.25 (soft inclusion), 1.0 (homogeneous) and 4.0 (hard inclusion), while the Poisson’s
ratios for the materials are ν1 = ν2 = 0.3. Additionally, the half-crack angle range θ0 is considered
in the range 10◦ to 90◦.

The results for the normalised T-stress in material 1 obtained directly by XIGABEM are
presented in Fig. 18. Due to the symmetry, the T-stress values in the matrix for both tips are
the same. For small cracks, T1 tends to be a compressive stress, but as the crack length increases,
T1 becomes a tensile stress. Moreover, apart from the values of θ0 around 40◦ where T1 switches
from a compressive to a tensile stress, the magnitude of T1 is greater the stiffer the matrix is than
the inclusion. Yu et al. [29] also analysed this problem using the XFEM, and their solutions are
shown in Fig. 18. Good agreement is attained between the XIGABEM and XFEM results for
different material combinations. The small differences between the solutions are of the same order
of magnitude as in the previous example, in which the solutions given by Yu et al. [29] were also
taken for comparison.

4.5. Bimaterial plate with a centre interface crack
Consider the bimaterial plate containing a centre crack lying along an inclined interface, as

illustrated in Fig. 19. The plate has dimensions 2w × 2h and is tensioned by a uniform load σ0.
The crack length is such that a/w = 0.5. In this example, we undertake two different analyses:
firstly, we assume a horizontal interface (α = 0◦) and investigate the variation of the SIFs and
T-stress for different material properties. Secondly, we study the influence of the interface slope
α and the ratio E1/E2 on the values of the crack parameters. The SIF solutions are given in
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Figure 19: Tensioned bimaterial plate containing a centre interface crack (Example 4.5).

Table 4: Normalised SIFs and T-stress in material 2 for bimaterial plate with a horizontal centre crack (Example 4.5).

E1
E2

K∗
1 K∗

2 T ∗
2

Ref. [45] Ref. [46] Present Ref. [45] Ref. [46] Present Ref. [45] Ref. [46] Present

1 1.1890 1.1893 1.1901 0.0000 0.0000 0.0000 -1.0600 -1.0552 -1.0531
2 1.1790 1.1798 1.1807 -0.0550 -0.0566 -0.0543 -0.7180 -0.7144 -0.7131
5 1.1480 1.1483 1.1494 -0.1040 -0.1053 -0.1041 -0.3790 -0.3770 -0.3760
10 1.1230 1.1237 1.1249 -0.1230 -0.1240 -0.1234 -0.2160 -0.2147 -0.2139

Note: K∗
1 + iK∗

2 = (K1 + iK2) /
[
(2a)−iεσ0

√
πa

]
and T ∗ = T

√
πa/K0, with K0 =

√
K2

1 +K2
2

normalised form given by K∗
1 + iK∗

2 = (K1 + iK2) /
[
(2a)−iεσ0

√
πa

]
, while the normalised T-stress

is obtained by T ∗ = T
√
πa/K0, with K0 =

√
K2

1 +K2
2 . All analyses are carried out considering

200 isogeometric elements in the boundary discretisation, with 20 elements on each crack surface.

4.5.1. Horizontal interface (α = 0◦)

For the configuration of a horizontal interface (α = 0◦), the SIFs and T-stress are computed for
the ratio between Young’s moduli E1/E2 = 1, 2, 5 and 10. The Poisson’s ratios for both materials
are ν1 = ν2 = 0.3 and a plane strain condition is assumed.

Table 4 presents the normalised values obtained for the SIFs and T-stress in material 2. The
XIGABEM solutions are compared with published results obtained with SBFEM [45] and with
xSBFEM [46], which are also presented in Table 4. Excellent agreement is observed between the
results for all considered combinations of material properties. This demonstrates the accuracy
of the proposed direct approach for computing the interface crack parameters, especially as it
performs well in comparison with the SBFEM formulation, which is acknowledged to benefit in
the analysis of fracture problems from naturally capturing the asymptotic fields near the tip.

4.5.2. Inclined interface (α = 0◦ − 60◦)

The inclination angle α of the interface in the bimaterial plate shown in Fig. 19 is now varied
from 0◦ to 60◦, while the ratio between Young’s moduli is fixed at β = E1/E2 = 10 and ν1 = ν2 =
0.3. The analyses are carried out considering a plane stress condition.
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Figure 20: Variation of the normalised SIFs and T-stress in material 2 with the interface orientation α for the
(a) right tip and (b) left tip. The XIGABEM results are compared against the numerical solutions provided by
Miyazaki et al. [24], Wang et al. [44] and Gu and Zhang [35] (Example 4.5).

Figures 20a and 20b show the results for the normalised SIFs and T-stress in material 2 de-
termined for the right and left tips, respectively. Unlike the homogeneous case (see Portela et al.
[68]) the crack parameters computed for the two tips are distinct because of the material dis-
similarity. The figures also present the variation of the SIFs obtained by Wang et al. [44] using
XFEM and the BEM solutions provided by Miyazaki et al. [24] and Gu and Zhang [35] considering
α = 15◦, 30◦, 45◦ and 60◦. To compute the SIFs, Wang et al. [44] used Irwin’s crack closure integ-
ral, Gu and Zhang [35] adopted the displacement extrapolation method combined with a crack-tip
element strategy and Miyazaki et al. [24] applied a conservation integral. In these references, the
K∗

2 responses appear with the opposite sign than shown here due to the convention adopted in the
definition of this factor. Again, the XIGABEM results are in good agreement with the solutions
found in the literature, demonstrating the accuracy of the proposed direct method. Particularly,
when compared to the XFEM [44], the SIF values obtained here better approximate the BEM
solutions given by Miyazaki et al. [24] and Gu and Zhang [35]. Regarding the T-stress, it can be
noted that for both tips this stress term changes from compression to tension as the inclination of
the interface increases.

Considering the inclination angle of the interface as α = 15◦, 30◦, 45◦ and 60◦, we also address
the scenarios in which E1/E2 = 100 and E1/E2 = 1000. Table 5 shows the results obtained by
the XIGABEM model and those provided by Gu and Zhang [35], including the case E1/E2 = 10
plotted in Figs. 20a and 20b. Again, the XIGABEM solutions are in excellent agreement with those
provided by the reference, the average difference between the solutions being around 0.4%. We note
that the results shown here are obtained with a coarser mesh than in Gu and Zhang [35]. While
272 quadratic Lagrange elements were used in the reference, including 40 discontinuous elements
along each crack surface, 200 quadratic isogeometric elements are applied here, which represents a
substantial reduction in the number of degrees of freedom. The results for the T-stress in material
2 are also shown in Table 5 for completeness. It can be observed that the magnitude of T ∗

2 reduces
as material 1 becomes relatively stiffer.

4.6. Asymmetric interface cracks between a circular inclusion and the matrix

For the last example, consider the problem of two asymmetrical circular cracks along the
matrix-inclusion interface under uniform traction σ0 at infinity, as depicted in Fig. 21. The half-
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Table 5: Normalised SIFs and T-stress in material 1 for bimaterial plate with a horizontal centre crack (Example 4.5).

E1

E2
α (°)

Right tip Left tip

Ref. [35] Present Ref. [35] Present

K∗
1 K∗

2 K∗
1 K∗

2 T ∗
2 K∗

1 K∗
2 K∗

1 K∗
2 T ∗

2

10

15 1.1269 0.0852 1.1280 0.0860 -0.1775 1.0096 0.4440 1.0123 0.4458 -0.1991
30 0.9924 0.2949 0.9928 0.2955 -0.1205 0.7843 0.6246 0.7871 0.6260 -0.1300
45 0.7656 0.4061 0.7671 0.4068 -0.0257 0.5217 0.6730 0.5222 0.6739 0.0136
60 0.4919 0.4059 0.4928 0.4060 0.1647 0.2772 0.5810 0.2779 0.5808 0.2636

100

15 1.1155 0.0590 1.1189 0.0611 -0.0198 0.9680 0.4768 0.9672 0.4799 -0.0233
30 1.0048 0.2619 1.0079 0.2635 -0.0131 0.7543 0.6540 0.7542 0.6563 -0.0146
45 0.8029 0.3556 0.8051 0.3563 -0.0020 0.5389 0.6957 0.5399 0.6967 0.0058
60 0.5284 0.3290 0.5312 0.3304 0.0255 0.3498 0.5879 0.3520 0.5898 0.0483

1000

15 1.1164 0.0574 1.1176 0.0590 -0.0020 0.9597 0.4811 0.9610 0.4836 -0.0024
30 1.0075 0.2596 1.0095 0.2601 -0.0013 0.7493 0.6583 0.7502 0.6596 -0.0015
45 0.8065 0.3471 0.8090 0.3480 -0.0002 0.5454 0.6965 0.5466 0.6976 0.0007
60 0.5221 0.3055 0.5271 0.3086 0.0029 0.3691 0.5749 0.3727 0.5792 0.0056

Note: K∗
1 + iK∗

2 = (K1 + iK2) /
[
(2a)−iεσ0

√
πa

]
and T ∗ = T

√
πa/K0, with K0 =

√
K2

1 +K2
2

Figure 21: Asymmetrical cracks around a circular inclusion (Example 4.6).

crack angle of the right and left cracks are γ1 and γ2, respectively. We assume a fixed γ2 = 30◦,
while γ1 varies in the range 5◦ − 55◦. To simulate the infinite matrix condition and reduce the
finite length effect in the numerical solutions, we adopt L = 40R. For each crack geometry, two
material combinations are considered: the first contains a hard inclusion (E2 = 10E1, ν1 = 0.3 and
ν2 = 0.2), while the second has a soft inclusion (E1 = 10E2, ν1 = 0.3 and ν2 = 0.2). Le et al. [69]
derived semi-analytical expressions of the SIFs for this problem, which are used for comparison
against our direct XIGABEM solutions. The isogeometric boundary element mesh considered in
the numerical analysis is composed of 184 elements: 10 at each side of the plate and 72 along the
perimeter of the inclusion.

The results obtained by XIGABEM for the normalised SIFs of tips A and C with the variation of
γ1 are shown in Figs 22a and 22b for the cases of a hard inclusion and a soft inclusion, respectively.
For comparisons with the solutions given by Le et al. [69], the normalised SIFs are computed by
K∗

1 + iK∗
2 = (K1 + iK2) /

(
σ0
√
2R0.5+iε

)
. For tip A, in both material combinations, the value of
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(a) (b)

Figure 22: Variation of the normalised SIFs with γ1 considering the cases of (a) hard inclusion and (b) soft inclusion.
The normalised SIF values are evaluated by K∗

1 + iK∗
2 = (K1 + iK2) /

(
σ0

√
2R0.5+iε

)
. The solutions for tip A are

compared with the semi-analytical (Ana) and numerical (Num) responses provided by Le et al. [69] (Example 4.6).

K∗
1 increases for small values of γ1, reaches a maximum and then decreases with the growth of

the right crack. On the other hand, K∗
2 grows monotonically with increments in γ1. For tip C,

located in the crack that remains of fixed length, the values of the SIFs are reduced as the right
crack increases and becomes dominant. Additionally, when γ1 = 30◦, both cracks have the same
size and the SIFs recovered for tips A and C are equal. Apart from the sign of K∗

2 , the solutions
for tips B and D (not shown) are equivalent to tips A and C, respectively.

Figures 22a and 22b also present the semi-analytical and numerical SIF solutions provided by
Le et al. [69]. In general, when compared to the FEM solutions given by the reference, the present
results better approximate the semi-analytical responses, which demonstrates the efficiency of the
proposed direct XIGABEM to determine the SIFs for interface cracks.

Finally, for the sake of completeness, we also provide the T-stress results in the inclusion
determined by the direct XIGABEM for the cases of a hard inclusion (Fig. 23a) and a soft inclusion
(Fig. 23b). Like the SIFs, the T-stress magnitude also reduces for the soft inclusion case since the
stress level near the interface cracks decreases when the matrix is stiffer. Moreover, for both the
hard and soft inclusion cases, the T-stress in material 2 for the right crack changes from compressive
to tensile as γ1 increases. For the fixed-length crack, the T-stress varies less than for the right
crack and remains as a compressive stress throughout the range considered for γ1. Again, due to
the symmetry at γ1 = γ2 = 30◦, the results of the T-stress parameter for both cracks are the same
at this point.

5. Concluding remarks

This paper presents a novel XIGABEM formulation for the direct evaluation of the SIFs and T-
stress of interface cracks, without the requirement for J-integral or M-integral type post-processing.
This has been enabled by introducing singular traction enrichment functions, and by developing a
novel constraint equation relating to the normal stress component parallel to the interface at the
crack tip. The proposed extended formulation can be easily included into existing isogeometric
BEM codes without significantly increasing the computational cost. On the contrary, the com-
putational cost will be reduced markedly because of the ability of the enriched scheme to obtain
accurate solutions from coarse meshes.
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(a) (b)

Figure 23: Variation of the normalised T-stress in material 2 for right crack (tips A and B) and left crack (tips C
and D) considering a (a) hard inclusion and a (b) soft inclusion (Example 4.6).

Although the direct XIGABEM formulation is based on the analytical solution for a crack
lying in a straight interface, it is also successfully employed for the analysis of curved cracks since
the asymptotic behaviour can be captured by the same enrichment functions. Besides, the use
of NURBS functions in the XIGABEM formulation allows the exact description of certain curved
geometries, including cracks and interfaces, which minimises the errors associated with geometric
approximation.

The numerical applications presented in Section 4 demonstrate the stability and accuracy of
the direct XIGABEM for the analysis of interface cracks. A detailed study was made of the
influence of the oscillatory enrichment functions on the precision of numerical integration for
different quadrature orders, and the convergence of the method was investigated for different
material combinations. Excellent agreement was attained between the XIGABEM results and the
reference solutions available in the literature. Furthermore, it has been shown that the execution
time of the direct method is significantly lower than that of the interaction integral method.

It is worth mentioning that the two-term enrichment strategy can also be applied to homo-
geneous materials so that the SIFs and T-stress can also be obtained directly from the solution
vector. The further consideration of anisotropic materials and the extension of the method to 3D
problems can also be investigated, and such applications are work in progress. The prospect of
accurate predictions for the crack parameters in 3D without the expense of multiple evaluations
of interaction integrals is highly appealing.
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Appendix A. Stress and displacement functions for interface cracks

When n is odd, the stress functions Σn
ij(θ, s) and Υn

ij(θ, s) in Eq. (1) can be written as follows:

34



Σn
11(θ, s) =

1

coshπε

{
−

[
sinh (ε(Πs − θ))− e−ε(Πs−θ)

]
cos

n− 2

2
θ −

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) sin

n− 4

2
θ − 2ε cos

n− 4

2
θ

]}

Σn
12(θ, s) =

1

coshπε

{
sinh (ε(Πs − θ)) sin

n− 2

2
θ −

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) cos

n− 4

2
θ + 2ε sin

n− 4

2
θ

]}

Σn
22(θ, s) =

1

coshπε

{[
sinh (ε(Πs − θ)) + e−ε(Πs−θ)

]
cos

n− 2

2
θ +

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) sin

n− 4

2
θ − 2ε cos

n− 4

2
θ

]}

Υn
11(θ, s) =

1

coshπε

{[
cosh (ε(Πs − θ)) + e−ε(Πs−θ)

]
sin

n− 2

2
θ +

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) cos

n− 4

2
θ + 2ε sin

n− 4

2
θ

]}

Υn
12(θ, s) =

1

coshπε

{
cosh (ε(Πs − θ)) cos

n− 2

2
θ −

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) sin

n− 4

2
θ − 2ε cos

n− 4

2
θ

]}

Υn
22(θ, s) =

1

coshπε

{
−

[
cosh (ε(Πs − θ))− e−ε(Πs−θ)

]
sin

n− 2

2
θ −

1

2
e−ε(Πs−θ) sin θ

[
(n− 2) cos

n− 4

2
θ + 2ε sin

n− 4

2
θ

]}

where s = 1, 2 indicates the upper and lower materials, respectively, and Π1 = π and Π2 = −π :
When n is even, the stress functions are obtained by:

Σn
11(θ, s) =

1

1 + ωs

{
4 cos

n− 2

2
θ − (n− 2) sin θ sin

n− 4

2
θ

}

Σn
12(θ, s) =

1

1 + ωs

{
−2 sin

n− 2

2
θ − (n− 2) sin θ cos

n− 4

2
θ

}

Σn
22(θ, s) =

1

1 + ωs

{
(n− 2) sin θ sin

n− 4

2
θ

}

Υn
11(θ, s) =

1

1 + ωs

{
2 sin

n− 2

2
θ + (n− 2) sin θ cos

n− 4

2
θ

}

Υn
12(θ, s) =

1

1 + ωs

{
− (n− 2) sin θ sin

n− 4

2
θ

}

Υn
22(θ, s) =

1

1 + ωs

{
2 sin

n− 2

2
θ − (n− 2) sin θ cos

n− 4

2
θ

}
where ω1 = [(κ1 + 1)µ2] / [(κ2 + 1)µ1] and ω2 = [(κ2 + 1)µ1] / [(κ1 + 1)µ2].

When n is odd, the displacement functions ∆n
j (θ, s) and Θn

j (θ, s) in Eq. (3) are given by:

∆n
1 (θ, s) = − 1

µs (n2 + 4ε2) cosh (πε)

{
n

[
sinh (ε(Πs − θ))− κs − 1

2
e−ε(Πs−θ)

]
cos

nθ

2
+

+
1

2

(
n2 + 4ε2

)
e−ε(Πs−θ) sin θ sin

n− 2

2
θ + 2ε

[
cosh (ε(Πs − θ)) +

κs − 1

2
e−ε(Πs−θ)

]
sin

nθ

2

}

∆n
2 (θ, s) =

1

µs (n2 + 4ε2) cosh (πε)

{
n

[
cosh (ε(Πs − θ)) +

κs − 1

2
e−ε(Πs−θ)

]
sin

nθ

2
+

−1

2

(
n2 + 4ε2

)
e−ε(Πs−θ) sin θ cos

n− 2

2
θ − 2ε

[
sinh (ε(Πs − θ))− κs − 1

2
e−ε(Πs−θ)

]
cos

nθ

2

}
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Θn
1 (θ, s) =

1

µs (n2 + 4ε2) cosh (πε)

{
n

[
cosh (ε(Πs − θ)) +

κs − 1

2
e−ε(Πs−θ)

]
sin

nθ

2
+

+
1

2

(
n2 + 4ε2

)
e−ε(Πs−θ) sin θ cos

n− 2

2
θ − 2ε

[
sinh (ε(Πs − θ))− κs − 1

2
e−ε(Πs−θ)

]
cos

nθ

2

}

Θn
2 (θ, s) =

1

µs (n2 + 4ε2) cosh (πε)

{
n

[
sinh (ε(Πs − θ))− κs − 1

2
e−ε(Πs−θ)

]
cos

nθ

2
+

−1

2

(
n2 + 4ε2

)
e−ε(Πs−θ) sin θ sin

n− 2

2
θ + 2ε

[
cosh (ε(Πs − θ)) +

κs − 1

2
e−ε(Πs−θ)

]
sin

nθ

2

}
For n even, the displacement functions are expressed by:

∆n
1 (θ, s) =

1

µsn (1 + ωs)

[
(κs + 1) cos

nθ

2
− n sin θ sin

n− 2

2
θ

]

∆n
2 (θ, s) =

1

µsn (1 + ωs)

[
(κs − 1) sin

nθ

2
− n sin θ cos

n− 2

2
θ

]

Θn
1 (θ, s) =

1
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[
(κs − 1) sin

nθ

2
+ n sin θ cos
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2
θ

]

Θn
2 (θ, s) =

1

µsn (1 + ωs)

[
− (κs + 1) cos

nθ

2
− n sin θ sin

n− 2

2
θ

]

Appendix B. Regularisation of integrals containing traction enrichment for tip ele-
ment

The integral kernels containing only non-singular terms can be computed using Gauss-Legendre
quadrature, with the accuracy of the integration depending on the number of Gauss points used
in the quadrature. However, the integral over the tip elements on the interface, which contains
the traction enrichment in Eq. (36), must be firstly regularised since the enrichment function is
singular at ρ = 0. Without loss of generality, considering a tip element at the upper material, the
integral is written as:

Ũ eλI
iM =

∫ 1

−1

U∗
ij(x

′,x(ξ̂))T λ
jkϖ

I
kM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (B.1)

To remove the singularity at the crack tip (ξ̂ = −1), a transformation of the parent space
coordinate in terms of a new variable η ∈ [−1, 1] can be written as follows:

ξ̂(η) =
1

2

(
η2 + 2η − 1

)
(B.2)

Then, the integral kernel in Eq. (B.1) can be rewritten as:

Ũ eλI
iM =

∫ +1

−1

U∗
ij(x

′,x(η)Rλ
jkϖ

I
kM(xλ,x(η))Je(η) (η + 1) dη (B.3)

The above expression can be computed following the steps below:

1. Take an integration point to be η
2. Compute the transformed coordinate ξ̂ with Eq. (B.2)
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3. Define the coordinates x(ξ̂), the Jacobian Je(ξ̂) and the fundamental solution U∗
ij(x

′,x(ξ̂))

at the coordinate ξ̂
4. Compute the distance from the tip ρ :=

∥∥∥x(ξ̂)− xλ
∥∥∥ and determine the enrichment function

ϖI
kM(xλ,x(ξ̂))

5. Evaluate the integrand of Eq. (B.3) and multiply it by the weight corresponding to the
integration point. Increment the value of the integral

6. Take the next integration point η and return to 2

If the tip element contains the source point, Telles’ transformation [70] can be used to regularise
the weakly singular integrand that appears due to the singularity of the fundamental solution U∗

ij.
Note that since discontinuous NURBS are adopted to model the crack and interface surfaces, there
is no collocation point at the crack tip (ρ = 0). Therefore, the singularity arising from U∗

ij when
the tip element contains the source point x′ does not occur at the same singular point of ϖI

kM .
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