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Abstract
Magnetic helicity has been used widely in the analysis and modelling of solar active re-
gions. However, it is difficult to evaluate and interpret helicity in spherical geometry since
coronal magnetic fields are rooted in the photosphere and helicity is susceptible to gauge
choices. Recent work extended a geometrical definition of helicity from Cartesian to spher-
ical domains, by interpreting helicity as the average, flux-weighted pairwise winding of
magnetic-field lines. In this paper, by adopting the winding-based definition of helicity, we
compute helicity and winding in spherical coordinates for SHARP (Spaceweather HMI Ac-
tive Region Patches) magnetograms. This is compared with results obtained in Cartesian
coordinates to quantitatively investigate the effect of spherical geometry. We find that the
Cartesian approximations remain mostly valid, but for active regions with large spatial ex-
tents or strong field strengths (usually leading to flares and coronal mass ejections) there are
significant deviations due to surface curvature that must be accounted for.

Keywords Helicity · Magnetic fields · Active regions · Magnetohydrodynamics

1. Introduction

Magnetic helicity (hereafter “helicity”; e.g. Berger, 1999) is an invariant of the ideal mag-
netohydrodynamic (MHD) equations (Woltjer, 1958), and is approximately conserved in
plasma with high magnetic Reynolds number (Berger, 1993) such as the solar corona.
Closely related to helicity is magnetic winding (hereafter “winding”; e.g. Prior and Mac-
Taggart, 2020), which measures the entanglement of magnetic field lines (hereafter “field
lines”), and helicity is simply the flux-weighted winding (e.g. Moffatt, 1969; Berger and
Field, 1984; Moffatt and Ricca, 1992; Arnold and Khesin, 2021). Significant changes in
helicity and/or winding correspond to magnetic reconnections and are often correlated with
the onset of flares and coronal mass ejections (e.g., LaBonte, Georgoulis, and Rust, 2007;
Wyper, Antiochos, and DeVore, 2017; Thalmann et al., 2019; Raphaldini, Prior, and Mac-
Taggart, 2022; Soós et al., 2022).
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For a given magnetic field B in a connected volume V , the usual definition (e.g. Moffatt
and Dormy, 2019) of helicity is:

H(B) =
∫

A · B dV . (1)

It involves the non-unique choice of vector potential A such that ∇ × A = B . Indeed, any
gauge transformation A �→ A + ∇χ for a scalar function χ recovers the same field, while
helicity is changed by a boundary integral if there are non-zero normal field components
on the boundary of V (or “open domains”). This applies to coronal magnetic fields that
typically penetrate the photosphere, and Prior and Yeates (2014) showed that helicity can
indeed take arbitrary values.

For helicity to be compared for different coronal active regions (ARs), it is therefore
crucial to have alternative definitions immune to such ambiguities. A popular choice is rela-
tive helicity (Berger and Field, 1984; Finn and Antonsen, 1985) converting vector potential
choices to choices of reference magnetic fields (commonly chosen to be the potential field).
More geometrical in nature is the winding-based definition proposed in Prior and Yeates
(2014, 2021), defining helicity as the flux-weighted winding of field lines in Cartesian tubu-
lar domains. This formalism has recently been generalised by Xiao, Prior, and Yeates (2023)
to spherical domains in which ARs are best described. Over a full sphere, it is equivalent to
the relative helicity.

Although ARs responsible for some of the most powerful solar activities span a large pro-
portion of the solar disc, the intrinsic curvature of the photosphere has been only partially
accounted for in most studies involving helicity and/or winding (e.g. Liu and Schuck, 2012;
Vemareddy, 2019; MacTaggart and Prior, 2021). Magnetic-field components in spherical co-
ordinates are used on Cartesian projections of photospheric patches, mostly in the cylindrical
equal-area projection to match vector magnetogram data provided by Space-Weather Active
Region Patches (SHARP) from the Helioseismic and Magnetic Imager (HMI) onboard Solar
Dynamical Observatory (SDO) (Hoeksema et al., 2014).

Nevertheless, several studies have started including the full spherical geometry (see
Moraitis et al., 2018 and references therein). Given the little consensus on which definitions,
assumptions, and approximations should be adopted, the geometrical formalism proposed
in Xiao, Prior, and Yeates (2023) seems a promising candidate – it provides closed-form
expressions for helicity and winding directly in terms of the observed magnetic field in
spherical coordinates. This facilitates a numerical investigation into the role of spherical
geometry in helicity and winding computations compared to those obtained from Cartesian
approximations. Our results will confirm quantitatively that curvature effects indeed become
more significant as AR size increases, as qualitatively predicted in Gary and Hagyard (1990),
further demonstrating the needs of spherical methods for future global modelling of solar
magnetic fields.

The layout of this paper is as follows. In Section 2 we introduce the definitions of wind-
ing and winding-based helicity in both Cartesian and spherical domains. Section 3 reviews
properties of the CEA projection used by SHARP magnetograms and by Cartesian approx-
imations. Then, in Section 4, we compute winding-based helicity and winding in both ge-
ometries and analyse the absolute and relative errors that would have been incurred by not
accounting for the full spherical geometry. We summarise our findings in Section 5.
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Figure 1 Pairwise winding rates defined on (a) Cartesian planes and (b) spheres. Relevant quantities are
defined in Equations (2) – (5). Note that |x − x′| and ξ(x,x′) are Cartesian and spherical distances between
points x and x′ , respectively.

2. Magnetic Winding and Winding Helicity Density

As aforementioned, helicity in open domains would be affected by the choice of vector po-
tentials if it were defined by Equation (1). In this paper, we instead adopt the winding-based,
geometrical definition of helicity that is independent of such choices. We first introduce the
concept of intrinsic winding in Cartesian geometry (Prior and Yeates, 2014). On a certain
z-level, the mutual entanglement of a pair of field lines through points x and x ′ in the z-
direction can be measured by the (pairwise) winding rate, defined by

dL
dz

(x,x ′) = −1

2π |x − x ′|
[

Bχ(x)

Bz(x)
+ Bχ(x ′)

Bz(x ′)

]
, (2)

with components

Bz(x) = B(x) · êz(x), Bχ(x) = B(x) · êz(x) × x ′ − x

|x ′ − x| , (3)

and similarly for Bz(x
′) and Bχ(x ′) with x ↔ x ′ (same below). This is illustrated in Fig-

ure 1(a) and note that it is the Bχ component that is responsible for the rotation of one field
line against another (as also in the spherical case).

In the spherical case, Xiao, Prior, and Yeates (2023) constructed the analogous winding
rate in the r-direction for field lines through x and x ′ at the same r-level:

dL
dr

(x,x ′) = −1

4πr

sin ξ

1 − cos ξ

[
Bχ(x)

Br(x)
+ Bχ(x ′)

Br(x ′)

]
. (4)

Here, ξ(x,x ′) = arccos(x · x ′/r2) is the spherical distance between x and x ′, and relevant
field components are given as

Br(x) = B(x) · êr (x), Bχ(x) = B(x) · êr (x) × x ′

|êr (x) × x ′| , (5)

where êr (x) = x/r and |x × x ′| = r2 sin ξ . This is illustrated in Figure 1(b).
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The factor �(ξ) ≡ sin ξ/(1−cos ξ) manifests the difference between the two geometries,
which is related to the stereographic projection from spheres to planes (Kimura, 1999). From
its Laurent expansion about ξ = 0, i.e.

�(ξ) ≡ sin ξ

1 − cos ξ
= 2

ξ
− ξ

6
− ξ 3

360
+ O(ξ 5) , (6)

one recovers the Cartesian result (2) from the leading term by recognising rξ ≈ |x − x ′| for
small ξ . Deviations are expected on a more global scale, especially for patches with large
spatial extents. Also, the fact that spheres are closed surfaces leads to near-zero winding for
points near opposing poles (ξ � π ).

Note that the winding rates, (2) or (4), only depend on pointwise field information. By
integrating them over all pairs of points on each ζ -level Sζ , where ζ is either z (Cartesian)
or r (spherical), and then over all ζ , Prior and Yeates (2014, 2021), Xiao, Prior, and Yeates
(2023) defined (magnetic) winding as

LW =
∫ ζ1

ζ0

∫
Sζ

∫
S′
ζ

dL
dζ

(x,x ′) d2x ′ d2x dζ, (7)

and (magnetic) winding helicity as

H W =
∫ ζ1

ζ0

∫
Sζ

∫
S′
ζ

dL
dζ

(x,x ′)Bζ (x)Bζ (x
′) d2x ′ d2x dζ. (8)

When Sζ is either an infinite plane or a sphere, H W corresponds to the usual definition (1)
with the winding gauge AW, which satisfies

∇S · AW ≡ ∇ · AW − êζ · ∂AW

∂ζ
= 0 . (9)

While the use of AW was first proposed in Cartesian geometry (Prior and Yeates, 2014,
2021), it was later recognised as a special case from the poloidal - toroidal decomposition
(Berger and Hornig, 2018; Yi and Choe, 2022). In this case, LW and H W are topological
invariants based only on the magnetic field and the domain (Prior and Yeates, 2021).

In this study, we will instead consider finite Sζ patches corresponding to individual
SHARPs, rather than full planes or spheres. Moreover, we will compute only the photo-
spheric contributions from SHARP magnetograms to the integrals (7) and (8). Specifically,
when we refer to winding or helicity, we mean their densities over finite patches Sζ0 of the
photosphere ζ = ζ0:

LW(ζ0) =
∫

Sζ0

(∫
S′
ζ0

dL
dζ

(x,x ′) d2x ′
)

d2x =
∫

Sζ0

LW(x; ζ0) d2x, (10)

and

H W(ζ0) =
∫

Sζ0

(∫
S′
ζ0

dL
dζ

(x,x ′)Bζ (x)Bζ (x
′)d2x ′

)
d2x =

∫
Sζ0

HW(x; ζ0)d
2x . (11)

The inner integrals LW(x; ζ0) and HW(x; ζ0) are spatial distributions which serve as finer-
grained measures, later used in Section 4.1. Since our objective is to investigate the effect
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of curvature on helicity and winding, we outline two reasons for choosing finite surface
densities instead of full volume integrals:

i) Magnetograms are available only as finite patches on the photosphere ζ = ζ0, and it
is standard to perform computations of helicity and winding on finite domains (e.g.
Pariat et al., 2006; Liu and Schuck, 2012; MacTaggart et al., 2021). We did not want to
prejudice the results by assuming particular boundary conditions or field extrapolations.
The winding-based definition of helicity allows meaningful and consistent comparisons
between two geometries for finite domain and it leaves the curvature factor as the main
difference, although it may not correspond exactly to the usual relative helicity.

ii) Winding helicity (or winding) density has a very similar form as that for helicity (or
winding) flux through the photosphere, except that the latter also involves plasma ve-
locities (e.g. Pariat, Démoulin, and Berger, 2005; Liu and Schuck, 2013; MacTaggart
and Prior, 2021). More uncertainties, however, would be introduced from computing
the latter from velocity inversions (e.g. Schuck, 2008; Yang, Zhang, and Büchner, 2009),
which we would like to avoid. We use the comparisons made here between the Cartesian
and spherical helicity (or winding) calculations as an indicator of the effect of ignoring
spherical geometry in helicity (or winding) flux calculations.

3. SHARP Magnetograms in Cylindrical Equal-Area (CEA) Projection

SHARP magnetograms for coronal magnetic fields are available in two projected coordi-
nates: CCD image coordinates (hmi.sharp_720s) and recentered cylindrical equal-area
(CEA) projection coordinates (hmi.sharp_cea_720s), as illustrated in Figure 2 for
SHARP 4920. The commonly used standard CEA projection maps a point with spherical
coordinates (λ,φ) to CEA coordinates (x∗, y∗) as follows (Calabretta and Greisen, 2002):

x∗ = φ, (12)

y∗ = sinλ, (13)

where λ = π/2− θ is the latitude. The CEA projection allows magnetic flux to be computed
conveniently from magnetograms, since areas are preserved in the projection, i.e. equal-
area. It is, however, not angle-preserving, and that could lead to potentially significant er-
rors in helicity and winding computations, which are based on angular measures. While
distortions are inevitable due to the curvature, they can be largely reduced by choosing the
projection centre appropriately at or close to the region of interest, as in CEA-projected
SHARP magnetograms (hereafter “SHARP magnetograms”). The recentered projection is
given by (20) and (21) in the Appendix, with a self-contained derivation from the standard
version (12) and (13) (Calabretta and Greisen, 2002; Sun, 2022).

From Bobra et al. (2014) and Hoeksema et al. (2014), magnetic-field components in
SHARP magnetograms are provided in the local spherical basis (êr , êθ , êφ), whereas the
numerical grid is CEA-projected, both converted from CCD coordinates. Here, êr is normal
to the photosphere, êθ (or êφ) points southward (or westward) in the direction of solar rota-
tion. In most observational studies that we are aware of, helicity and winding for SHARP and
ARs are computed using Cartesian Equations (2) and (3), approximating both (i) the CEA
grid and (ii) the spherical field components as Cartesian. In particular, (êθ , êφ) is treated as
(êy∗ ,−êx∗), where the inherent CEA basis vectors êx∗ and êy∗ point along lines of constant
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Figure 2 SHARP 4920 on 20 December 2014 at 00:24:00 is shown in CCD coordinates in the AIA 171Å
EUV channel (upper left, white box) and in the full-disc radial magnetogram (upper right, white box), as well
as in the recentered CEA magnetogram (bottom).

Figure 3 Angular deviation between the spherical basis (êθ , êφ) used for field components and the CEA
basis (êx∗ , êy∗ ) for the underlying grid, both for SHARP 4920 in Figure 2. The CEA-origin coincides with
the patch/projection centre (λc, φc) = (−15.2◦,256.1◦). Parallels (blue) and meridians (red) with step-sizes
7.5◦ and 10◦ , respectively, are also shown.

x∗ or y∗. Take SHARP 4920 in Figure 2 as an example; we computed such misalignment
between the two bases according to Equation (9) in Sun (2022), shown in Figure 3. One can
see significant discrepancies that are greater than 10◦ towards patch corners.
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Table 1 Summary of Cartesian/CEA and spherical approaches of helicity and winding densities computa-
tions.

Approach Key Expressions Geometry Numerical Grid Field Components

Cartesian/CEA (2), (3), (10), (11) Cartesian Cartesian (Br ,Bθ ,Bφ)

Spherical (4), (5), (10), (11) Spherical Spherical (Br ,Bθ ,Bφ)

It remains challenging to quantify the errors involved in this Cartesian approach, even
if (ii) partially accounts for the surface curvature. After Xiao, Prior, and Yeates (2023) pro-
posed the fully spherical expressions for helicity and winding reviewed in Section 2, it is
thus natural to examine the extent to which Cartesian approximations fail to be accurate for
SHARP magnetograms.

4. Results

In this section, we compute and compare densities of winding-based helicity H W(ζ0) and
winding LW(ζ0) for a selection of SHARP magnetograms from Solar Cycle 24, in both
Cartesian and spherical coordinates. Key information is summarised in Table 1. Note that,
to implement the spherical approach, the numerical grid of a given SHARP magnetogram
needs to first be converted to spherical coordinates using the relevant recentered CEA pro-
jection (20) and (21).

The YY.MM.DD format is used for dates and HH.MM for times. We adopt the CGS
system of units, so magnetic field strengths are in units of Gauss (G), flux in maxwell (Mx),
helicity density in G2 ·cm3 = Mx2/cm from Equation (11), and winding density in cm3 from
Equation (10). SHARP sizes are measured in either CEA-projected degrees x∗ (longitudes)
and y∗ (latitudes) or photospheric areas in units of millionths of a solar hemisphere (mH).

From Bobra et al. (2014), each CEA pixel has a constant x∗-dimension of �x∗ = 0.03◦
in heliographic degrees, so the x∗-coordinate of the nth pixel is given by x∗

n = n�x∗ where
n is an integer and n = 0 corresponds to the patch/projection centre. In contrast, y∗ are
measured in constant steps of sines, which implies the nth pixel’s y∗-dimension, denoted by
�y∗(y∗

n), is a non-linear function of its y∗-coordinate y∗
n :

sin [�y∗(y∗
n)] − sin [�y∗(y∗

n−1)] = 0.03◦ × π

180◦ , (14)

where �y∗(y∗
0 ) = 0.03◦. This recursively gives y∗

n = y∗
n±1 + �y∗(yn±1) with + (or −) for

n > 0 (or n < 0). Moreover, each CEA pixel has an area of 1.3 × 1015 cm2, used in compar-
isons between Cartesian and spherical results.

4.1. Spatial Distributions of Errors

We first compute spatial distributions of local helicity HW(x; ζ0) from Equation (11) and
winding LW(x; ζ0) from Equation (10) in both Cartesian and spherical coordinates. Note
that the surface-integrated helicity and winding densities, H W(ζ0) and LW(ζ0), can be re-
covered from integrating the local quantities over the patch on ζ = ζ0. To compare the
results, we use both the absolute errors Pcar − Psph (i.e. the difference between Cartesian
approximation and spherical value) and relative errors (Pcar − Psph)/Psph, where P denotes
(local) helicity or winding and subscript denotes the method used. As examples, we choose
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Table 2 SHARP chosen for (field line) helicity and winding computations in Figures 4 and 5, where
“12242+” stands for 12235, 12237, 12238, 12242.

SHARP
No.

NOAA
AR No.

Date & Time Solar
Location

Projected Size
(CEA degs)

Area
(103 mH)

Flare?

3926 12022 14.04.01_00:00 Near centre 28.0◦ × 10.9◦ 6.2 No

4920 12242+ 14.12.20_00:24 Near limb 77.6◦ × 34.0◦ 31.0 Yes

Table 3 Temporal information of SHARP chosen for helicity and winding computations in Figure 5.

No. Start Date & Time End Date & Time Cadence Total Snapshots ≥ M Flares

3926 14.03.29_00:00 14.04.07_00:00 60 mins 216 No

4920 14.12.19_20:00 14.12.20_06:00 12 mins 50 Yes

snapshots of two SHARP, 3926 (medium-sized, relatively quiet) and 4920 (large-sized, very
active and flaring); see Table 2 for details.

Results are shown in Figure 4 and key observations are summarised as follows:

i) Absolute errors are greatest near regions with large actual values that are typically as-
sociated with strong fields. In contrast, relative errors generally do not exhibit such
behaviour – most large values are physically insignificant caused by near-zero denomi-
nators.

ii) Errors in helicity are more localised, likely due to sharp drops in field strengths outside
ARs, but errors in winding are more disperse, probably because winding is not flux-
weighted.

iii) Compared to the actual values, the smaller, quieter SHARP 3926 has maximum absolute
errors an order of magnitude (OM) lower, whereas for the larger, more active SHARP
4920 they are of the same OM. This confirms that the patch size and/or total flux are
indeed contributing factors to differences between the two methods, as expected from
Section 2.

4.2. Time Series of Errors

Errors in the Cartesian approximation for one particular snapshot might be caused by ob-
servational noise, so it is important to test their robustness for certain periods. Here, we
compute time series for both absolute and relative errors (defined in Section 4.1) of the
surface-integrated helicity H W(ζ0) from Equation (11) and winding densities LW(ζ0) from
Equation (10) in both spherical and Cartesian coordinates. For consistency, the same SHARP
3926 and 4920 are used with relevant temporal information in Table 3.

From results plotted in Figure 5, both series exhibit persistent errors of comparable OM
to the actual values. Excluding non-physically large values, relative errors for 3926 are mod-
erate – 0 – 5% for helicity and 0 – 20% for winding. They are more significant for 4920 –
around 15% for helicity and 25% for winding. Note that the time series for helicity show
smoother variations than those for winding, partly because, unlike helicity, winding is not
flux-weighted and tend to be dominated by the more varying field components near the po-
larity inversion line and on the edge of the large flux patches (Prior and MacTaggart, 2020).



Computation of Winding-Based Magnetic Helicity and Magnetic. . . Page 9 of 15   116 

Figure 4 Spatial distributions of absolute and relative errors for local helicity HW(x; ζ0) and winding
LW(x; ζ0) for (a) SHARP 3926 on 1 April 2014 at 00:00:00, and (b) SHARP 4920 on 20 December 2014
at 00:24:00. For reference, (radial) magnetograms are shown for both SHARP, top left for 3926 and top right
for 4920. Contours of constant field strengths are superimposed on all plots, with thresholds ±450G for 3926
and ±550G for 4920.



  116 Page 10 of 15 D. Xiao et al.

Figure 5 Time series of spherical helicity HW(r0) and winding LW(r0) (both red curves), and corresponding
absolute and relative errors (blue and black curves, respectively), for SHARP (a). 3926 and (b). 4920. Note
that the absolute errors are suitably scaled both in (a) by a factor of 100 and in (b) by a factor of −1.

4.3. Correlation Analysis Between Errors and Patch Indicators

The case studies in Sections 4.1 and 4.2 coincide with the theoretical prediction in Section 2
that errors arising from the Cartesian approximation of both helicity and winding are greater
for larger patches or those with more net magnetic flux. In this subsection, we numerically
test such correlations for a larger sample of SHARP from 2014 (solar maximum) and 2017
(towards solar minimum), listed in Table 4. Indicators related to patch sizes include de-
projected patch area (keyword AREA) and number of CEA-projected pixels. The unsigned
magnetic flux (keyword USFLUX) is used.

Results are shown in scatter plots in Figure 6. While there is an absence of a clear corre-
lation for relative errors, absolute errors are strongly correlated with all these indicators. It
demonstrates again the necessity to perform helicity and winding computations in the native
spherical coordinates for large SHARP (often containing multiple ARs with localised strong
magnetic fields). Moreover, we observe that the best-fits for the size dependence (first two
columns) have gradients of approximately 2. This could partly be explained from integrating
the second term in Equation (6) in Section 2 to obtain errors of leading order O(ξ 2) as the
first term would be the Cartesian value.
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Table 4 The list of SHARP for correlation analysis in Figure 6. On each date at midnight, the SHARP with
the smallest number and no blank pixels is chosen.

No. Date No. Date No. Date No. Date No. Date

3535 14.01.01 4166 14.06.01 4718 14.11.01 6972 17.04.01 7110 17.09.01

3586 14.01.15 4218 14.06.15 4781 14.11.15 6983 17.04.15 7131 17.09.15

3668 14.02.01 4272 14.07.01 4851 14.12.01 6994 17.05.01 7144 17.10.01

3711 14.02.14 4328 14.07.15 4900 14.12.15 7010 17.05.15 7161 17.10.15

3779 14.03.01 4379 14.08.01 6894 17.01.01 7030 17.06.01 7169 17.11.01

3824 14.03.15 4440 14.08.15 6910 17.01.15 7045 17.06.15 7189 17.11.15

3894 14.04.01 4477 14.09.01 6930 17.02.01 7058 17.07.01 7192 17.12.01

3978 14.04.15 4530 14.09.15 6949 17.02.14 7075 17.07.15 7204 17.12.15

4042 14.05.01 4591 14.10.01 6952 17.03.01 7096 17.08.01 3926 14.04.01

4097 14.05.15 4655 14.10.15 6966 17.03.16 7107 17.08.16 4920 14.12.20

Figure 6 Log-log scatter plots of unsigned absolute and relative errors in helicity and winding against po-
tential indicators for a selection of SHARP from 2014 and 2017 (including SHARP 3926 and 4920 used in
Sections 4.1 and 4.2) listed in Table 4. Best-fit lines are shown with respective Pearson correlation coefficients
or r-values. Colours are used to indicate the actual signs of errors, red for positive and black for negative.

5. Conclusion & Discussions

Magnetic helicity and winding are of increasing importance in modelling magnetic fields in
ARs, and thus predicting extreme solar events such as flares and CMEs. It is necessary to
have an unambiguous, accurate, and efficient method for computing both quantities in the
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native spherical coordinates. The geometrically motivated, winding-based definition of he-
licity proposed in Xiao, Prior, and Yeates (2023) is a promising candidate. It is independent
of vector potentials with a simple and closed-form expression based only on the observed
magnetic fields, allowing direct and meaningful comparisons for magnetic structures with
different boundary conditions.

In this work, by performing computations in both Cartesian and spherical coordinates
using CEA-projected SHARP magnetograms, we quantitatively investigated the extent to
which spherical curvature manifests in helicity and winding of SHARP. We found persistent
and sometimes significant errors of both quantities if they were calculated in the approx-
imated, Cartesian/CEA approach instead of the exact, spherical version. Also, we found
that absolute errors of both quantities correlate strongly with patch sizes and total unsigned
magnetic flux, which confirms the theoretical predictions numerically. Since the spherical
approach is computationally as efficient as the Cartesian one, it is apparent that spherical
expressions should be preferred in future uses.

As mentioned in Section 2, we expect errors of similar magnitudes in helicity and wind-
ing flux computations as they share almost identical forms as helicity and winding densities
discussed in this work. Velocity inversions, however, are needed in fluxes, which would po-
tentially involve more uncertainties, as they require more observational data such as Doppler
spectrograms in addition to vector magnetograms. A fully spherical formalism for velocity
inversions and the incorporation into flux computations are not yet available, which could
be a future direction for generalisation. Additionally, since the photosphere is not perfectly
spherical or not even clearly defined, modifications could be introduced to the definitions of
spherical helicity and winding in Xiao, Prior, and Yeates (2023) for more accuracy.

Appendix: Re-Centred Cylindrical Equal-Area (CEA) Projection

Here, we provide a self-contained, first-principle derivation for the re-centred CEA projec-
tion, partly adapted from Calabretta and Greisen (2002) and Sun (2022). Recall that the
standard version (12) and (13) maps P (λ,φ) on the sphere in polar coordinates to (x∗, y∗)
on the plane in CEA coordinates:

x∗ = φ , (15)

y∗ = sinλ . (16)

Here, �(0,0) is the projection centre and λ = 0 is the reference circle (through � and its
antipodal point).

Local distortions are quantified by the Jacobian of (15) and (16), J = cosλ, so regions
closer to the circle λ = 0 appear less distorted. Thus, by choosing a new projection centre
C(λC, φC) and thus a new reference circle, regions of interest can be mapped by the CEA
projection more accurately.

Let Ri (θ) be an anticlockwise rotation of angle θ about the (current) Cartesian axis i ∈
{x, y, z}. Then R = Ry(−λC)Rz(φC) transforms the underlying coordinates such that the
new projection centre C(λC, φC) has rotated coordinates C(λ̃C, φ̃C) = (0,0), as shown in
Figure 7. Note that

R[P (λ,φ)] = R

⎛
⎝cosλ cosφ

cosλ sinφ

sinλ

⎞
⎠ =

⎛
⎝sinλ sinλC + cosλC cosλ cos(φ − φC)

cosλ sin(φ − φC)

cosλC sinλ − sinλC cosλ cos(φ − φC)

⎞
⎠ , (17)
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Figure 7 Standard (left) and recentered (right) CEA maps with projection centres at (0,0) and (λC, φC),
respectively. We use tildes for the rotated spherical coordinates under R.

so P has rotated coordinates (λ̃, φ̃) given by

λ̃ = arcsin
[

cosλC sinλ − sinλC cosλ cos(φ − φC)
]
, (18)

φ̃ = arg

[
cosλ sin(φ − φC)

sinλ sinλC + cosλC cosλ cos(φ − φC)

]
, (19)

where arg is the signed arctan function. Combining with the standard CEA projection (15)
and (16) yields the recentered version:

x∗ = φ̃ , (20)

y∗ = sin λ̃ . (21)
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