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1 Introduction

Scattering amplitudes are fundamental observables in Minkowski space. There are issues
however in extending scattering amplitudes to curved backgrounds, which are owing to
difficulties in defining asymptotic states. In anti-de Sitter (AdS) and de Sitter (dS) space
typically one considers correlation functions extrapolated to the boundaries at infinity. This
lies at the heart of the AdS/CFT correspondence and has led to a new understanding
of scattering in AdS space, as well as observables in dS space and cosmology. It would
therefore be natural to study such types of observables also in cases where the usual notion
of S-matrix makes sense. In this way one might be able to shed light on the properties of
such new types of observables from the known properties of S-matrix amplitudes and as
well put observables defined on different space-times on a similar footing. Mathematically,
when both S-matrix and boundary correlators can be defined, going from one to the other
is equivalent to acting with intertwiner operators that recast the corresponding observables
in terms of a different basis of operators.

Along these lines, in [1–4] it has been shown that scattering amplitudes can be recast as
d-dimensional Euclidean conformal field theory correlators by expressing them in a basis of
SO(d+ 1, 1)-primary solutions to the free equations of motion. Such correlators naturally
live on the celestial sphere at null infinity, where the Lorentz group acts as the d-dimensional
Euclidean conformal group SO(d+ 1, 1). Celestial holography (for reviews see e.g. [5–8])
then postulates that there is a dual Conformal Field Theory (CFT) description. Note
that these would not be the standard correlators in Euclidean CFT are encountered as
Wick rotations of correlators in Lorentzian CFT, and for this reason we distinguish such
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correlators as celestial correlators. They are defined on the celestial sphere at null infinity,
which lacks a standard notion of locality and time, and are therefore not necessarily bound
to satisfy the usual Osterwalder-Schrader axioms. Efforts to understand the properties of
celestial correlators so far include the study of symmetries and translating of properties
of scattering amplitudes in the standard plane-wave basis to the conformal basis, see
e.g. [2, 9–37].

This is to be contrasted with the situation in anti-de Sitter space, where the isometry
group of (d+ 1)-dimensional AdS acts as the d-dimensional Lorentzian conformal group
SO(d, 2) on the boundary at spatial infinity. In this case the conformal boundary has a
time direction, meaning that unitarity and causality in AdS space is intimately tied to
unitarity and causality of the boundary system — which is a standard Lorentzian CFT
defined non-perturbatively by conformal symmetry, unitarity and an associative (and, in
particular, convergent) operator product expansion. It is natural to ask if any of our
understanding from the AdS case can be adapted to celestial holography. This is further
motivated from the simple observation that celestial and AdS boundary correlators can be
placed on a similar footing by Wick rotating the AdS to Euclidean AdS, so that they satisfy
the same conformal Ward identities. Any differences in the way they encode consistent
physics therefore lies in the freedom left over after taking constraints from conformal Ward
identities into account.

It is worth noting that, almost in parallel, very similar questions are being posed in
the context of de Sitter (dS) space. Indeed, the isometry group of (d+ 1)-dimensional
dS acts as the d-dimensional Euclidean conformal group SO(d+ 1, 1) on the boundaries
at past and future infinity, with boundary correlation functions constrained by the same
conformal Ward identities as their celestial and Euclidean AdS counterparts. Much like
their celestial counterparts above, such correlators are not necessarily subject to the usual
Osterwalder-Schrader axioms since the dS boundary is purely spatial — which obscures
how they arise from a consistent picture of unitary time evolution in the bulk of dS. Efforts
that aim to understand the properties of dS boundary correlators and the corresponding
constraints on the physics have come to be known as the “Cosmological Bootstrap” (see [38]
for a recent review), which has drawn inspiration from both the S-matrix and Conformal
Bootstrap programmes.

Among these results, it has been shown [39] that any perturbative contribution to dS
boundary correlators in the Bunch-Davies (Euclidean) vacuum can be recast as a linear
combination of corresponding Witten diagrams in Euclidean AdS — generated by the same
collection of particles and couplings as the original process in dS space. This opens up the
possibility to import the wealth of techniques, results and understanding from AdS to dS,
with the caveat that one might have to consider a non-unitary process in AdS to study dS
physics since the unitarity irreducible representations of the dS and AdS isometry groups
(respectively, SO(d+ 1, 1) and SO(d, 2)) do not coincide (though they are overlapping).
Such identities between boundary correlators in dS and AdS were first explicitly constructed
at all orders in perturbation theory by recasting Schwinger-Keldysh propagators in dS
as certain analytic continuations of propagators for the same particle in EAdS [39, 40].
More recently, however, they have been shown to follow from certain basic consistency
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criteria [38, 41]. In particular, given that processes in dS and EAdS satisfy the same
conformal Ward identities, the relations between them follow by requiring single-valuedness
as a function of the complex cross-ratios and consistent on-shell factorisation. dS boundary
correlators are only single-valued in the Bunch-Davies vacuum of dS [42–46] and single-
valuedness is an important property of AdS boundary correlators in the Euclidean region
following from the fact that singularities should only appear when one crosses light-cones.

Notice that one could run the same argument for celestial correlators under the
assumption that they are also single-valued functions of the cross ratios. In this work we
show that this is indeed the case.1 This draws inspiration from the idea [1] that (d+ 2)-
dimensional Minkowski space Md+2 is foliated by constant curvature hypersurfaces, which
are either dSd+1 or EAdSd+1 depending on whether one is inside or outside the light-cone,
and then apply holography to each slice. We show that the conformal primary wavefunction
in each region of Md+2 can be expressed as an analytic continuation of the corresponding
bulk-to-boundary propagator in EAdSd+1 (i.e. of the same scaling dimension), times a
function encoding the radial dependence. This allows us to establish that, like in dS,
contact diagram contributions to celestial correlators in d-dimensions are proportional to
their corresponding contact Witten diagrams in EAdSd+1, and we give the proportionality
constant explicitly. This confirms that such contact contributions to celestial correlators
are single-valued solutions to the conformal ward identities. For processes involving particle
exchanges, one uses that a field on Md+2 can be decomposed in terms of a continuum of
fields carrying Principal Series representations of SO(d+ 1, 1) that live on the dSd+1 or
EAdSd+1 hypersurfaces [1]. Conformal Ward identities and single-valuedness then imply
that an exchange contribution to a celestial correlator can be decomposed in terms of a
continuum of corresponding exchange Witten diagrams in EAdSd+1, with the exchanged
particles carrying unitary Principal Series representations. The coefficient of each individual
exchange Witten diagram is fixed by on-shell factorisation, meaning that it is given by the
product of coefficients that convert each contact subdiagram to their celestial counterpart.

We briefly explore some consequences of the relation between perturbative celestial
correlators and Witten diagrams in EAdS. In particular, it implies that, like their AdS
counterparts, celestial correlators admit a conformal partial wave expansion with mero-
morphic spectral density (at least perturbatively). One can then obtain their expansion
into Conformal Blocks which, combined with crossing symmetry, lies at the centre of the
bootstrap of standard Lorentzian CFTs. We also discuss (non-perturbative) constraints
from unitarity in Euclidean conformal field theory at the level of the conformal partial wave
expansion, which translates into positivity of the spectral density.

Let us conclude the introduction by noting that these results suggest that Euclidean
anti-de Sitter space could play a central role in unravelling holography on maximally
symmetric spaces for all Λ. See figure 1. Indeed, often one defines a theory via its Wick
rotation to Euclidean space. For Λ < 0, the Wick rotation from Lorentzian AdS to Euclidean
AdS defines the Lorentzian theory by the usual Osterwalder-Schrader axioms. For Λ > 0,
standard Wick rotation at the level of the embedding Minkowski space would define the

1See [11, 47, 48] for relationships of a different kind between celestial correlators and Witten diagrams.
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Figure 1. The Holographic Triangle: a cartoon representation of how observables at infinity in
different maximally symmetric spaces can all be recast in terms of boundary observables in EAdS.
Top: Λ < 0, bottom-right: Λ > 0 and bottom-left: Λ = 0. The same theory on different spaces will
analytically continue to different theories on EAdS. We stress that the analytic continuation is a
only proper Wick rotation between AdS and EAdS.

theory on the sphere. The above results suggest however that in the Bunch-Davies vacuum
one can alternatively define dS boundary observables (at least perturbatively) as boundary
observables in EAdS that satisfy certain (non-standard) criteria that would ensure their
consistency as a theory in dS. The theory in dS and its counterpart in EAdS are related by
an analytic continuation given in [39]. The results of this paper suggest a similar picture for
celestial correlators, which perturbatively can be recast as boundary observables in EAdS
that satisfy other (non-standard) criteria that would ensure their consistency as a theory
in Minkowski space. In this case celestial correlators and boundary correlators in EAdS are
related by analytic continuation and integrating over the dependence on the curvature radius.

Outline. This paper is organised as follows. In section 2 we review the hyperbolic
slicing of Minkowski space, the conformal boundary, and the radial reduction of scalar
fields onto each slice — which is implemented via the Kantorovich-Lebedev transform. In
section 3 we review the conformal primary basis for scattering amplitudes, introducing
conformal primary wave functions and celestial correlators. In section 4, implementing
the hyperbolic slicing of Md+2, we show that the conformal primary wavefunction in each
region of Minkowski space can be written as a bulk-to-boundary propagator in EAdSd+1
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(appropriately analytically continued) with the same scaling dimension, times a function
encoding the radial dependence. From this it follows in section 4.1 that contact diagram
contributions to celestial correlators are proportional to their contact Witten diagram
counterparts in EAdSd+1, with the proportionality constant arising from integrating out
the dependence on the curvature radius. We compare with some known results for contact
diagrams in celestial holography and observe a slight discrepancy with results that obtain
celestial correlators from momentum space scattering amplitudes, which seems to arise
from the fact that identities relating momentum space scattering amplitudes and celestial
correlators entail commuting the divergent integral over the momentum. In section 4.2
the perturbative relation between celestial correlators and Witten diagrams is extended to
include processes that involve particle exchanges. In section 4.3 these results are used to
infer properties of the conformal partial wave expansion of celestial correlators, in particular
meromorphicity of the spectral function, and non-perturbative constraints from unitarity.

2 Hyperbolic slicing of Minkowski space

Consider (d+ 2)-dimensional Minkowski space Md+2 with Cartesian coordinates XM ,
M = 0, . . . , d+ 1 and metric

ds2 = −
(
dX0

)2
+
(
dX1

)2
+ . . .+

(
dXd+1

)2
. (2.1)

The light-cone, defined as

X2 = −
(
X0
)2

+
(
X1
)2

+ . . .+
(
Xd+1

)2
= 0, (2.2)

naturally divides Md+2 into three regions:

D : X2 > 0 , (2.3a)
A+ : X2 < 0 , X0 > 0, (2.3b)
A− : X2 < 0 , X0 < 0. (2.3c)

Each region can be foliated with surfaces of constant curvature reflecting the SO(d+ 1, 1)
symmetry. See figure 2. For A± these are (d+ 1)-dimensional Euclidean anti-de Sitter
spaces with constant radius t:

X2 = −t2. (2.4)

A natural set of coordinates for this foliation of A± is

A+ : XM = t(cosh y, sinh y n̂), t > 0, y > 0, (2.5a)
A− : XM = t(cosh y, sinh y n̂), t < 0, y < 0, (2.5b)
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X�

Figure 2. Hyperbolic slicing of Minkowski space. Region D outside the light-cone is foliated by
co-dimension one de Sitter spaces and regions A± inside the light-cone by the upper sheet (in region
A+) or lower sheet (in region A−) of co-dimension one Euclidean anti-de Sitter spaces.

which is the analogue of spherical coordinates. n̂ is a d-dimensional unit vector n̂ · n̂ = 1
parameterising the d-dimensional unit sphere. For D instead, the foliating surfaces are
(d+ 1)-dimensional de Sitter space-times with radius R:

X2 = R2. (2.6)

In this case, the natural set of coordinates are

D : XM = R(sinh τ, cosh τ n̂), (2.7)

where τ ∈ (−∞,∞) and n̂ parameterise the d-dimensional unit sphere as before. It is
convenient to divide D into two regions corresponding to expanding and contracting patches
of the dS hypersurfaces (2.6) respectively:

D+ : X2 > 0 , X+ > 0, (2.8a)
D− : X2 > 0 , X+ < 0, (2.8b)

with light cone coordinate X+ = X0 +Xd+1. The hyperbolic slicing of the individual regions
A± and D± are naturally described by Poincaré coordinates. In fact, in the hyperbolic
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slicing Md+2 splits up into four Poincaré patches:

A+ : XM = + t

z

(
1 + z2 + ~x2

2 ,
1− z2 − ~x2

2 , ~x

)
, t > 0, z ∈ [0,∞) (2.9a)

A− : XM = + t

z

(
1 + z2 + ~x2

2 ,
1− z2 − ~x2

2 , ~x

)
, t < 0, z ∈ [0,∞) (2.9b)

D+ : XM = − R

η+

(
1− η2

+ + ~x2

2 ,
1 + η2

+ − ~x2

2 , ~x

)
, R > 0, η+ ∈ [0,∞) (2.9c)

D− : XM = R

η−

(
1− η2

− + ~x2

2 ,
1 + η2

− − ~x2

2 , ~x

)
, R > 0, η− ∈ [0,∞), (2.9d)

where ~x ∈ Rd parameterises the boundary directions.

Conformal boundary. Md+2 has a conformal boundary at both past and future null
infinity, which can be identified with the projective cone of light rays via

Q2 = 0, Q ≡ λQ, λ ∈ R>0. (2.10)

Both the past and future conformal boundaries are d-dimensional spheres, which we shall
denote by S−d and S+

d respectively. This can be seen by defining new projective coordinates

ξ1 = Q1/Q0, ξ2 = Q2/Q0, . . . , ξd+1 = Qd+1/Q0, (2.11)

so that
ξ2

1 + . . .+ ξ2
d+1 − 1 = 0. (2.12)

The sphere S−d corresponds to Q0 < 0 and S+
d to Q0 > 0. The conformal boundaries

S±d of Md+2 are also conformal boundaries of each of its hyperbolic slices (2.4) and (2.6),
which asymptote to the lightcone (2.10). The region A+ is foliated by the upper sheet of
the hyperboloids (2.4), which have conformal boundary S+

d . Likewise, the region A− is
foliated by the lower sheet of the hyperboloids (2.4), which have conformal boundary S−d .
In both cases the boundaries S±d are approached at spatial infinity |y| → ∞ with boundary
coordinates:

Q+ ∼ 1
2 te

y(1, n̂) with t > 0, (2.13a)
Q− ∼ 1

2 te
−y(1,−n̂) with t < 0. (2.13b)

In region D the foliating surfaces (2.6) are de Sitter space-times, which have two conformal
boundaries: S+

d at future infinity and S+
d at past infinity. In the parameterisation (2.7)

these are obtained in the limits τ → ±∞ with boundary coordinates:

Q+ ∼ 1
2Re

τ (1, n̂), Q− ∼ 1
2Re

−τ (−1, n̂). (2.14)

Since the Q± lie on the projective null cone (2.10), they can be re-scaled to the following
canonical form which we employ throughout:

Q+ ∼ (1, n̂), Q− ∼ (−1, n̂). (2.15)
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Scalar fields. Consider now a scalar field φ(X) in Md+2 of mass m with free equation of
motion (

∂

∂XM

∂

∂XM
−m2

)
φ(X) = 0. (2.16)

The field φ(X) can be decomposed into fields that live on the hyperbolic slices (2.4)
and (2.6) of Md+2 with unit radius by applying the Kantorovich-Lebedev transform [1] (see
appendix A). Focusing for concreteness on region D (analogous expressions hold for the
other regions A±) this reads

φ(X) = 1
2

∫ d
2 +i∞

d
2−i∞

d∆
2πi φ∆(X̂)K̃

∆−d2
(mR), (2.17)

where

K̃
∆−d2

(mR) = 2R−d/2

Γ(∆− d
2)
K

∆−d2
(mR), (2.18)

which is proportional to a modified Bessel function of the second kind, K
∆−d2

(mR) and

where in D we have set X = RX̂dS with X̂2
dS = 1. The field φ∆(X̂) satisfies the massive

field equation on the de Sitter hyperboloid (2.6) with R = 1(
∇2

dS −∆(d−∆)
)
φ∆ = 0. (2.19)

What we see is that the radial reduction of a field φ(X) in Md+2 onto the hyperbolic
slices (2.4) and (2.6) yields an infinite number of fields on EAdSd+1 and dSd+1, respectively,
which carry principal series representations ∆ ∈ d

2+iR of SO(d+ 1, 1).2 Applying holography
to each slice, the existence of a dual conformal field theory description of Md+2 living on the
boundary spheres S±d was postulated in [1]. Upon appropriate anti-podal identification of
S+
d and S−d defined in the following section, the correlation functions of the corresponding

dual conformal operators have come to be known as celestial correlators. These correspond
to scattering amplitudes evaluated in a conformal basis [2–4] and are reviewed in the
following section.

3 Conformal primary basis for scattering amplitudes

Particles of mass m and definite momentum p in Md+2 correspond to the planewave
solutions eip·X to (2.16) where p̂ = p/m parameterises the (d+ 1)-dimensional two-sheeted
hyperboloid:

Hd+1 : p̂2 = −1. (3.1)

Another basis of delta function normalisable solutions to (2.16) is given by what are known
as conformal primary wavefunctions [3, 4]. These are fields φ∆(X;Q) labelled by a conformal

2Much like in the standard CFT literature [49–53], the ∆ ∈ d
2 + iR on the Principal Series can be

analytically continued to ∆ ∈ C [24]. In the context of celestial correlators this is relevant for the treatment
of conformally soft Goldstone modes [2, 4, 14, 16–19, 54].
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dimension ∆ and boundary point Q that transform as a conformal primary scalar operator
in d-dimensions under SO(d+ 1, 1). To wit,

φ∆(X;λQ) = λ−∆φ∆(X;Q), (3.2)

where we recall that when parameterising the conformal boundary with the projective
lightcone (2.10) the SO(d+ 1, 1) transformations act linearly [55]. Let us first consider the
Fourier transform φ∆(p̂;Q). Given that the momentum p̂ lies on Hd+1, the condition (3.2)
implies that is given by the bulk-to-boundary propagator G∆(p̂;Q) for a scalar field on
Hd+1 with conformal dimension ∆,

φ∆(p̂;Q) ∝ G∆(p̂;Q), (3.3)

where (see e.g. [56])

G∆(p̂;Q) = CAdS
∆

(−2p̂ ·Q)∆ , (3.4a)

CAdS
∆ = Γ(∆)

2π
d
2 Γ
(
∆− d

2 + 1
) . (3.4b)

This is the only scalar function with the required scaling properties. Conformal primary
wavefunctions therefore have the Fourier expansion [3, 4]

φ∆(X;Q) = N∆

(
m

2π

)d/2 ∫
Hd+1

[dp̂]G∆(p̂;Q)eimp̂·X , (3.5)

with

N∆ =
Γ(∆− d

2 + 1)
√
π

. (3.6)

Incoming (−) or outgoing (+) wavefunctions can be written down by constraining p̂ to lie,
say, on the upper sheet H+

d+1 of the hyperboloid (3.1):3

φ±∆(X;Q±) = N∆

Γ(∆− d
2)

(
m

2π

)d/2 ∫
H+
d+1

[dp̂]G∆(p̂;±Q±)e±imp̂·X , (3.8)

where Q± parameterises points on the boundary of H±d+1. Notice that a point Q− on the
boundary of H−d+1 can be identified with a corresponding point Q+ on the boundary of
H+
d+1 (and vice versa) via the antipodal identification:

Q+ := −Q−. (3.9)
3Note that we have normalised the conformal primary wave functions according to the canonical Klein-

Gordon inner product:

(φ±∆1
, φ±∆2

) = ±2πi δ(∆1 −∆2) , (3.7)

which differs from the normalisation used in e.g. [3, 4].
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The incoming and outgoing wavefunctions can then be written as

φ±∆(X;±Q) = N∆

Γ(∆− d
2)

(
m

2π

)d/2 ∫
H+
d+1

[dp̂]G∆(p̂;Q)e±imp̂·X , (3.10)

where Q is a boundary point on H+
d+1.

Above we described a change of basis from plane waves to conformal primary wave-
functions

e±imp̂·X ↔ φ±∆(X;±Q), (3.11)

which is implemented via (3.5). In the basis of conformal primary wavefunctions scattering
amplitudes transform as correlation functions of conformal primary operators that, upon
the anti-podal identification (3.9), are inserted on the d-dimensional sphere S+

d at the future
conformal boundary of Md+2 which from this point on-wards we refer to as the celestial
sphere. The change of basis

A(±1p1, . . . ,±n pn) ↔ Ã∆1...∆n(±1Q1, . . . ,±nQn), (3.12)

between an n-point scattering amplitude and an n-point celestial conformal correlation
function is similarly implemented via [3, 4]

Ã∆1...∆n(±1Q1, . . . ,±nQn) =
∫
H+
d+1

[dp̂1] . . . [dp̂n]
(

n∏
i=1

N∆i

Γ(∆i− d
2)

(
mi

2π

)d/2
G∆i

(p̂i;Qi)
)

×A(±1 p1, . . . ,±n pn), (3.13)

where the notation ±i refers to whether the ith external leg is incoming (±i = −) or outgoing
(±i = +).

The change of basis (3.13) has been employed in various works (see e.g. [5–7] for
reviews) to translate features of scattering familiar from momentum space to the language
of conformal correlators. On the other hand, given that celestial correlators transform as
conformal correlators under SO(d+ 1, 1), it is natural to ask if they can be reformulated in
terms of Witten diagrams in H+

d+1, which we consider in the following section. Note that
according to the definition of the conformal primary wave function, this would be the natural
way to compute celestial correlators — treating the conformal primary wave function as
the analogue of the bulk-to-boundary propagator. In fact, in order to relate this picture to
the momentum space S-matrix picture (3.13), one is required to commute the integral over
Minkowski space with the divergent momentum integral. In the examples considered in
section 4.1 we indeed seem to find a slight mismatch in the expressions computed in these
two different ways.

4 Celestial correlators as Witten diagrams

In this section we will show explicitly that a given perturbative celestial correlator can be
expressed in terms of corresponding Witten diagrams on H+

d+1. To this end, it is useful to
evaluate the momentum integral in the representation (3.10) of conformal primary wave
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functions. This integral is only formal since it is divergent for real values of the mass m.
One can however define the following convergent integrals:

ϕ+
∆(X;Q+) = N∆

Γ(∆− d
2)

(
m

2π

)d/2 ∫
H+
d+1

[dp̂]G∆(p̂;Q+) e+mp̂·X , X ∈ A+, (4.1a)

ϕ−∆(X;Q−) = N∆

Γ(∆− d
2)

(
m

2π

)d/2 ∫
H−
d+1

[dp̂]G∆(p̂;Q−) e+mp̂·X , X ∈ A−. (4.1b)

In the hyperbolic slicing we can write:

X = RX̂AdS, with X̂2
AdS = −1, (4.2)

where in A+ we have R > 0 and in A− we have R < 0, see (2.5). The integrals (4.1) are
evaluated in appendix B and are given by the following closed form expression:

ϕ+
∆(R, X̂AdS;Q+) = N∆G∆(X̂AdS;Q+)K̃

∆−d2
(mR) , (4.3a)

ϕ−∆(R, X̂AdS;Q−) = N∆G∆(−X̂AdS;Q−)K̃
∆−d2

(−mR) , (4.3b)

which are factorised into the bulk-to-boundary propagator (3.4) on H±d+1 and the function
Bessel (2.18) which, up to powers of |R| and m, is the bulk-to-boundary propagator in
Poincaré coordinates with the mass m playing the role of the magnitude of the boundary
momentum and |R| the role of the Poincaré coordinate z.

Closed form expressions for the conformal primary wavefunctions φ±∆ over the whole of
Minkowski space can be obtained from the closed form expression (4.3) for ϕ±∆ by analytic
continuation. By comparing with the integral expression (3.10) for φ±∆, under such analytic
continuations we require, for both ϕ±∆, that:

X → iX. (4.4)

At the level of the hyperbolic foliation (4.2) this can be achieved for all regions A± and D±
of Md+2 by rotating R and X̂AdS respectively. These are summarised in the following.

Outgoing modes. Let us first focus on the outgoing wavefunction φ+
∆. To obtain this in

region A± from ϕ+
∆(X;Q) we must stay on H+

d+1 and rotate R, which fixes:

X ∈ A+ : φ+
∆(X;Q+) = ϕ+

∆(R, X̂AdS;Q+), R = e+πi
2 t, (4.5a)

X ∈ A− : φ+
∆(X;Q+) = ϕ+

∆(R, X̂AdS;Q+), R = e−
πi
2 |t|. (4.5b)

For the region D, which is foliated by dS hypersurfaces (2.6), we must rotate X̂AdS to the
de Sitter hypersurface X̂2

dS = 1. For the outgoing mode this fixes uniquely:

X ∈ D+ : φ+
∆(X;Q+) = ϕ+

∆(R, X̂AdS;Q+), X̂AdS = e+πi
2 X̂dS, (4.6a)

X ∈ D− : φ+
∆(X;Q+) = ϕ+

∆(R, X̂AdS;Q+), X̂AdS = e−
πi
2
(
−X̂dS

)
. (4.6b)
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Incoming modes. Similarly one obtain incoming wavefunctions. We summarise the
results below:

X ∈ A+ : φ−∆(X;Q−) = ϕ−∆(R, X̂AdS;Q−), R = e
πi
2 t, (4.7a)

X ∈ A− : φ−∆(X;Q−) = ϕ−∆(R, X̂AdS;Q−), R = e−
πi
2 |t|, (4.7b)

X ∈ D+ : φ−∆(X;Q−) = ϕ−∆(−R, X̂AdS;Q−), X̂AdS = e−
πi
2 X̂dS, (4.7c)

X ∈ D− : φ−∆(X;Q−) = ϕ−∆(−R, X̂AdS;Q−), X̂AdS = e+πi
2
(
−X̂dS

)
. (4.7d)

Conformal primary wave functions as EAdS propagators. In (4.5), (4.6) and (4.7)
above we identified the incoming and outgoing conformal primary wavefunctions φ±∆ in
Md+2 as analytic continuations of the functions ϕ±∆ defined in region A±. Inserting the
closed-form expression (4.3) for ϕ±∆, these can be summarised as follows:

X ∈ A+ : φ±∆(X;Q±) = N∆G∆(±X̂AdS;Q±)K̃∆− d2

(
mte±

πi
2
)
, (4.8a)

X ∈ A− : φ±∆(X;Q±) = N∆G∆(±X̂AdS;Q±)K̃
∆−d2

(
m |t|e∓

πi
2
)
, (4.8b)

X ∈ D+ : φ±∆(X;Q±) = N∆G∆(e+πi
2 X̂dS;Q±)K̃

∆−d2
(mR), (4.8c)

X ∈ D− : φ±∆(X;Q±) = N∆G∆(−e−
πi
2 X̂dS;Q±)K̃

∆−d2
(mR). (4.8d)

On a given hyperbolic slice of Md+2, the conformal primary wave functions φ±∆(X;Q±) can
be recast as bulk-to-boundary propagators with the same conformal weight ∆ on H+

d+1. In
regions A±, using the anti-podal identification (3.9) of Q+ and Q−, it is straightforward to
see that:

X ∈ A+ : φ±∆(X;Q±) = N∆G∆(X̂AdS;Q+)K̃∆− d2

(
mte±

πi
2
)
, (4.9a)

X ∈ A− : φ±∆(X;Q±) = N∆G∆(X̂AdS;Q+)K̃
∆−d2

(
m |t|e∓

πi
2
)
. (4.9b)

In region D±, the relation to the corresponding bulk-to-boundary propagator on H+
d+1 is

more subtle owing to the presence of a short distance singularity in φ±∆(X;Q±) and an anti-
podal singularity in φ∓∆(X;Q∓). In order to clarify this point and rewrite the corresponding
bulk integral as a CFT correlator it is enough to zoom in around the associated singularities
in order to extract the phase factors arising from the analitic continuation. This is what we
shall do in the following. In global coordinates (2.7), we have

φ+
∆(X;Q+) = e−∆πi

2
N∆C

AdS
∆

[2(sinhτ − coshτ cos γ)− iε]∆
K̃∆− d2

(mR), (4.10a)

φ−∆(X;Q−) = e−∆πi
2

N∆C
AdS
∆

[−2(sinhτ + coshτ cos γ)− iε]∆
K̃

∆−d2
(mR), (4.10b)

where
Q± =

(
±1, n̂′

)
, cos γ = n̂ · n̂′. (4.11)
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Let us first consider region D+, where φ+
∆ exhibits a short-distance singularity and φ−∆ an

anti-podal singularity. One zooms in on the short-distance singularity by taking the limit
τ → +∞ and γ → 0:

φ+
∆(X;Q+) = e−∆πi

2
N∆C

AdS
∆[

−2e−τ + 1
2γ

2eτ − iε
]∆ K̃∆− d2

(mR), (4.12a)

= e−∆πi
2 N∆C

AdS
∆

(
η+

η2
+ + |~x− ~x ′|2 − iε

)∆

K̃∆− d2
(mR), (4.12b)

where in the second equality we switched to Poincaré coordinates (2.9) through the identifi-
cations η+ = 2e−τ and |~x− ~x ′| = γ. For the anti-podal singularity of φ−∆, one instead takes
the limit τ → +∞ and γ̄ → 0 where γ̄ = γ + π:

φ−∆(X;Q−) = e−∆πi
2

N∆C
AdS
∆[

2e−τ − 1
2γ

2eτ − iε
]∆ K̃∆− d2

(mR), (4.13a)

= e−∆πi
2 N∆C

AdS
∆

(
η+

η2
+ − |~x− ~x ′|2 − iε

)∆

K̃∆− d2
(mR). (4.13b)

In the vicinity of the short-distance (s-d) and anti-podal (a-p) singularities in D+ we
therefore have, respectively:4

s-d in D+: φ±∆(X;Q±) = e∆(1∓1)πi2 N∆G∆
(
z,~x;~x ′

)
K̃∆− d2

(mR), z= η+e
−πi2 , (4.14a)

a-p in D+: φ±∆(X;Q±) = e−∆(1±1)πi2 N∆G∆
(
z,~x;~x ′

)
K̃∆− d2

(mR), z= η+e
+πi

2 , (4.14b)

where in Poincaré coordinates (2.9), the bulk-to-boundary propagator (3.4) on H+
d+1 reads:

G∆
(
z, ~x; ~x ′

)
= CAdS

∆

(
z

z2 + |~x− ~x ′|2
)∆

. (4.15)

A similar result follows in region D−. Here, it is φ−∆ that exhibits a short-distance
singularity and φ+

∆ an anti-podal singularity. One zooms in on the short-distance singularity
of φ−∆ by taking the limit τ → −∞ and γ → 0:

φ−∆(X;Q−) = e−∆πi
2

N∆C
AdS
∆[

−2eτ + 1
2γ

2e−τ − iε
]∆ K̃∆− d2

(mR), (4.16a)

= e−∆πi
2 N∆C

AdS
∆

(
η−

η2
− + |~x− ~x ′|2 − iε

)∆

K̃∆− d2
(mR), (4.16b)

where in the second equality we introduced Poincaré coordinates (2.9) through the identifi-
cations η− = 2eτ and |~x− ~x ′| = γ. For the anti-podal singularity of φ+

∆ one instead takes
4Note that φ−∆ is analytic around the short distance singularity of φ+

∆ in D+. Likewise, φ+
∆ is analytic

around the anti-podal singularity of φ−∆. The analogous holds in region D−, which is considered below.
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the limit τ → −∞ and γ̄ → 0 where γ̄ = γ + π:

φ+
∆(X;Q+) = e−∆πi

2
N∆C

AdS
∆[

2e+τ − 1
2γ

2e−τ − iε
]∆ K̃∆− d2

(mR), (4.17a)

= e−∆πi
2 N∆C

AdS
∆

(
η−

η2
− − |~x− ~x ′|2 − iε

)∆

K̃∆− d2
(mR). (4.17b)

By comparing with (4.15), we can conclude that in the vicinity of the short-distance (s-d)
and anti-podal (a-p) singularities in D− we have, respectively:

s-d in D−: φ±∆(X;Q±) = e∆(1±1)πi2 N∆G∆
(
z,~x;~x ′

)
K̃∆− d2

(mR), z= η−e
−πi2 , (4.18a)

a-p in D−: φ±∆(X;Q±) = e−∆(1∓1)πi2 N∆G∆
(
z,~x;~x ′

)
K̃∆− d2

(mR), z= η−e
+πi

2 . (4.18b)

As we shall see in the following section, the relations (4.9), (4.14) and (4.18) imply
that contact diagram contributions to celestial correlators can be recast as contact Witten
diagrams on H+

d+1 upon integrating out the curvature radius of the hyperbolic slicing! This
in turn leads to a more general relation between perturbative celestial correlators involving
particle exchanges and corresponding Witten diagrams, which is presented in section 4.2.

4.1 Contact diagrams

Consider a theory of scalar fields φi, i = 1, . . . , n of mass mi interacting through the vertex

V(X) = gφ1(X) . . . φn(X). (4.19)

To leading order in λ the n-point celestial correlator is given by

Ãc
∆1...∆n

(±1Q1, . . . ,±nQn) = −ig
∫
dd+2X φ±1

∆1
(X,±1Q1) . . . φ±n∆n

(X,±nQn),

where the superscript “c” to indicates that we are considering a contact diagram. The
expressions (4.8) for the conformal primary wave function instruct us to divide the integral
over Md+2 into integrals over regions A± and D±,∫

dd+2X =
∫
A+

dd+2X +
∫
A−

dd+2X +
∫
D+

dd+2X +
∫
D−

dd+2X, (4.20)

which in Poincaré coordinates (2.9) read∫
A+

dd+2X =
∫ ∞

0
td+1dt

∫ ∞
0

dz

zd+1

∫
d~x, (4.21a)∫

A−
dd+2X =

∫ 0

−∞
|t|d+1dt

∫ ∞
0

dz

zd+1

∫
d~x, (4.21b)∫

D+
dd+2X =

∫ ∞
0

Rd+1dR

∫ ∞
0

dη+

ηd+1
+

∫
d~x, (4.21c)∫

D−
dd+2X =

∫ ∞
0

Rd+1dR

∫ ∞
0

dη−

ηd+1
−

∫
d~x. (4.21d)

– 14 –



J
H
E
P
0
6
(
2
0
2
3
)
0
5
3

<latexit sha1_base64="Ft1QWnlI1qLh44BQ78N3Fp6SRLo=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQEUoioi6LbtzZgn1AE8NkOmmHTh7M3AglZOfGX3HjQhG3/oI7/8bpY6HVAxcO59zLvff4ieAKLOvLKCwsLi2vFFdLa+sbm1vm9k5LxamkrEljEcuOTxQTPGJN4CBYJ5GMhL5gbX94Nfbb90wqHke3MEqYG5J+xANOCWjJM/czhxKBb/K7Yy+zc0ewACoNz3Yk7w/gyDPLVtWaAP8l9oyU0Qx1z/x0ejFNQxYBFUSprm0l4GZEAqeC5SUnVSwhdEj6rKtpREKm3GzyR44PtdLDQSx1RYAn6s+JjIRKjUJfd4YEBmreG4v/ed0Uggs341GSAovodFGQCgwxHoeCe1wyCmKkCaGS61sxHRBJKOjoSjoEe/7lv6R1UrXPqnbjtFy7nMVRRHvoAFWQjc5RDV2jOmoiih7QE3pBr8aj8Wy8Ge/T1oIxm9lFv2B8fAO4WZiU</latexit>

O+
1 (Q1)

<latexit sha1_base64="pUXljeuIc7JQOU1ycnps63RduSw=">AAACCHicbVC7SgNBFJ31GeNr1dLCwSDEImE3iFoGbexMwDwguy6zk9lkyOyDmbtCWFLa+Cs2ForY+gl2/o2TR6GJBy4czrmXe+/xE8EVWNa3sbS8srq2ntvIb25t7+yae/tNFaeSsgaNRSzbPlFM8Ig1gINg7UQyEvqCtfzB9dhvPTCpeBzdwTBhbkh6EQ84JaAlzzzKHEoEvh3dl7ysMnIEC6BYqnsVR/JeH049s2CVrQnwIrFnpIBmqHnml9ONaRqyCKggSnVsKwE3IxI4FWyUd1LFEkIHpMc6mkYkZMrNJo+M8IlWujiIpa4I8ET9PZGRUKlh6OvOkEBfzXtj8T+vk0Jw6WY8SlJgEZ0uClKBIcbjVHCXS0ZBDDUhVHJ9K6Z9IgkFnV1eh2DPv7xImpWyfV6262eF6tUsjhw6RMeoiGx0garoBtVQA1H0iJ7RK3oznowX4934mLYuGbOZA/QHxucPMSGYzw==</latexit>O�
2 (�Q2)

<latexit sha1_base64="vJ2+3G9bnCcFsXGVntMIP1VnkAA=">AAACB3icbVDLSgNBEJyNrxhfUY+CDAYhIoRdI+ox6MWbCZgHZNdldjKbDJl9MNMrhCU3L/6KFw+KePUXvPk3TpI9aLSgoajqprvLiwVXYJpfRm5hcWl5Jb9aWFvf2Nwqbu+0VJRIypo0EpHseEQxwUPWBA6CdWLJSOAJ1vaGVxO/fc+k4lF4C6OYOQHph9znlICW3OJ+alMi8M347thNq2NbMB/KDbdqS94fwJFbLJkVcwr8l1gZKaEMdbf4afcimgQsBCqIUl3LjMFJiQROBRsX7ESxmNAh6bOupiEJmHLS6R9jfKiVHvYjqSsEPFV/TqQkUGoUeLozIDBQ895E/M/rJuBfOCkP4wRYSGeL/ERgiPAkFNzjklEQI00IlVzfiumASEJBR1fQIVjzL/8lrZOKdVaxGqel2mUWRx7toQNURhY6RzV0jeqoiSh6QE/oBb0aj8az8Wa8z1pzRjazi37B+PgGvpmYmA==</latexit>

O+
3 (Q3)

<latexit sha1_base64="q63/j/31IbUfXI8eqCTBKwFFiF4=">AAACBXicbVDLSsNAFJ34rPUVdamLwSLUTUmsqMuiG3e2YB/QhDCZTtqhkwczN0IJ3bjxV9y4UMSt/+DOv3HaZqGtBy4czrmXe+/xE8EVWNa3sbS8srq2Xtgobm5t7+yae/stFaeSsiaNRSw7PlFM8Ig1gYNgnUQyEvqCtf3hzcRvPzCpeBzdwyhhbkj6EQ84JaAlzzzKHEoEvht7WXXsCBZAueFVHcn7Azj1zJJVsabAi8TOSQnlqHvml9OLaRqyCKggSnVtKwE3IxI4FWxcdFLFEkKHpM+6mkYkZMrNpl+M8YlWejiIpa4I8FT9PZGRUKlR6OvOkMBAzXsT8T+vm0Jw5WY8SlJgEZ0tClKBIcaTSHCPS0ZBjDQhVHJ9K6YDIgkFHVxRh2DPv7xIWmcV+6JiN85Ltes8jgI6RMeojGx0iWroFtVRE1H0iJ7RK3oznowX4934mLUuGfnMAfoD4/MHk3qX+w==</latexit>O3 (Q3)<latexit sha1_base64="3H9J7b+BXr99MUT4T1V+lo5wXlM=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahbkpSRF0W3bizBfuAJoTJdNIOnTyYuRFK6MaNv+LGhSJu/Qd3/o3TNgttPXDhcM693HuPnwiuwLK+jcLK6tr6RnGztLW9s7tn7h+0VZxKylo0FrHs+kQxwSPWAg6CdRPJSOgL1vFHN1O/88Ck4nF0D+OEuSEZRDzglICWPPM4cygR+G7iZbWJI1gAlaZXcyQfDOHMM8tW1ZoBLxM7J2WUo+GZX04/pmnIIqCCKNWzrQTcjEjgVLBJyUkVSwgdkQHraRqRkCk3m30xwada6eMglroiwDP190RGQqXGoa87QwJDtehNxf+8XgrBlZvxKEmBRXS+KEgFhhhPI8F9LhkFMdaEUMn1rZgOiSQUdHAlHYK9+PIyadeq9kXVbp6X69d5HEV0hE5QBdnoEtXRLWqgFqLoET2jV/RmPBkvxrvxMW8tGPnMIfoD4/MHkFqX+Q==</latexit>O2 (Q2)

<latexit sha1_base64="ibufshlikZa+ZLFHTGC/jgBdE1g=">AAACBXicbVDLSsNAFJ34rPUVdamLwSLUTUlE1GXRjTtbsA9oQphMJ+3QyYOZG6GEbNz4K25cKOLWf3Dn3zhts9DWAxcO59zLvff4ieAKLOvbWFpeWV1bL22UN7e2d3bNvf22ilNJWYvGIpZdnygmeMRawEGwbiIZCX3BOv7oZuJ3HphUPI7uYZwwNySDiAecEtCSZx5lDiUC3+VeZueOYAFUm57tSD4YwqlnVqyaNQVeJHZBKqhAwzO/nH5M05BFQAVRqmdbCbgZkcCpYHnZSRVLCB2RAetpGpGQKTebfpHjE630cRBLXRHgqfp7IiOhUuPQ150hgaGa9ybif14vheDKzXiUpMAiOlsUpAJDjCeR4D6XjIIYa0Ko5PpWTIdEEgo6uLIOwZ5/eZG0z2r2Rc1unlfq10UcJXSIjlEV2egS1dEtaqAWougRPaNX9GY8GS/Gu/Exa10yipkD9AfG5w+NOpf3</latexit>O1 (Q1)

<latexit sha1_base64="ftB9pjDCFEy78efnvFCochEKrng=">AAACD3icbZBNS8MwGMfT+TbnW9Wjl+BQhOlop6gXYagHjxPcC6y1pFm2haVpSVJhlH4DL34VLx4U8erVm9/GbOtBNx8I+fH/Pw/J8/cjRqWyrG8jNze/sLiUXy6srK6tb5ibWw0ZxgKTOg5ZKFo+koRRTuqKKkZakSAo8Blp+oOrkd98IELSkN+pYUTcAPU47VKMlJY8c//COcT3SemolHqJc02YQp4NM6hk93HqmUWrbI0LzoKdQRFkVfPML6cT4jggXGGGpGzbVqTcBAlFMSNpwYkliRAeoB5pa+QoINJNxvukcE8rHdgNhT5cwbH6eyJBgZTDwNedAVJ9Oe2NxP+8dqy6525CeRQrwvHkoW7MoArhKBzYoYJgxYYaEBZU/xXiPhIIKx1hQYdgT688C41K2T4t27cnxeplFkce7IBdcABscAaq4AbUQB1g8AiewSt4M56MF+Pd+Ji05oxsZhv8KePzB6A8myo=</latexit>

= c+�+
�1�2�3

Figure 3. Contact diagram contributions to correlators on the d-dimensional celestial sphere
(in grey) are proportional to their Witten diagram counterparts in EAdSd+1 with proportionality
constant (4.32). Red crosses denote operators inserted on the future boundary S+

d and yellow dots
operators inserted on the past boundary S−d . O±i is the conformal operator dual to the conformal
primary wave function φ±i .

Using the relations (4.9), (4.14) and (4.18) between conformal primary wave functions and
bulk-to-boundary propagators of the same conformal weight on H+

d+1, the contribution from
each region of Md+2 factorises into the corresponding n-point contact Witten diagram on
H+
d+1 and an integral over the curvature radius the hyperbolic foliation (see figure 3):5

Ãc
∆1...∆n

(±1Q1, . . . ,±nQn) =
(
c±1...±n
A+

+c±1...±n
A− +c±1...±n

D

)
︸ ︷︷ ︸

c
±1...±n
∆1...∆n

×
∫
H+
d+1

dX̂AdSG∆1(X̂AdS;Q1) . . .G∆n(X̂AdS;Qn)︸ ︷︷ ︸
(AdS)Ãc

∆1...∆n
(Q1,...,Qn)

. (4.23)

The Witten diagram (AdS)Ãc
∆1...∆n

(Q1, . . . , Qn) on the second line of (4.23) is simply the well-
known D-function [57], which is defined as the n-point contact Witten diagram generated
by a the non-derivative n-point interaction in H+

d+1. The coefficient c±1...±n
∆1...∆n

sums the radial
integrals from each of the regions A± and D. For A±, using (4.9) we have:

c±1...±n
A+

= −ig
∫ ∞

0
dt td+1

n∏
i=1
N∆i

K̃∆i− d2

(
mi te

±i πi2
)
, (4.24a)

c±1...±n
A− = −ig

∫ ∞
0

dt td+1
n∏
i=1
N∆i

K̃∆i− d2

(
mi te

∓i πi2
)
. (4.24b)

For region D, let us first consider the case that the celestial correlator contains at least
one incoming and at least one outgoing mode. In this case the integral over regions D±
receives contributions from both short-distance and anti-podal singularities. Inserting (4.14)

5Here we replaced: ∫
H+

d+1

dX̂AdS =
∫ ∞

0

dz

zd+1

∫
d~x. (4.22)
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and (4.18), we have:

c±1...±n
D = c±1...±n

D+
+ c±1...±n
D− (4.25a)

c±1...±n
D+

= −ig


s-d (4.14)︷ ︸︸ ︷

exp

−d+
n∑
j=1

∆j(1∓j 1)

πi
2

+

a-p (4.14)︷ ︸︸ ︷
exp

d− n∑
j=1

∆j(1±j 1)

πi
2




×
∫ ∞

0
dRRd+1

n∏
i=1
N∆i

K̃
∆i−

d
2
(miR), (4.25b)

c±1...±n
D− = −ig


s-d (4.18)︷ ︸︸ ︷

exp

−d+
n∑
j=1

∆j(1±j 1)

πi
2

+

a-p (4.18)︷ ︸︸ ︷
exp

d− n∑
j=1

∆j(1∓j 1)

πi
2




×
∫ ∞

0
dRRd+1

n∏
i=1
N∆i

K̃
∆i−

d
2
(miR), (4.25c)

where the d-dependence in the phases comes from the change of integration variable from
η± to z. These combine to give

c±1...±n
D = −2ig



singularities of the φ+
∆j︷ ︸︸ ︷

cos

d− n∑
j=1

∆j(1∓j 1)

π
2

+

singularities of the φ−∆j︷ ︸︸ ︷
cos

d− n∑
j=1

∆j(1±j 1)

π
2



,

×
∫ ∞

0
dRRd+1

n∏
i=1
N∆i

K̃
∆i−

d
2
(miR). (4.26)

It is interesting to note that the integrals over the curvature radius R and t in c±1...±n
D

and c±1...±n
A± are (analytic continuations) of the multiple-K integrals often encountered in

momentum space CFT [58, 59]. It is useful to study such integrals using the Mellin-Barnes
representation [40, 41, 60], where:

K̃
∆j−

d
2
(mjR) = 1

Γ
(
∆j − d

2

) ∫ +i∞

−i∞

dsj
2πi K̃∆j−

d
2
(mj , sj)R−( d2 +2sj) , (4.27a)

K̃
∆j−

d
2
(mj , sj) = Γ

(
sj + 1

2

(
∆j − d

2

))
Γ
(
sj − 1

2

(
∆j − d

2

))(m
2

)−2sj
. (4.27b)

By adopting this representation the integral over the radial coordinate trivialises and is
replaced by a Dirac delta function in the Mellin variables:

∫ ∞
0

dRRd+1R
−

n∑
j=1

(2sj+ d
2 )

= 2πi δ

−(d+ 2) +
n∑
j=1

(
2sj + d

2

). (4.28)
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In the Mellin-Barnes representation, the coefficients (4.24) differ simply by phases in the
Mellin variables owing to the analytic continuation of the curvature radius:6

c±1...±n
A+

= −ig
∫ +i∞

−i∞
[dsj ]n F∆1...∆n(s1,m1, . . . , sn,mn)e

−
n∑
j=1
±j( d2 +2sj)πi2

, (4.30a)

c±1...±n
A− = −ig

∫ +i∞

−i∞
[dsj ]n F∆1...∆n(s1,m1, . . . , sn,mn)e

n∑
j=1
±j( d2 +2sj)πi2

, (4.30b)

where7

F∆1...∆n(s1,m1, . . . , sn,mn) = 2πi δ

−(d+ 2) +
n∑
j=1

(
2sj + d

2

)
×

n∏
i=1

N∆i

Γ
(
∆i − d

2

) K̃
∆i−

d
2
(mi, si). (4.31)

The contributions from all four regions A± and D± then combine as:

c±1...±n
∆1...∆n

= 2ig
∫ +i∞

−i∞
[dsj ]n c

±1...±n(s1, . . . , sn)F∆1...∆n(s1,m1, . . . , sn,mn), (4.32)

where
c±1...±n(s1, . . . , sn) = c±1...±n

A+
+ c±1...±n
A− + c±1...±n

D , (4.33)

with8

c±1...±n
A+

+ c±1...±n
A− = − cos

 n∑
j=1
±j
(
d

2 + 2sj
)
π

2

, (4.35a)

c±1...±n
D = −2 cos

d− n∑
j=1

∆j

π
2

 cos

 n∑
j=1
±j∆j

π
2

. (4.35b)

The sinusoidal factor in the Mellin variables sj , coming from regions A±, indicates the
presence of folded singularities in the massmj — see [41] section 3.1. Such folded singularities

6Here we defined ∫ +i∞

−i∞
[dsj ]n =

∫ +i∞

−i∞

ds1

2πi . . .
dsn
2πi . (4.29)

7As noted in [41], the Mellin-Barnes representation of momentum space Witten diagrams makes manifest
the symmetry under dilatations. This is analogous to how momentum space trivialises translation symmetry.
For generic ∆i, the solutions to the momentum space Conformal Ward identities are given by generalised
hypergeometric functions with multiple variables (e.g. for n = 3 they are Appell F4 functions [58]). The
Mellin-Barnes representation gives the analytic continuation of momentum space conformal correlators valid
for all physical values of the momenta (and beyond), analogous to how the Mellin-Barnes representation of
the Gauss hypergeometric function is the analytic continuation of the hypergeometric series.

8Here we simplified the cosine factors in (4.26) using the identity:

2 cosα cosβ = cos(α+ β) + cos(α− β). (4.34)
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are absent in region D, in which case the corresponding coefficient (4.35b) is constant and is,
in particular, given by a product of cosine factors. This in turn implies that the contribution
from region D vanishes for certain values of ∆j , corresponding to zeros of the cosine factors
in (4.35b). From the expressions (4.35) we can infer the following useful properties of the
coefficient c±1...±n

∆1...∆n
:

c±1...±n
∆1...∆n

= c∓1...∓n
∆1...∆n

, (4.36a)

c±...∓...±∆1...∆j ...∆n
= −c±...∓...±∆1...d−∆j ...∆n

. (4.36b)

The second property states that correlators involving a single incoming or outgoing mode
are anti-symmetric upon replacing the mode with its shadow: ∆j → d−∆j .9

It is interesting to compare the coefficient c±1...±n
∆1...∆n

(which, we recall, originates from
integrating out the curvature radius in the hyperbolic slicing of Md+2) with momentum
space n-point scalar contact Witten diagrams in EAdS. In particular, upon multiplying
by Rd and m∆, the function K̃

∆−d2
(mjR) defined in (2.18) is proportional to the bulk-to-

boundary propagator in Poincaré coordinates of H+
d+1. Here the mass m plays the role of

the magnitude of the boundary momentum and R the role of the Poincaré coordinate z. The
difference is that, in regions A+ and A−, this coordinate is rotated according to whether a
particle is incoming or outgoing, leading to folded singularities in the “momenta” mi. Such
folded singularities are absent in standard momentum space EAdS Witten diagrams. A
virtue of the Mellin-Barnes representation is that these singularities manifest themselves
in the sinusoidal factor (4.35a) in the Mellin variables, where (4.31) is, up to factors
of m∆j , indeed proportional to the Mellin-Barnes representation of an n-point contact
Witten diagram in EAdS [41]. It is interesting to note that the folded singularities only
originate from the regions A±, where Md+2 is foliated by EAdSd+1 hypersurfaces. The
contribution (4.35b) from region D, where Md+2 is instead foliated by dSd+1 hypersurfaces,
does not contain folded singularities and, up to factors of m∆j , takes the same form as
momentum space n-point contact Witten diagrams in EAdS.

Let us now turn to the case that we have all incoming or all outgoing modes. In this
case there is just a single contribution from D+, which, in the case that we have all outgoing
modes, corresponds to the short distance singularity of φ+

∆ or, in the case that we have all
incoming modes, the anti-podal singularity of φ−∆. And likewise for D− which, in the case
that we have all outgoing modes, corresponds to the anti-podal singularity of φ+

∆ or, in
the case that we have all incoming modes, the short-distance singularity of φ−∆. There is
therefore only a single cosine factor in (4.26) that contributes in this case, giving:

c±...±(s1, . . . , sn) = −
[
cos
(
dπ

2

)
+ cos

(
(d+ 2)π2

)]
= 0, (4.38)

where we used the Dirac delta function (4.28) to simplify the total contribution (4.35a)
from A+ and A−. This vanishing is consistent with the fact that there is no scattering

9To see this one also uses that:
N∆

Γ
(
∆− d

2

) = − Nd−∆

Γ
(
d
2 −∆

) . (4.37)
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amplitude with all incoming or all outgoing particles. This in particular means that there
is no non-trivial celestial two-point function with two incoming or two outgoing particles.

It should be noted that, while for generic values of the scaling dimensions ∆i the need
for a Mellin-Barnes representation (4.32) of the coefficient c±1...±n

∆1...∆n
is inevitable, for certain

values of ∆i the Mellin-Barnes integrals can be lifted. See e.g. sections 3.3–3.4 in [61] and
section 4.6 of [40]. An example is when ∆i = d+1

2 which corresponds to a conformally
coupled scalar. In the following section we study this case in more detail for n = 3.

Specific cases: 3pt contact diagrams. In the above we saw that celestial n-point con-
tact diagrams can be re-expressed (4.23) as an n-point contact Witten diagram in H+

d+1 times
a coefficient c±1...±n

∆1...∆n
that arises from the integral over the curvature radius of the hyperbolic

slicing. In the following we analyse in more detail the case n = 3, where we have that

c+++(si) = c−−−(si) = 0 , (4.39a)

c−++(si) = c+−−(si) = cos(2πs1)− cos
[(

d
2 −∆1

)
π
]
− cos

[(
d
2 −∆2 −∆3

)
π
]
, (4.39b)

c+−+(si) = c−+−(si) = cos(2πs2)− cos
[(

d
2 −∆2

)
π
]
− cos

[(
d
2 −∆1 −∆3

)
π
]
, (4.39c)

c++−(si) = c−−+(si) = cos(2πs3)− cos
[(

d
2 −∆3

)
π
]
− cos

[(
d
2 −∆1 −∆2

)
π
]
. (4.39d)

For generic ∆i, the Mellin-Barnes integral (4.32) with n = 3 can be expressed in terms of the
Appell F4 function (see appendix B.2 of [61]). For certain values of the scaling dimensions,
however, the corresponding the Mellin-Barnes integrals can be lifted. The simplest example
is for conformally coupled scalars, corresponding to ∆i = d+1

2 (see section 3.3 of [61]), which
can be used as seeds for correlators of conserved currents (as in e.g. [40, 60]). Considering
for concreteness the case that we have one incoming mode and two outgoing (i.e. ±1 = +,
±2 = + and ±3 = −), upon evaluating all the Mellin-Barnes integrals one obtains:

c++−
d+1

2
d+1

2
d+1

2 |A
= ig

cos
(
dπ
2

)
Γ
(

1−d
2

)
√

2m1m2m3
(m3 −m1 −m2)

d−1
2 , (4.40a)

c++−
d+1

2
d+1

2
d+1

2 |D
= ig

cos
(
dπ
2

)
Γ
(

1−d
2

)
√

2m1m2m3
(m1 +m2 +m3)

d−1
2 , (4.40b)

where for convenience we gave the contributions from region D and combined regions A±
separately. Note the expected folded singularities in the mass mi coming from regions
A±. Setting m1 = m2 = m, m3 = 2m(1 + ε) and d = 2, the contribution from regions A±
recovers the result given in equation (3.13) of [3] which was obtained from the corresponding
momentum space scattering amplitude using (3.13). We therefore differ from the result of [3]
by the contribution from region D, which is regular in ε. It should be clarified from where
this discrepancy originates, which we leave to future work. A possible explanation could
be that employing (3.13) to obtain celestial correlators from momentum space scattering
amplitudes requires to commute the divergent momentum integral in the definition (3.10)
of conformal primary wave functions past the integral over the bulk of Minkowski space.

Similarly, one can consider the case that one has two conformally coupled and one
general scalar. The fact we have two conformally coupled scalars implies that two of the
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three Mellin-Barnes integrals can be lifted. One obtains the following expression in terms
of the Gauss hypergeometric function:

c++−
d+1

2
d+1

2 ∆3|A
= −i cos

(
dπ
2

) √
πg(2m3)

d−1
2

√
2m1m2m3 Γ(∆3 − d

2)Γ
(

3−d
2

) (4.41a)

×2 F1

(
1−∆3, 1− d+ ∆3; 3− d

2 ; m1 +m2 +m3
2m3

)
,

c++−
d+1

2
d+1

2 ∆3|D
= −i

(
cos
(
dπ
2

)
− cos

((
d
2 −∆3

)
π
)) √

πg(2m3)
d−1

2

√
2m1m2m3 Γ(∆3 − d

2)Γ
(

3−d
2

) (4.41b)

×2 F1

(
1−∆3, 1− d+ ∆3; 3− d

2 ; m3 −m1 −m2
2m3

)
.

In d = 2 this gives:

c++−
3
2

3
2 ,1+iν|A

= 2igΓ(1−∆3)
cos
(
2(1−∆3) csc−1

( √
2m3√

m1+m2+m3

))
√
m1m2

, (4.42a)

c++−
3
2

3
2 ,1+iν|D

= 2ig(1 + cos((1−∆3)π))Γ(1−∆3)
cosh

(
2(1−∆3)csch−1

( √
2m3√

m1+m2−m3

))
√
m1m2

.

(4.42b)

Another example in which simplifications arise is when one or more of the fields are
massless. In this case the function (2.18) in the representation (4.3) of the conformal
primary wavefunction simplifies [4]. In the case of two massless external fields we have:

c++−
d
2 +iν1,

d
2 +iν2,

d
2 +iν3|A

=
ig cos

(
π
(
∆1 + ∆2 − d

2

))
m∆1+∆2−d

3 (2m3)2−d2

Γ
(
∆3 − d

2

) (4.43)

× Γ
(
1 + ∆3−∆1−∆2

2

)
Γ
(
1 + d−∆1−∆2−∆3

2

)
,

c++−
d
2 +iν1,

d
2 +iν2,

d
2 +iν3|D

=
ig
(
cos
[(

d
2 −∆3

)
π
]

+ cos
[(

∆1 + ∆2 − d
2

)
π
])
m∆1+∆2−d

3 (2m3)2−d2

Γ
(
∆3 − d

2

)
× Γ

(
1 + ∆3−∆1−∆2

2

)
Γ
(
1 + d−∆1−∆2−∆3

2

)
. (4.44)

Let us finally note that these examples make clear that the coefficients (4.32) are
vanishing for certain mass configurations. Analogous zeros appear in the context of dS
boundary correlators [41] and, as in that case, we expect them to be imprints of (perturbative)
unitarity.

4.2 All orders in the perturbative expansion

In the previous section we saw that contact diagram contributions to celestial correlators
are proportional to the corresponding contact Witten diagram in H+

d+1:

Ãc
∆1...∆n

(±1Q1, . . . ,±nQn) = c±1...±n
∆1...∆n

(AdS)Ãc
∆1...∆n

(Q1, . . . , Qn). (4.45)
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Figure 4. Contributions from particle exchanges to d-dimensional celestial correlators decompose
into exchange Witten diagrams of particles carrying Principal Series representations ∆ ∈ d

2 + iR in
EAdSd+1. The relative coefficients ensure consistent on-shell factorisation.

The coefficients c±1...±n
∆1...∆n

can be thought of as the ratio:

c±1...±n
∆1...∆n

=
λ±1...±n

∆1...∆n

λAdS∆1...∆n

, (4.46)

relating the coefficient λAdS∆1...∆n
of contact Witten diagram to its celestial counterpart

λ±1...±n
∆1...∆n

.
Contact diagrams are the basic building blocks for all other processes i.e. those that

involve particle exchanges. When an exchanged particle goes on-shell, we expect that the
corresponding observable factorises appropriately into subprocesses and, when all exchanged
particles are on-shell, these subprocesses are the contact diagrams generated by the vertices.
Using this property we can extend the result (4.23) to celestial correlator involving exchanged
particles, decomposing them as a sum of corresponding Witten diagrams in H+

d+1.
To illustrate, let us first consider the tree level exchange of a scalar field of mass

m2 in a 4pt celestial correlator, say in the s-channel. Using that a field in Md+2 can be
decomposed (2.17) in terms of fields on (EA)dSd+1 carrying principal series representations
of SO(d+ 1, 1), assuming consistent on-shell factorisation then implies (along the same
lines as [41])

Ãexch.
∆1∆2|m2|∆3∆4

(±1Q1,±2Q2,±3Q3,±4Q4)

=
∫ d

2 +i∞

d
2−i∞

d∆
2πi

∑
±

c±1±2±
∆1∆2∆c

∓±3±4
∆∆3∆4

c∆

(AdS)Ãexch.
∆1∆2|∆|∆3∆4

(Q1, Q2, Q3, Q4), (4.47)

where (AdS)Ã∆1∆2|∆|∆3∆4(Q1, Q2, Q3, Q4) is the corresponding exchange Witten diagram
in H+

d+1 for a particle of scaling dimension ∆. See e.g. figure 4. The coefficients c±1±2±
∆1∆2∆

and c∓±3±4
∆∆3∆4

convert the coefficients of the three-point contact subdiagrams in AdS on the
r.h.s. to their celestial counterparts via (4.46), where for each ∆ there are two operators
corresponding to incoming (−) and outgoing (+) particles.10 The c∆ account for the change
in 2pt function normalisation,

c∆ = Cflat
∆

CAdS
∆

=
Γ
(
d
2 −∆

)
Γ
(
∆− d

2 + 1
)

2π = 1
2 csc

((
d
2 −∆

)
π
)
, (4.48)

10Note that there is no two-point function for two incoming or two outgoing particles, which can be seen
from (4.38).
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where Cflat
∆ is the celestial 2pt function normalisation corresponding to a canonical Klein-

Gordon inner product (3.7) and the AdS normalisation CAdS
∆ is given in (3.4). These clearly

have the following useful property upon replacing ∆ with its shadow d−∆:

c∆ = −cd−∆, (4.49)

which is a specific case of the more general property (4.36b).
More generally, given a perturbative contribution to an n-point celestial correlator (3.13),

the following steps give its decomposition in terms of corresponding Witten diagrams
in H+

d+1:

1. Draw the same diagram in EAdS: each external line connected to the point ±iQi on
the conformal boundary of Md+2 becomes an external line connected to the point Qi
on the boundary of EAdSd+1, where an operator with the same scaling dimension ∆i

is inserted. Each internal line becomes an internal line in EAdS. Each vertex becomes
a vertex in EAdS.

2. Assign each internal line a scaling dimension label and divide by the factor (4.48)
accounting for the change in 2pt function normalisation. For each vertex, multiply by
the factor (4.46) that converts the contact diagram it generates to the corresponding
celestial contact diagram as in (4.45). For vertices that are attached to internal lines,
in the corresponding contact diagram the external particle can be either incoming or
outgoing and these possibilities should be summed over.

3. For each internal line, integrate the associated scaling dimension label over the
Principal Series ∆ ∈ d

2 + iR.

For example, for the candy diagram contribution to the four-point function in the
s-channel, taking ±1 = ±3 = +1 and ±2 = ±4 = −1, one obtains:
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To summarise this section, we have seen that a given perturbative contribution to a
celestial correlator can be expanded in terms of corresponding Witten diagrams in H+

d+1.
This was shown to follow from the assumption of consistent on-shell factorisation once
it was established in section 4.1 that celestial contact diagrams are proportional their
Witten diagram counterparts in H+

d+1 (equation (4.23)). It should be noted that this result
would equivalently follow from conformal symmetry, factorisation and the assumption of
single-valuedness (analyticity) of celestial correlators as a function of the (complexified)
cross-ratios, as is the case for AdS boundary correlators in the Euclidean region. The fact
that celestial contact diagrams are proportional to their corresponding contact Witten
diagrams in H+

d+1 indeed shows that the assumption of single-valuedness would have been a
valid one.
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4.3 Spectral representation and unitarity

We have seen that perturbative celestial correlators in d-dimensions can be decomposed in
terms of corresponding Witten diagrams on EAdSd+1. Through such identities one might
try to import the wealth of techniques, results and understanding available in EAdS to the
study of celestial correlators, in the same spirit as analogous studies relating perturbative
boundary correlators in dSd+1 to their EAdSd+1 counterparts [39, 41].

For example, such identities imply that perturbative celestial correlators have the same
analytic structure as their EAdS Witten diagram counterparts. In particular, given a
single-valued conformally invariant four-point function of operators Oi in d-dimensional
Euclidean space, harmonic analysis on SO(d+ 1, 1) [49–53] implies that it admits a partial-
wave expansion over an orthogonal basis of Eigenfunctions F∆,J of the Casimir invariants
taking the following form (say, in the (12)(34) channel):

〈O1(~x1)O2(~x2)O3(~x3)O4(~x4)〉 = 112134+
∞∑
J=0

∫ d
2 +i∞

d
2−i∞

d∆
2πi ρJ(∆)F12,34

∆,J (~x1, ~x2, ~x3, ~x4) , (4.50)

where ρJ (∆) is the spectral density and the first term on the r.h.s. is the contribution from the
identity operator. For correlators (4.50) on the boundary of EAdS ρJ (∆) is a meromorphic
function of ∆, which is due to the fact that the operator product expansion converges.
In perturbation theory, celestial correlators can be expressed as a sum of EAdS Witten
diagrams, implying that ρJ(∆) is meromorphic also for perturbative celestial correlators.

The conformal partial wave expansion (CPWE) of celestial correlators has been studied
in a variety of works [11, 15, 62, 63]. The above results tell us that one can determine the
CPWE of a given perturbative celestial correlator can be determined using their relation to
EAdS Witten diagrams. For example, considering the exchange (4.47) with ±1 = ±2 = +1
and ±3 = ±4 = −1, we can write:

Ãexch.
∆1∆2|m2|∆3∆4

=
∫ d

2 +i∞

d
2−i∞

d∆
2πi

c++−
∆1∆2∆c

+−−
∆∆3∆4

c∆

(AdS)Ãexch.
∆1∆2|∆|∆3∆4

,

= 1
2

∫ d
2 +i∞

d
2−i∞

d∆
2πi

c++−
∆1∆2∆c

+−−
∆∆3∆4

c∆

[
(AdS)Ãexch.

∆1∆2|∆|∆3∆4
−(AdS)Ãexch.

∆1∆2|d−∆|∆3∆4

]
,

where in the first equality we used that c+++
∆1∆2∆ = c−−−∆∆3∆4

= 0 and in second equality we
used the anti-symmetric property (4.36b) of the coefficients upon replacing ∆ with its
shadow d − ∆. The difference of ∆ and d − ∆ exchanges in EAdS is proportional to a
conformal partial wave [56, 64]:

(AdS)Ãexch.
∆1∆2|∆,J |∆3∆4

− (AdS)Ãexch.
∆1∆2|d−∆,J |∆3∆4

= (d− 2∆)(AdS)F12,34
∆,J , (4.51)

where, adopting the notation of [41], the AdS-normalised conformal partial wave reads:

(AdS)F12,34
∆,J (~x1, ~x2, ~x3, ~x4) =

∫
dd~x (AdS)Ãc

∆1∆2∆(~x1, ~x2, ~x) (AdS)Ãc
∆3∆4d−∆(~x3, ~x4, ~x).

(4.52)
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This gives the following CPWE for the exchange (4.47):

Ãexch.
∆1∆2|m2|∆3∆4

=
(
d
2 −∆

) ∫ d
2 +i∞

d
2−i∞

d∆
2πi

c++−
∆1∆2∆c

+−−
∆∆3∆4

c∆

(AdS)F12,34
∆,J . (4.53)

Note that meromorphicity of the spectral density in ∆ then follows from meromorphicity
in EAdS and of the coefficients (4.48) and (4.32), as consistent with single-valuedness of
(perturbative) celestial correlators as a function of complex conformal cross ratios. This shows
that in celestial CFT, which are not unitary in the familiar sense of Lorentzian CFTs and thus
not necessarily endowed with a convergent OPE expansion, a convergent OPE expansion
is recovered from the residues of the spectral density at any order in perturbation theory.

Unitarity. In unitary Euclidean CFT the conformal partial wave expansion (4.50) follows
by expanding in unitary representations of the Euclidean conformal group SO(d+ 1, 1). In
particular, if one assumes that states have positive finite norms, which is justified when the
CFT arises as boundary dual of a Minkowski theory, one can expand into contributions
from unitary irreducible representations of SO(d+ 1, 1) by inserting a resolution of the
identity11

1 = |Ω〉〈Ω|+
∞∑
J=0

∫ d
2 +i∞

d
2

d∆
2πi

1
N(∆, J)

∫
dd~x |∆, J, ~x〉〈∆, J, ~x|, (4.54)

where P∆,J projects onto the conformal multiplet labelled by the scaling dimension ∆ and
spin J , and N(∆, J) is related to the norm of the state.12 Taking now

O1 = O†3 and O2 = O†4, (4.55)

it is straightforward to conclude the following non-perturbative positivity constraint on the
spectral density:

ρJ(∆) ≥ 0. (4.56)

This follows from positivity of N(∆, J) > 0, which is ensured by the unitarity of Principal
Series representations in Euclidean CFT.

Positivity (4.56) of the spectral density has also been observed in the context of the
conformal partial wave expansion of boundary correlators in dS space [65, 66]. Here we
are noting that it applies more generally to any unitary Euclidean CFT, and therefore also
to celestial correlators. It would be interesting to use (4.56) to derive non-perturbative
constraints on bulk Minkowski physics along the lines proposed in [65] and compare with
other implementations of unitarity.13

Let us finally note that the above discussion holds for canonically normalised operators.
In the context of celestial CFTs, we have a two-fold degeneracy of operators with the

11In the following for simplicity we assume that only principal series representations contribute. In the
most general case the above resolution of the identity would also involve discrete and complementary series
representations of SO(d+ 1, 1).

12Note that the states live in the unitary Hilbert space of the bulk theory which is in fact Lorentzian.
Using positivity of the bulk Hilbert space one can then infer positivity of the boundary CPW decomposition.

13Note that the positivity (4.56) is the analogue of the positivity of conformal block coefficients in Lorentzian
CFT (dual to AdS physics), which is essential in formulating the numerical conformal bootstrap [67, 68].
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same dimension, one for in-coming and one-for outgoing particles. Furthermore, their 2pt
functions are not canonical: 〈

O+
1 (x1)O+

2 (x2)
〉

= 0 , (4.57a)〈
O−1 (x1)O−2 (x2)

〉
= 0 , (4.57b)〈

O+
1 (x1)O−2 (x2)

〉
= N∆

(x2
12)∆ . (4.57c)

A canonical spectral representation can only be obtained in terms of operators which are
normalised canonically. This amounts to consider:

O>(x) = 1√
2

(
O+

1 (x) +O−1 (x)
)
, (4.58a)

O<(x) = 1√
2

(
O+

1 (x)−O−1 (x)
)
. (4.58b)

Positivity conditions can now be derived also for celestial CFTs working with O>/<.
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A Kantorovich-Lebedev transform

As reviewed in section 4, the conformal primary wave function for a massive particle involves
a Bessel function in the radial direction [3, 4] which, which as noted in [1], is related to
the Kantorovich-Lebedev transform. This transform generalises the Mellin transform that
implements the change of basis from scattering amplitudes to Celestial correlators in the
case of massless particles.

Let us first review an analogous problem in EAdSd+1.14 In directions with translation
invariance it is natural consider a decomposition in exponential plane waves, which diago-
nalise the translation generator. Such a decomposition is obtained via Fourier transform.
In EAdS we only have translation invariance in the boundary directions. Perpendicular
to the boundary it is instead natural to expand in terms of Eigenvalues of the Dilatation
generator [41]. In Poincaré coordinates (2.9) the direction perpendicular to the bound-
ary is parameterised by the coordinate z and the Dilatation generator is diagonalised by
power-laws:

fα(z) = 〈z|fα〉 = z−iα+d
2 , (A.1)

14The same applies to dSd+1 (see [41]) but we stick to EAdSd+1 for concreteness.
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which satisfy completeness and orthogonality:

〈fα|fβ〉 = 2πδ(β − α) , (A.2a)∫ +∞

−∞

dα

2π 〈z1|fα〉〈fα|z2〉 = zd+1
1 δ(z1 − z2) . (A.2b)

Any element of L2(R+, dz
zd+1 ) can be expanded in terms of power laws (A.1) and this is

implemented by the Mellin transform. See [41] for more details.
In the context of Celestial holography, an orthogonal basis to expand elements of

L2(R+, dRRd−1) is given by Bessel-K functions:

K̃α(R) = 〈R|K̃α〉 = 2R−d/2

Γ(iα) Kiα(mR) , (A.3)

which are complete and orthogonal:15

〈K̃α|K̃β〉 = 2πδ(β − α) + 2πΓ(iα)δ(α+ β)
Γ(−iα) , (A.4a)

1
2

∫ +∞

−∞

dα

2π 〈R1|K̃α〉〈K̃α|R2〉 = R−d+1
1 δ(R1 −R2) . (A.4b)

The above completeness and orthogonality relations can be shown straightforwardly by
employing the Mellin-Barnes representation of the Bessel function. To prove (A.4a) one
first goes to Mellin space rewriting it as:

〈K̃α|K̃β〉 =
∫ ∞
ε

dR

R

∫ +i∞

−i∞

dsdt

(2πi)2 R
κ−2s−2t

(
m

2

)−2s−2t

×
Γ(s− iα

2 )Γ(s+ iα
2 )Γ(t− iβ

2 )Γ(t+ iβ
2 )

Γ(−iα)Γ(iβ) , (A.5)

where we have introduced two cut-off ε and κ. At this point the radial integral can be
replaced with:∫ ∞

ε
dRRα−2s−2t = εα−2s−2t

2s+ 2t− κ , <(2s+ 2t− κ) > 0 . (A.6)

After closing the contour on the left according to the inequality above, only one term
survives in the ε→ 0 limit. The remaining Mellin-Barnes integral can then be evaluated
using Barnes’ first lemma, giving:

〈K̃α|K̃β〉 = lim
κ→0

2α−1m−αΓ
(

1
2(κ± iα± iβ))

)
Γ(κ)Γ(−iα)Γ(iβ) = 2πδ(β − α) + 2πΓ(iα)δ(α+ β)

Γ(−iα) . (A.7)

By taking both α and β positive, as usually considered in this context, the second term can
be dropped and (A.4a) follows. To prove (A.4b), one can first show that:∫ ∞

0

dR1
R1

∫ +∞

−∞

dα

2π
Kiα(R1)

Γ(iα)
K−iα(R2)
Γ(−iα)︸ ︷︷ ︸

≡ k(R1,R2)

= 1
2 , (A.8)

15Note that the integral over α can be restricted to the interval [0,∞) removing the factor of 1/2 and
dropping the δ(α+ β).
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from which it follows that16

k(R1, R2) = R1
2 δ(R1 −R2) . (A.9)

From this (A.4b) follows upon multiplying by the appropriate powers of R and changing
variables. To prove (A.8), as we did above for the orthogonality relation one uses the
Mellin-Barnes representation for the Bessel function:∫ ∞

0

dR1
R1

k(R1, R2) =
∫ ∞

0

dR1
R1

∫ +∞

−∞

dα

2π

∫ +i∞

−i∞

ds dt

(2πi)2

(
R1
2

)−2s(
R2
2

)−2t

×
Γ(s− iα

2 )Γ(s+ iα
2 )Γ(t− iα

2 )Γ(t+ iα
2 )

Γ(−iα)Γ(iα) . (A.10)

One performs the R1 integration by placing a cut-off around zero:

lim
ε→0

∫ ∞
0

dR1
R1

R−2s
1 = lim

ε→0

ε−2s

2s , <(s) > 0 . (A.11)

At this point one can close the s contour of integration to the left. Picking the contribution
of the s ∼ 0 residue one obtains:∫ ∞

0

dR1
R1

k(R1, R2) =
∫ +i∞

−i∞

dt

2πi

∫ +∞

−∞

dα

2π cosh
(
πα
2
)
Γ(t− iα

2 )Γ(t+ iα
2 ). (A.12)

One performs first the α and then the t integral simply closing the contours and picking
the residues:

∫ ∞
0

dR1
R1

k(R1, R2) =
∞∑

n,m=0

(−1)n
(
R2
2

)m+n
cos
(
π
2 (m+ n)

)
2n!m! . (A.13)

Upon changing summation variables as ñ = n−m and one can perform the sum over m
using the identity:

∞∑
m=0

(−1)−m

Γ(m+ 1)(ñ−m)! = δñ,0, (A.14)

which collapses the leftover sum over ñ to obtain (A.8).
The decomposition of an element of L2(R+, dRRd−1) in terms of functions (A.3) is

implemented by the Kantorovich-Lebedev Transform. For a field φ(X) in Md+2, this
provides a map to fields φ∆(X̂) living the H+

d+1 hypersurface and vice versa:

φ(R, X̂) = 1
2

∫ +∞

−∞

dν

2π φ d2 +iν(X̂) K̃ν(R) , (A.15a)

φ d
2 +iν(X̂) =

∫ ∞
0

dRφ(R, X̂) K̃∗ν (R) . (A.15b)

16It is straightforward, picking up the residues in the α complex plane, to show that for R1 6= R2 the
integral over α is vanishing.
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B The conformal primary wave function

In this appendix we evaluate the integral

ϕ∆(X;Q) = N∆

Γ(∆− d
2)

(
m

2π

)d/2 ∫
H+
d+1

[dp̂]G∆(p̂;Q) e+mp̂·X , X ∈ A+, (B.1)

This integral is convergent for X ∈ A+ and is the starting point to define the analytic
continuation of the conformal primary wave functions over all Minkowski space.

To evaluate the above integral we apply Schwinger representation for the EAdS bulk-
boundary propagator (3.4):

G∆(p̂;Q) = CAdS
∆

Γ(∆)

∫ ∞
0

dt

t
t∆e2tp̂·Q . (B.2)

Plugging into (B.1) gives

ϕ∆(X;Q) = N∆

Γ(∆− d
2)

(
m

2π

)d/2CAdS
∆

Γ(∆)

∫
H+
d+1

[dp̂]
∫ ∞

0

dt

t
t∆ e2 p̂·T , (B.3)

where, in the hyperbolic slicing X = RX̂, we introduced the time-like vector

T = tQ+ 1
2mRX̂, (B.4)

which can be written in the form

T = |T |(1, 1,~0). (B.5)

To integral over H+
d+1 can then be evaluated by employing the parameterisation:

p̂ = 1
x0

(1, x2
0 + ~x2, ~x) . (B.6)

Evaluating the Gaussian integral over ~x gives

ϕ∆(X;Q) = N∆

Γ(∆− d
2)

(
m

2

)d/2CAdS
∆

Γ(∆)

∫ ∞
0

dt

t
t∆
∫ ∞

0

dx0
x0

x
−d/2
0 e

−x0+T2
x0 , (B.7)

where

T 2 = −m
2R2

4 +mRtX̂ ·Q . (B.8)

The integral over t can then replaced with the bulk-to-boundary propagator (B.2):

ϕ∆(X;Q) = R−d/2
N∆

Γ(∆− d
2)

( 2
mR

)∆− d2
G∆(X̂;Q)

∫ ∞
0

dx0
x0

x
∆− d2
0 e−x0e

−m
2R2

4x0 . (B.9)
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The remaining integral over x0 can be performed using the Mellin-Barnes representation
for the exponential function. In particular,

e−x0 =
∫ +i∞

−i∞

ds1
2πi Γ(s1)x−s10 , (B.10a)

e
−m

2R2
4x0 =

∫ +i∞

−i∞

ds2
2πi Γ(s2)

(
m2R2

4

)−s2
xs20 . (B.10b)

The integral over x0 can then be evaluated to a Dirac delta function:∫ ∞
0

dx0
x0

x
∆− d2 +s2−s1
0 = 2πi δ

(
s1 − s2 −∆ + d

2

)
. (B.11)

This can be used to eliminate one of the two Mellin-Barnes integrals, obtaining:

ϕ∆(X;Q) = R−d/2N∆

Γ(∆− d
2)
G∆(X̂AdS;Q)

∫ +i∞

−i∞

ds

2πi Γ
(
s− 1

2

(
∆− d

2

))
Γ
(
s+ 1

2

(
∆− d

2

))(mR
2

)−2s
,

=N∆G∆(X̂AdS;Q)K̃
∆−d2

(mR), (B.12)

where in the last equality we identified the Mellin-Barnes representation (4.27) of K̃
∆−d2

(mR).

Note that this demonstrates how standard embedding space techniques (see e.g. [69–71])
for evaluating Witten diagrams in EAdS can be adapted to Celestial correlators.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys.
B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

[2] C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic
symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

[3] S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry
of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

[4] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017)
065022 [arXiv:1705.01027] [INSPIRE].

[5] A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].

[6] S. Pasterski, Lectures on celestial amplitudes, Eur. Phys. J. C 81 (2021) 1062
[arXiv:2108.04801] [INSPIRE].

[7] T. McLoughlin, A. Puhm and A.-M. Raclariu, The SAGEX review on scattering amplitudes
Chapter 11: soft theorems and celestial amplitudes, J. Phys. A 55 (2022) 443012
[arXiv:2203.13022] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1016/S0550-3213(03)00494-2
https://arxiv.org/abs/hep-th/0303006
https://inspirehep.net/literature/614368
https://doi.org/10.1007/JHEP01(2017)112
https://arxiv.org/abs/1609.00732
https://inspirehep.net/literature/1485181
https://doi.org/10.1103/PhysRevD.96.065026
https://arxiv.org/abs/1701.00049
https://inspirehep.net/literature/1507492
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.065022
https://arxiv.org/abs/1705.01027
https://inspirehep.net/literature/1597599
https://arxiv.org/abs/2107.02075
https://inspirehep.net/literature/1876687
https://doi.org/10.1140/epjc/s10052-021-09846-7
https://arxiv.org/abs/2108.04801
https://inspirehep.net/literature/1903112
https://doi.org/10.1088/1751-8121/ac9a40
https://arxiv.org/abs/2203.13022
https://inspirehep.net/literature/2057985


J
H
E
P
0
6
(
2
0
2
3
)
0
5
3

[8] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial Holography, in the proceedings of the
Snowmass 2021, (2021) [arXiv:2111.11392] [INSPIRE].

[9] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the
quantum gravity S-matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

[10] D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity,
Phys. Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].

[11] H.T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem, and the Bulk Point Singularity,
Phys. Rev. D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].

[12] S. Stieberger and T.R. Taylor, Strings on Celestial Sphere, Nucl. Phys. B 935 (2018) 388
[arXiv:1806.05688] [INSPIRE].

[13] S. Stieberger and T.R. Taylor, Symmetries of Celestial Amplitudes, Phys. Lett. B 793 (2019)
141 [arXiv:1812.01080] [INSPIRE].

[14] W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal
Correlators, JHEP 05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

[15] D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial Amplitudes: Conformal
Partial Waves and Soft Limits, JHEP 10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

[16] M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory,
Phys. Rev. D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

[17] T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class.
Quant. Grav. 36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

[18] A. Puhm, Conformally Soft Theorem in Gravity, JHEP 09 (2020) 130 [arXiv:1905.09799]
[INSPIRE].

[19] A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity,
arXiv:1906.07810 [INSPIRE].

[20] Y.T.A. Law and M. Zlotnikov, Poincaré constraints on celestial amplitudes, JHEP 03 (2020)
085 [Erratum ibid. 04 (2020) 202] [arXiv:1910.04356] [INSPIRE].

[21] A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended BMS Algebra of Celestial
CFT, JHEP 03 (2020) 130 [arXiv:1912.10973] [INSPIRE].

[22] S. Banerjee, S. Ghosh and R. Gonzo, BMS symmetry of celestial OPE, JHEP 04 (2020) 130
[arXiv:2002.00975] [INSPIRE].

[23] W. Fan, A. Fotopoulos, S. Stieberger and T.R. Taylor, On Sugawara construction on Celestial
Sphere, JHEP 09 (2020) 139 [arXiv:2005.10666] [INSPIRE].

[24] L. Donnay, S. Pasterski and A. Puhm, Asymptotic Symmetries and Celestial CFT, JHEP 09
(2020) 176 [arXiv:2005.08990] [INSPIRE].

[25] A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Extended Super BMS Algebra of
Celestial CFT, JHEP 09 (2020) 198 [arXiv:2007.03785] [INSPIRE].

[26] E. Casali and A. Puhm, Double Copy for Celestial Amplitudes, Phys. Rev. Lett. 126 (2021)
101602 [arXiv:2007.15027] [INSPIRE].

[27] S. Banerjee, S. Ghosh and P. Paul, MHV graviton scattering amplitudes and current algebra on
the celestial sphere, JHEP 02 (2021) 176 [arXiv:2008.04330] [INSPIRE].

– 30 –

https://arxiv.org/abs/2111.11392
https://inspirehep.net/literature/1973246
https://doi.org/10.1007/JHEP08(2014)058
https://arxiv.org/abs/1406.3312
https://inspirehep.net/literature/1300352
https://doi.org/10.1103/PhysRevLett.119.121601
https://arxiv.org/abs/1609.00282
https://inspirehep.net/literature/1484832
https://doi.org/10.1103/PhysRevD.98.025020
https://arxiv.org/abs/1711.06138
https://inspirehep.net/literature/1636787
https://doi.org/10.1016/j.nuclphysb.2018.08.019
https://arxiv.org/abs/1806.05688
https://inspirehep.net/literature/1678074
https://doi.org/10.1016/j.physletb.2019.03.063
https://doi.org/10.1016/j.physletb.2019.03.063
https://arxiv.org/abs/1812.01080
https://inspirehep.net/literature/1706800
https://doi.org/10.1007/JHEP05(2019)121
https://arxiv.org/abs/1903.01676
https://inspirehep.net/literature/1723714
https://doi.org/10.1007/JHEP10(2019)018
https://arxiv.org/abs/1904.10940
https://inspirehep.net/literature/1731091
https://doi.org/10.1103/PhysRevD.100.085017
https://arxiv.org/abs/1904.10831
https://inspirehep.net/literature/1731073
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.1088/1361-6382/ab42ce
https://arxiv.org/abs/1905.09224
https://inspirehep.net/literature/1736276
https://doi.org/10.1007/JHEP09(2020)130
https://arxiv.org/abs/1905.09799
https://inspirehep.net/literature/1736552
https://arxiv.org/abs/1906.07810
https://inspirehep.net/literature/1740508
https://doi.org/10.1007/JHEP03(2020)085
https://doi.org/10.1007/JHEP03(2020)085
https://arxiv.org/abs/1910.04356
https://inspirehep.net/literature/1758480
https://doi.org/10.1007/JHEP03(2020)130
https://arxiv.org/abs/1912.10973
https://inspirehep.net/literature/1772301
https://doi.org/10.1007/JHEP04(2020)130
https://arxiv.org/abs/2002.00975
https://inspirehep.net/literature/1778516
https://doi.org/10.1007/JHEP09(2020)139
https://arxiv.org/abs/2005.10666
https://inspirehep.net/literature/1797253
https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.1007/JHEP09(2020)176
https://arxiv.org/abs/2005.08990
https://inspirehep.net/literature/1796970
https://doi.org/10.1007/JHEP09(2020)198
https://arxiv.org/abs/2007.03785
https://inspirehep.net/literature/1805865
https://doi.org/10.1103/PhysRevLett.126.101602
https://doi.org/10.1103/PhysRevLett.126.101602
https://arxiv.org/abs/2007.15027
https://inspirehep.net/literature/1809468
https://doi.org/10.1007/JHEP02(2021)176
https://arxiv.org/abs/2008.04330
https://inspirehep.net/literature/1811123


J
H
E
P
0
6
(
2
0
2
3
)
0
5
3

[28] S. Banerjee and S. Ghosh, MHV gluon scattering amplitudes from celestial current algebras,
JHEP 10 (2021) 111 [arXiv:2011.00017] [INSPIRE].

[29] S. Pasterski and A. Puhm, Shifting spin on the celestial sphere, Phys. Rev. D 104 (2021)
086020 [arXiv:2012.15694] [INSPIRE].

[30] S. Pasterski, A. Puhm and E. Trevisani, Celestial diamonds: conformal multiplets in celestial
CFT, JHEP 11 (2021) 072 [arXiv:2105.03516] [INSPIRE].

[31] H. Jiang, Holographic chiral algebra: supersymmetry, infinite Ward identities, and EFTs,
JHEP 01 (2022) 113 [arXiv:2108.08799] [INSPIRE].

[32] D. Kapec, Y.T.A. Law and S.A. Narayanan, Soft scalars and the geometry of the space of
celestial conformal field theories, Phys. Rev. D 107 (2023) 046024 [arXiv:2205.10935]
[INSPIRE].

[33] A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry algebras for
gauge theory and gravity, JHEP 11 (2021) 152 [arXiv:2103.03961] [INSPIRE].

[34] A. Strominger, w(1+infinity) and the Celestial Sphere, arXiv:2105.14346 [INSPIRE].

[35] E. Himwich, M. Pate and K. Singh, Celestial operator product expansions and w1+∞ symmetry
for all spins, JHEP 01 (2022) 080 [arXiv:2108.07763] [INSPIRE].

[36] L. Donnay, S. Pasterski and A. Puhm, Goldilocks modes and the three scattering bases, JHEP
06 (2022) 124 [arXiv:2202.11127] [INSPIRE].

[37] S. Pasterski, A comment on loop corrections to the celestial stress tensor, JHEP 01 (2023) 025
[arXiv:2205.10901] [INSPIRE].

[38] D. Baumann et al., Snowmass White Paper: The Cosmological Bootstrap, in the proceedings of
the Snowmass 2021, (2022) [arXiv:2203.08121] [INSPIRE].

[39] C. Sleight and M. Taronna, From AdS to dS exchanges: Spectral representation, Mellin
amplitudes, and crossing, Phys. Rev. D 104 (2021) L081902 [arXiv:2007.09993] [INSPIRE].

[40] C. Sleight and M. Taronna, Bootstrapping Inflationary Correlators in Mellin Space, JHEP 02
(2020) 098 [arXiv:1907.01143] [INSPIRE].

[41] C. Sleight and M. Taronna, From dS to AdS and back, JHEP 12 (2021) 074
[arXiv:2109.02725] [INSPIRE].

[42] X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and
non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045]
[INSPIRE].

[43] R. Holman and A.J. Tolley, Enhanced Non-Gaussianity from Excited Initial States, JCAP 05
(2008) 001 [arXiv:0710.1302] [INSPIRE].

[44] D. Lopez Nacir, R.A. Porto, L. Senatore and M. Zaldarriaga, Dissipative effects in the
Effective Field Theory of Inflation, JHEP 01 (2012) 075 [arXiv:1109.4192] [INSPIRE].

[45] R. Flauger, D. Green and R.A. Porto, On squeezed limits in single-field inflation. Part I,
JCAP 08 (2013) 032 [arXiv:1303.1430] [INSPIRE].

[46] A. Aravind, D. Lorshbough and S. Paban, Non-Gaussianity from Excited Initial Inflationary
States, JHEP 07 (2013) 076 [arXiv:1303.1440] [INSPIRE].

[47] E. Casali, W. Melton and A. Strominger, Celestial amplitudes as AdS-Witten diagrams, JHEP
11 (2022) 140 [arXiv:2204.10249] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP10(2021)111
https://arxiv.org/abs/2011.00017
https://inspirehep.net/literature/1827518
https://doi.org/10.1103/PhysRevD.104.086020
https://doi.org/10.1103/PhysRevD.104.086020
https://arxiv.org/abs/2012.15694
https://inspirehep.net/literature/1838933
https://doi.org/10.1007/JHEP11(2021)072
https://arxiv.org/abs/2105.03516
https://inspirehep.net/literature/1862670
https://doi.org/10.1007/JHEP01(2022)113
https://arxiv.org/abs/2108.08799
https://inspirehep.net/literature/1907940
https://doi.org/10.1103/PhysRevD.107.046024
https://arxiv.org/abs/2205.10935
https://inspirehep.net/literature/2086476
https://doi.org/10.1007/JHEP11(2021)152
https://arxiv.org/abs/2103.03961
https://inspirehep.net/literature/1850558
https://arxiv.org/abs/2105.14346
https://inspirehep.net/literature/1866130
https://doi.org/10.1007/JHEP01(2022)080
https://arxiv.org/abs/2108.07763
https://inspirehep.net/literature/1906452
https://doi.org/10.1007/JHEP06(2022)124
https://doi.org/10.1007/JHEP06(2022)124
https://arxiv.org/abs/2202.11127
https://inspirehep.net/literature/2036993
https://doi.org/10.1007/JHEP01(2023)025
https://arxiv.org/abs/2205.10901
https://inspirehep.net/literature/2086466
https://arxiv.org/abs/2203.08121
https://inspirehep.net/literature/2052479
https://doi.org/10.1103/PhysRevD.104.L081902
https://arxiv.org/abs/2007.09993
https://inspirehep.net/literature/1807966
https://doi.org/10.1007/JHEP02(2020)098
https://doi.org/10.1007/JHEP02(2020)098
https://arxiv.org/abs/1907.01143
https://inspirehep.net/literature/1742341
https://doi.org/10.1007/JHEP12(2021)074
https://arxiv.org/abs/2109.02725
https://inspirehep.net/literature/1918131
https://doi.org/10.1088/1475-7516/2007/01/002
https://arxiv.org/abs/hep-th/0605045
https://inspirehep.net/literature/716000
https://doi.org/10.1088/1475-7516/2008/05/001
https://doi.org/10.1088/1475-7516/2008/05/001
https://arxiv.org/abs/0710.1302
https://inspirehep.net/literature/763330
https://doi.org/10.1007/JHEP01(2012)075
https://arxiv.org/abs/1109.4192
https://inspirehep.net/literature/927913
https://doi.org/10.1088/1475-7516/2013/08/032
https://arxiv.org/abs/1303.1430
https://inspirehep.net/literature/1222657
https://doi.org/10.1007/JHEP07(2013)076
https://arxiv.org/abs/1303.1440
https://inspirehep.net/literature/1222661
https://doi.org/10.1007/JHEP11(2022)140
https://doi.org/10.1007/JHEP11(2022)140
https://arxiv.org/abs/2204.10249
https://inspirehep.net/literature/2070502


J
H
E
P
0
6
(
2
0
2
3
)
0
5
3

[48] L.P. de Gioia and A.-M. Raclariu, Eikonal approximation in celestial CFT, JHEP 03 (2023)
030 [arXiv:2206.10547] [INSPIRE].

[49] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical Derivation of Vacuum
Operator Product Expansion in Euclidean Conformal Quantum Field Theory, Phys. Rev. D 13
(1976) 887 [INSPIRE].

[50] V.K. Dobrev et al., Harmonic Analysis on the n-Dimensional Lorentz Group and Its
Application to Conformal Quantum Field Theory, vol. 63, Springer (1977)
[DOI:10.1007/BFb0009678] [INSPIRE].

[51] G. Mack, D-independent representation of Conformal Field Theories in D dimensions via
transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407
[INSPIRE].

[52] M.S. Costa, V. Gonçalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091
[arXiv:1209.4355] [INSPIRE].

[53] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078
[arXiv:1703.00278] [INSPIRE].

[54] L. Donnay, A. Puhm and A. Strominger, Conformally Soft Photons and Gravitons, JHEP 01
(2019) 184 [arXiv:1810.05219] [INSPIRE].

[55] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP
11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

[56] M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064
[arXiv:1404.5625] [INSPIRE].

[57] E. D’Hoker et al., Graviton exchange and complete four point functions in the AdS/CFT
correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

[58] A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in
momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

[59] A. Bzowski, TripleK: A Mathematica package for evaluating triple-K integrals and conformal
correlation functions, Comput. Phys. Commun. 258 (2021) 107538 [arXiv:2005.10841]
[INSPIRE].

[60] C. Sleight and M. Taronna, On the consistency of (partially-)massless matter couplings in de
Sitter space, JHEP 10 (2021) 156 [arXiv:2106.00366] [INSPIRE].

[61] C. Sleight, A Mellin Space Approach to Cosmological Correlators, JHEP 01 (2020) 090
[arXiv:1906.12302] [INSPIRE].

[62] A. Atanasov, W. Melton, A.-M. Raclariu and A. Strominger, Conformal block expansion in
celestial CFT, Phys. Rev. D 104 (2021) 126033 [arXiv:2104.13432] [INSPIRE].

[63] W. Melton, Celestial Feynman Rules for Scalars, arXiv:2109.07462 [INSPIRE].

[64] T. Leonhardt, R. Manvelyan and W. Ruhl, The Group approach to AdS space propagators,
Nucl. Phys. B 667 (2003) 413 [hep-th/0305235] [INSPIRE].

[65] M. Hogervorst, J. Penedones and K.S. Vaziri, Towards the non-perturbative cosmological
bootstrap, JHEP 02 (2023) 162 [arXiv:2107.13871] [INSPIRE].

[66] L. Di Pietro, V. Gorbenko and S. Komatsu, Analyticity and unitarity for cosmological
correlators, JHEP 03 (2022) 023 [arXiv:2108.01695] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP03(2023)030
https://doi.org/10.1007/JHEP03(2023)030
https://arxiv.org/abs/2206.10547
https://inspirehep.net/literature/2098504
https://doi.org/10.1103/PhysRevD.13.887
https://doi.org/10.1103/PhysRevD.13.887
https://inspirehep.net/literature/99835
https://doi.org/10.1007/BFb0009678
https://inspirehep.net/literature/124298
https://arxiv.org/abs/0907.2407
https://inspirehep.net/literature/825652
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/literature/1186758
https://doi.org/10.1007/JHEP09(2017)078
https://arxiv.org/abs/1703.00278
https://inspirehep.net/literature/1515535
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1007/JHEP01(2019)184
https://arxiv.org/abs/1810.05219
https://inspirehep.net/literature/1698238
https://doi.org/10.1007/JHEP11(2011)071
https://doi.org/10.1007/JHEP11(2011)071
https://arxiv.org/abs/1107.3554
https://inspirehep.net/literature/919206
https://doi.org/10.1007/JHEP09(2014)064
https://arxiv.org/abs/1404.5625
https://inspirehep.net/literature/1291976
https://doi.org/10.1016/S0550-3213(99)00525-8
https://arxiv.org/abs/hep-th/9903196
https://inspirehep.net/literature/497234
https://doi.org/10.1007/JHEP03(2014)111
https://arxiv.org/abs/1304.7760
https://inspirehep.net/literature/1230988
https://doi.org/10.1016/j.cpc.2020.107538
https://arxiv.org/abs/2005.10841
https://inspirehep.net/literature/1797466
https://doi.org/10.1007/JHEP10(2021)156
https://arxiv.org/abs/2106.00366
https://inspirehep.net/literature/1866373
https://doi.org/10.1007/JHEP01(2020)090
https://arxiv.org/abs/1906.12302
https://inspirehep.net/literature/1741989
https://doi.org/10.1103/PhysRevD.104.126033
https://arxiv.org/abs/2104.13432
https://inspirehep.net/literature/1861169
https://arxiv.org/abs/2109.07462
https://inspirehep.net/literature/1922156
https://doi.org/10.1016/j.nuclphysb.2003.07.007
https://arxiv.org/abs/hep-th/0305235
https://inspirehep.net/literature/619638
https://doi.org/10.1007/JHEP02(2023)162
https://arxiv.org/abs/2107.13871
https://inspirehep.net/literature/1895235
https://doi.org/10.1007/JHEP03(2022)023
https://arxiv.org/abs/2108.01695
https://inspirehep.net/literature/1898984


J
H
E
P
0
6
(
2
0
2
3
)
0
5
3

[67] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D
CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[68] D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques,
and Applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

[69] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03
(2011) 025 [arXiv:1011.1485] [INSPIRE].

[70] M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074
[arXiv:1107.1504] [INSPIRE].

[71] A.L. Fitzpatrick et al., A Natural Language for AdS/CFT Correlators, JHEP 11 (2011) 095
[arXiv:1107.1499] [INSPIRE].

– 33 –

https://doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
https://inspirehep.net/literature/789530
https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://inspirehep.net/literature/1672816
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
https://inspirehep.net/literature/875727
https://doi.org/10.1007/JHEP10(2011)074
https://arxiv.org/abs/1107.1504
https://inspirehep.net/literature/917569
https://doi.org/10.1007/JHEP11(2011)095
https://arxiv.org/abs/1107.1499
https://inspirehep.net/literature/917573

	Introduction
	Hyperbolic slicing of Minkowski space
	Conformal primary basis for scattering amplitudes
	Celestial correlators as Witten diagrams
	Contact diagrams
	All orders in the perturbative expansion
	Spectral representation and unitarity

	Kantorovich-Lebedev transform
	The conformal primary wave function

